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Abstract 

During the broadcast of a golf tournament, a way to show the audience what a player's swing 
looks like would be to draw a trace following the movement of the club head. A computer vision 
model can be trained to identify the position of the club head in an image, but due to the high 
speed at which professional players swing their clubs coupled with the low frame rate of a 
typical broadcast camera, the club head is not discernible whatsoever in most frames. This 
means that the computer vision model is only able to deliver a few sparse detections of the club 
head. 

 

This thesis project aims to develop a machine learning model that can predict the complete 
motion of the club head, in the form of a swing trace, based on the sparse club head detections. 

 

Slow motion videos of golf swings are collected, and the club head's position is annotated 
manually in each frame. From these annotations, relevant data to describe the club head's 
motion, such as position and time parameters, is extracted and used to train the machine 
learning models. The dataset contains 256 annotated swings of professional and competent 
amateur golfers. 

 

The two models that are implemented in this project are XGBoost and a feed forward neural 
network. The input given to the models only contains information in specific parts of the swing to 
mimic the pattern of the sparse detections. 

 

Both models learned the underlying physics of the golf swing, and the quality of the predicted 
traces depends heavily on the amount of information provided in the input. In order to produce 
good predictions with only the amount of input information that can be expected from the 
computer vision model, a lot more training data is required. The traces predicted by the neural 
network are significantly smoother and thus look more realistic than the predictions made by the 
XGBoost model. 
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Populärvetenskaplig sammanfattning

Den som tittar p̊a golf p̊a TV f̊ar se de bästa spelarna i världen och hur deras golfsvingar
ser ut. Trots att man f̊ar se en spelares sving kan det vara sv̊art att uppfatta hur
klubbhuvudet egentligen har rört sig, delvis p̊a grund av hur snabbt spelarna svingar.
Ett sätt att göra det lättare för den som tittar att se hur klubbhuvudet har rört sig är
att rita ut ett sp̊ar efter klubbhuvudet som visar var det har befunnit sig.

Man kan använda bildanalys för att lokalisera klubbhuvudet i en bild, men d̊a måste
klubbhuvudet vara synligt. Tyvärr gör kombinationen av spelarnas höga svinghastighet
och kamerornas l̊aga bildhastighet att klubbhuvudet inte g̊ar att urskilja i majoriteten av
bilderna. Med andra ord kan man med hjälp av bildanalys bara lokalisera klubbhuvudet
i n̊agra f̊a bilder. Dessa lyckade detektioner sker i de delar av svingen d̊a klubbhuvudet
rör sig tillräckligt sakta.

Syftet med det här examensarbetet är att utveckla en maskininlärningsmodell som kan
förutse klubbhuvudets kompletta rörelse utifr̊an n̊agra f̊a kända positioner.

Slow motion-videor, där klubbhuvudet g̊ar att urskilja i nästan varje bild, används för
att generera data. 256 slow motion-videor p̊a golfsvingar samlas in och klubbhuvudets
position annoteras manuellt i varje bild. Relevanta parametrar, som position och tid,
extraheras ur annoteringarna och används för att träna maskininlärningsmodellerna. De
tv̊a modellerna som används är XGBoost och ett neuralt nätverk. XGBoost är en en-
semblemetod som kombinerar förutsägelser fr̊an flera beslutsträd och neurala nätverk
efterliknar i viss grad strukturen i en människas hjärna. Informationen som ges till mod-
ellerna är strukturerad enligt klubbhuvudets synlighet i en vanlig video. Det vill säga
information om klubbhuvudet ges i de l̊angsamma delarna av svingen.

Modellerna har lärt sig den underliggande fysiken bakom golfsvingen och kan, givet
tillräcklig mycket information om de l̊angsamma delarna av svingen, leverera goda förutsä-
gelser. Hur korrekta förutsägelserna är allts̊a starkt beroende av mängden information
modellerna f̊ar om svingen. För att ge tillfredställande förutsägelser givet antalet förvänt-
ade klubbhuvudsdetektioner behöver modellerna mer träningsdata. Generellt är det neur-
ala nätverkets förutsagda svingar slätare och därmed mer realistiska än de förutsagda av
XGBoost.
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1 Introduction

1.1 Background

During the broadcast of a golf tournament, the broadcaster may want to show the audi-

ence how the club moves throughout a player’s swing. This could be achieved by tracking

the club head’s movement and producing a visual trace of the path that it has traveled.

An example of what swing trace could look like is show in Figure 1.1. A golf swing

can be divided into three main parts; the backswing, where the club is taken back, the

downswing, where the club returns to strike the ball, and finally the follow through, which

constitutes the rest of the swing after impact with the ball. The red curve shows the trace

of the backswing and the blue curve shows the trace of the downswing. The player has

just started the follow through.

Figure 1.1: Example of a swing trace [1]

However, tracking the movement of the club head is not trivial. Professional golfers

swing their clubs at incredibly high speeds, with some reaching club head speeds of over

200 km/h with their drivers. Meanwhile, the typical broadcast camera used at a golf

tournament has a frame rate of 30 fps (frames per second) or 60 fps interlaced. The high

club head speed coupled with the low frame rate broadcast cameras means that the club

head travels a long way in between frames. As a result the club head is not visible in

most frames. When it is visible, the resulting image will likely depict a blurry instance

1
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of the club head. A couple of frames from a video recorded at 30 fps are presented in

Figure 1.2 to illustrate the problem of locating the club head in the downswing. Note

that the club head is visible in a) which shows the top of the swing, i.e. the end of the

backswing. As soon as the downswing is initiated the club head accelerates rapidly and

is not visible again until the middle of the follow through seen in i). Upon reaching the

end of the follow through the club head has slowed down enough to be visible in m), n)

and o), as well as all the subsequent frames following o) which are not included in this

example.

2
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Figure 1.2: Club head visibility in the frames of a video recorded at 30 fps. The club
head is visible in subfigures a), i), m), n) and o) [2]

Fortunately, the club head is not always traveling at 200 km/h. It speeds up and slows

down throughout the swing. In the slow-moving parts of the swing, i.e. the beginning

3
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of the backswing, the top of the swing, and the end of the follow through, the broadcast

camera is able to capture some clear images of the club head. Still, a computer vision

model able to detect the head of a golf club in an image would only be able to deliver very

few detections. It would be able to do this for only a couple of frames in the slow-moving

parts of the swing and the vast majority of all the information about the club head’s

position and movement would be lost.

1.2 Purpose and Goals

The goal of this project is to build and train a machine learning model to learn the

underlying patterns of the physics of the golf swing so that it can take these sparse

detections as input and predict the complete motion of the club head, represented as a

trace of its path.

1.3 Tasks and Scope

In order to achieve the goals, this master thesis project is conducted particularly with

the following tasks:

1. study the kinematics of the golf swing;

2. study and investigate existing machine learning techniques and models, and de-

termine which ones are best suited to the project;

3. collect slow motion video data of golf swings, in which the position of the club head

is annotated in each frame. Relevant data to describe the club head’s motion will

be extracted from the annotations and it will subsequently be used by machine

learning models to learn the patterns in the data;

4. implement the machine learning models and evaluate their performance.

1.4 Outline

The remainder of this thesis is structured in the following way. Section 2 presents some

of the kinematics in golf and provides a motivation for visualising the golf swing as a

trace. Section 2 also describes the theory behind the machine learning models used in

this thesis. In section 3 the process of collecting and annotating data is explained. It

also shows how the data is pre-processed and formatted, as well as how the machine

learning models are implemented. The results are presented and discussed in section 4.

Finally, the conclusions of the thesis are presented in section 5 along with some suggested

4
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improvements to the models.

5
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2 Theory

2.1 Kinematics of the Golf Swing

The purpose of this section is to explain and motivate, especially to non-golfers, why the

club head’s motion throughout the golf swing is of interest.

2.1.1 Golf Clubs

There are five different categories of golf clubs: woods, irons, wedges, hybrids, and putters.

Due to the differences in construction, a player’s swing will be slightly different depending

on what category of club they are using. In this thesis the focus will be on woods and

irons since they are the two most distinct categories (except putters).

Woods get their name from the material that was originally used to construct them.

Nowadays woods are typically made of titanium and carbon. The features that charac-

terize woods are the large and hollow club heads as well as the long graphite shafts. The

increased shaft length and the light weight allow players to swing the club faster. Woods

are designed to help players launch the ball higher with more ball speed and backspin

and thus they occupy the lowest lofted part of the bag. Examples are drivers and fairway

woods. As the name implies fairway woods can used both when the ball lies on the ground

and when it is teed up on a short tee peg. In general fairway woods should be hit with

a slightly negative angle of attack. Drivers on the other hand are specifically designed

to be used when the ball is teed up on a tall tee peg allowing the player to hit the ball

with a positive attack angle. The positive/slightly negative angle of attack as well the

club head travelling further in the backswing due to the longer shaft are the main visual

differences in the golf swing when using a wood.

Irons on the other hand have small compact club heads which are usually made of solid

forged steel making them much heavier than woods. They come in numbered sets that

occupy the middle part of the bag. The higher that number is, the more loft is on the

club and the shorter the shaft is. Since players typically launch the ball high enough

using these medium to high lofts, the design can instead emphasize control. Irons should

always be used to hit the ball from the ground or a from a very short tee. Thus, the angle

of attack should always be negative. In fact, the shorter the iron is, the more negative

the angle of attack should be. The main visual difference in the golf swing when using

an iron is that the club head does not travel as far in the backswing and that the atack

angle is more negative.

6
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Wedges are effectively shorter, higher lofted, and more specialized irons. Hybrids are a

mix between irons and woods. And finally, putters are used to roll the ball on the green.

2.1.2 Swing Kinematics

The way a player swings the club affects how the club head is delivered to the ball, which

in turn is what determines the trajectory of the golf ball. The delivery at impact can be

described by the following parameters:

• club head speed - how fast the club head is travelling;

• path - how much the club head is travelling left or right;

• angle of attack - how much the club head is travelling up or down;

• dynamic loft - how much the clubface is pointing upward;

• face angle - how much the clubface is pointing right or left;

• strike location - the location on the clubface which makes contact with the ball.

The resulting launch conditions of the golf ball can be described by the following para-

meters:

• ball speed - how fast the ball is travelling;

• spin rate - consists of both backspin and sidespin;

• start direction - how much the ball starts to the left or right of the target;

• launch angle - how high the ball launches.

A visualisation of the delivery and launch parameters when using driver is presented in

Figure 2.1.

7
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Figure 2.1: Example of a driver delivery and the resulting launch conditions [3]

What is considered optimal in terms of launch conditions varies significantly depending

on which club is being used (the difference is mainly in ball speed, backspin, and launch

angle). For simplicity we will therefore consider the longest club in the bag, the driver.

Due to the low loft, inefficiencies in delivery will be penalized more severely with the

driver than with other clubs. That makes it a good candidate for this example. The

goal with the driver could be summarized as ”hitting the ball as far as possible while

maintaining control of direction”. In order to produce launch conditions that achieve

this goal, certain things are required in the delivery. Namely, striking the ball near the

middle of the clubface and aligning the face angle with the club path allows for an efficient

transfer of kinetic energy from the club head to the ball, producing more ball speed and

less sidespin. If the face angle deviates significantly from the path, a large portion of

the kinetic energy of the club head will be transferred to the ball as sidespin instead of

ball speed, causing excess curvature and reducing distance. It is also important to have

a reasonable relationship between delivered loft and angle of attack in order to produce

appropriate launch angle and backspin. Backspin generates a lift force proportional to

the rate of backspin and the speed of the ball relative to the air. Too much backspin

will generate too much lift, causing the ball to rise excessively. Too little backspin will

not produce enough lift and the ball will consequently fall out of the air. Both scenarios

reduce driving distance.

This brings us to what is probably the most common swing fault among inexperienced

and unskilled golfers, known as the over the top move. Figure 2.2 shows an illustration

8
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of what the over the top move can look like. It involves the golfer pushing the club out

in front of them in the downswing, causing them to come steeply into the ball. This

produces an excessively leftward path along with a downward angle of attack and is

usually accompanied with a face angle pointing way to the right of the path as well

as an increase in dynamic loft. The face angle pointing way right of the leftward path

produces lower than ideal ball speed and too much sidespin. The downward angle of

attack combined with the high dynamic loft produces excessive backspin. The result is a

weak ball-flight that curves off to the right; the antithesis of the previously defined goal

of driving.

Figure 2.2: Illustration comparing the over the top move (top) with a more neutral
downswing (bottom) [4]

Utilizing the proper kinematic sequence is required to produce a sound and efficient golf

swing [5]. This refers to the way energy is transferred from one body segments to the

next.

In the downswing, the pelvis is the first segment to reach its peak rotational speed. It

then decelerates as energy is transferred to the thorax which reaches an even higher peak

rotational speed [6]. The thorax decelerates as it transfers its energy into the arms which

again reach an even higher peak rotational speed. Finally, the arms decelerate as their

energy is transferred into the club. In linear terms, this final step means that the hands

are slowing down in order for the club head to reach its maximal speed as it makes contact

with the ball. The order and timing of when each segment reaches its peak rotational

speed are presented in Figure 2.3.

9
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Figure 2.3: The rotational kinematic sequence of a world class golfer showing the positions
and timings of the peak rotational speed for each segment [7]

Each segment builds upon the previous one, increasing the speed up the chain. Even

though professional players’ swings can vary significantly in appearance, all great ball

strikers have the same sequence of energy generation in their golf swings [5, 6].

2.2 Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) where machines learn

and identify patterns in data. It can be split into four categories; supervised learning,

unsupervised learning, semi-supervised learning, and reinforcement learning. This thesis

will focus on supervised learning, which involves a model learning the relationship between

input and output through labelled training data. Supervised learning can itself be split

into two sub-categories: classification - used to predict discrete values, and regression -

used to predict continuous values.

Two different machine learning models are deployed in this thesis, XGBoost and neural

network (NN). XGBoost has peformed well in many machine learning competitions [8]

and is considered a state of the art model due to its speed, efficiency, and prediction

10
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accuracy. NNs can be described as the go to models for learning complex patterns in

data, but a NN typically requires a lot of training data to do this successfully. If the

NN has more than two layers, the structure becomes complex enough to achieve deep

learning.

2.2.1 XGBoost

XGBoost (extreme gradient boosting) is an ensemble method based on gradient boosting

decision trees. Ensemble methods combine the predictions from multiple weak models to

create a strong and more precise model. For XGBoost, the weak learners are classification

and regression trees (CART).

A CART is a tree-like structure consisting of decision nodes and leaf nodes. An example

of such a structure is shown in Figure 2.4. At the decision nodes, the data is recursively

split into two subsets (branches) based on its features until a stopping criterion is met.

A stopping criteria could be that a minimum number of datapoints remain in a node.

Nodes where the recursion stops are called leaves. The split conditions are selected to

maximize the information gain of the current split. Therefore the splits are referred to

as greedy, since they do not take future splits into account. Deep CARTs, which have a

large amount of sequential splits, are prone to overfitting the training data, while shallow

CARTs, which have a small amount of sequential splits, often fail to learn important

patterns.

Figure 2.4: Example of a CART structure

Gradient boosted trees is an ensemble model where trees are built sequentially, one at a

time. Each new tree is constructed with the previous prediction error in mind so that

11
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the trees complement each other. The final prediction takes into account the predictions

from all trees [9]. Such a collective prediction can be described mathematically as

ŷi =
K∑
k=1

fk(xi), fk ∈ F , (2.1)

where ŷi is the collective prediction, K is the number of trees, fk is a function representing

an individual tree, xi is an input datapoint, and F is the function space containing all

possible CARTs. Each leaf node of a CART has an associated weight, wi, which will

be provided below. The dataset is distributed according to the decision rules of the tree

structure and the tree’s prediction is calculated by adding up its weights [10].

The model’s objective function to be optimized is defined as

L =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk). (2.2)

The first term is the loss function which measures the difference between the ground truth

yi and the model’s prediction ŷi. The second term is the regularization term where Ω(f)

is the complexity of the tree f , which is defined as

Ω(f) = γT +
1

2
λ||w||2. (2.3)

The regularization term helps to reduce over-fitting by penalising tree complexity [10].

The objective function cannot be optimized using traditional optimisation methods since

it includes functions as parameters. It must instead be trained in an additive manner

[10]. That which has already been learned remains and a new tree is added to the model

in each step. Thus, the prediction at step t can be written as

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi). (2.4)

The ft which is added to the model is selected greedily such that the objective function,

L(t) =
n∑
i

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft), (2.5)

12
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is minimized at the current step [9]. Applying a second order Taylor expansion yields an

approximate objective function

L(t) ≃
n∑

i=1

[l(yi, ŷ
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft), (2.6)

where gi = ∂ŷ(t−1)l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1)l(yi, ŷ
(t−1)) are first and second order gradient

statistics on the loss function [10]. By removing the constant terms, a simplified objective

function at step t can be obtained,

L̃(t) =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft). (2.7)

By expanding Ω, (2.7) can be written as

L̃(t) =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

w2
j

=
T∑

j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j ] + γT,

(2.8)

where Ij is the set of indices to the data points assigned to leaf j. The indexation is

updated in the second row of (2.8) because all the data points on the same leaf get the

same score [9]. The optimal weight w∗
j of leaf j in a fixed tree structure can be computed

by

w∗
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
, (2.9)

and the corresponding optimal value of the objective function for the fixed tree structure

can be calculated by

L̃(t) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT. (2.10)

This value can be used to measure the quality of a tree structure in a similar manner to

an impurity score. Since it is almost always infeasible to go through all of the possible

tree structures, a greedy algorithm is used instead [10]. It starts from a single leaf and

iteratively adds branches. The loss reduction after a split is given by

13
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Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ

]
− γ, (2.11)

where IL and IR are the sets of indices of the left and right nodes after the split. The

terms in (2.11) can be understood as the score of the two new leaves, the score on the

original leaf, and the regularization of the new leaf [9].

XGBoost uses this exact principle. It is an implementation of the gradient boosted trees

algorithm pushed to the extreme in terms of system optimisation and computation limits.

2.2.2 Neural Networks

Neural networks (NN) loosely mimic the human brain. They consist of a series of inter-

connected layers of nodes. The nodes fire, like neurons in a brain, depending what input

they receive [11]. This is called an activation and is represented by a numerical value.

In the most basic version, known as a feed forward neural network, the nodes in a given

layer are connected to all the nodes in the subsequent layer. It is called Feed Forward

because all information travels in one direction; from the input layer to the output layer.

The layers in between the input and output are called hidden layers. Figure 2.5 shows

what a small NN can look like.
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(a) A feed forward neural network with two nodes in
the input layer, three nodes in the hidden layer, and
one node in the output layer

(b) How the output of a node is determined

Figure 2.5: Example structure of a small NN and a visualization of how the output of
each node is determined

Each connection has an associated weight w and each node has an associated bias b.

The activation of a node is determined as follows: The node receives the activation

values from the previous layer as input. Each activation value is individually multiplied

with the weight of its connection. The products are all added together along with the

node’s bias. The sum is finally passed through an activation function which ultimately

decides whether or not, and how much, the node will activate [12]. Some commonly

used activation functions include the Rectified Linear Unit function (ReLU), the Sigmoid

function, and the Hyperbolic Tangent function (tanh). These functions are depicted in

Figure 2.6.
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(a) ReLU (b) Sigmoid (c) tanh

Figure 2.6: Graphs of three common activation functions

The output y of a node is thus given by

y = f

(
b+

m∑
i=1

xiwi

)
, (2.12)

where f is an activation function, and m are the number of inputs x from the previous

layer.

These operations are performed for all nodes in the network until the information reaches

the output layer. There, the output can be transformed to the desired format. For

example, classification or regression.

The values of the network’s parameters, the weights and biases, are adjusted when train-

ing the network. Deciding how the parameters should be adjusted is done through a

process know as backpropagation [12]. When the NN receives an input from the train-

ing data, its resulting output is compared to the ground truth. The error is evaluated

through a loss function, for example the mean squared error (MSE) or the mean absolute

error (MAE). The backpropagation algorithm calculates the negative gradient of the loss

function with respect to the weights and biases, i.e. the direction in which to adjust the

parameters to achieve the greatest reduction in the loss function. This is done by apply-

ing the chain rule recursively to each layer in the backward direction, from the output

layer to the input layer. An optimisation algorithm then uses the gradient of the loss

function to adjust the parameters accordingly. The backpropagation determines in what

direction to make an adjustment, and the optimisation algorithm determines how large

that adjustment should be. Examples of common optimisation algorithms are Stochastic

gradient descent (SGD) and Adam.
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3 Methods and Implementation

3.1 Hardware and Setup

3.1.1 Smartphones

In person videos are recorded using the slow motion feature on mobile phone devices.

Two phones are used.

Table 3.1: Specifications of mobile phone devices used to record slow motion videos.

Mobile phone device resolution frame rate

Samsung Galaxy S8 720p 240 fps
Samsung Galaxy S22 1080p 240 fps

3.1.2 Setup

When recording a player’s swing, it is imperative that the camera is positioned at an

adequate distance from the player to ensure that the club head does not leave the frame

at any point during the swing. If it does, the video can not be annotated correctly.

To achieve this the camera is positioned approximately 5-6 m behind the golfer. At

that distance the camera is moved between recordings at about 0.5 m increments in a

horizontal span of roughly 4 m. Meaning that multiple videos of the same player are

recorded from various angles.

3.2 Data Collection

Slow motion videos of golf swings captured with a high frame rate camera are used to

generate training data. In these videos the club head is discernible in almost every frame.

Data is generated by annotating the club head position in each frame of a video. x- and

y-positions for different points in time are extracted from the annotated pixel and the

time parameter is derived from the frame number. The data for one swing therefore

consists of a time series of x and y coordinates.

The videos used for generating the dataset include both professional and amateur golfers.

Some of the videos are collected from the internet and some are recorded in-house.

The camera perspective of interest in this project is known as down the line. An example

of this perspective is shown in Figure 3.1. The dataset contains down the line videos

of a wide variety of players performing full golf swings using both irons and woods. A

slight change in camera position produces a different looking trace for the same player’s

swing. Therefore, multiple videos of the same player can be included in the dataset
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without increasing the risk of overfitting. This fact is utilized to the fullest when recording

videos, by capturing the same player’s swing from multiple camera positions (while always

keeping the down the line perspective). For simplicity, only right handed golfers are

included in the dataset. A model trained only on right handed golfers can still be used

to make predictions on the swing of a left handed golfer by for example, horizontally

mirroring the video.

Figure 3.1: Down the line perspective of a golfer addressing the ball [13]

In total, the dataset includes 256 swings divided into 80% training, 10% validation, and

10% test data. 168 of the swings are captured in-house and 88 of them are collected from

the internet.

For each golfer, this procedure is performed once with a driver or three wood, and once

with a mid-iron.

For each player that participated in the in-house recordings, a series of swings recorded

from the varying camera positions described in 3.1.2 was collected once with a driver and

once with a mid-iron.

The simulator studio where most of the videos are recorded is quite dark and the woods

used in the recordings are matte black. Bright yellow tape is therefore added to the club

head of the woods in order to improve visibility in the recordings. This is not necessary

with the irons since they already have a bright and shiny surface.
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3.3 Data Pre-Processing and Format

The parameters that describe the club head’s position in space and time are normalized

and rescaled so that all swings exist in a standard domain with side length of 100. The

initial position of the club head (placed just behind the ball at address) constitutes the

origin of both the x- and y-coordinates as well as the time parameter. The highest

position that the club head reaches along the y-axis is defined as 100 while the leftmost

position along the x-axis is defined as -100. The time parameter is confined to the interval

(0,100). The initial time is when the club moves away from the ball in the beginning of

the backswing, and the final time is when it has moved to a halt in the end of the follow

through.

For each swing, a regression model is trained on the time series and is used to generate

x and y coordinates for 200 equidistant points in time. During training, these 200 points

serve as the ground truth while the input to the model is a small selection of those same

points. In other words, the model receives an incomplete time series as input and predicts

what the complete time series looks like.

The input data is made to simulate detections delivered by the computer vision model.

Steps taken to achieve this include, only including club head detections from the slow-

moving parts of the swing, as well as varying the number of club head detections for

different swings. Having variable length input to the models is handled by padding the

input vectors with zeros.

3.4 Data Augmentation

Data augmentation is utilized in order to artificially increase the size of the dataset.

Augmentation is only applied to the training data. Not to the validation or test data.

Three augmentations are tested. Namely, Rescaling the axes, Contraction/Expansion of

the trace, and slightly Perturbing the points randomly. The following figures compare

what a trace looks like before and after different augmentations have been applied.

3.4.1 Rescaling

All the values of one of the coordinate parameters are slightly increased or decreased,

creating a different looking trace. Figure 3.2 demonstrates what this augmentation can

look like.
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(a) Rescaled x-axis (b) Rescaled x-axis

(c) Rescaled y-axis (d) Rescaled y-axis

Figure 3.2: Comparison between a trace augmented through rescaling and the original
trace

3.4.2 Contract and Expand

The trace is either contracted or expanded, as shown in Figure 3.3, in order to simulate a

horizontal shift in the cameras position. The boundary between contraction and expan-

sion is selected naively by considering the most common points in time where the club

head transitions from the near side to the far side of the player and vice versa. Points

are affected less and less by the contraction/expansion the closer to the transition region

they are.
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(a) Contracted (b) Contracted

(c) Expanded (d) Expanded

Figure 3.3: Comparison between a trace augmented through Contraction/Expansion and
the original trace

3.4.3 Random Perturbations

Small random perturbations are applied individually to all values of the x, y, and time

parameters. An example of the resulting trace is presented in Figure 3.4
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(a) Perturbed (b) Perturbed

Figure 3.4: Comparison between a trace augmented through Random perturbations and
the original trace

3.5 Machine Learning Models

A model’s parameters are the variables that change during the training process. Finding

the best parameter values actually is the learning. A model also has hyperparameters,

which are not affected by the training of the model. On the contrary, they are used to

control the training. Examples of hyperparameters are learning rate or the number of

hidden layers in a NN. Since the they impact training, it is important to try and optimize

the hyperparameters so that the model achieves good performance. The process of finding

the optimal hyperparameters to use is called hyperparameter tuning.

Both models use MSE as cost function. The formula of which is given by

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (3.1)

Where yi is the prediction and ŷi is the ground truth of datapoint i and n is the number

of datapoints.

The implementation details of XGBoost and the NN are presented below.

3.5.1 XGBoost

An XGBoost regression model is implemented in python using the xgboost library [14].

The model is tuned using HyperOpt [15] and the resulting hyperparameters are listed in

Table 3.2.
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Table 3.2: Tuned hyperparameters for the XGBoost regressor

alpha 1.1984
colsample bytree 0.8022

gamma 72.365
lambda 0.2660

learning rate 0.0586
max depth 63.953

min child weight 9.6802
subsample 0.7848

3.5.2 Neural Network

A feed forward neural network is implemented in python using pytorch. The hyper-

parameters of the NN are tuned manually and the resulting specifications are listed in

Table 3.3. Due to the limited training data, mainly shallow network structures with linear

layers are considered. In this case shallow means networks with one, two, or three hidden

layers. As for the hidden layer size, values from the 2n series between 8 and 256 are con-

sidered. ReLu, tanh, and Sigmoid are tested as activation functions and Adam and SGD

are tested as optimisation algorithms. When evaluating performance in tuning process,

the MSE is of primary interest, but the visual appearance of the traces is considered as

well.

Table 3.3: Implementation specifications of NN

Batch size 32
Number of hidden layers 2
Size of hidden layers 128
Activation function ReLU

Optimisation Algorithm Adam
Adam learning rate 10−3

Adam weight decay 10−3

Early stopping is utilized as a form of regularisation, cancelling the training process if

the validation loss has not improved in the last 200 epochs. At which point the model

reverts to the parameters that yield the best performance on the validation data.
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4 Results and Discussions

4.1 Number of club head Observations

The models’ predictive capabilities are tested for a varying number of club head obser-

vations, which will be called sample size for short. The average MSE for the different

sample sizes is presented in a table. In addition, graphs are presented for each sample size

comparing a prediction with the ground truth. Two different graphs are used for such a

comparison. One showing the x- and y-coordinates against time and the other showing

the resulting trace of the club head. For each sample size, a selection of predictions is

presented, exemplifying what a good, an average, and a poor prediction can look like for

that sample size. These selections are made trying to represent the models’ behaviour as

accurately as possible. In the graphs, the black data points are the ground truth, the blue

are the predictions, and the red indicate the regions from which the model has received

club head observations as input data. Additional average predictions for both models are

presented in appendix A.

The Average MSE of XGboost’s predictions on the testdata for different sample sizes is

presented in Table 4.1. It is evident that the MSE increases as the model receives less

information through the input. It also appears that the reduction in prediction accuracy

is more drastic for lower sample sizes since the largest reduction, both in terms of values

and proportion, takes place when going from 75 to 50 data points.

Table 4.1: Average MSE of testdata predictions by XGBoost for different sample sizes

Sample size MSE

125 62.70
100 82.79
75 88.45
50 124.66

Figure 4.1, Figure 4.2, Figure 4.3, and Figure 4.4 present graphs of predictions made by

XGBoost for different sample sizes. From the graphs on the left hand side, which show

the x- and y-coordinates of the club head against time, it is clear that XGBoost has at

least to some extent learnt the underlying pattern of the club head’s movement in the golf

swing. Visually there is a descent match between the prediction and the ground truth,

although it deteriorates somewhat for the smallest sample sizes.

However, when examining the graphs on the right hand side, which show what the pre-

dicted traces look like, it is easy to see how noisy the predictions are. Quite a few of
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them do not even resemble club head movements at all because of how squiggly the lines

are.

(a) Good prediction (b) Good prediction

(c) Average prediction (d) Average prediction

(e) Poor prediction (f) Poor prediction

Figure 4.1: Example predictions sample size 125
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(a) Good prediction (b) Good prediction

(c) Average prediction (d) Average prediction

(e) Poor prediction (f) Poor prediction

Figure 4.2: Example predictions sample size 100
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(a) Good prediction (b) Good prediction

(c) Average prediction (d) Average prediction

(e) Poor prediction (f) Poor prediction

Figure 4.3: Example predictions sample size 75
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(a) Good prediction (b) Good prediction

(c) Average prediction (d) Average prediction

(e) Poor prediction (f) Poor prediction

Figure 4.4: Example predictions sample size 50

The average MSE of the NNs predictions on testdata for different sample sizes is presented

in Table 4.2. As with XGBoost, the less information the network receives the higher is

the MSE. For the NN however, the increase in MSE is steeper than for XGBoost as the

sample size increases. The NN outperforms XGBoost in terms of MSE for sample sizes
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125 and 100, is about the same for 75, and has a higher MSE for 50.

Table 4.2: Average MSE of testdata predictions by the NN for different sample sizes

Sample size MSE

125 51.10
100 64.73
75 89.12
50 155.08

Looking at the graphs on the left hand side in Figures 4.5, 4.6, 4.7, and 4.8, it is clear that

the NN has learnt the underlying pattern of the club head’s movement in the golf swing

as well. For the most part, there is actually a very good match between the predictions

and the ground truth. Albeit, just as with XGBoost, the match breaks down slightly for

the smaller sample sizes.

The most significant difference between XGBoost and the NN becomes apparent when

studying the graphs on the right hand side, which depict the traces. The predictions

made by the NN have considerably less noise and look much more like actual traces.
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(a) Good prediction (b) Good prediction

(c) Average prediction (d) Average prediction

(e) Poor prediction (f) Poor prediction

Figure 4.5: Example predictions sample size 125
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(a) Good prediction (b) Good prediction

(c) Average prediction (d) Average prediction

(e) Poor prediction (f) Poor prediction

Figure 4.6: Example predictions sample size 100
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(a) Good prediction (b) Good prediction

(c) Average prediction (d) Average prediction

(e) Poor prediction (f) Poor prediction

Figure 4.7: Example predictions sample size 75
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(a) Good prediction (b) Good prediction

(c) Average prediction (d) Average prediction

(e) Poor prediction (f) Poor prediction

Figure 4.8: Example predictions sample size 50

A commonality between the two models is that the part of the swing that is most chal-

lenging to predict correctly is the union of the latter part of the downswing and the

beginning of the follow through. By design the models receive no input data in this

region since no detections of the club head are expected when it is moving at such high

33



Club Head Tracking - Visualizing the Golf Swing with Machine Learning Fredrik Herbai

speeds.

4.2 Size of the training dataset

The number of swings in the training dataset is altered to investigate the effect it has on

the accuracy of the models’ predictions. The size and contents of the test and validation

datasets are kept unchanged. Table 4.3 shows the MSE of the testdata predictions of

both models for different sizes of the training dataset.

The NN outperforms XGBoost for all the tested training dataset sizes.

Both models are improving their predictions as the size of the training dataset increases.

The change in MSE is also quite large each time the training dataset is doubled. From

these results it seems likely that the models would benefit from doubling the dataset

since the MSE has not yet converged for either model. Each time the size of the dataset

is doubled, it requires an ever larger time investment. Diminishing returns are expected

on these investments, and can already be observed in Table 4.3. At some point the

time investment required to double the dataset will be infeasible for the small increase in

predictive power.

Table 4.3: MSE for different training dataset sizes, sample size 100

dataset size XGB NN

204 84.23 64.73
100 111.21 85.79
50 136.74 132.47
25 226.32 155.52
12 505.50 206.04

4.3 Augmentations

The effectiveness of augmenting the training data was tested for different sizes of the

training dataset on the NN. Applying the rescale augmentation adds two augmented

swings for each original swings. Applying the Squeeze/Expand augmentation adds four

augmented swings for each original swing. Applying the Random Perturbations adds one

augmented swing for each swing in the dataset, including augmented swings.

As can be seen in Table 4.4, the augmentations generally improve performance when the

dataset is very small. However, for the larger datasets the augmentations only seem to

make the predictions worse. The Rescale and Contract/Expand augmentations seem to

perform better on the small datasets while the perturbations seem to be better for the

34



Club Head Tracking - Visualizing the Golf Swing with Machine Learning Fredrik Herbai

larger datasets. In this test, combining multiple augmentations is never the best choice

for any dataset size.

Table 4.4: MSE of the NN with sample size 100 for different Augmentations on varying
dataset sizes

25 50 100 204
No Augmentation 155.52 132.47 85.79 64.73

Rescale 145.64 125.60 97.49 80.66
Conract/Expand 128.16 132.03 94.77 90.48

Rescale + Contract/Expand 145.52 153.27 106.71 88.21
Small perturbations 155.97 135.92 77.28 70.45
All Augmentations 140.01 137.32 109.61 88.99

4.4 Limitations of MSE

In the graphs presented in subsection 4.1, it is evident that there is a high correlation

between a low MSE and a good looking trace (this is especially true for the NN). However,

MSE is still far from an ideal measure of how nice looking a predicted trace is. In the case

of XGBoost, it becomes apparent that MSE only considers the distance from a predicted

datapoint to the ground truth datapoint. This means that MSE does not care if the

predicted datapoints are on alternating sides of the ground truth trace for each time

step, creating a jagged and noisy trace, or if they are all on the same side creating a

slightly off set but smooth looking trace. As long as the distances between the predicted

datapoints and their respective ground truth datapoints are the same the MSE will be

the same.

Furthermore, some additional examples of the limitations of MSE will be highlighted. The

following predictions are generated by the NN with sample size 100 and 204 dapaoints in

the training dataset. Figure 4.9 shows two similar predictions where both traces slightly

overshoot in the beginning of the downswing. Despite the predictions looking virtually

the same, one has a much lower MSE.
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(a) (b)

(c) (d)

Figure 4.9: Example of two similar looking predictions with different MSE

Figure 4.10 shows two predictions with almost the same MSE. In spite of this, the predic-

tion in (c) and (d) matches the shape of the ground truth quite well while the prediction

in (a) and (b) makes a severe error in the downswing. Due to which the resulting trace

barely resembles a golf swing. The fact that these two prediction almost have the same

MSE could be explained by one being a very close match in all parts of the swing except

the downswing, where the majority of the error occurs, whereas the other prediction is

a little bit off in all parts of the swing and thus maintains a general shape that closely

resembles the ground truth.
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(a) (b)

(c) (d)

Figure 4.10: Example of two predictions with similar MSE where one looks better

Finally, Figure 4.11 presents two predictions where the trace of the one with the higher

MSE arguably looks nicer. The reason why the prediction in (a) and (b) looks nicer than

in (c) and (d) could simply be that the trace is smoother. As discussed previously, the

smoothness of a trace, or lack thereof, does not impact the MSE.
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(a) (b)

(c) (d)

Figure 4.11: Example where the trace with the higher MSE arguably looks better
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5 Conclusions and Future Work

5.1 Conclusions

In this thesis machine learning was used to produce visual representations of golf swings,

in the form of a trace, based on sparse detections of the club head in certain parts of the

swing.

The collection and annotation of slow motion videos to generate training data proved to

be one of the most time consuming parts of the project.

Two models were implemented, XGBoost and a neural network. Both models successfully

learned the underlying patterns of how the club head moves throughout the golf swing.

At least when they received an adequate amount of club head detections as input.

When it comes to producing traces that look realistic, the neural network performed

better than XGBoost. In general, the traces produced by the neural network were much

smoother and thus better matched the general shape of the ground truth trace.

In order for the models to be used in a live broadcast scenario, a lot more training

data is needed to train the models and the models need to be improved upon further.

Nonetheless, this thesis acts as a proof of concept showing that machine learning can be

used to successfully interpolate club head detections to visually represent the golf swing

as a trace.

5.2 Future work

This thesis shows promising results, but the models would need to improve a lot in order

to be used in a real broadcasting scenario. The computer vision model can be expected

to deliver about 10 to 25 detections of the club head. Therefore the model would need

to reliably predict traces while only receiving 10 to 25 points as input data. Suggestions

of improvements which lie outside the scope of this project are presented below.

More Data

One of the more obvious ways to improve the predictive capabilities of the models would

be to simply generate and annotate more data. This is not a difficult procedure but it is

very time consuming. Currently 256 swings have been annotated and that is simply not

enough data.
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Cost Function

Using a more complete cost function than MSE, which for example punishes noise, could

result in more realistic predictions. The limitations of using MSE as the cost function for

this application were made apparent in this thesis. The goal is really to produce good

looking traces and minimising the MSE did not always achieve this. A measure that

better describes how good a trace looks is required.

Return to Ball Position

The initial position of the club head at address is defined as the origin. This location

is virtually the same as the ball position. Assuming that the player successfully strikes

the golf ball (which is a very reasonable assumption to make), the trace could be made

to always return back to the ball position at some point in the swing. A common error

is precisely that the predicted trace fails to return to the ball, either over- or under-

shooting. The downswing/beginning of the follow through is the most difficult part to

predict accurately. Anchoring the trace to the ball position might reduce some of the

uncertainty in that part of the swing, resulting in better predictions.

Computer Vision Model

A different approach could be to improve the computer vision model so that it can deliver

more detections. If it is able to produce more than 10-25 detections that would reduce

the demands on the trace predictor.

Smooth Out Noise

A way to make the traces look like real golf swings would be to smooth out any noise

present in the predictions.

Drawing the Trace

Another requirement for use in production is that the trace should be overlayed on the

video and be drawn out following the club head.

Real Time Predictions

Finally, taking this concept to the next level would involve developing a model that can

make predictions in real time. In other words, for the model to start predicting and

drawing the trace before the golf swing is completed, so that it can be used live in a

broadcast.
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Finally, taking this concept to the next level would involve developing a model that can

make predictions in real time. Meaning that the model starts to predict and draw the

trace before the golf swing is completed, so that it can be used live in a broadcast.
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Appendix

A Additional Average Predictions

A.1 Average predictions XGBoost

Figure A.1: Average prediction for sample size 125

(a) Average prediction (b) Average prediction

Figure A.2: Average prediction for sample size 100
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(a) Average prediction (b) Average prediction

Figure A.3: Average prediction for sample size 75

(a) Average prediction (b) Average prediction

Figure A.4: Average prediction for sample size 50
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A.2 Average Predictions Neural Network

(a) Average prediction (b) Average prediction

Figure A.5: Average prediction for sample size 125

(a) Average prediction (b) Average prediction

Figure A.6: Average prediction for sample size 100
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(a) Average prediction (b) Average prediction

Figure A.7: Average prediction for sample size 75

(a) Average prediction (b) Average prediction

Figure A.8: Average prediction for sample size 50
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