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Abstract
This paper continues the work of Kang and Larsson Theoretical and Applied Climatology 116:537–548 (2014) What is the
link between temperature and carbon dioxide levels? A Granger causality analysis based on ice core data. Theoretical and
Applied Climatology 116:537-548, by adding methane to the study of causality between temperature and carbon dioxide.
The data used goes 800,000 years back in time which is possible due to it being extracted from ice cores located at Dome C
in Antarctica. First we use linear interpolation to make the three data sets equidistant to be able to employ statistical methods.
We adjust for a deterministic trend and find the best model fit to be an autoregressive model with lag two and a piecewise
quadratic trend. By employing multivariate Granger causality tests we find strong evidence that temperature, carbon dioxide
and methane all Granger cause each other in both directions i.e. carbon dioxide Granger causes temperature and temperature
Granger causes carbon dioxide, etc. This is in accordance with the findings of Kang and Larsson, with the extension that we
can add methane to establish a trivariate feedback system between temperature, carbon dioxide and methane.

Keywords Granger causality · Ice cores · Carbon dioxide · Methane

1 Introduction

Global warming has for quite some time been one of human-
ity’s biggest challenges and, to a very high degree, still is.
The aim of this article is to study the long term relationship
between temperature, carbon dioxide and methane from ice
core data from Antarctica, to see whether there exists a sta-
tistically significant causality between the three variables in
question using the multivariate Granger causality test. This
is a continuation of the paper from Kang and Larsson (2014)
where they found a long term relationship between tempera-
ture and carbon dioxide concentration. In the present paper,
we bring in methane concentration into the analysis.

References to previous related work are given in Kang
and Larsson (2014). Here, we complement this with a brief
account of more recent research on related subjects.
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Two papers that study the impact of carbon dioxide and
methane on temperature, and vice versa, using ice core data,
are Davidson et al. (2016); Stips et al. (2016). The statistical
model of Davidson et al. (2016) resembles our model. They
also use a vector autoregressive (VAR) model which takes
the deterministic trends (Milankovitch cycles) into account.
But in contrast to Kang and Larsson (2014) and the present
paper, these trends are modeled via known orbital variables.
Another difference is that Ice volume is also brought in as
an additional, fourth variable. Granger causality is not tested
via parameter restriction. Instead, the analysis focuses on pre-
diction intervals for changes of the dependent variable (e.g.
temperature) when one of the covariates (e.g. carbon dioxide
concentration) increases its value. In this way, a causal effect
of temperature on carbon dioxide and methane is found, but
not the other way around.

The same issue is under study in Stips et al. (2016).
The methodological tools here are differential equations and
Shannon entropy. Data used are both recent (from 1850 and
on) and from ice cores. For more recent data, it is found that
greenhouse gases, in particular carbon dioxide, are the main
causal drivers of the temperature rise. But for ice core data,
the cause-effect direction is reversed. The explanation is that
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the feedback of greenhouse gases to temperature changes
seems to be slower that the fast response of temperature to
changes of greenhouse gas concentrations. This finding is
corroborated by Muryshev et al. (2019).

Other papers of special interest include the following: Faes
et al. (2017) modifies the Granger causality testingmethod in
VARmodels and conclude that,when analyzing ice core data,
the proof for carbon dioxide rise to cause temperature rise is
stronger than for the opposite causation. The papers by Seip
et al. (2018);Vakulenko et al. (2016) point out, using different
methods, that causalities between carbon dioxide concen-
tration and temperature may go in different directions over
different time periods. Finally, Estrada and Perron (2019)
analyze data from the last centuries and find that breaks in
carbon dioxide trend to precede breaks in temperature trend,
which they interpret as a sign of causality.

The structure of the present paper is as follows: in
Section 2 a short description of the data is given fol-
lowed by a briefing of the data processing necessarily to be
able to employ traditional statistical methods. Thereafter, in
Section 3, the statistical analysis used is described. Section 4
initiates with a briefing of the results regarding model selec-
tion, optimizing break points and some residual analysis,
culminating in the results of the multivariate Granger causal-
ity tests. Finally in Section 5 a discussion of the results and
comments on future work takes place.

The statistical analysis was performed using the statistical
computer software R version 3.2.3.

2 Background and data

The source of data, National Centers for Environmental
Information (NCEI) monitored by National Oceanic and
Atmospheric Administration (NOAA) is a world wide cli-
mate and historical weather database. More specifically the
data used in this study was collected at Dome C (by Euro-
pean Project for Ice Coring in Antarctica (EPICA)) which
is located at east Antarctica. The temperature, carbon diox-
ide and methane series all go from, approximately, 800,000
years back in time to around 100 years before present. This
is possible by drilling a 3,270m ice core from which the cli-
mate and gas data can be retrieved. Using the attribute of ice
cores to store small air bubbles makes it possible to access
information about gas compositions in the past. By analyz-
ing different isotopes it is also achievable to reconstruct the
temperature level, cf Alley (2010).

2.1 Data processing

The three data sets (temperature, CO2 and CH4) all span
over roughly the same time period,however, there are large

differences in number of observations and they are not
observed at the same time. Henceforth, to be able to properly
analyse the data, a simple linear interpolation was used to
make the observations of the three series equidistant. This
was done by using the following formula

x = x1 + t − t1
t2 − t1

(x2 − x1). (1)

Here x1 is observed at time t1 and x2 at time t2 hence (1)
will calculate x at time t1 < t < t2. The interval was cho-
sen in agreement with Kang and Larsson (2014) and was set
to be 1,000 years. The number of interpolation points is a
trade-off: choosing too few might result in a loss of informa-
tion whereas too many will lead to artificiality resulting in a
possible bias.

2.2 Structural break points

By inspectingFigs. 1, 2 and 3 several obvious structural break
points are observed and the pattern seems to be similar among
the three series. As suggested by Kang and Larsson (2014)
the eight initial break points shown in Table 1 will be used for
the three series. The break points will later on be modified to
optimize fit and the result of that modification is also shown
in Table 1.

3 Statistical analysis

In accordance with Kang and Larsson (2014) a number of
trendswere found by inspecting Fig. 1. It is quite obvious that
there is a resemblance between the shapes of the three series.
An exponential trend seems appropriate to consider, hence
it might be reasonable to combine autoregressive terms, in
order to account for the serial correlation,with piecewise

Fig. 1 Temperature over the past 800 000 years
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Fig. 2 CO2 concentration over the past 800 000 years

quadratic functions to explain the deterministic exponential
behavior. This reasoning leads to the combined model
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where (ε1t , ε2t , ε3t )
′ are i id with expectation 0 and the deter-

ministic terms are

νi t =
7∑
j=1

{
di j0 + di j1(t − Tj ) + di j2(t − Tj )

2
}

×I
{
Tj ≤ t < Tj+1

}
, (3)

where i = 1,2,3 (temperature, CO2, CH4) and I
{
Tj ≤ t <

Tj+1
}
is 1 if Tj ≤ t < Tj+1 and 0 otherwise. In (3) di j0 is

the constant term, di j1 the linear and di j2 the quadratic. p in
(2) is the number of lags.

Fig. 3 CH4 concentration over the past 800 000 years

Table 1 Initial and modified break points for temperature, CO2 and
CH4

Series and
order

Initial break
point

Modified
break point

T T
1 -798, 000 -798, 000

T T
2 -696, 000 -705, 000

T T
3 -615, 000 -609, 000

T T
4 -407, 000 -430, 000

T T
5 -334, 000 -340, 000

T T
6 -242, 000 -241, 000

T T
7 -128, 000 -134, 000

T T
8 0 0

TCO2
1 -798, 000 -798, 000

TCO2
2 -696, 000 -698, 000

TCO2
3 -615, 000 -628, 000

TCO2
4 -407, 000 -413, 000

TCO2
5 -334, 000 -340, 000

TCO2
6 -242, 000 -249, 000

TCO2
7 -128, 000 -133, 000

TCO2
8 0 0

TCH4
1 -798, 000 -798, 000

TCH4
2 -696, 000 -695, 000

TCH4
3 -615, 000 -626, 000

TCH4
4 -407, 000 -425, 000

TCH4
5 -334, 000 -337, 000

TCH4
6 -242, 000 -241, 000

TCH4
7 -128, 000 -133, 000

TCH4
8 0 0

3.1 Akaike information criterion

The Akaike information criterion (AIC), cf Akaike (1974),
measures how well a model fits the data. The lower value of
AIC the better the fit. This was taken into consideration when
finding the optimal model. The formula is

AIC = 2k − 2logL̂,

where k is the number of parameters in the model and L̂ is
the maximum likelihood.

3.2 Out of sample analysis

In addition to AIC an out-of-sample analysis was employed
to help decide the final model. This was done by estimating
the models using all of the data with the exception of the last
50 observations. Thereafter the ruled out observations were
predicted from the estimated models and, lastly, the residual
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Table 2 AIC of the univariate
models

Model AIC, temp AIC,CO2 AIC,CH4

AR(1) without constant 1, 996.9 5, 048.5 7, 924.2

AR(1) with constant 1, 987.3 5, 041.2 7, 889.3

AR(2) without constant 1, 983.1 4, 937.8 7, 925.4

AR(2) with constant 1, 968.8 4, 918.5 7, 891.1

AR(1) with pqt 1, 962.9 5, 005.7 7, 886.7

AR(2) with pqt 1, 953.7 4, 905.9 7, 887.9

AR(1) with pqt, mbp 1, 907.8 4, 976.3 7, 840.3

AR(2) with pqt, mbp 1, 897.5 4, 866.4 7, 841.1

Pqt is short for piecewise quadratic trend and mbp is short for modified break points

sums of squares (RSS) of deviations from the observations
were calculated.

3.3 Granger causality test

The process X2 Granger causes X1 if δk12 �= 0 for some k
in (2), and similarly, X1 Granger causes X2 if δk21 �= 0 for
some k as first described by Granger (1969). This was later
developed into a formal F test by Sims (1972). In this paper,
we prefer to use an alternative test proposed by Lütkepohl
(1982). He used the likelihood ratio test

� = T (lnRSSr − lnRSSu), (4)

where T is the number of observations, RSSr and RSSu are
the residual sums of squares of the restricted and unrestricted
model, respectively. Then Lütkepohl compared that to the χ2

distribution. The number of degrees of freedom is the number
of restricted parameters.

For every trivariate model Lütkepohl carried out three
tests. E.g. in our case, for the trivariate temperaturemodel the
first test would have the null hypothesis that the lag coeffi-
cients for CO2 and CH4 would be zero (δk12 = 0 and δk13 = 0,
for k = 1,2), versus the alternative hypothesis that these two
lag coefficients are nonzero. This test determines if at least
one of δk12 or δk13 is nonzero and therefore has an impact on
temperature. The number of degrees of freedom is 2p.

The second test has the null hypothesis that only δk12 is
zero versus the same alternative. The third test has the null
hypothesis that only δk13 is zero versus the same alternative.
The latter two tests help determine the significance of the two
variables one by one. The number of degrees of freedom is p.

4 Results

To investigate whether the three reconstructed series were
stationary or not the augmented Dickey-Fuller test (Dickey
and Fuller 1979) was used. The null hypothesis of nonsta-
tionarity was tested against the alternative of stationarity.
The test gave rejection in all the three cases (test statistics
−4.8, −4.6 and −6.1 for the temperature, carbon dioxide
and methane series, respectively). The Akaike Information
Criterion (AIC) was calculated for six different models for
each of the three series. That is (2) with p = 1 with and with-
out the piecewise quadratic trend (3) and (2) with p = 2 with
and without the piecewise quadratic trend (3). The result of
this can be seen in Table 2 where the lowest AIC and there-
fore the best fit was given by AR(2) with piecewise quadratic
trend for temperature and CO2. However, the best fit for CH4

was given by AR(1) with piecewise quadratic trend, though
by a very small margin. Furthermore by inspecting Table 3,
where residual sum of squares (RSS) of forecast errors
in the out-of-sample analysis were calculated for the six

Table 3 Residual sum of
squares of forecast errors in the
out-of-sample analysis

Model RSS, temp RSS,CO2 RSS,CH4

AR(1) without constant 492.9 50, 378.9 3, 743, 888.0

AR(1) with constant 539.3 41, 567.7 4, 107, 405.0

AR(2) without constant 484.7 50, 187.0 3, 713, 906.0

AR(2) with constant 540.1 47, 567.8 4, 094, 981.0

AR(1) with pqt 794.8 61, 843.0 605, 354.2

AR(2) with pqt 379.1 170, 381.6 1, 061, 129.0

AR(1) with pqt, mbp 395.3 26, 309.1 482, 943.0

AR(2) with pqt, mbp 360.7 29, 350.1 467, 540.2

Pqt is short for piecewise quadratic trend and mbp is short for modified break points
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Table 4 Estimated parameters of the trivariate temperature series with
CO2 and CH4 as the second and third variable

Coefficient Estimate t-value

δ111 0.9331 23.4***

δ211 −6.717 × 10−2 −1.6

δ112 3.556 × 10−2 5.7***

δ212 −3.857 × 10−2 −6.6***

δ113 −4.032 × 10−3 −4.3***

δ213 4.705 × 10−3 5.1***

d110 0.2958 0.3

d111 −3.712 × 10−5 −3.0**

d112 3.651 × 10−10 2.8**

d120 0.3203 0.3

d121 −5.149 × 10−5 −4.2***

d122 5.639 × 10−10 4.5***

d130 −0.3286 −0.4

d131 3.977 × 10−6 0.9

d132 −3.949 × 10−11 −1.7

d140 0.8334 0.9

d141 −2.842 × 10−5 −2.3*

d142 8.959 × 10−11 0.7

d150 1.106 1.2

d151 −6.822 × 10−5 −6.1***

d152 6.142 × 10−10 5.7***

d160 −0.3951 −0.4

d161 2.999 × 10−6 0.3

d162 −8.223 × 10−11 −0.9

d170 0.9960 1.1

d171 −4.865 × 10−5 −6.3***

d172 3.264 × 10−10 6.0***

One, two or three stars indicate significance level at 5, 1 and 0.1%,
respectively

different models, similar results were given with the excep-
tion that AR(2) with piecewise quadratic trend was the
optimal model for temperature and CH4 while AR(1) with
piecewise quadratic trend was slightly better for CO2. With
these results in mind the model with piecewise quadratic
trend, modified break points and lag length two was chosen
for all three series as the final model, considering that it was
the model that overall produced the best fit when weighing
in AIC and the out-of-sample analysis.

The parameter estimates for the final trivariate models
with modified break points for temperature, CO2 and CH4

can be seen in Tables 4, 5 and 6, respectively. The modified
break points, together with the initial break points, can be
seen in Table 1. They were produced for every series sepa-
rately to optimize the fit. The AIC and RSS of the models
with modified break points are also shown in Tables 2 and 3,
respectively.

Table 5 Estimated parameters of the trivariate CO2 series with temper-
ature and CH4 as the second and third variable

Coefficient Estimate t-value

δ122 1.099 28.2***

δ222 −0.2744 −7.4***

δ121 2.013 7.9***

δ221 −0.7657 −2.9**

δ123 −2.921 × 10−2 −4.9***

δ223 1.409 × 10−2 2.4*

d210 57.01 9.6***

d211 −2.482 × 10−4 −3.5***

d212 2.239 × 10−9 3.2**

d220 54.89 9.3***

d221 −2.844 × 10−4 −2.5*

d222 3.467 × 10−9 2.2*

d230 56.13 9.7***

d231 −5.316 × 10−5 −2.5*

d232 2.396 × 10−10 2.5*

d240 60.04 9.9***

d241 −2.193 × 10−4 −2.0*

d242 1.510 × 10−9 1.0

d250 59.18 10.0***

d251 −1.673 × 10−4 −2.1*

d252 9.213 × 10−10 1.1

d260 56.39 9.7***

d261 −8.300 × 10−5 −1.5

d262 2.915 × 10−10 0.6

d270 58.08 10.1 ***

d271 −1.876 × 10−4 −3.7***

d272 1.388 × 10−9 3.9 ***

One, two or three stars indicate significance level at 5, 1 and 0.1%,
respectively

The modified break points were calculated according to
a procedure presented in Kang and Larsson (2014) where,
initially, the last1 three break points (T5, T6 and T7) were
fixed. Thereafter an iteration is initiated to find the set of T2,
T3 and T4 that minimizes the RSSwithin±10 of the previous
set. Then it proceeds by fixing the newly updated set of T2,
T3 and T4 and employing the same iteration to T5, T6 and T7
until optimized.

The autocorrelation function and partial autocorrelation
function of the residuals for the three reconstructed series
were calculated. No obvious patterns were detected. These
figures, as well as estimated parameters for all univariate and
bivariate models, may be obtained from the authors upon
request.

1 The very last and first break point (T8 and T1) are left out of this
optimization since they are already fixed as the endpoint and the starting
point, respectively.
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Table 6 Estimated parameters of the trivariate CH4 series with temper-
ature and CO2 as the second and third variable

Coefficient Estimate t-value

δ133 0.5882 16.0***

δ233 5.346 × 10−2 1.5

δ131 11.69 7.5***

δ231 −7.027 −4.3***

δ132 1.351 5.6***

δ232 −1.037 −4.5***

d310 158.4 4.3***

d311 −9.016 × 10−4 −2.2*

d312 9.405 × 10−9 2.4*

d320 140.5 3.8***

d321 −3.508 × 10−4 −0.5

d322 −2.584 × 10−9 −0.3

d330 138.1 3.9***

d331 −4.317 × 10−5 −0.3

d332 −2.297 × 10−10 −0.3

d340 164.3 4.3***

d341 −1.191 × 10−3 −2.4*

d342 7.990 × 10−9 1.5

d350 138.3 3.8***

d351 −3.448 × 10−4 −0.7

d352 3.861 × 10−9 0.8

d360 116.4 3.2**

d361 8.376 × 10−4 2.3*

d362 −8.212 × 10−9 −2.5*

d370 115.0 3.2**

d371 4.153 × 10−4 1.3

d372 −2.056 × 10−9 −0.9

One, two or three stars indicate significance level at 5, 1 and 0.1%,
respectively

4.1 Multivariate Granger causality tests

The results from the multivariate Granger causality tests are
shown in Table 7, and it is clear that we can reject all the null
hypotheses at any realistic significance level. Thismeans that
there is strong empirical evidence that temperature Granger
causes CO2, CO2 Granger causes CH4, CH4 Granger causes
temperature, CO2 Granger causes temperature, CH4 Granger
causes CO2 and temperature Granger causes CH4.

5 Discussion and conclusions

First we processed the data by linear interpolation to make
classical statistical methods easier to employ. Thereafter we
found the best model fit to be an autoregressive model with
lag two and a piecewise quadratic trend. The residual analysis
showed no obvious patterns.

Table 7 Likelihood ratio tests for Granger causality

H0 Ha � χ2(0.01) p-value

δk12 = 0,
δk13 = 0

δk12 �= 0,
δk13 �= 0

58.07 13.28 < 1 × 10−6

δk12 = 0,
δk13 �= 0

43.34 9.21 < 1 × 10−6

δk12 �= 0,
δk13 = 0

28.01 9.21 < 1 × 10−6

δk21 = 0,
δk23 = 0

δk21 �= 0,
δk23 �= 0

85.22 13.28 < 1 × 10−6

δk21 = 0,
δk23 �= 0

79.05 9.21 < 1 × 10−6

δk21 �= 0,
δk23 = 0

25.30 9.21 3.2 × 10−6

δk31 = 0,
δk32 = 0

δk31 �= 0,
δk32 �= 0

176.04 13.28 < 1 × 10−6

δk31 = 0,
δk32 �= 0

58.18 9.21 < 1 × 10−6

δk31 �= 0,
δk32 = 0

32.52 9.21 < 1 × 10−6

The main results in this paper strengthen the findings of
Kang and Larsson (2014) that temperature Granger causes
CO2 and CO2 Granger causes temperature. We can also fur-
ther expand that result by presenting empirical evidence that
there exists a whole feedback system between temperature,
CO2 and CH4 where everyone one of them affects the other.
This means that the continuous emission of the greenhouse
gases CO2 and CH4 will, indeed, lead to an increase of the
surface temperature.

For further studies on the subject one could consider
including more variables, like nitrous oxide (N2O) concen-
tration into the analysis, cf Fisher et al (2019). N2O is, just
like CO2 and CH4, a greenhouse gas so it would be interest-
ing to see in what way it would interact with our established
trivariate feedback system and N2O concentration is retriev-
able from ice cores hence it would not be difficult to carry
through.

Ideally all the data would have been collected at the same
time and the three series would have been equidistant from
the start to avoid the necessity of data processing i.e artifi-
ciality but, alas, this was not the case.

Furthermore one could always consider different, more
advanced, statisticalmodels e.g. nonlinear or continuous time
models as suggested by Kang and Larsson (2014).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
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