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We calculate the tidal corrections to the loss of angular momentum in a two-body collision at leading
post-Minkowskian order from an amplitude-based approach. The eikonal operator allows us to efficiently
combine elastic and inelastic amplitudes, and captures both the contributions due to genuine gravitational-
wave emissions and those due to the static gravitational field. We calculate the former by harnessing
powerful collider-physics techniques such as reverse unitarity, thereby reducing them to cut two-loop
integrals, and cross check the result by performing an independent calculation in the post-Newtonian limit.
For the latter, we can employ the results of P. Di Vecchia et al. [Angular momentum of zero-frequency
gravitons, J. High Energy Phys. 08 (2022) 172.], where static-field effects were calculated for generic
gravitational scattering events using the leading soft graviton theorem.
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Introduction.—The steadily increasing sensitivity of
gravitational-wave measurements challenges the state of the
art of precision calculations for gravitational collisions [1]. In
this context, scattering amplitudes have found fertile ground
and contributed to advance the precision frontier in the post-
Minkowskian (PM) expansion, based on successive approx-
imations labeled by powers of the Newton constant G (see
Ref. [2] for our conventions on the units of G, ¢, and %) and
valid for generic velocities [3—7]. This synergy between
general relativity and amplitude methods, and its recent
successes highlight the importance of pushing these calcu-
lations to higher orders and of including all relevant physical
effects, such as spin [8—33] and tidal corrections [34—38] that
will be vital, in combination with numerical simulations, to
provide accurate waveform models [1]. The measurement of
effects due to tidal deformations [39-49], in particular, may
provide clues on the internal structure of neutron stars [50], on
the nature of black holes [51], and on the possible existence of
exotic astrophysical objects [52-54].

Amplitudes provide a natural way to organize the G
expansion, based on the standard perturbative series where
the double copy [55-60], generalized unitarity [61-63], and
gauge invariance offer powerful techniques for integrand
construction. Resummation methods like the eikonal expo-
nentiation [64—77], effective-field-theory matching [78-81],
or the KMOC framework [82—-88] then provide the needed
bridge between the quantum formulation and the classical
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PM regime of scattering at large impact parameter
b> Gm, with m the typical mass (or energy) scale
of the colliding objects. Moreover, techniques borrowed
from collider physics like integration via differential equa-
tions [71,89] and reverse unitarity [83,84,90-93] have
recently proven very valuable when applied to the calcu-
lation of classical observables as well. Such techniques and
ideas have also been exploited in the context of quantum-
field-theory-inspired worldline setups that efficiently
encode the PM expansion [94-112].

In this Letter we focus on dissipative effects induced
by linear tidal deformations corresponding to mass or
“electric” and current or “magnetic”’ quadrupole corrections.
Combining eikonal operator [75,77,85,113—116] and reverse
unitarity, we first confirm the results of Refs. [108,109] for
the radiated energy-momentum and then obtain a totally

new prediction: the angular momentum lost due to tidal
effects, thus completing the analysis of the Poincaré charges
of the gravitational field to leading PM order, performed
in Refs. [83,117] for point particles, and initiated in
Refs. [108,109] for tidal effects. Two types of contributions
are relevant for this calculation. The first is due to the
emission of gravitational waves, described by superpositions
of dynamically propagating gravitons. The second is due to
static-field effects that are localized at the zero-frequency end
of the graviton spectrum. Both fit naturally within our
approach.

Radiative contributions are calculated by recasting them as
Fourier transforms of three-particle cuts, which can be in turn
evaluated as cut two-loop integrals [71,83,105]. Static con-
tributions follow from the results of Ref. [113], where they
were evaluated for generic processes exploiting the univer-
sality of the leading soft graviton theorem, supplemented by
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the tidal corrections to the impulse [34,35,37]. The fluxes of
energy and angular momentum serve, in combination with
the binding energies, as ingredients for building accurate
waveform models [1,118-120] that are crucial for gravita-
tional-wave detection and analysis. For this reason, we also
provide the analytic continuation of the result to bound orbits
in the high-eccentricity limit and the associated flux, which
contains the exact dependence on the velocity and can be used
in the future to improve the waveform at large velocities [1].
Appendix A summarizes our kinematics conventions.
Appendix B details the notation for integration, Fourier
transforms, and index contractions. In Appendix C we quote
the tidal effects in the impulse.

Eikonal operator—The eikonal operator determines
the final state of a gravitational collision in terms of the
initial one in the classical limit. It combines the eikonal
phase Re26, which determines the deflection (see Ref. [71]
and references therein) and is sensitive to tidal effects
starting at one loop [35], with the gravitational waveform
A [99,100,121,122], obtained to leading order from the
five-point amplitude A# via Fourier transform [Eq. (B7)].
Introducing the graviton creation-annihilation operators

é;, dy, up to 3PM order it describes gravitational waves as
coherent graviton emissions, [123]

§ — piRe2s i [, (AR)a[+A" (K)ay) (1)

so that |¥,,,) = S|¥,,), where |¥;,) models two incoming
particles with mass m;, m, and impact parameter
b* = b§ — b5, while |¥,,) captures the final configura-
tion. In the following, we will calculate the expectation
values of the linear and angular momentum operators of
the gravitational field in the final state

P= (%, |STPIS). T = (PSS ) (2)
taking into account tidal corrections. Since the (connected)
amplitude A" only includes the standard Weinberg limit
of soft but nonzero momenta, the quantities in Eq. (2) only
include effects due to dynamically propagating gravitons,
and involve no contributions localized at zero frequency,
1.e., no static terms.

To include such terms, it is sufficient to perform the
following dressing [113,116]:

fk (Foul/in(k)&z_Fom/m(k)ﬁk) |T0ut/in> ’ <3)

where, introducing a soft scale * (to be later sent to 0),

|out/in) = e

v ’7;1 Vv 8”Gpnpn
Fgut/m(k) ko Z ’ (4)
k—i0
neout/in
and 7, =41 if n is outgoing, and 7, = -1 if n is

incoming, which recovers the static effects via the —i0

prescription [100,105,113,117]. In this way, |out) = Slin)

provided

§ = )i FWa-F Wa) i [, AWG+AWa) (s

where F* = Fht — F!” is the total soft factor and 25 =
Re25 — 268R is the conservative eikonal phase [116]. The
dressed expectation values [8,124—126]

= (¥ |STPS|Wy). IV = (9, |STTPS ) (6)
then also capture the effects of the static gravitational field.
The distinction between Egs. (2) and (6) is irrelevant for the
linear momentum, P* = P“, but the angular momentum is
sensitive to it [113,116,127-131]: J¥ = J* + J%  with
the former term due to radiative modes and the latter due to
static modes [100,105,113,116,117].

Tidal effects in the five-point amplitude.—The 2 — 3
amplitude in the classical limit .4#* for graviton emissions
up to linear order in the tidal couplings [34,35,37]
can be obtained, at tree level, from the stress-energy ten-
sors ¥ calculated in Refs. [100,105,108] via A* =
4(82G)3*mimit /(q3q3) [132]. We shall follow the
notation of Ref. [108] and denote by Cg2 Cp, where

i =1, 2 labels the two colliding objects, the couplings
associated to mass-electric-type and current-magnetic-type
effects, X = E, B for short [137]. These are related to the
Love numbers £, j\ by cp = ékgz)Rﬁ; /G and cp =
(1/32) j§2>Rl5 /G with R; the radius of object i. Note that
R; = Gm;/K;, with K; an additional perturbative parameter
characterizing the star’s “compactness,” roughly of order
0.1-0.2 for typical neutron stars [138,139]. In this way,
tidal effects can compete with point-particle effects, con-
trolled by Gm;/b [140].

We first restrict for simplicity to the case e = 0; the
general case will be obtained by symmetrizing over particle
labels. Accordingly, A" = Ay + A 2 + ABZ’ where App

is the point-particle contribution [94,98,133] and the A%,

capture the linear tidal effects [108]. We provide their
expressions in an ancillary file [141]. Note that A** obeys
the conservation condition only up to contact terms,
k, A = C¥, where C* is analytic in ¢7 and ¢3 and thus
vanishes upon Fourier transform [Eq. (B7)] for large b. We
checked that our results are unchanged if we add contact
terms to A#.

Radiative modes.—In view of Eq. (1), the formula
expressing the total radiated energy momentum [Eq. (2)]
in terms of A" is given by [71,83,84,117]

P A Ak . (7)
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Since A" involves a complicated dependence on Bessel
functions while A" is a rational function, it pays off to
recast this integral as the Fourier transform of a convolu-
tion, i.e., an integral over the three-particle phase space,

p1 === 2| =

:/CIIT \\ I/ TQ—L\(Il
P* =FT / d(LIPS)k™ | = e | (8)
N A I
D2 e\ _//4)(7\_//%

Here FT is the Fourier transform defined in Eq. (BS), each
five-point amplitude represents A** as in Eq. (B6), and
d(LIPS) stands for the Lorentz-invariant phase space
measure in the soft region [71,84,89],

dPk
(2n)?

d"q
0\s( 12

5270(K)30) (5 5
To evaluate these integrals, we use reverse unitarity
[83,84,90-92]. Starting from Eq. (8), we first rewrite the
phase-space delta functions as “cut” propagators, via the
identity 2izé(x) = [1/(x —i0)] = [1/(x + i0)], and then
apply integration by parts (IBP) identities to the resulting
integrals of rational functions to recast them as linear
combinations of the master integrals (MIs) calculated in
Refs. [68,71,84]. We employ the Mathematica package
LiteRed [142,143] for the IBP reduction. We refer to
Ref. [[71], Secs. 3 and 6.1] for more details about the
integration and the MIs. Focusing on the terms linear in the
tidal effects, we thus confirm the results of Refs. [108,109],

tld - sz

where Ry = 152G mim3/(64b"), while

276(2p1 - 41)2782ps - (g1 + k).

5‘XV(1 + fXV(I) (9)

o+1 carccosho
=¥+ f5log + /5 . 10
1 2 2 3 2\/02—_1 ( )
with f§ = —(6* =3)fX/(6* — 1), and f¥, £, FX are given
in Table I as functlons of 6 = —uy - u,.

The expression (9) for the radiated energy momentum
holds for cx2 = 0, and the generic case is obtained by
symmetnzmg over 1 <> 2. The relation between f% and /X
is due to the fact that the tidal interactions under consid-
eration are linear (no “H topology”) [108]. Verifying that
the coefficient of b* in Eq. (9) vanishes provides an internal
cross-check for the calculation. Indeed, since the integrand
of Eq. (8) is real, a component along »* would originate
from a term of the type f(o,q*)g" with real f, whose
Fourier transform [Eq. (B5)] is purely imaginary.

From the eikonal operator [Eq. (1)], one can derive the
following formulas expressing the radiated angular
momentum [Eq. (2)] in terms of A" [113,116,117]:

Jop =19 +1),

TABLE 1. Functions entering the radiated energy-momentum
due to linear tidal effects [108].

=5 +11 [9376° + 15516% — 246307 — 564559

+204156° + 659656 — 34954163 + 53505752
—3603560 + 92160]

fE =30V6? = 1(216* — 146> +9)

5 3
FE =302 [426° + 21067 + 3156° - 1055°

—9446* — 152803 + 220116% — 332016 + 16272]

8 = 25k 155968 + 371657 - 16306° - 116600°

+282886* + 1552926° — 54344262 + 5352126 — 180775]
1B =210(c* - 1)}(36* + 1)
]:B —-3(1056°+16300" +18400° +369002 177696+15984)
(6+1)%(c? 1)"

[ aA * s
iy = [k A Iy
k

g _AAL%Ah. (11)

Under a translation [Eq. (B8)] [117],

J{l/)’ N Jaﬁ + a[aP/i]' (12)
It is straightforward to express J&Sﬂ) as the Fourier transform
of a three-particle cut, as we did for P* in Eq. (8), with
appropriate index contractions. This step is more delicate
for Ji;,), which involves derivatives with respect to k# that

can act on the mass-shell delta functions. Nevertheless, in a
frame where & = b* and b5 = 0 where Eq. (B9) applies,
one can recast it in the form of [116]

P === == <. o
(©) B fap | e a
. y(o) _ : = e: 1
iJ, ) =FT /k[a—akﬁl d(LIPS) anrinwl
b2 e\ = |= : ——
p1 (7//‘ N = | & //‘ \ﬁ
5 ‘o e~ @
— Uy FT—— /d LIPSk, = | < !
et G )ﬁ]\i'k‘\i/
D2 (7\ == | = . ——
(13)

where the derivative in the first line can act both on A* and
on d(LIPS), and g, = —u,-q". The integrals to be
performed then belong to the same family as for Eq. (8),
so we can evaluate them in the same way.

Translating the result to a frame where & =0 and
bs = —b*, using the simple transformation law [Eq. (12)]
and the explicit result [Eq. (9)] for P{;, we obtain the
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TABLE II.  Functions entering the radiated angular momentum
due to E% tidal coupling.

9F = 55 [257309 +98196" + 1314367 + 18450°
—8976035° + 32212395* — 504619563 + 420375162
—18623180 + 351826]

gg = —6(350‘4 - 50062 — 1)/\/62 —

hE =4 Ik [49267 + 5646° — 6095 — 7226*

5(c +l)
—46366° + 1347862 — 141436 + 5096)

ht =486(70> +1)/Veo? — 1

following new result for the radiated angular momentum
due to linear tidal effects,

fj{;—RfZ LeXplad 4 DY) (14)

where R is given below Eq. (9),

o+ 1 carccosho

=gf + g5 log + 9 . (15

2 2Ve? -1 (15)
1 h

X _ hf n h%‘ loga+ n h§ oarccos 0’ (16)
2 2Ve? -1

with ¢ = —(c*=3)g¥ /(6> —1) and similarly A =
—(6* =3)hY /(6> = 1), and the functions g¥, AY for
j=1, 2 are detailed in Table II for X =FE and in

Table III for X = B. Veritying that the coefficient of

u[au/;] in Eq. (14) vanishes serves an internal consistency

check analogous to one discussed for Pf;. Each integrand
on the right-hand side of Eq. (13) is real and terms

flo.q? )u[1 ug] with real f would be real in b space, and

hence contribute imaginary terms to the radiated angular
momentum. In fact, such terms do appear separately in each
line of Eq. (13), but they crucially cancel out in the sum.

Since Eq. (14) holds for cx2 = 0 in a frame where
b{ =0, by = —b%, interchanging all particle labels in it

TABLE III.  Functions entering the radiated angular momentum
due to B? tidal coupling.

= 205::;37 [44956% + 2218007 + 466306° + 500200°

—~17486365* +46879320° — 53979900 + 30264285 — 681459

g8 = =30V6> — 1(762 - 3)

W= 2;;;;‘&? [8795° + 17976° — 4925* — 29080
~104915> + 188156 — 9280]

h8 =3360Ve? — 1

yields the radiated angular momentum for cx = 0in a
frame where b = b%, b5 = 0 instead, but one can obtain

Jgg in any desired translation frame with the help of the
simple transformation law [Eq. (12)] and the explicit form
[Eq. (9)] for Pg,.

In addition to translations, Eq. (14) is also covariant
under Lorentz transformations. The physical meaning of CX
and DX becomes transparent in frames where not only b§ =
0 but one of the two particles is also initially at rest, where
they are proportional to the angular momentum of gravi-
tational waves. For definiteness, we align the impact
parameter along the y axis, b* = (0,0,5,0), and the
motion of the incoming particle along the x axis. In a
frame where particle 1 is at rest, uf = (1,0), u§ =

(6, P, 0,0) with p, = Vo> — 1, so
Jo = bepooz X DX (17)

while in a frame where particle 2 is at rest
U§ = (6, —Pe.0.0), u§ = (1,0), the same formula applies
with CX replaced by DX. In the nonrelativistic limit
P =0,

1056 349
E __ _ - 3
CF =5 P55 P %+ 0(p%)
1056 324
DF = ——pe 5 P&+ O(P%)
5 7
3833
CB =40p3, + —— 35 P+ O(plL)
168 1471
Db = —TP?» +1—0Pc5x> + O(pl,). (18)

As expected, in this limit, B contributions are suppressed
by an extra power of pZ ~ v> compared with E-type ones.
Let us now start again from Eq. (14), which holds in a
frame where 5% = 0, and perform a translation b — b =
bY + a* that places the center of mass (or “center of
energy”) in the origin of the transverse plane, (1 — w)b/l" +
=0 with w= p,-(p; + p2)/(p1 + p2)*. This sets

a* = wb* and by the transformation law [Eq. (12)] we

can find the radiated angular momentum tensor in this new

/
frame, J/2/.

Its expression is obtained from Eq. (14) by
replacing C¥ — € = CX + w&X and DX -» DX = DX —
wFX where EX =oF*¥ + & and FX =o&¥ + FX.
Moreover, going to a frame where the center of mass is
also at rest, say b= (0,0,b,0), —p, = (E;,—p,0,0),
—p> = (E,, p,0,0), we find, for the component of the
angular momentum orthogonal to the scattering plane,

Wy ().

my

/xy _
J tid = nd -
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where J = pb is the initial angular momentum in the
center-of-mass frame. At low energies, for small p, we
find, introducing the symmetric mass ratio v = m;m,/m?,

with m = my + m,, and A = (m; — m,)/m,
Jia € [1056 6 3678A\
= 49 -328y) — o2
Robpe mi | 5 Pt (3( T
cg (96A 264\
— | =-= O(p3,). 20
+m1< - )poo+ (P) (20)

In the formal ultrarelativistic limit 6 — oo instead

Jia _ CE g e
= 1630 —¥315 1 O 21
Rf‘, m% ° 2m1 nmy o loge + ( ) ( )

Taking into account that the leading deflection angle scales
as @, ~Gmy/c/b, and that cp2 ~G*'m’, we see that

Jia/J ~ O (\/0O,)>. Therefore, if we were to take &
arbitrarily large for fixed small ®,, the system could
radiate an arbitrarily large amount of angular momentum.
The perturbative PM expansion is however limited to
V6O, <1 [77,144-146], so that the true ultrarelativistic
limit lies beyond the scope of these calculations.

Consistency check.—To obtain a cross-check of the
functions in Tables II and III, we perform an independent
calculation of the angular momentum in the post-
Newtonian (PN) limit as in Ref. [117]. We start from
A# (k) and expand it for small p, in the relevant scaling
region k% ~ O(p,) [100,145,146]. We then perform the
Fourier transform [Eq. (B7)] term by term in the PN
expansion in the frame b¢ = 0. Finally, we substitute into
the expression for J% [Eq. (11)] and directly perform the
integration over k, without using reverse unitarity. This
involves integrals of Bessel functions, conveniently evalu-
ated in Mathematica. Contracting Eq. (14) with (u,, —
ul(,)b/, and u;,by, we obtain the small-p,, expansions

3(CF+ DE) (1056/5)pes + 0(Pes ), C* = DF = 0(ps),
and 3(CB+DP) = (16/5)p%, +o(pd). CF-DF=
(368/5)p00—|—0(p00), in perfect agreement with Eq. (18).
To obtain these results it is enough to retain the leading
PN waveform for E contributions O(p,,), while it is
necessary to resolve also the first subleading correction
for point-particle O(pzl) + O(p%) and B contribu-
tions O(p%) + O(pd,).

Static modes.—We now complete the result for the
angular momentum loss by adding the zero-frequency
contribution, i.e., the effect of the static gravitational field,
which arises when calculating the expectation value on
dressed states [Eq. (6)] using the eikonal operator [Eq. (5)],

* aF * /2
Tap == A(F Ka i T2 u[aF/f]) (22)

TABLE IV. Functions and coefficients entering the static terms.
Here n,m =1, 2, 3, 4 and , = +1 (3, = —1) if the nth state is
outgoing (incoming).

PnPm

Opm = ~Mullm My,
A __ arccosho,,
nm — > s
\/om—l

2 1\ 6,md,—1
e =2G| (62, —1) %wlm
nm |:< nm 2) Uﬁm—l
2G =ciy+ 3 —2¢13

17 _ 8-5¢> 6(26%—3)arccoshe
1= 3(()‘2—1) + (62_1)3/2

- 2O-nm Anmi| ’

To this end, we use Eq. (3.30) of Ref. [113], which provides
this contribution for generic gravitational processes.
Indeed, Eq. (22) relies only on the form of the leading
soft factor, which is universal, and thus the resulting
expression holds independently of the details of the
collision. In terms of the -coefficients defined in
Table IV, the angular momentum due to static modes then
evaluates to [113]

jaﬂ = - Z Z CnmpLapgl‘ (23)

n=1,2m=34

Like the leading soft theorem, this result only depends on
the momenta of the hard particles, and to obtain explicit
expressions it is sufficient to substitute p§ = Q% — p{,
p3 = —Q% — pS and the PM expansion of the impulse Q.

Let us note that the static contribution [Eq. (23)] is
invariant under translations and covariant under Lorentz
transformations. In the center-of-mass frame (aligning the
axes as above), we find [113] J* = GpQZ up to O(G*)
corrections, with Z given in Table IV. In view of the overall
power of G, since the O(G) impulse is unaffected by tidal
terms, there is no tidal angular momentum loss to
O(GZCX?), and therefore (via linear response [147,148])
no tidal radiation-reaction in the deflection angle to
oG? cx2), as noted in Ref. [108]. The leading tidal effects
in 7% are O(G? cx2) and can be obtained by substituting
Eq. (C1) in it, finding the new result,

Jia = RiJ (O + Op)T, (24)

up to O(G*cyz) corrections. The leading, i.e., O(G*), tidal
radiation reaction on the angle or impulse due to static
modes Q% can be obtained by [116] Q% = 3 (0Q?/0b,)G.
To leading order in the tidal effects [Eq (C1)], we then have
4y = —b"Qyq/b with Quq = 1Gb™! Qipm(Qp + Op2)Z.
This result agrees with the one obtained by applying the
linear-response formula [148,149] Q4 = —1(00/0J) T ya-
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Expanding for small p ., one finds

m T

cp [384 192
2m2 bepoo B my 5

— = (Tv=29)p3

CBZ
+—1192p%, + O(p3,) (25)
my

while as ¢ — oo

Jia 8B 00 log o + 7003610z 2 —5)]  (26)
R f‘l mj
up to O(slog o) corrections.

Complete result and analytic continuation.—The total
angular momentum of the gravitational field due to tidal
effects constitutes the main original result of the paper and
is given by the sum of the radiative piece [Eq. (14)] and the
static piece [Eq. (23)]. In the center-of-mass frame, it reads
as Jiq = Jia + JTiq [see Egs. (19) and (24)], so that

Jtid = RfJA(G), (27)

where we isolated a b-independent function A(o),

C/X D/X

A(a)zzﬁ< + >+(QE2+Q32)I. (28)
¥ My \myp np ! !

Following Refs. [84,108,150—-153], one can also use
Eq. (27) to obtain the angular momentum that is radiated by
a bound system in the high eccentricity limit (large J)
during one orbital revolution. The first step is to write the
total momentum radiated in the center-of-mass frame as
Jia(J,6) = J=°f(c) where

- 152G3m!?

flo) = TLE (P = PAG) (@)

with h = /14 2uv(o—1). The function f(o) is analytic for
Res > —1, as one can easily check since it only involves
rational combinations, together with the functions log[(c +
1)/2] and (arccoshs/V6? — 1) = (arccos 6/V' 1 — 6?) that
only have branch cuts for 6 < —1. Using the boundary-to-
bound map J25"(J,6) = J44(J,0) + Jua(—J,0) [152,153],
we find

2

) = 5

(o), (30)

with f(o) the analytic continuation of f(c) to the interval
—1 < ¢ < 1. In this fashion, J2"(J, ¢) gives the leading
tidal correction, for large J, to the angular momentum loss
for bound orbits with energy £ = mh < m.

Angular momentum flux.—Let us assume that the relation
between the tidal angular momentum loss and the averaged

flux Fq in isotropic gauge reads as [108,153—159]

+oo o0 dr
Jtid:/ Ftid(nd)dt:zA Fnd(rvd)77 (31)
where to leading order we can employ the straight-line
trajectory, r*(t) ~b*> + v2,1*. Here vy = p/(EE) with
&=E\E,/(E, + E,)*. Dimensional analysis fixes the r
dependence of the flux to be Fyy ~ 1/r’. Performing the
integral [Eq. (31)] by noting that 2 [®dr/(r'i) =
16/ (15v,4b°) [160] and matching to Eq. (27) then deter-
mines the overall r-independent factor and yields

2252G3m* (6% - 1)
10241377

Fia =

Alo). (32)

Conclusions.—In this Letter, we obtained a new result
for the total angular momentum that is lost during a two-
body scattering due to linear tidal effects, exploiting
amplitude-based methods. We also provided the corre-
sponding flux and the analytic continuation to bound
orbits. This work opens up several avenues for future
work. A natural generalization concerns the dissipation of
angular momentum in scattering with spin [161] and in
supersymmetric theories [71,84]. For bounded binaries, it
would also be interesting to further compare with the PN
literature [162—164] by performing a suitable eccentricity
resummation needed to access the regime of quasicircular
orbits [150,153]. A crucial next step will be to study
quantitatively the impact of the present results on wave-
form models [119,120] and, of course, to extend them by
calculating J? to subleading order, three loops on the
amplitude side.
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Appendix A: Kinematics.—All momenta are regarded
as outgoing, so —p; for i=1, 2 are the physical
momenta of the incoming states. The Minkowski metric
is n,, =diag(—,+.+,+), so that p? +m? =0. Four
velocities are defined by u! = —p/'/m;, with u? = —1.
We denote the relative Lorentz factor by ¢ = —u; - u, =
1/V1 =22, and v is the speed of body 1 as seen from
the rest frame of body 2 (or vice versa). A useful
variable in the PN limit is p,, = Vo> — 1. The spatial
momentum in the center-of-mass frame is instead
denoted by p. It is also convenient to define variables "
which obey it; - u; = —8;; by letting u} = oity + it} and
uy = ol + it;. The relative impact parameter is defined
by b* = b —b,, where b{ and b5 are the impact
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parameters of each particle, transverse to the incoming
directions b; - u; = 0. Finally, the symmetric mass ratio

is defined by v = m;m,/m? with m = m, + m,, while
we let A = (m; —m,)/m.

Appendix B: Integration and index contraction.—We
employ the shorthand notation

A B / é;ka 209(K")3(k?).

Moreover, we define

(B1)

= ek A Wl

i=1, 2 labels the

polarizations, with polarization “tensors” 6,(;,,)(](), and
similarly for the Hermitian conjugate of (B2) and for
analogous expressions involving F*. The creation
and annihilation operators obey canonical commutation
relations,

(B2)

where two physical graviton

270(k°)s(k?)[a; (k). aj(k/)] = (27)P5P) (k — K')s;;.  (B3)
For convenience, we suppress contractions between five-

point amplitudes (unless written otherwise), letting

1
AA = A, AW — —— AL AL, (B4)
D-2
and similarly for F*.
We define the Fourier transform FTM by

FTM — /

The relation between the momentum space 2 — 3 ampli-
tude in the classical limit (the drawing inside the dashed
bubble only serves as a visual help to recall the definition of
q1, q> and does not represent an actual Feynman diagram)

5276(2p1 - 4)228(2p, - )™ I M(q).

(BS)

/qlT !
Al“j(qla q2, k) = '\ [ k (B6)
a2\l

and its b-space counterpart A" (k) is given by

Anv qul
ety = [ S omap - 0021000100

x et A (g, . s, k). (B7)

with ¢; + ¢, + k = 0. Under a translation,

Viy—biy+at,  A(k)— e A (k). (BS)
In a frame where b, = 0, we find
Ay qul ib-
Aﬂ (k) = / (2”)D 27[5(2[71 . ql)ehql
X 276[2p; - (q1 + k)| A (q1. 42, k)| gy——g, ks
(B9)

its advantage being that k only enters the second line.

Appendix C: PM impulse—We collect here for
completeness the O(G) and O(G’cy) terms of the
impulse [34,35,95],

0 _4Gmym, 02—%
1PM b 62 1 s
Ryb3cp356* =306° + 11 Ryb 4
BTG m e =G %
ml o —1 G 1
R.b15cy R:b .
Op == " P\/> 176> + 1) = ~L- 0, (CI)
1 G m% G !

where R is given below Eq. (9).
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