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We calculate the scattering amplitude of two rotating objects with the linear-in-curvature spin-induced
multipoles of Kerr black holes at O(G?) and all orders in the spins of both objects. This is done including
the complete set of contact terms potentially relevant to Kerr-black-hole scattering at O(G?). As such,
Kerr black holes should be described by this scattering amplitude for a specific choice of values for the
contact-term coefficients. The inclusion of all potential contact terms means this amplitude allows for a
comprehensive search for structures emerging for certain values of the coefficients, and hence special
properties that might be exhibited by Kerr-black-hole scattering. Our result can also act as a template for
comparison for future computations of classical gravitational high-spin scattering.
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I. INTRODUCTION

Black holes are unique objects. By the no-hair
theorem [1,2], they are described solely by their charge,
mass, and angular momentum, where only the latter two
are necessary for describing astrophysical (Kerr) black
holes [3]. Despite this special property, stellar-mass black
holes are ubiquitous in nature, as they are the endpoint
of the life cycle of sufficiently massive stars. Moreover,
experimental advances have made these previously elusive
objects accessible for direct study. While the shadow of a
supermassive black hole has been captured in images [4],
stellar-mass black holes are most readily observed through
gravitational waves emitted during compact binary coa-
lescence [5].

The no-hair theorem paints an image of black holes
which is not dissimilar to quantum fields. The latter can
also be characterized by three quantities: charges under
gauge groups, mass, and spin quantum number. Such
parallels have not gone unnoticed, with the theoretical
study of classical black holes surging in recent years

“rafael.aoude @uclouvain.be
"kays.haddad @ physics.uu.se
‘ahelset@caltech.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2023/108(2)/024050(18)

024050-1

simultaneously with observational breakthroughs [6-39].
In particular, techniques from scattering amplitudes have
been used with great success to analytically calculate the
interaction Hamiltonian for two black holes [40-49],
relevant for describing the gravitational emission from
black-hole mergers. Worldline formalisms constitute par-
allel successful approaches to the Post-Minkowskian
expansion of black-hole interactions [50-60]. Emerging
perspectives on this problem include the study of ampli-
tudes on curved backgrounds [61,62], bound states [63,64]
(see also Refs. [65—69]), and solving the classical scattering
problem directly in the probe limit [70,71].

In the process of employing amplitudes techniques for
high-precision calculations, special qualities of amplitudes
relevant to Kerr black holes have been uncovered. By
matching to the classical computation of Ref. [7], a
particular scattering amplitude has been shown to describe
the dynamics of a Kerr black hole at leading order in
Newton’s constant, including all spin effects [72].
This amplitude has an intricate structure where the full
dependence on the spin is captured by an exponential
factor [8,14,16,18]. Intriguingly, the amplitude which
turned out to describe Kerr black holes is singled out by
a notion of maximal simplicity [72].

Progress beyond leading order in Newton’s constant
has also been made for Kerr black holes, which depends
on higher-point amplitudes. When high orders in the spin-
multipole expansion are of interest, the necessary ampli-
tudes are most conveniently constructed using recursive
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techniques [73,74]. This, however, introduces unphysical
poles that must be removed from the amplitude [72],
which were encountered in the specific context of Kerr
black holes in Refs. [8,9]. The unphysical poles in the
opposite-helicity Compton amplitude have been removed
to all orders in the spin for black holes [29] (see also
Refs. [9,26,33,34,75-77]) and neutron stars [78]. When
constructing the same-helicity Compton amplitude recur-
sively, unphysical poles do not develop for Kerr-black-hole
spin-induced multipoles [79]. In order to capture all dynam-
ics of the Compton amplitude, allowing for a complete set
of contact terms with a priori unfixed coefficients comes
hand-in-hand with removing unphysical poles.

As the amplitudes approach to general relativity is an
effective one, the contact-term coefficients of the Compton
amplitude must be unambiguously fixed through a match-
ing calculation to a setup where the identity of the black
hole is well established. For example, the Compton
amplitude could be matched to classical amplitudes derived
from solutions of the Teukolsky equation [80]. This
program was initiated in Refs. [22,33,81].

Alternatively, one can seek an amplitudes-based defi-
nition of Kerr black holes. Building off of the simplicity of
the Kerr amplitude at leading order in the coupling and the
uniqueness of Kerr black holes in the scheme of astro-
physical objects, it is not unreasonable to anticipate that
Kerr amplitudes at higher order in the coupling exhibit
some identifying properties. Therefore, a jumping-off point
for an amplitudes-based understanding of Kerr black holes
is to ask which values of the contact terms endow the
amplitudes with special features.

Searching for structure in scattering amplitudes is a
data-driven endeavor. The aim of this paper is to provide
the data to be mined, and hence build the superstructure
which we expect to contain an analytic description of
Kerr-black-hole scattering. We do this by calculating the
scattering amplitude of two rotating objects to O(G?) and
all orders in both the relative velocity and their spins. To
zero in on the case of Kerr-black-hole scattering, we build
this amplitude from the three-point amplitude known
to describe Kerr black holes, and allow only the subset
of all contact terms in the Compton amplitude which can
contribute to Kerr-black-hole scattering at O(G?). This
extends a previous all-order-in-spin result [30] which
considered one rotating and one nonrotating object.
Moreover, the inclusion of general contact terms relaxes
a key assumption in that paper.

The layout of the paper is as follows. We start by
discussing the on-shell formalism for heavy particles. Then
we set up the calculation of the O(G?) scattering amplitude
from unitarity cuts. We present the result for the all-order-
in-spin scattering amplitude, and expand it in certain limits
and kinematic regimes for illustration. Finally, we compare
to the existing literature before concluding. The notation
used throughout the paper is defined in the Appendix.

II. HEAVY PARTICLES

Here we summarize the on-shell formalism for heavy
particles. For more details, see Refs. [18,29]." The dis-
cussion of a heavy particle starts with decomposing the
momentum of the heavy particle into two parts, one large
and one small:

Py =mv, +k,. (1)

The velocity v# satisfies > = 1. The mass m is assumed
to be much larger than the typical interaction scale in
the problem, while the residual momentum k, is on the
order of this scale. An expansion in |k|/m thus naturally
follows.

This is then folded in with the on-shell spinor-helicity
variables for massive particles [18,72,87,88]. Usually, one
defines a set of spinors for the momentum p,, of a massive
particle. For heavy particles, we instead define spinors for
the velocity v, such that

ar (2)

where [ is a massive little group index. This approach
presents several advantages for describing classical
scattering.

First, the relevant (classical) expansion is precisely in the
interaction scale over the masses of the heavy particles. The
classical expansion is thus manifested, and, in line with
effective-field-theory lore, it is useful to make this expan-
sion early on in the calculation. Second, the incoming and
outgoing particles are described by the same v*, since this
quantity is conserved throughout the classical scattering.
Defining the spin vector via the Pauli-Lubanski pseudo-
vector, it is thus natural to choose the constant four-velocity
for the reference vector, ¥ = —1e#%y,J ;. Consequently,
there is no need for the boosting of external states or Hilbert
space matching, which stands in contrast to alternative
approaches [8,9,14,16]. Finally, the spin-supplementary
condition (SSC), v, 8" = 0, is automatically satisfied with
this choice of reference vector, enabling us to identify the
spin vector appearing in on-shell amplitudes with the
classical spin vector.

Throughout the calculation, we employ auxiliary vari-
ables z; to absorb any open little group index [26],
[v) = |v)z; and (9| = (v!|Z;. In turn, all spin dependence

Uﬂ (O-ﬂ)ad = |1]1>a[v1

'Effective field theories with heavy particles applied to
classical systems have recently been referred to as “heavy-mass
effective field theories” or “HEFT” (see, e.g., Refs. [27,35-37]).
We instead use the name heavy particle effective theory (HPET),
which is more faithful to the long-standing literature regarding
effective field theories with heavy particles [82—85]. This name
also avoids overlapping with the Higgs effective field theory
(HEFT) acronym appearing in beyond-the-Standard-Model
literature [86].
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will appear in the combination

B LS, ., S Y2
<‘-,v>25

= mak ..., (3)

where curly brackets denote symmetrization. In the scatter-
ing amplitudes we will tacitly strip off any overall factor of
(¥v)?s and use the ring radius a* to keep track of the spin
dependence of the two spinning pau“[icles.2

I1II. BUILDING BLOCKS FOR O(G?) SCATTERING

We want to describe the classical scattering of two
spinning particles at O(G?). This is done through a one-
loop scattering amplitude, which can be decomposed into
a basis of box, triangle, and bubble scalar integrals. For
classical physics, we only need the coefficients of the
triangle integrals, which we calculate from the triangle
unitarity cut shown in Fig. 1.

The triangle cuts are built from tree-level three-point and
Compton amplitudes. Our ambition to produce a second
post-Minkowskian (2PM) amplitude relevant to Kerr-
black-hole scattering constrains these tree-level amplitudes
in the following ways:

(i) The three-point amplitude which describes the
interactions between a Kerr black hole and a single
graviton is given by the “minimal” amplitude of
Ref. [72]; see Refs. [7-9,90]. The Compton ampli-
tude must factorize onto this amplitude on physical
residues.

(ii) Kerr-black-hole scattering at low spin orders
(up to fourth order in spin) is known to satisfy the
so-called black-hole spin-structure assumption [29].
Specifically, the spin dependence appears only in the
combinations (¢-a;)(q-a;)—q*(a;-a;), ¢*(v; - a;),
and €,,,,q"v{vha? for i, j =1, 2 [17,21,29,33,44,

4

tigy —1 n

K, = M (14 13w-a>,
S34113114 y

K,
K, +m*(w-a)*d’,

:NI
|

()

N

FIG. 1. The relevant unitarity cuts for the classical dynamics at
O(G?). The straight lines are black holes while the wavy lines are
the exchanged gravitons. All propagators are on-shell, so each
vertex represents an on-shell, tree-level scattering amplitude.

45,47]. This assumption is equivalent to the shift
symmetry of Ref. [47] for two-massive-particle
scattering, and is a manifestation of an analogous
shift symmetry at the level of the Compton ampli-
tude [30]. We begin by computing the 2PM ampli-
tude which obeys this assumption, and relax it
later on.
In conjunction, these two points imply that the same-
helicity Compton amplitude does not contribute to classical
scattering at 2PM. However, when we relax the second
constraint we will need to consider the contributions from
same-helicity Compton-amplitude contact terms to the
unitarity cuts.

To evaluate the 2PM amplitude in accordance with these
two constraints, all we need in addition to the three-point
Kerr amplitude (which can be found, e.g., in Ref. [8]) is the
shift-symmetric opposite-helicity Compton amplitude of
Ref. [29]. For a positive-helicity graviton with momentum
¢4 and a negative-helicity graviton with momentum ¢
(both outgoing), this amplitude is

2s

1 -
My = elat)e Z;EKW 4)
where
n<4
n=4 5

KLy s = Kx8oLy gy + m*(w-a)* WGV a8 ™4 28] - > 4,

Here we use w# = [4(6#|3)/2. Also, 8; = (q3 — q4) - a and
8, = —4(q3 - a)(q4 - a) + s3,a°. These enter in the sums

[m/2]
m+ 1 _2i ,
= ()@

’See Ref. [89] for a more rigorous treatment of these overall
spinor products.

[
This amplitude factorizes onto the three-point amplitudes
describing Kerr black holes on all three poles, s34, =

(g3 + q4)* and t,; = (p, — q;)*> — m*. The dﬁ") are unfixed
dimensionless coefficients for shift-symmetric contact
terms. The upper bound of the sum in Eq. (4) depends
on the total quantum spin s of the massive particle. We
take this quantity to infinity to describe classical spinning
objects.
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IV. ALL-ORDER-IN-SPIN AMPLITUDE

The details of the construction of the 2PM amplitude
using unitarity can be found, e.g., in Refs. [29,44.45].
The scattering amplitude for two spinning particles at

O(G?) is

2G> mim3

—q°

Mopy = (M + MSR). (1)

which we have split into an even- and an odd-in-spin part.
The even-in-spin part is

even __

PM — —m1(8a)4 - 80)2 + 1)X0’0
+my(@Viy — 0*Vy)(2e? — 1)X;

_le(FZnPn+F2n+lQn)+(] <_)2)’ (8)
n=0

and the odd-in-spin part is

(8w* — 8aw? + 1)

—imE(Viy —oVy) 8(w” — 1)

X2

- iml Z (FQan + F2n+1Srz) + (1 <~ 2)? (9)
n=0

© (_1)n+123—2n

X1 = Z (@* = 1)"1(3/2),_1 s

(vtot)nFn—lJrl' (10)

We have included a symmetrization where all masses,
spins, and velocities of the two heavy particles are
swapped, along with changing the sign of the transferred
momentum. Some symbols in the expressions above are

=0V, (11)
Qii=(q-9,)(q-a;) —q*(a; - q;), (12)
Vi=q*(v-a;)(v-a;), (13)

Ei = €upeq Vi hay, (14)

E=E+6&. (15)

We have written the sum of the four-velocities as " =
v + v4. The spin-supplementary conditions v; - a; = 0 help
to slightly reduce the number of invariants. Common
combinations of these are

Qiot = Q11+ 02 +2015 + Voo, (16)
Vit = Vi1 =20V 5 + 0* V. (17)

Much of the spin dependence of the amplitude is captured
by the hypergeometric function

1 . .
Fj:mOFI(J+1’QtOt/4)’ (18)

The rest of the definitions are given in Appendix A.

If we restrict our attention to the sector with one spinning
and one nonspinning particle, we find agreement with the
result in Ref. [30]. Also, by expanding to eighth order in
spin, we find the result in Ref. [29].

While Egs. (8), (9) encode the all-order-in-spin ampli-
tude, it is useful to study various spin sectors independently
to ease the task of searching for structure in the result. We
provide M9, and MSsh explicitly expanded to O(a?®)
in the ancillary files amplitude2PModdinspin-
Tospin27.mx and amplitude2PMeveninspin-
Tospin28.mx, respectively. Note that the overall factor
in Eq. (7) has been omitted from the results in those files.

Below we also study the amplitude in some simplifying
scenarios. We will first consider the probe limit for a
spinning particle with up to quadratic orders in spin moving
in a Kerr background. Then we will look at the aligned spin
case to all orders in the spin for both particles.

A. Probe limit

We start with the probe limit for particle 2 including up
to quadratic orders in its spin and all orders in the spin of
the Kerr background. The 2PM scattering amplitude in the
probe limit is

2G>’ mim3
Mopm probe — —_—Lz <

2

even odd
2PM probe + MZPM probe) ’
-q

(19)

where the even-in-spin part is
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even 2Vl] - (wZ B 1)Ql] 522
MM probe = M1 {3(5602 - 1)Fé)al> - n Fé“" - (80*—8® +1)( 1 —m Yoo

o* =8 +1 4a* -3
5 Yoi ==Y
2(w*—1) 4(w*-1)

1 8
+m Q0 [(40)2 - I)F(fl') —5(8604 —8w? + 1)Y0,1:| +moV, [4F(10') -

@+1 ) 1 (@) , @ (40 =3) 1 (ar)
Vool m7—5—=F, " ————=VF; ' +———Y Vv - Fy!
+mVy L(wz_ no Mot =1) 1k, + 2P —1) 0,1} +mo 12Q12[ NP —1) 2
4 -3 5o* =150 +2 (o) . (80* =80’ +1)01; —0*V; _(a))
-7y F F5', 20
8= 1) 1’2] +’”1Q22{ -1 0T M= 1) 2 ] (20)
and the contribution at odd spin orders is
o . 202 — 1 2> E,?
May prove = ~HM0E, [(4 * w*—1 O = (@?—1)? V22> F(lal) 220" - 1) <1 - 2(w?* — l)) Yo’l}
) 1 (1) 40* -1 . 30? -1 (1) 4o — 1
—imVpl |l —————=F" —————Y12| —imVp& | ——5—=5F ————=Y
iy Ve { 2((02 -1 2 8(w2 _ 1) 1,2 m;Viaco (coz _ 1)2 1 4((02 _ 1) 1,1
) Ha? -5 a 5 1 a
— imw&, [a)z—lFé 2 ~|—4F§ Yoy <4Q11 —2(0)2_1)V11>F§ : —4(20” - 1)Y0,o]7 (21)
where F Ef‘) = Fyla,»0 and Yy, = Xy [q,0- As expected, the contact terms with unfixed coefficients do not enter in the

probe limit at this spin order for the probe particle; they first appear at fourth order in the spin of the probe particle.
Therefore, these probe-limit results describe the scattering of Kerr black holes.

B. Aligned spins

Next, we write down the scattering amplitude for aligned spins. This kinematic configuration sets all V;; to 0. The
aligned-spin scattering amplitude is

2G2752m2 2

m
M2PM aligned — Tz (M%\I/} aligned + MZPM allgned) (22)
where the even-in-spin part is
4(8w* — 8w? + 1 =
M%\l;ir/} aligned =m ( a)2 —1 )F_l - Z (F2” dhg“ed + F2n+1thgned) + (1 < 2) (23)

n=0

We again symmetrize by swapping masses, spins, and velocities of the two heavy particles, along with changing the sign of
the transferred momentum. This part of the amplitude depends on the terms

. 2n
piliened _ 5 (—(50)2 —1) <3 + @h )) + Dy, + (—Q” ;Q”) Cs,

#@ular =)o (-5 (32) 0 - 3n) - (22) ) -0 (82) 367) | 0

and

ign 3 2 1 3
pened — 8,0(012 + 022) (4_1 (5w? —1) - Qléz zh( ) <%> (@*—1) (Zhgl) + 3h(13>> + (%) (@ — l)hg))

1 2 + 2n+1
+ 6,1(Q12 + 022) Qpor (@* — I)E < - Ql—ézh <Q1—22> 4h§3>) + Dyypr + <Q12176Q22> Couir- (25)
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The odd-in-spin part is
8(2w? — 1) 50> -3

w? -1

odd — 3
MM aligned — ~HM @ [(5 - &

—im Y F,E, + (1 2).
n=0

The functions C,, D,,, and E,, are given in Appendix A, but
with the constraints of aligned-spin scattering imposed.
Contact terms contribute to the even-in-spin part, but are
absent from the odd-in-spin one. This is reminiscent of
the contact-term contributions to the a$® x a9 sector of the
scattering, where imposing the black-hole spin-structure
assumption barred the appearance of contact-term coeffi-
cients at odd spin orders for that sector [30].

In that previous analysis of a$® x a scattering at 2PM,
the @ — oo limit was considered as a potential identifier
of Kerr black holes. With the black-hole spin-structure
assumption imposed, certain values of the unfixed Wilson
coefficients of even-in-spin contact terms improved the
behavior of parts of the amplitude containing (V ;)" for
n > 72 in this kinematic limit. The simplifications of the
aligned-spin configuration allow us to more easily check
consistency of those previously-determined coefficient
values in other spin sectors.

Analyzing other spin sectors, we find the @ — oo limit to
be an unreliable handle for fixing the values of the contact-
term coefficients. This is primarily because the coefficient
values which improve the w — oo behavior for part of
the amplitude in one sector are different from the values
suggested by another sector. Our conclusion about the
utility of this limit aligns with observations in Ref. [48],
which saw that the values of Wilson coefficients matching
solutions to the Teukolsky equation did not produce the
best high-energy behavior of the 2PM amplitude.

V. BREAKING THE SPIN STRUCTURE

The results so far are constrained in two ways: the three-
point amplitude used expresses the Kerr-black-hole spin-
multipole moments, and the Compton amplitude exhibits the
spin-shift symmetry. The latter of these has recently been
shown to be in tension with the description of Kerr black holes
by the Teukolsky equation [33], so we allow for its relaxation
here. To do so, we insert the general Compton amplitude

Mﬁlhrgen _ Miﬁhz _|_m2(ch1h2 +Dh1h2) (27)
into the cuts. Here, MZ(_h) is the shift-symmetric, opposite-
helicity Compton amplitude, including shift-symmetric
contact terms, used up until this point, and M"" is the
factorizable portion of the same-helicity Compton ampli-
tude, which does not contribute to scattering at 2PM for
Kerr-black-hole spin-induced multipoles. C""2 and D"

3 3
e >F0+45F1 + <—51§Q22 —521(Q11 + sz))Fz}

(26)

|

are the most-general contact terms that can be relevant to
black-hole scattering at O(G?) which are, respectively,
analytic and nonanalytic in the spin vector.” In particular,
the latter contain one factor of |a| = Va2, These contact
terms were constructed in Ref. [78], and we use a slightly
modified form of them here, while also imposing crossing
symmetry; see Appendix B. The analytic coefficients are
labeled by {a,b,c,d,e} and the nonanalytic ones are
labeled by {f, g, p, q, r}.

When introducing contact terms, the same-helicity
Compton amplitude can produce nonvanishing contribu-
tions to the 2PM amplitude. We must thus consider now the
contributions from opposite- and same-helicity Compton
amplitudes to the unitarity cut in the most general case.
Note, however, that Ref. [33] demonstrated that the same-
helicity Compton amplitude matching solutions to the
Teukolsky equation up to sixth order in spin did not
require any of the contact terms considered here.

A. Opposite-helicity contact term contributions

For opposite graviton helicities, crossing symmetry is
expressed by the following constraints on the Compton
amplitude:

MI_ = MZ+|q3<—>q4 = -A_/l2+|a—>—a‘ (28)

The first of these has the more concrete implications for
our purposes. Specifically, this first condition means that
the coefficients appearing in both opposite-helicity sectors

. : —+(s) A=) — ()
must be identical, xl.’u’)fj =X = if(l')_j

ficients in Egs. (B1), (B2).

The second crossing symmetry condition in Eq. (28)
imposes Eq. (B3) on the contact-term coefficients. These
relations affect the parity properties of the 2PM amplitude
depending on whether the coefficients are taken to be real,
complex, or imaginary. To maintain maximal generality,
we do not assume anything about the reality of the
coefficients, so these relations do not factor into the result
in this section.

for all coef-

3Refs. [33,78] referred to these as conservative and dissipative
contact terms. The latter variety were first considered in Ref. [33].
We move away from these identifiers—as has Ref. [48]—as we
understand that the precise relation between these contact terms
and classical conservative/dissipative effects is unclear. We thank
Fabian Bautista and Justin Vines for discussions about this.
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With crossing symmetry accounted for, the contribution from the opposite-helicity contact terms to the 2PM amplitude is

) )/2] 5,=5-2i A1)
Pr = 3) DD D I 9 S TITRERL (e e

—q $1=05,=5 =0 + =4

1 a _ -
( 2Zq—21H1121< Qllaz’xl,isxli) |:mZ2 1(5[2] 1)(A§P2s4) + (_1)]+AYIA§P2 ) + ‘az‘g,n 1) (ASPZS)

- 2 \7J (1 5y
4 (_1)J+S1A§I?2~3)>:| + (m_z) H?;”f (Z O11, Y22, V12,45 1) [mzagcgijz 1)(A£zzt-2) + (=1) +s1A§a 2))

OH—contact _
M 2PM
mym; q

_1)j+t+s|]

| s - 1-
+m2|a2|q, ,—1) (Agflj:.l)_i_( ])]+YIA50 1)) +m2 (z 1)<Ag.aiz,0)+(_1)J+s1A£j1jz:,0))}> _[ ( 5

1 ) o
( 4Zq-ﬂ'ﬂ””+1 (4Qn,z,xli,xzi) (b (49 = (1A

s L= 1 5 I
+ |:1—2|f1(12]) (AEPZA) - (_1)JH1A§p2 )] H] o <Z O, Z’xl,iax2i> [mzazd( 2)( AP (_1)]“'A5p2'1))
L il

+ mya3]ay| ! (AE”Z’z) — (=1)* Agm@) + m3|ay|r (AE"Z"” — (=1)* AE/’Z’O))D } + (1 2).

To facilitate a search for structure, we have expanded
and collected the contributions up to thirteenth order
in the spins of both particles in the files OH2PMAna-
lyticContactTerms.mx and OH2PMNonAnaly-
ticContactTerms.mx. The index s; labels the
order in the spin-multipole expansion of particle i.
All spin dependence of the particle whose propagator
is taken on shell is encapsulated in the functions

H ¥ (a, b, c.d).

B. Same-helicity contact term contributions

We move now to the contributions from same-helicity
contact terms. Crossing symmetry again imposes two
relations on the same-helicity Compton amplitudes:

o |(5—4)/2| 5,—4-2i
MSH contact,A

2G2m2
2PM ’ :ﬂimzzz Z Z Z

mi\ =4~ s,=4 =0 j=0 +

1+ (=1)/

(29)

My =M e MIT =My, (30)

The second of these implies that many of the free coefficients
must vanish, a condition which is summarized in Eq. (B7).
From the first constraint above, we obtain relations between
the coefficients of different helicity sectors. Specifically,

xl_(_l)(;> = (=1) x;”(Jr )( ) for the analytic-in-spin coefficients

{a,b,c.d, e} and xi,(l,)j (- l)s“er(J”)< *) for the nonana-

lytic coefficients { f, g, p, ¢, r}. Once again, the reality of the
coefficients affects the parity properties of the amplitude. We
assume nothing on this front to not sacrifice any generality.

The contribution to the 2PM amplitude from the same-
helicity analytic contact terms is

5 a%i( g - ay) 42

{ZqZIHJUZ (0,z,1,x, i)mﬂ a2< (fz)e T4 4 (= l)szazzj(.rz)eq.al)

R e R )

t==2
1

_ J(s2) —q-a (f’z
+q4(e” et g0 4 (~1)%e

053] g B >)”+(1 2). (31)
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The nonanalytic same-helicity contact terms enter the 2PM amplitude through

202 2 oo [(52-5)/2] 5,=5-2i
MSH—contact,NA _ -G my | |
2PM =T %
myv —q $,=5  i=0 j=0

1=0

t=-2

1

As usual, we symmetrize by swapping the masses, spins, and
velocities of the two heavy particles, along with changing
the sign of the transferred momentum. The factors of
(1 £ (=1)7)/2 manifest crossing symmetry constraints by
removing terms which anyway vanish by Eq. (B7). The spin
of the massive particle whose propagator is cut only
contributes via exponentials. This makes it easy to expand
these contributions to finite order in the spin of the contact
terms, while retaining all spin orders for the other particle.
We have collected the results expanded up to spins af® x
a’*® in the files SH2PMAnalyticContactTerms.mx
and SH2PMNonAnalyticContactTerms . mx.
Equations (29), (31) and (32) account for all contact
contributions to the 2PM amplitude that are potentially
relevant to Kerr-black-hole scattering. Identifying the
appropriate amplitude describing the scattering of two
Kerr black holes thus amounts to determining the appro-
priate values of the free parameters in these equations.

VI. COMPARISON TO LITERATURE

As we have accounted for all contact terms potentially
relevant to Kerr-black-hole scattering at 2PM, we expect
our result to contain all results present in the literature for
Kerr-black-hole scattering at this order. Indeed, up to cubic
order in spin, we agree with Refs. [17,21,44,45].

At quartic, quintic, and sextic orders in spin, the most
general 2PM amplitude we can compare with was pre-
sented in Ref. [48]. As mentioned above, the same-helicity
contact terms matching the Teukolsky equation were shown
to all be vanishing up to sixth order in spin in Ref. [33], so
matching to Ref. [48] requires that we omit contributions
from Egs. (31), (32). Beginning with quartic order in spin,
we agree with the amplitude there under the mapping of
coefficients

1

16C1'2’
4
d(()) + e‘o"o - =24(cig—c1y +cr2),

—

4 4
Ap00 — Co0 _(01,1 - 201,2),

N

93,0.0 -0, ‘13,0 - 0. (33)

+? (r;j—s(h)e—qnlBél[’Zvo) _ (_1)sz—Z;~(S2)eq~a1Bglt’2~O)):| } + (1 PN 2)

(g )5

1—(=1)/
s

+

d 1,0,2(i—1)+1 ——.($2) —g- s, 7—— (8 .
X {Z q*Hy (=t (0,2, 1, x5 )miq*a3 (fi,l.j( Jemaar - (_1)‘2fi,1,,j( 2)‘3“')

2
+ Z H{),Zt,21+1 (0’ a1, x2.j:) [m%a% (PZ;’(‘YZ)e_q'a]Bgl;z’z) _ (_l)szl—):j—.(sz)eq-mBgzl))

(32)

|
The parameters in this paper are on the left-hand sides,
while those of Ref. [48] are on the right-hand sides. Note

that the parameters dg‘) and eé,o are redundant; we have
split them in this manner such that the shift-symmetric
result is obtained by setting all coefficients introduced in
Appendix B to 0. This redundancy can easily be avoided by
setting to zero the contact terms in Appendix A when
considering the most general case.

At quintic order in spin, the additional parameter map-
pings needed to match to Ref. [48] are

5 5 5
a300 = 0, oo 0, €0 0,

C2’2 1 1
=76 T1ag (0~ 1) T 450

3 1
3 djy— - g5 (2002, = 40c35 = 30¢3,

+ 15C3_1 + 8)5

5 5
9o.00 = 0, 950 — 0,

1 1
”(5),0 +ZQ(5),1 -~ (cap = cay +ca2),

3
593,0,1 + Poo = 7 (a1 = 2¢4). (34)

16
We also agree with Ref. [48] at sixth order in spin under an
appropriate coefficient map, which we omit here for
readability.

Above sixth order in spin, we have reproduced our shift-
symmetric results from Refs. [29,30].

Additionally to these finite-spin results, an O(G?)
amplitude involving all spin orders of both scattering
objects in the aligned-spin configuration was recently
presented in Ref. [91], with which we do not agree. The
analysis there is based on an interesting attempt to manifest
the Newman-Janis shift in a QED Lagrangian, by means of
defining a new gauge-covariant derivative which incorpo-
rates the classical spin vector in its action on a charged
scalar field. The three-point and Compton amplitudes are
then evaluated from the scalar-QED Lagrangian with this
gauge-covariant derivative, and subsequently double cop-
ied to obtain gravitational amplitudes.
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Both the QED and gravitational opposite-helicity
Compton amplitudes in Ref. [91] are missing contributions
involving w-a, which is in disagreement with other
analyses [18,22,26,29,33,34,72,92]. It is implied in
Ref. [91] that this discrepancy can be remedied by adding
contact terms through the introduction of higher-point
operators to the action. However, terms with w - a have
nonvanishing residues on the physical factorization chan-
nels for QED, QCD, and gravity, even in the classical
limit [29]. As such, their contributions to the amplitude
cannot be encoded in contact terms, and their absence
means that the four-point amplitude of Ref. [91] does not
have the correct factorization properties for a Compton
amplitude. This propagates into the O(G?) amplitude,
which cannot be obtained from our results above for any
choices of the free parameters.

VII. CONCLUSION

With the aim of providing the data needed to pinpoint the
amplitude describing the scattering of Kerr black holes at
O(G?), we have computed the most general 2PM ampli-
tude consistent with known properties of Kerr-black-hole
scattering. Specifically, the totality of our results contain
only two externally-imposed principles. The first is that the
scattering is constructed from the Kerr-black-hole linear-in-
curvature spin-induced multipoles [7,90]. Said otherwise,
the factorization properties of the amplitudes used here are
all consistent with the known Kerr-black-hole three-point
amplitudes [8,9,72]. The second is that the general set of
contact terms considered have coefficients which can be
made dimensionless through rescalings by factors of the
mass only. As was argued in Ref. [78], any other contact
terms would only be relevant to black-hole scattering at
higher PM orders. Our computation made use of the synergy
between HPET and on-shell methods, which allows for the
convenient extraction of classical physics [18]. On top of
this, the one-loop classical amplitude was derived using
unitarity cuts.

What remains unknown is which values of the unfixed
coefficients describe Kerr-black-hole scattering at this PM
order. Prescriptions for those coefficients appearing up
to sixth order in spin were put forth recently in Ref. [33]
by comparing to solutions to the Teukolsky equation.
However, an amplitudes-based understanding of Kerr black
holes remains desirable, as it may present a handle for
understanding the structure of all spin-multipole orders
instead of uncovering one spin order at a time. Moreover,
an ideal scenario would see such an image of black-hole
amplitudes be extendable to higher PM orders.

At leading order in Newton’s constant, the amplitudes
describing Kerr black holes stand out due to their
simplicity compared to those relevant for more general
objects [72,78,89,93,94]. Extending this to higher orders,
while it is not clear what principles one should adhere to
identify the appropriate Kerr amplitudes, one might expect

special structures to appear when the Kerr values for the
Wilson coefficients are imposed. Going the other way, the
result in this paper allows for a search for the coefficient
values which endow the amplitude with special properties.
A potential starting point in this search for structure is
to map the Kerr-black-hole conjectures of Ref. [95] onto
the unfixed coefficients here and subsequently study the
implications for the amplitude.

The all-spin amplitude at finite spin orders can be analyzed
with the ancillary 2PM All Spins. nb notebook.
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APPENDIX A: DEFINITIONS

Here we define all notation used in the all-order-in-spin
result above. To begin, we summarize the kinematic
variables out of which all other notation is composed.

1. Four-vectors

We consider the scattering of two objects with initial
momenta p/ = m; v and classical spin vectors af fori = 1,
2. The /' represent the four-velocities of the objects, and
satisfy v? = 1. After the scattering, a four-momentum g¢* is
transferred from object 2 to object 1. Some portions of the
result depend on sums of the spins or velocities:

ot = aof + df, vt = v + 1. (A1)
The former should not be confused with the spin in Egs. (4)
and (5), which describes the Compton amplitude for one
spinning particle.

2. Hypergeometric functions

In addition to Eq. (18), we define the following objects
which can be expressed in terms of hypergeometric functions:

wot- S () ()

Prom— 2 2
even/odd

X <Q22 + V22> m}w, (A2)

16
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where 6(m) is the Heaviside function and the sum over m is
for even/odd integers when n — j is even/odd, and,

f: m(2j+1—m)=*
m+2]+1+k)(m—|—2j+2+k)

j=0
% (Q22)j
Tlm + 1T[2j + 2]

(A3)

We also use the shorthand notation

3 300,V 35V}
C, = (_1);1 Q22 + Qéi‘- 2+ 22 B,
2 00 Ln/2+jk
Cp = §5no + Z
k=0

6]+ (s 1V2s) Byl = 480l (1- ).

d(n+2k+4) .
S (Do
2y (n+2k+4) \k

) = 2721By,, 1 o[HO)], ) = 272071B,, o[HY],
hgf) - _2_2n_lBZn,O[H(l)]’ h£l4) - 2_2n_lBZi1+l,0[H(l)]‘

(A4)

3. Shift-symmetric contact terms

The shift-symmetric contact terms enter the even-in-spin
part of the O(G?) amplitude through

2

For odd spins, the shift-symmetric contact terms are grouped as

- . . 3V
Consj = (=1)it! <(”1 02)(%212 +3Vy)

) [G(‘IZ* a,ay,e(gpiay),2n + J, 1)221—1"—1)

+(1- 52n+,»,o>c<a, @.a, e<qp1a2->,zn +j=1.0zZ7 )]

+ (=1)it <

+(1_52n+j,0) (‘1 a,€(qpias-),a,.2n + j, 1)Z,

G(ay,a,e(gpray), ay,2n + j, 1)A(ay, az)Zgll_j'_j)

<1—.f,1—j>]

: 8(v - o
1 (<30 610, 00 clapian). 20+ A 7

(1= 821110)G (0, 0, 0, e(gprar). 20+ j = 1, 124>

where

©/ om+k 02 + Vo \ ot _
k/ _ dmt+2on+1 [ 22 22
— E 2 2TV
< —n+ z> ( 16 ) Comik:

These functions appear in the all-order-in-spin result below.

(A8)

4. Other functions

The all-order-in-spin result is expressed through the following functions. We need

i[612(711 1)

At ) = 16

Gt 1) = < >[A(f1,f2)]"_2k l|:_€(qvltlt2) } .
2 \2k+1 256

G(tlv t27 n)

b))+ (g -1)(g-t)

=G, o(t1. 1),

— ¢t 1)), (A9)

(A10)

(Al1)
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7
G(t. trt3, g, n1,15) = Gy (11, 1)Gpy 0(t3.14) + Gy, 1 (11, 12) Gy 1 (835 14) (256 (‘]1’11112)5(901%&))7 (A12)

G(fl, 1y, 13,14, 15, lg, N1, Ny, I’l3) = G(Il, t, I’ll)G(fg, 14,15, 16, Ny, Vl3> + G(t3, 1y, nz)G(tl, 1,15, tg, N1, l’l3)

+ Gty 15,13)G(t1, 1, 13, 14,11, 1) = 2G (11, 13, 11) G (83, 14, 12) G (25, 16, 113),  (A13)

and
! 0 no > (0) (v1-a3) (o)
D, = (507 = 1)0n +5(767 = )V )ky g ( 1= 77 | =430 = ko0 =320k,
2. ", 1,
(Q22+3V22) (0) 32 (0) 1 (1) ( (12) /(1) 128 /(1)
- ==k k - — 13V 21Dk — 128w 7k k
7l n,0,2+q2 3Kn2 (Q22+ 2)(® kio— m, no +q2m§ 7.0.2
. 13V .
+8<Q22+3v22>wwks:z,l—@Lﬁkma VP UL
my q* ms; ny
4(0xn + 13Vy) (1) 64 (1
—k + =55k, 35, (A14)
q m% 1.2 qzm% 3.2
as well as

126()(1]1 . Clz) 1 64 . i j+1
Eyyj = <_W (géjnij)oo[etot])Jr s (G(aba’etot?pbzn + j. DA(ay, ay)22m 42 1hi’fj)

i 1 64 i1
+ G(a as, ot p2’2n +J, 1)22 e lh(J+ ) ) + ( 2 2q2> (ggjn-:-j),l,l[elot] + 6n.l—jG(a’ P2, Q, €, I, 1)

o 64 : :
x A(ay, a2)22"+21—'h§f“>> + (— P qu2> (g;<{2ﬁ3> +8,1_,G(a, py.a, e, 1, 1)A(ay, ay)222 A0
17782

; 192(v; - a
+ 5n,1§ilG(a, a,a, pr,a,e, 1, 1, I)A(az, a2)22"héj+3)) + <— r)fl(r}’22q22)> ( n<11+23) + 6,1 1— ,G(a, P2, 0o, €, 2, 1)
117

x Alay, 02)22%5#3) +6,1011G(a, py,a,e,2,1)A(ay, a2)22nh8j+3>) + (8w&;) (G(az, a,2n + j)

x A(az, 022221 + Gla a0, 20+ )2 W 4 8,08:1G(a, @, 1)A(as, a2)22h )

8 13V : 4 16(v; - a)3
4 (BelQn ; 2) (g:,(]()+13)+5n05le(a2,pz,a,e,1,1)22”h(()’+3)>+ _16(v, - ap)° ‘;2)
mymyq myms;

x (G(az, a, a5, 3,0, €, 20+ j, 1, 1220959 4 G(a, a5, 0, py,a, e, 2n + j—2,1,1)220R4)

- 24(v; - ay) (@ — 1
+ 8,001 Glay, pyra, ', 1, 1)22"11{,”3)) + <— (o a’i)(w )>( 3 4 5,081 Gla, e, 1)
1

, 3 ,
x Aay, 02)22nh8]+3)) + <— 1 (O + 7V22)0)52> (G(az, a,2n+ J')zznhgtj%)(Z - 5n05j0))’ (A15)

with e = mymywe(gpiay’) — (p1 - ax)e(gpipy:), e = e(qpyay-), and €' = e(gp;p,-). Also,

kiji)z = G(ay, a, 03, py, 1, D)A(a3, ) 27'B, 1 o[HU)] + G(a, 0,0, py,n = L12MIB, 1 o[HU2]0(n — k = 1),
(Al6a)
k:l(jkz; = G(ay. 0,0, pp. . 1)27%B, 41 o[H)] + G(a. ay. a. py.n — 1, 1)A(ay. ap)' 1 7F2K22B, 4 [HU2]6(n — 1)
(A16b)
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ggi1)+j.k,l[5] = G(“Z? a, ap, pr, a, (‘:’ 2n + j’ l7 1)A(a2’ az)k22n+2jhl<1ilj+% + G<a7 a,a, pr,q, gv 2n + .] —-1- 1’ lv 1)

5 D2n+2j hﬁj—%—l’ (Al6c)

g:f,lkjl] 7 = G(a2’ a,az, Py, a, 57 2n + jlv l, I)A(a27 a2)k22nh(i) + G(a7 a,a, pr, a, 57 2n + jl -l - 17 l, 1>22nh52%

n+k+é+]

(A16d)

These functions are the building blocks of the O(G?) amplitude.

5. All-order-in-spin result

In the even-in-spin part of the all-order-in-spin amplitude in Eq. (8), we introduced

1 1
P, = 38,03 = 150%) + 8,1 (2Viot = Oror(@* — 1)) <Z + A(a, az)zh(lz) - E(sz + 13V, )A(ay, az)h(()4) + A(ay, 02>3h54)>

+5, <16(a)2 ~1)G(a,a,,2) - 128wMG(a, a3, a, . 1, 1)>A(a2, a)2hY)

nmy

210
+ 5n2 <q2m2 G(a’ as, a, pa, 2, 2)A((12, a2)h(()4>> + D2n + G(a’ a, 2n)C2m (A17)
2

and

3 ) 14 2907 - 3 1 ,
0, = Zéno (Sw” =1)(Q1 + On) - §0)V12 + fvzz + 6,0 16 (@V12(5Q2 +7V2) — 0”02 (01 + On)

64
= Va(Qi2 + 02 + Voo + 0*(60 + 7V22)))>h(()]) + 6,0 <W G(a, py,as, py, 1,1)A(ay, ay)
5

+ 13V
(o + @41

128
4A(ay, az)zhf))) =0 —>5 3 (2G(ay, a3, a1, 5, 1,2)
mq

256
+2A(a5,0,)(3G(ay, pp.2) + G(ay, p2.2) +3G(ay, pr. a3, pa. 1, 1)))) + 6, (W G(a,ay.a,p,,1,2)
P

x (A(az,az)hé” —4A(a2,a2)2h§3>)) — 16(a = 1)6,0G(a. a5, 1)A(ay. a,)?2h"

(v1-ay)

my

+ 128w 8,0G(a. pr. 1)A(as,0,)220"" + Dyt + G(a. a5, 20+ 1)Copy . (A18)

In the odd-in-spin part of the all-order-in-spin amplitude in Eq. (9), we used

50> =3 1 4* — 1
R, =6, (—w€2 0)24_) + 6, (‘51 (E @302 +4Vy) - 7) V12>

I 2(a? — 1
1 1 3 -
-& Zw(?’Qll +302 +5Vy) —Evlz—mwvn + Ep, + Cyy, (A19)
and
Sy = 6,0(40E) + Epyy + Copyy. (A20)

These expressions, together with the other definitions in this appendix, constitute the all-order-in-spin amplitude at O(G?).
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APPENDIX B: MOST GENERAL CONTACT TERMS RELEVANT AT 2PM
The most general set of contact deformations of the Compton amplitude that are potentially relevant to black-hole
scattering at 2PM was constructed in Ref. [78]. In the computation above we have included these contact terms in a slightly
modified form relative to that reference. Specifically, we have introduced Q34 = ¢} £ ¢5. The analytic-in-spin contact
terms in the opposite-helicity sector are

y U I +.() (tia = 113)*
20—+ _ - 442i il o \s—4-2i—j

m=C __22 Ay @ s (03, - a)/ (03, - a)* =727 2l
s=4 =0  j=0 I1=0

3

21+1

y? 0 "o (s o : $=5-2i—j gi (tiy — 113)
)Y D D Db et (05 ) (04 )
= i =0
‘ —H(8) 242 = . Ni(F . ~\S—d—2im] i
Z cij a0 a)(Q3 - a) 534
=0
fia—t § i L
+m( 14 l3)y(W'0)3Z Z Z dl] ()a2+2l(Q ) (Qg )s 5—21—1s134

(B1)

+
3
T
o
e
[~]s
S,
L.+
S
Q
®
o
©
r
o
|
~
S
d
2}

@ 63)2)ss (t1g = 113)*"!
vt Y sizla*2(QF, - a) 52 (Qy, - a)y e IS
m*D~+ = |a|m2; ; ]§=: Zle/ Q34 a) ™77 (Q34 - ) 2
y? o (sA/2) s 420 i 1(s) Aty —113)*
+ |C(| E (W : C() Z Z Z gl JAj l l 2+2[(Q+ a)s = 2l_j<Q34 a)j le
s=4 =0  j=0 1=0
o |(s=5)/2] s—=5-2i () (t14 — [13)
(s _ e .
+ Jaly?(w-a)? > > pi st (05, - @) SR (03, - a)
s=5 =0  j=0
L(s=4)/2] s—4-2i

l— a(s)sé4a2i(Q3+4 . 0)5_4_2i_j(Q;4 . a)j

i\
1M

s=5)/2| s—=5=2i
U2 )‘(t14—t13)

+m?[a|(w- a)t Z rz;r'(x)s§4“2i(Q§r4 -a)* (05, - a) (B2)

A consequence of crossing symmetry is that the coefficients are the same for both opposite-helicity amplitudes,

xza‘)(j,) = xzr(z’)(;) = xE’SgL)j. Moreover, crossing symmetry relates these coefficients to their complex conjugates:
afly = (=1l b = (1R (B3)

) = (=1yHel), dl) = (=)Aol = (—1)el),

ij ij i.j
£ = (=0Hps) gl = (—rinigl)
Pl = (1Rl g = (=gl ) = (-1 (B4)

While these relations were not needed for writing the all-spin contribution to the 2PM amplitude, they have implications for
the parity properties of the amplitude.
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In the same-helicity (two-plus) case, the analytic contact terms are

2+ )’i+ o Bl a2 0z i(O+ s—4-2i—j . (ta — t13)2(H)
mCtt = —22 Z Zau, (034 0)/(Q3; - a) $34 m2=D
s=4 i=
yj,++ o [(s=5)/2] s—5-2i i s o (114 _ t13)2(i—1)+1
+ 2wy a) > D b et (05, - aP (0% - @) T —
m s=5 i=0  j=0 =0 mn
o L(s=4)/2) s—4-2i . ' ' C(tyy = ty3)?
+ 33wy - a)? Z Z ciy " atT(Q3, - a) (05 - a) TR T
s=4 =0  j=0 "
oo |(s-5)/2] s—5-2i ) (- t13)2i+1
+my, (wiy-a) Z Z Z d; ;" ar (03, a)/ (03, - a) 2 2it]
s=5 =0  j=0 "
o L(s=4)/2] s—4-2i ) _ (g — 1y
+m*(w, - a)t Z Z e;; V¥ (05 - a)/ (03, - a) T 2 (BS)
s=4 =0  j=0 "
whereas the nonanalytic deformations are
i+ o [(5=5)/2] s=5-2i i o) _ o (ta = t13)2(i—1)+1
m*DH = |a| " Z Z fing ' shat (03, - a) (05, - a) 2D+
s=5 =0  j=0 =0

[(s=4)/2] s—4-2i i (t14 _ t13)2(i—1)

Z Z Z th Lj s34a2+2i(Q§r4 -a) T2 (Qg, - a) o
s=4 i=0 Jj=
>

j (g — f3)*!

Z p;t;L'(S)°2+2i(Q§r4 +a)’72(03, - a) it

y§++
+ |C(| 7 (W++ : C() 2(i=1)

A ) o —4=2i—j( - (g = 113)%
+mlaly,(wyy - a)’ Z Z Z 4, ( )02l(Q§L4 -a) T (Qy, - O)JT

(f1g — t13)% !

Z A rif’(s)(IZi(Q;x . C[)A'—S—Zi—j(Qg4 . aVT . (B6)

The helicity weights of the gravitons for the same-helicity configuration are carried by w/, = [4|p,6*|3]/2m
and y, =2p;-w,,.
Crossing symmetry again relates the coefficients between both same-helicity configurations through x._(_ (9 =

i(L)j
(—1)“')?:?; ;(J.S) in the conservative sector and xl_(_l)(j) = (—1)“'“)??;; }(J.S) in the dissipative sector. Further consequences of

crossing symmetry are

zlz :( 1)iaj zlj %l,():( I)J“b,l](),
= (- 1)./' d?jp(S) = (-1 )'Hldi,j'(s)» e??‘(s) _ (_l)jelf_zj,(s)’
i - w“f,z, L it
A (AP, O Loy, O () -

which impose the vanishing of many of the coefficients for certain values of ;.
All coefficients in all helicity sectors have been made dimensionless by introducing appropriate factors of the mass.
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In the general-contact-term section of the 2PM amplitude, the spin dependence of the particle whose massive propagator
is taken on shell is encapsulated in the function

- 2\ 12-6, .
H{zt (Cl,b,C,d): (m_2 ; 5 0F1(;n—|—l;a)b<k j )/Zd]

x[c”( k )F(_.H—n—j—k_Z—i—k—j—i—n—i—t_L:Z)
(rk—t—n)2) "\ 2 2 'd
n k t=n—j—k 2+k—j-n+rtd
e <(j+k—t+n)/2>2F1(_]’ 2 ’ 2 ’Eﬂ’

where a bar over a symbol represents complex conjugation.
When the tree-level Compton amplitudes are multiplied together in the cut, the helicity vectors w¥, w'_,, and their
conjugates are also multiplied. This gives emergence to the quantities

(B8)

L, = g>mymyw, Elyl'y = 26””aﬂ61yp1al72/3’ (B9)
1
Lyw = qu(pl : 02)’ EfVIW = eﬂyaﬂQDplaaZ[}v (BlO)
my .
W = s [P5(q - a3) + i€ q a5, o). (B11)

The form factors in arising from the contact terms are most succinctly defined in terms of the vectors

/ 2
1 —q
l/l’i = <Qi|y} |Pi}’ V’i == 64m1 [Qﬂ:lyﬂ|P:|:>’ (Blz)
u u n n V-4 u
PL=p £ 2@”’ 0L =q¢"F P (B13)
A /_q my

which appear in the solutions for the loop momentum which satisfy the triangle-cut conditions > = (I + q)> = p, -l = 0.
In terms of these, the form factors are

AP = (uy - x)T2(2V - )AL, (B14)

BSY = (uy - x)(2Vy - x) B, WHWY, (B15)
BYY = 2u. - x)7 2V -x)BY  wrwrwewr B16
2r ( Ut x) ( + x) 2ruvpt ’ ( )

for0<n<4, —4<t<4, -2 <r<2, where

A_44Z = (Vi ’ Eyy)4v (B17)
4 .
AY = 4L, (V. -E,)?, (B18)
4
AY =2V E )2 [-3L2 +2(uy - Ey) (Vs - Ey)l, (B19)
4 .
AY = —4iL (V- Ey )L = 3(uy - Eyy) (Ve - Ey)l, (B20)
AW = L4 — 1202, (us - E,)) (Vs - E,,) + 6(us - E, )2(Vy - E,)? (B21)
0 yy yy\#+ yy + yy =+ yy + yy)
AC) = (Vi E (Ve Ey). (B22)
3 .
A(—%) = l(Vi : Eyy)z[:sLyy(Vi : Eyw) + Lyw(Vi : Eyy)}’ (B23)
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AS) = (Vi Ep) (Ve - Ey)(=3Lyy Ly + (s - Ey ) (Ve - Eyy))=3(Va - By ) (L2, — (us - Ey) (Vo - Eyy))l,  (B24)

AS) = —i[=3(Vi By =Ly L3y + Ly (s - E) (Vi - Ey) + Ly (s Ey) (Ve - Ey) (B25)
+(Vy - Ey) L3y — 6Ly (up - E\ ) (Vi - Ey )], (B26)

A = L2 [Ly Ly =3(Va - Ey) (s - Ey)) + 3(us - By 2 (Vi - Ey ) (Ve - Ey,) (B27)

= 3(uy - Eyy) 2Ly Lyy (Vi - Eyy) = (Vi Eyy ) (us - Eyyy) + L3 (Vi - By, (B28)

AC) = (Vi By (Ve By, (B29)

A% = 2i(Vy - Ey)(Vy - Ep)[Ly (Ve - Ep) + Ly (Ve - Ep)l, (B30)

AY = —L3, (Ve By P +2(Va - By ) (Vi Ey)[ 2Ly Ly, + (s - By, ) (Vs - Ey)] (B31)

~(Vi - By, P (L5, = 2(Vy - Eyy ) (us - Eyy), (B32)

A = 22i[—Lyy (Ve By (s Epy) + Ly (Vi - Ey)[Ly Ly = (s - Ey) (Ve - Eyy)] (B33)
+(Vi - Eyp) 2Ly (uy - By, ) (Vy - Eyy) + Ly [L3, = 2(uy - Ey) (V- Eyy)]] (B34)

AP = 12,12 — 4L, L, (V- E, ) (us - Eyy) + (uy - Ey,) (Ve - Ey)] (B35)
213, (s Eyp) (Vi - Eyy) =28 (uy - Ey, (Vs - Ey) (B36)
+ (Vi Eyy) (s - Eyy)* + (us - Ey )* (Vi - Eyy)? +4(ug - Ey) (Vi - Eyy) (s - Eyy ) (V- Eyy), (B37)
B%,=0.  B%, =V.V.,. BY =2u.V., (B38)

Bﬂ,w,n =V Vi, Vi,Vie, B(_Oz),,wm =4uy, Vi, Vi,Vis Bg.),ly,,, = 6uy s, Vi, Vi,  (B39)

Those not written explicitly can be generated from these using A" = A*™|, _, EyyoE,, and X" =xW| _, for

as opposed to being the

|l—> —i

X = A, B. Since u*, and V¥, are related by complex conjugation, we point out that X E") =X, /()
full complex conjugate. These quantities can be written in terms of the outer products

_ 1 2 . 2 ap 2
+ = =3 : - uS vl la ,
B = @) (Vi p2) = = o [P 1) £ 1y =Py O (B40)
1
1 .
Yo =4uy -a))(Vy - py) = am, [mzqu(m Say) F iy —612€”mﬁquazup1apzﬁ} +O(0?), (B41)
1 )
Yior =4uy-a)(Vyi-ay) = m, [m1Q12 tiy/ —q2€”vaﬂqu01yazaplﬂ], (B42)
1
v =4us - ar)(Vi-ay) = 1 (O + V). (B43)
1
2=4(us - pr)) (Vi po) = 4q mz(co2 — 1)+ O(n*), (B44)

such that the vectors /, and V*, are eliminated in favor of the physical four-vectors describing the scattering.
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