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Abstract

We use the hypergraph container theory of

Balogh–Morris–Samotij and Saxton–Thomason to obtain

general rectilinear approximations and volume estimates

for sequences of bodies closed under certain families

of projections. We give a number of applications of our

results, including a multicolour generalisation of a

theorem of Hatami, Janson and Szegedy on the entropy

of graph limits. Finally, we raise a number of questions on

geometric and analytic approaches to containers.
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1 | INTRODUCTION

1.1 | Aims of the paper

In a major breakthrough 6 years ago now, Balogh–Morris–Samotij [5] and Saxton–Thomason
[33] developed powerful theories of hypergraph containers. Given a hypergraph H satisfying
some smoothness assumptions they showed that there exists a small collection of almost
independent sets whose subsets contain all the independent sets of H . A wide variety of
problems in combinatorics are equivalent to estimating the number of independent sets in
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various hypergraphs; the groundbreaking work of [5, 33] has thus seen an equally wide variety
of applications, see, for example, the surveys [6, 7].

In this paper, our aim is to explore the implications of container theory beyond the discrete
setting (which has hitherto been the main focus in applications) to the continuous setting, and
to ask whether it is possible to obtain some form of containers going in the other direction, that
is, starting from results in the continuous setting. We do this in two ways.

First of all, we relate hypergraph containers to rectilinear approximation of continuous
bodies. Informally, we show that container theory implies the following: consider a sequence of
bodies ∈b( )n n , where ⊆b [0, 1]n

dn . Suppose this sequence is closed under certain projections
(satisfying some simple, natural conditions). Then the bodies in the sequence can be finely
approximated by a small number of boxes. This (informally stated) result, Theorem 1.12, allows
us to apply container theory to functions from discrete structures to [0, 1]—for instance, we
estimate (Theorem 3.2) the probability that a random function from the Boolean hypercube to
[0, 1] is c‐Lipschitz. We use Theorem 1.12 to obtain general volume estimates for hereditary
bodies. Similarly to applications of container theory to counting problems, this requires certain
supersaturation results, which in much of the literature are obtained in an ad hoc manner.
One of our contributions in this paper is to obtain a general, widely applicable form of
supersaturation under a natural assumption (which is satisfied in most examples that have
been studied), leading to a very clean general statement, Theorem 1.16, for volume estimates.
A key question arising from this part of the paper is whether our rectilinear approximation
results could be obtained directly from purely geometric considerations: given a sequence of
bodies, is being closed under some family of projections enough to ensure the existence of good
rectilinear approximations without resorting to container machinery? Also could some (weak)
form of container theorem be obtained from geometric approximation arguments?

Second, in what was the initial motivation of this work, we investigate links between hypergraph
containers and the theory of graph limits. Via container theory, we prove a multicolour generalisation
of a theorem of Hatami, Janson and Szegedy [22] on the entropy of graph limits (Theorem 4.2). Our
work in this part of the paper leads us to two questions. Can one extend the Hatami–Janson–Szegedy
theorem further to [0, 1]‐decorated graph limits? This connects to a broader project of Lovász and
Szegedy [28] on extending the theory of graph limits to limits of compact decorated graphs. Further,
as above, is it possible to go in the other direction, and to derive some (weak) form of container
theorem for graph properties from compactness results for graphons?

We note our work in this paper focuses exclusively on “thick” hereditary bodies, whose
volume varies exponentially with the dimension, rather than “thin” bodies whose volume
decays superexponentially. It is thus natural to ask whether one can obtain a set of streamlined
general results similar to the ones we derive in this paper but for “thin” bodies. Also, our work
suggests families of new Turán‐type entropy maximisation problems. These, along with the
questions raised above, are discussed in greater detail in Section 5.

1.2 | Background

The problem of estimating the number of members of a hereditary class of discrete objects and
characterising their typical structure has a long and distinguished history, beginning with the
work of Erdős, Kleitman and Rothschild [14] in the 1970s. The Alekseev–Bollobás–Thomason
theorem [1, 2, 9] determined the asymptotics of the logarithm of the number of graphs on n
vertices in a hereditary property of graphs, while Alon, Balogh, Bollobás and Morris [4]
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characterised their typical structure. Further Conlon and Gowers [12] and Schacht [35]
obtained general transference results, which in particular implied sparse random analogues of
extremal theorems for monotone properties of graphs (see the International Congress of
Mathematicians [ICM] survey of Conlon [11] devoted to this topic).

In a major development in 2015, Balogh, Morris and Samotij [5] and independently Saxton
and Thomason [33] developed powerful theories of hypergraph containers. Informally, they
showed that—given some smoothness conditions—one may find in an r‐uniform hypergraph
H on n vertices a small (size 2o n( )2

) collection  of almost independent sets (containing at most
o n( )r edges), with the container property that every independent set I in H is contained inside
some ∈C . Provided one has a good understanding of the size and structure of the largest
independent sets in H (which is an extremal problem), one can use containers to estimate the
number of independent sets in H and characterise their typical structure, and to transfer such
results to sparse random subhypergraphs of H . Since many well‐studied hereditary properties
of discrete structures correspond to the collection of independent sets in some suitably defined
hypergraphs, the groundbreaking work of Balogh–Morris–Samotij and Saxton–Thomason has
had an enormous number of applications, providing new, simplified proofs of many previous
results as well as the resolution of many old conjectures. In the 6 years elapsed since their
publication, the papers [5, 33] had amassed over 250 citations each. Among these let us note the
works of greatest relevance to the present paper, namely, the work of Balogh and Wagner [7]
showcasing the versatility of the container method, the papers of Terry [37] and Falgas‐
Ravry–O'Connell–Uzzell [18] on applications of containers to multicoloured discrete structures,
and the ICM survey of Balogh, Morris and Samotij [6] devoted to hypergraph containers.

Following on [18], in which containers were adapted to the multicolour setting via random
colouring models whose (discrete) entropy was used to count the underlying multicoloured
structures, we shall in this paper use (continuous) entropy in combination with containers to
estimate the volume of hereditary bodies. Entropy was introduced by Shannon [36] in a
foundational paper on information theory; the use of entropy for counting (in the discrete setting)
or making volume estimates (in the continuous setting) is a well‐established technique in
combinatorics, see, for example, the lectures of Galvin [20] on this topic. Mention should be made
here of the recent and impressive results of Kozma, Meyerovitch, Peled and Samotij [24] who
obtained a very fine approximation of the metric polytope (see the discussion in Section 3.2) via
much more sophisticated and involved entropy techniques than the ones used in this paper.

One motivation for writing this paper was to better understand the potential links between
container theory and the theory of graph limits. Giving an exposition of the latter theory is beyond the
scope of this paper, and we refer the interested reader to the monograph of Lovász on the topic [26]. It
suffices to say here that in the theory of (dense) graph limits one passes from the discrete world
of graphs to the continuous world of graphons, which are symmetric measurable functions

→W : [0, 1] [0, 1]2 . One can then seek to recover many finitary results of graph theory in the limit
world of graphons via analytic techniques (or in fact prove new results which can be exported back to
the world of finite graphs). In a 2018 paper, Hatami, Janson and Szegedy [22] defined an entropy
function for graphons, and used this entropy function to reformulate and give an alternative proof of
the Alekseev–Bollobás–Thomason theorem in the graph limit setting. Lovász and Szegedy [28] began
extending the theory of graph limits from ordinary graphs to graphs whose edges are decorated or
coloured with elements from a compact set; further work in this direction was done more recently by
Kunszenti‐Kovács, Lovász and Szegedy [25], though (as we mention in Section 5) some parts of the
theory are yet to be extended, such as the extraction of convergent subsequences from an arbitrary
sequence of decorated graphs.
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1.3 | Definitions and statement of our main results

Before we can state our main results, we need to introduce some basic notation, to recall
definitions of set sequences equipped with embeddings (ssee‐s) and to define a number of
concepts related to [0, 1]‐decorations, entropy and hereditary properties of decorated ssee‐s.
Throughout the paper we shall use A| | to denote the Lebesgue measure of A when A is a
measurable subset of [0, 1]. We also let n[ ] denote the discrete interval n{1, 2, …, }.
Finally, we shall use standard Landau notation: given functions →f g, : +, we write
f o g= ( ) for ∕→∞ f n g nlim ( ) ( ) = 0n and f O g= ( ) if there exists a constant C > 0 such that

∕ ≤→∞ f n g n Climsup ( ) ( )n . Further we write f ω g= ( ) for g o f f g= ( ), = Ω( ) for g O f= ( ).

1.3.1 | Set sequences equipped with embeddings

We begin by recalling the definition of a set sequence equipped with embeddings (ssee), and that
of a good ssee, from the prequel [18] to this paper.

Definition 1.1 (ssee). A set sequence equipped with embeddings, or ssee, is a sequence

∈VV = ( )n n of sets Vn, together with for every ≤N n a collection ( )V

V
n

N
of injections

→ϕ V V: N n. We refer to the elements of ( )V

V
n

N
as embeddings of VN into Vn.

Definition 1.2 (Intersecting embeddings). Let ∈VV = ( )n n be an ssee. Let ≤N N n,1 2 .
An i‐intersecting embedding of V V( , )N N1 2

into Vn is a function →ϕ V V V: N N n1 2

such that:

(i) the restriction of ϕ to VN1
lies in ( )V

V
n

N1

, and the restriction of ϕ to VN2
lies in ( )V

V
n

N2

;

(ii) ∩ϕ V ϕ V i| ( ) ( )| =N N1 2
.

We denote by ( )I V V V( , ),i N N n1 2
the number of i‐intersecting embeddings of V V( , )N N1 2

into

Vn, and set

≔ I N n I V V V( , ) (( , ), ).
i V

i N N n

1< <| |N

Definition 1.3 (Good ssee). An ssee V is good if it satisfies the following conditions:

(i) → ∞V| |n (“the sets in the sequence become large”);
(ii) for all ∈N with ≫( )V V| | > 1, | |N

V

V n
n

N
(“on average, vertices in Vn are contained

in many embedded copies of VN”);
(iii) for all ∈N with ∕ →( )V V I N n| | > 1, (| | ( , )) 0N n

V

V

2
n

N
as → ∞n (“most pairs of

embeddings of VN into Vn share at most one vertex”).
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The notion of an ssee covers a wide variety of well‐studied structures: all of the following
are examples of good ssee‐s:

• Vn is the edge‐set of the complete graph on n vertices E K( )n , and ( )V

V
n

N
is the collection

of maps →E K E K( ) ( )N n corresponding to the collection of graph isomorphisms from
KN into Kn;

• Vn is {0, 1}n, the vertex‐set of the n‐dimensional hypercube Qn, and ( )V

V
n

N
is the collection of

graph isomorphisms from QN into Qn;

• Vn is n[ ], the interval of the first n natural numbers, and ( )V

V
n

N
is the collection of all injections

ϕ sending N[ ] into an arithmetic progression of n[ ] of length N , that is, ↦ϕ x a xd: + ,
where a d, are fixed nonnegative integers and d > 0;

• Vn is ( )p
n, where p is a prime and p is the finite field with p elements, and ( )V

V
n

N
is the

collection of shifts of injective additive homomorphisms from ( )p
N to ( )p

N ‐subgroups of
( )p

n (i.e., the collection of all maps ϕ ψa x: + ( ), where ∈ →ψa ( ) , : ( ) ( )p
n

p
N

p
n is

injective and satisfies ψ ψ ψx y x y( + ) = ( ) + ( ); the image of ( )p
N under ϕ is thus a coset of

an ( )p
N ‐subgroup of ( )p

n);

• somewhat similar to the example above, Vn is ⧹ 0( ) { }n
2 , and ( )V

V
n

N
is the set of linear

isomorphisms from ( )N2 to n‐dimensional linear subspaces of ( )n2 , restricted to ⧹ 0( ) { }N
2

(this example corresponds to simple binary matroids ⧹ →M 0: ( ) { } {0, 1}n
2 , whose

hereditary properties were recently investigated by Grosser, Hatami, Nelson and Norin [21]);

• Vn is the collection  n([ ]) of all subsets of n[ ], viewed as a poset under the subset relation,

and ( )V

V
n

N
is the collection of all injective poset homomorphisms from  N([ ]) into  n([ ])

(these homomorphisms can be counted using [16, Theorem 4.1], from which properties (ii)
and (iii) follow easily).

1.3.2 | [0, 1]‐Decorations, entropy, hereditary properties

We now generalise a number of definitions from [18] to the setting of [0, 1]‐decorated ssee‐s. In what
follows, we write ∈v( )i i I to denote a vector v whose coordinates are labelled with elements of some
index set I , and refer to such vectors as I ‐indexed vectors. Given a set S, we also write SI for the
collection of I ‐indexed vectors all of whose coordinates take values in S, that is, for the I ‐indexed
Cartesian product ∈ Si I .

Definition 1.4 [0, 1](‐Decorated sets and set sequences). Given a set V , a [0, 1]‐
decoration of V is an element ∈c [0, 1]V , that is, a function →c V: [0, 1]. Given a set
sequence ∈VV = ( )n n , a [0, 1]‐decoration of V is a sequence ∈cc = ( )n n , where for each
∈n c, n is a [0, 1]‐decoration of Vn. If V is an ssee, we call c a [0, 1]‐decorated ssee.

A [0, 1]‐decorated set is just a function from the set into [0, 1]. Our interest in this paper is
the extent to which such hereditary families of such functions can be approximated by
(rectilinear) boxes, which we define below.

Definition 1.5 (Boxes and cylinders). A box in Vn is a Cartesian product of the form

108 | FALGAS‐RAVRY ET AL.
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≔
∈

b A ,
i V

i

n

where for each i A, i is a measurable subset of [0, 1]. (Thus b is a collection of Vn‐indexed
vectors.) We write VBox( )n for the collection of all boxes inVn. A d‐cylinder is a box where
all but at most d of the Ai are equal to [0, 1].

A cylinder or box is said to be simple if for every ∈i Vn, its projection onto coordinate i
is a finite union of intervals. Further, a simple box is called k‐rational if each of these

intervals is of the form






,

x

k

y

k
, for some integers ≤ ≤x y k0 < .

Definition 1.6 (Volume, entropy and density). Given a measurable body ⊆b [0, 1]Vn ,
we denote its Lebesgue measure by bvol( ). So, for instance, if ∈b A= i V in

is a box, its
volume is ∈b Avol( ) = | |i V in

.

We also consider the volume of lower‐dimensional bodies obtained from b by fixing the
coordinates inside some subset ⊆I Vn; we then denote the corresponding ⧹V I| |n ‐dimensional
volume (with respect to the Lebesgue measure) by ⧹volV In

. So, for instance, for ∈v Vn0

∈ ∕⧹ c b cvol ({ : = 1 2})V v v{ }n 0 0

denotes the volume of the V(| | − 1)n ‐dimensional object obtained by taking the
intersection of b with the hyperplane ∈ ∕x x{ : = 1 2}V

vn
0

.
Further, for a measurable body ⊆b [0, 1]Vn , we define the entropy of b as

≔b bEnt( ) −log vol( ).

Finally, the density of b is

≔ ∕ d b b( ) vol( ) .V1 n

Observe that this latter quantity is an element of [0, 1], and that ∕ d b e( ) = b V−Ent( ) n .
We now turn to the problem of defining what we mean by a hereditary family of functions

on an ssee. To do this, we first define a notion of projection inherited from the embeddings
associated with the ssee.

Definition 1.7 (Projections, lifts and shadows). Let ∈VV = ( )n n be an ssee. Given an

embedding ∈ ( )ϕ
V

V
n

N
and a measurable body ⊆b [0, 1]Vn , we denote by ↓b ϕ the

measurable subset of [0, 1]VN given by

≔ ∈ ∈ ∀ ∈↓ ⧹{ }b c c b c c i V[0, 1] : vol ({˜ : ˜ = }) > 0 .ϕ
V

V ϕ V ϕ i i N( ) ( )N
n N

So, for example, given a box ∈b A= i V in
, we have

≔
∀ ∈ ⧹

∅
↓

∈

∈










b
A A j V ϕ Vif vol( ) > 0 ( ),

otherwise.
ϕ

i V ϕ i j n N

i V

( )
N

N
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We call ↓b ϕ the (strict) ϕ‐projection of b.

Conversely, given an embedding ∈ ( )ϕ
V

V
n

N
and a measurable body ⊆b [0, 1]VN , we

denote by ↑b ϕ the measurable subset of [0, 1]Vn induced by ϕ, namely,

≔ ∈ ∃ ∈ ∀ ∈↑b c c b i V c c{ [0, 1] : ˜ such that , ˜ = }.ϕ
V

N i ϕ i( )n

So, for example, given a box ∈b A= i V iN
, we have ≔↑ ∈b Bϕ i V in

, where

≔
∈




B
A i ϕ Vif ( ),

[0, 1] otherwise .
i

ϕ i N( )−1

We call ↑b ϕ the ϕ‐lift of b.
Given ∈b [0, 1]Vn and ≤N n, we define the lower shadow of b in [0, 1]VN by

∂ ≔
∈

↓


 




b b( ) .V

ϕ
V
V

ϕ
−
N

n

N

Similarly, given ∈b [0, 1]VN and ≥n N , we define the upper shadow of b in [0, 1]Vn by

∂ ≔
∈

↑


 




b b( ) .V

ϕ
V
V

ϕ
+
n

n

N

Observe that if b is a box inVn and ∈ ( )ϕ
V

V
n

N
, then ∈↓b VBox( )ϕ N . Conversely, if b is a box in

VN and ∈ ( )ϕ
V

V
n

N
, then ↑b ϕ is a box (in fact a V| |N ‐cylinder) in Vn. Also, for any body ⊆b [0, 1]VN

and any embeddings ∈ ∈( ) ( )ϕ ψ,
V

V

V

V
n

N

N

n′
we have the relations

⧹↑ ↓ ↓ ↑b b b b( ) = and vol( ( ) ) = 0.ϕ ϕ ψ ψ

Definition 1.8 (Properties and hereditary properties). Let ∈VV = ( )n n be an ssee. A
[0, 1]‐decoration property of V is a sequence   ∈= ( )n n , where n is a measurable subset
of [0, 1]Vn . A [0, 1]‐decoration property is hereditary if for all ≥n N , the upper shadow of

⧹([0, 1] )V
N

N in [0, 1]Vn is a subset of ⧹([0, 1] )V
n

n .

In other words, a [0, 1]‐decoration property  of V is hereditary if its complement is closed
under taking upper shadows/ϕ‐lifts. In particular, this implies that  itself is closed under
taking lower shadows/ϕ‐projections. (Note however that the converse fails: a property being
closed under taking lower shadows does not imply its complement is closed under taking upper
shadows.)

As an illustrative example, observe that our abstract definition above generalises the graph‐
theoretic notion of a hereditary property. Indeed let  ∈( )n n be a sequence of subgraphs of Kn,
the complete graph on n vertices, that is closed under taking induced subgraphs (e.g., one could
take n to be the collection of all triangle‐free subgraphs of Kn, or of all the subgraphs of Kn
containing no induced cycle of length 5, say). Letting Vn denote the edge‐set of Kn, we can
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encode a graph ∈G n as a box ∈b A=G e E K e( )n
by letting







A = , 1e

1

2
if ∈e G and setting


 )A = 0,e

1

2
otherwise. Letting  ≔ ∈ bn G Gn

, we have that the [0, 1]‐decoration property n of

the ssee  ∈V= ( )n n is hereditary in the sense of Definition 1.8.

One class of hereditary [0, 1]‐decoration properties will be of particular interest to us in this
paper.

Definition 1.9 (Forbidden projections). Let ∈VV = ( )n n be an ssee. Let ⊆b [0, 1]VN . For
≥n N , we say ⊆b′ [0, 1]Vn is b‐free if ∂ ∩ ∅b b( ) ′ =V

+
n

. We denote by bForb( ) the
hereditary [0, 1]‐decoration property of being b‐free, that is, for all ≥n N ,

⧹∂b bForb( ) = [0, 1] ( ).n
V

V
+n
n

Definition 1.10 (Extremal entropy). Let ∈VV = ( )n n be an ssee, and let   ∈= ( )n n be a
[0, 1]‐decoration property of V. The extremal entropy of  relative to V is

  ≔ ∈ ⧹V b b V bVex( , ) = ex( , ) inf {Ent( ) : Box( ), vol( ) = 0}.n n n n n

Thus Vexp(−ex( , ))n n is precisely the volume of the largest box in Vn which (up to a zero‐
measure set) is contained inside Pn.

1.3.3 | Rectilinear approximation and volume estimates for hereditary
bodies

Let V be a good ssee and let ∈n N, . Given a function →( )f :
V

V
n

N
, we write f ϕ( )ϕ for the

expected value of f ϕ( ) over ∈ ( )ϕ
V

V
n

N
chosen uniformly at random.

Our first result is a geometric approximation property for a hereditary body.

Theorem 1.11. Let V be a good ssee. Let  be a nonempty finite family of simple boxes in
[0, 1]VN , for some ∈N . Set ∈b b= b ff

and  b= Forb( ). Then for every ε > 0, there
exists n > 00 such that for any ≥n n0 there exists a collection  of simple boxes in [0, 1]Vn

satisfying:

(i)  ⊆ ∈ cn c ;
(ii) for every ∈ ∩↓c c b ε, vol( ) <ϕ ϕ ;
(iii)  ≤  e| | ε Vn .

In other words there exists a small (property [iii]) collection of simple boxes such that their
union contains the body n (property [i]). Further, each of them has a lower shadow almost
disjoint from b (property [ii])—so these boxes “almost” lie in n. The union of these boxes is
thus a “good” approximation for n.

It is worth noting that of course any measurable body can be finely approximated by a
collection of simple boxes—the power of the container theory of Balogh–Morris–Samotij and
Saxton–Thomason is the bound (iii) they give on the number of boxes required.
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Building on Theorem 1.11, we prove:

Theorem 1.12. Let V be a good ssee. Let  be a hereditary property of [0, 1]‐decorations
of V and let ∈N . Then for every ε > 0, there exists an integer n N>0 such that for any
≥n n0 there exists a collection  of simple boxes in [0, 1]Vn satisfying:

(i)  ⧹ ∈ cvol( ) = 0n c ;
(ii) for every  ∈ ⧹↓c c ε, vol( ) <ϕ ϕ N ;
(iii)  ≤  e| | ε Vn .

We remark that we cannot replace (i) by a containment condition  ⊆ ∈ cn c , and that we
must allow for an exceptional zero‐measure set not covered by the simple boxes in  . For
instance, suppose  consisted of all decorations ∈x [0, 1]Vn with ∈ ∪x [0, ]i

1

2
. Then clearly

we cannot both cover all of n with simple boxes and still achieve (ii).
Observe also that condition (ii) may be interpreted as follows: suppose we take a point x

chosen uniformly at random from c and an embedding ϕ uniformly at random from ( )V

V
n

N
. This

defines a random point ∈y [0, 1]VN , by setting y x=v ϕ v( ) for all ∈v VN . Then condition (ii) is
saying that the probability y fails to be in N is small (at most ε).

Provided we have (a) a limiting density and (b) supersaturation for a [0, 1]‐decoration
property in a good ssee, the container/geometric approximation theorem, Theorem 1.12,
immediately implies a volume estimate for the Vn‐dimensional body n, namely:

Corollary 1.13. Let V be a good ssee. Let  be a hereditary property of [0, 1]‐decorations
of V. Suppose in addition that the following hold:

(a)  ≔ ∕→∞π V V( ) lim ex( , ) | |n n n n exists;
(b) for all ε > 0, there exist η > 0 and positive integers ≤N n0 such that if ≥n n0 then for

every ∈b VBox( )n , if ⧹↓b ηvol( ) <ϕ ϕ N then b π ε VEnt( ) > ( ( ) − )| |n .

Then

   evol( ) = .n
π o V−( ( )+ (1)) n

A natural question is whether we can give a simple criterion for satisfying assumptions
(a) and (b). In past applications, this has mostly been dealt with in an ad hoc manner. For
example, in [18], it was proved that these two assumptions were satisfied for vertex k‐
colourings and edge k‐colourings of both complete hypergraphs and hypercube graphs, but
each case required a separate proof. One of our contributions in this paper is a very simple
criterion on the family of embeddings which is sufficient to ensure (a) and (b) are satisfied.
This criterion immediately applies to a wide class of structures, yielding volume estimate
results of great generality.

Definition 1.14. An ssee V is homogeneous if for every ≥n N , every ∈x Vn is

contained in the same, strictly positive number of embeddings ∈ ( )ϕ V ϕ( ),N
V

v
n

N
.
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Proposition 1.15. Suppose V is a good homogeneous ssee. Then for every hereditary

property  of [0, 1]‐decorations of V, the sequence V

V

ex( , )

| |
n n

n

is nondecreasing in ≥0. In

particular, this sequence either converges to a limit π ( ) or tends to infinity as → ∞n .

Theorem 1.16. Suppose V is a good homogeneous ssee. Then for every hereditary
property  of [0, 1]‐decorations of V, either




→∞

V

V
πlim

ex( , )

| |
= ( )

n

n n

n

exists and

   evol( ) =n
π o V−( ( )+ (1)) n

or  ∕ → ∞V Vex( , ) | |n n n as → ∞n and the volume of n decays superexponentially in
 ≤  V e| |, vol( )n n

ω V− ( )n .

1.4 | Structure of the paper

We prove our main results in Section 2. In Section 3 we give simple applications of our results to
Lipschitz functions on the hypercube, the metric polytope, and weighted graphs, while in
Section 4 we use our results to derive a multicolour/decorated version of an “entropy of graph
limits” theorem of Hatami, Janson and Szegedy [22] (which was one of our initial motivations for
undertaking this project). We end the paper in Section 5 with a discussion of various questions
arising from our work.

2 | PROOFS OF THE THEORETICAL RESULTS

For ∈k , let k[ ] denote the set k{1, 2, …, }. One of the main results of the prequel to this
paper [18] was a container theorem for k[ ]‐decorated ssee‐s (which itself was obtained as a
consequence of a simple container theorem of Saxton and Thomason [34]). To state it we must
recall a few definitions.

A k‐colouring template for Vn is a function t assigning to each element of Vn a nonempty
subset of k[ ]. A realisation of t is a colouring →c V k: [ ]n with the property that ∈c x t x( ) ( ) for
all ∈x Vn. The set of all realisations of t is denoted by  t . Given a collection  of k‐colourings
of VN , denote by Forb ( )V the hereditary property of k‐colourings of V not containing an
embedding of a colouring in  , that is,

 ≔ ∈ ∀ ∈ ∉↓

















c k ϕ
V

V
cForb ( ) [ ] : , ,n

V n

N
ϕV n (1)

where in the k[ ]‐decorated context ↓c ϕ denotes the k‐colouring of VN induced by
↦↓ϕ c v c ϕ v, : ( ( ))ϕ .
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Theorem 2.1 (Falgas‐Ravry et al. [18, Theorem 3.18]). Let V be a good ssee, and let
∈k N, . Let  be a nonempty subset of k[ ]VN and  = Forb ( )V . For any ε > 0, there

exists n > 00 such that for any ≥n n0 there exists a collection n of k‐colouring templates
for Vn satisfying:

(a)  ⊆ ∈  tn t n
;

(b) for each template ∈t n, there are at most ( )ε
V

V
n

N
pairs ϕ c( , ) with ∈ ∈( )ϕ c,

V

V
n

N

and ∈ ↓ c t ϕ ;

(c)  ≤  k| |n
ε Vn .

Our strategy to prove the theorems in Section 1.3.3 is to use compactness: as [0, 1] is

bounded, we can approximate measurable sets by finite unions of intervals of the form






,

i

k

i

k

− 1 ,

where ∈k is some large constant and ∈i k[ ]. There we can apply the container theorem for
colourings by discrete finite sets, Theorem 2.1. Provided we are careful with our
approximations (and, crucially, that we are using the right definitions), we are able to transfer
the container results from the discrete to the continuous setting.

Proof of Theorem 1.11. Fix ε > 0. There exists ∈k such that there exists a finite union
of k‐rational simple boxes b̃ such that (1) ⊆b b˜ and (2) ⧹ ∕b b εvol( ˜) < 2. We can now pass
to the discrete setting and consider k[ ]‐colourings of VN as a proxy for k‐rational simple
boxes in [0, 1]VN . Let

 ≔ ∈ ⊆
∈

















c k
c

k

c

k
b[ ] :

− 1
, ˜V

v V

v v
N

N

be the family of k‐colourings of VN corresponding to b̃. Apply Theorem 2.1 to  with
parameters k N, and ∕ ∕ε ε k ε′ = min( log , 2). Let ∈n0 be such that for all ≥n n0

conclusions (a)–(c) from Theorem 2.1 hold. Let n be the family of templates whose
existence is guaranteed by the theorem. For each ∈t n, we define a box ct given by

≔
∈ ∈
 


 










c

i

k

i

k

− 1
, .t

v V i t v( )
n

Let  denote the collection of boxes thus obtained. Property (a) from Theorem 2.1 implies


 

⧹ ∂ ⊆ ⧹ ∂ ⊆
∈ ∈

 ( ) ( )( ) ( )b b c c= [0, 1] ( ) [0, 1] ( ˜) = .n
V

V
V

V
t

t

c

+ +n
n

n
n

n

(2)

Note that the second containment relation in (2) follows since by definition, the
(continuous) upper shadow ∂ b( ˜)V

+
n

when b̃ is a union of k‐rational simple boxes
corresponds precisely to the (discrete set of) ∈c k[ ]Vn which are not in Forb ( )nV (see
Equation 1). This is what motivated our choice of  above.
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Further, property (b) entails that if one fixes ∈t n and picks ∈ ( )ϕ
V

V
n

M
uniformly at

random, there is at most an ε′‐chance that ↓c( )t ϕ intersects the box b̃ in a set with nonzero
measure. Thus

∩ ∩ ⧹ ∩

≤ ⧹

↓ ↓ ↓c b c b b c b

b b ε ε

vol(( ) ) = vol(( ) ( ˜)) + vol(( ) ˜)

vol( ˜) + ′ < .

ϕ
t
ϕ ϕ

t
ϕ ϕ

t
ϕ

(3)

Finally, property (c) gives

  ≤ ≤   k e| | = | | .n
ε V ε V′ n n (4)

Together, (2)–(4) show properties (i)–(iii) in the statement of Theorem 1.11 are
satisfied as claimed, concluding the proof. □

Proof of Theorem 1.12. Fix ε > 0. Let ≔ ⧹b [0, 1]V N
N . Since  is a measurable set,

there exists a finite union of simple boxes b̃ such that (1) ⧹b bvol( ˜ ) = 0 (i.e., up to a zero‐
measure set, ⊆b b˜ ) and (2) ⧹ ∕b b εvol( ˜) < 2, by the definition of the Lebesgue measure.

Apply Theorem 1.11 to ≔ bForb( ˜) with parameter ∕ε 2, and let  be the resulting family
of simple boxes.

As  is hereditary we have ∂ ⊆ ⧹b( ) [0, 1]V
V

n
+
n

n , which implies that

   ⧹ ∩ ∂ ≤ ∩ ∂ ∂ ⧹∂( ) ( ) ( )b b b bvol( ) = vol ( ˜) vol ( ) + vol ( ˜) ( ) = 0.n n n V n V V V
+ + + +
n n n n

It follows that

   
 

⧹ ≤ ⧹ ⧹
∈ ∈

 c cvol( ) vol( ) + vol( ) = 0.n
c

n n n
c

Further, we have

  ⧹ ⧹ ∂ ∪ ⧹( )( )b b b
ε

vol( ) = vol [0, 1] ( ˜) = vol( ˜) <
2

,N N
V

V N
+N
N

and so for every ∈c we have

   ⧹ ≤ ⧹ ⧹↓ ↓c c
ε ε

εvol( ) (vol( ) + vol( )) <
2

+
2

= .ϕ ϕ N ϕ ϕ N N N

Finally,  ≤ ∕ e| |n
ε V 2n . Thus  satisfies the properties (i)–(iii) claimed by Theorem 1.12,

as desired. □

Proof of Corollary 1.13. Fix ε > 0. Let η > 0 and ∈N n, 0 be the constants guaranteed
by assumption (b). Applying Theorem 1.12 to  with parameter δ ε η= min( , ), we find
≥n n1 0 such that for all ≥n n1 there exists a collection  of simple boxes in [0, 1]Vn such
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that (i) up to a zero‐volume set, n is contained inside ∈ cc , (ii) for every
 ∈ ⧹↓c c δ, vol( ) <ϕ ϕ N and (iii)  ≤  e| | δ Vn .
By assumption (b) and our choice of δ and n1, this implies that for every ∈c we have

≥c π ε VEnt( ) ( ( ) − )| |n . Now (i) and (iii) allow us to bound the volume of n:

 
 

 



≤ ≤ ≤

≤

∈ ∈



  


        

 

c e e e e

e

vol( ) vol =

.

n
c c

c π ε V δ V π ε V

π ε V

−Ent( ) −( ( )− ) −( ( )− )

−( ( )−2 )

n n n

n

Since ε > 0 was arbitrary, the theorem follows. □

Proof of Proposition 1.15. Assume that V is a good, homogeneous ssee, and let  be a

hereditary property of [0, 1]‐decorations of V. Set 
x =n

V

V

ex( , )

| |
n n

n
. Let ∈b VBox( )n+1 be a

box with ⧹bvol( ) = 0n+1 and b VEnt( ) = ex( , )n n+1 +1 . By homogeneity of the ssee V,

each coordinate in Vn+1 is counted in the same nonzero number ( )k =
V

V

V

V

| |

| |
n

n

n

n

+1

+1
of

projections ϕ V( )n , so that the family ∈ ( )ϕ V ϕ{ ( ) : }n
V

V

+ 1n

n
constitutes a k‐uniform cover

of Vn+1. Since b is a box, it follows that

∈

↓

 


  

 


 




b bvol( ) = vol( ).
V
V

V
V

ϕ
V
V

ϕ

n

n

n

n

n

n

+1

+1

+1
(5)

Since  is hereditary and ⧹bvol( ) = 0n+1 , for every ∈ ( )ϕ
V

V
n

n

+1 the ϕ‐projection ↓b ϕ is

a box in Vn satisfying ⧹↓bvol( ) = 0ϕ n . In particular, we must have

≤↓
 b e evol( ) = .ϕ

V x V−ex( , ) −n n n

Combining this with (5), we have

≤


 


   


 


  

 


 


  

e b e= vol( ) ,
x

V
V

V
V
V

V
V

x
V
V

V− −n
n

n
n

n

n

n

n
n

n

n
n+1

+1 +1

+1

+1

implying ≤x xn n+1 as desired. □

Proof of Theorem 1.16. Assume that V is a good, homogeneous ssee, and let  be a

hereditary property of [0, 1]‐decorations of V. Set 
x =n

V

V

ex( , )

| |
n n

n
.

Suppose first of all that →x π ( )n as → ∞n . Thus assumption (a) from
Corollary 1.13 is satisfied. We show that assumption (b) is satisfied as well,
whence our claimed volume estimate for n is immediate. Fix ε > 0. We may
assume that π ε( ) > , else we have nothing to show. Now, by the monotonicity of

∈x( )n n established in Proposition 1.15, there exists a constant ∈N such that
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x π> ( ) −N
ε

3
. In particular there exists δ δ N ε= ( , ) > 01 1 such that if ∈a VBox( )N

satisfies ≤a π VEnt( ) ( ( ) − )| |
ε

N
2

3
, then we have ⧹a δvol( ) >N 1.

Consider a box ∈b VBox( )n with ≤b π ε VEnt( ) ( ( ) − )| |n for some ≥n N . Let B be

the family of ∈ ( )ϕ
V

V
n

N
such that ≤↓b π VEnt( ) ( ( ) − )| |ϕ

ε
N

2

3
. By our observation in the

previous paragraph, ∈ϕ B implies ⧹↓b δvol( ) >ϕ N 1. Now, by the homogeneity of V and
the fact the volume of a box is the product of its projections, we have





≥

≥ ⧹

∈

↓





   














  

 





 




V

V
V π ε

V

V

V

V
b b

V

V
B V π

ε

( ( ) − )
| |

| |
Ent( ) = Ent( )

( ) −
2

3
,

n

N
N

n

N

N

n ϕ
V
V

ϕ

n

N
N

n

N

implying the existence of a constant δ δ ε= ( , ) > 02 2 such that ≥ ( )B δ| |
V

V2
n

N
.

(Explicitly,


δ =
ε

π ε2 3 ( ) − 2
will do.) It follows that

⧹ ≥ ∈ ≥↓b δ ϕ B δ δvol( ) ( ) .ϕ ϕ N 1 1 2

Setting η δ δ= 1 2, we have that assumption (b) from Corollary 1.13 is satisfied, and we
are done in this case.

Suppose now instead that → ∞xn as → ∞n . For every C > 0, there exists a constant
 ∈N N C= ( , ) such that x C> 2 + 2N . In particular there exists δ δ C= ( ) > 01 1 such

that if ∈a VBox( )N satisfies ≤a C VEnt( ) (2 + 1)| |N , then we have ⧹a δvol( ) >N 1.
Consider a box ∈b VBox( )n with ≤b C VEnt( ) 2 | |n for some ≥n N . Let B be the family

of ∈ ( )ϕ
V

V
n

N
such that ≤↓b C VEnt( ) (2 + 1)| |ϕ N . By homogeneity of V and the fact the

volume of a box is the product of its projections, we have

≥ ≥ ⧹

∈

↓





   














  



 




V

V
V C

V

V

V

V
b b

V

V
B V C2

| |

| |
Ent( ) = Ent( ) (2 + 1),n

N
N

n

N

N

n
ϕ

V
V

ϕ
n

N
N

n

N

implying the existence of a constant δ δ C= ( ) > 02 2 such that ≥ ( )B δ| |
V

V2
n

N
. (Explicitly,

δ =
C2

1

2 + 1
will do.) Now we have (by our observation in the paragraph above)

⧹ ≥ ∈ ≥↓b δ ϕ B δ δvol( ) ( ) .ϕ ϕ N 1 1 2

Thus we have shown the following: for all ≥n N , and all boxes
∈ ⧹↓b V b δ δBox( ), vol( ) <n ϕ ϕ N 1 2 implies b C VEnt( ) > 2 | |(†)n .

We now apply Theorem 1.12 to the good ssee V and the hereditary property  with
parameters ∈N and ε ε C C δ δ= ( ) = min( , ) > 01 2 : there exists n n C N= ( ) >0 0 such
that for all ≥n n0 there exists a collection  ⊆ VBox( )n satisfying properties (i)–(iii) from
the statement of Theorem 1.12. By (†) established above and our choice of ε > 0, property
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(ii) implies that for every ∈c c C V, Ent( ) > 2 | |n . Then properties (i), (iii) and our choice
of ≤ε C together yield that for all ≥n n C( )0 ,

 
 

≤ ≤ ≤ ≤ ≤
∈ ∈



  


        c e e e evol( ) vol .n

c c

c C V ε C V C V−Ent( ) −2 ( −2 ) −n n n

Since C > 0 was arbitrary, it follows that   evol( ) =n
ω V− ( )n , as claimed. □

3 | APPLICATIONS

3.1 | Functions from hypercubes into [0, 1]

Let Q = {0, 1}n
n denote the n‐dimensional hypercube. Consider the sequence of sets ∈Q( )n n

together with for every ≤N n the collection of injections →ϕ Q Q: N n obtained by choosing
an arbitrary element ∈ Qu n and an arbitrary set S s s s= { , , …, }N1 2 of integers with
≤ ⋯ ≤s s s n1 < < < N1 2 and letting





ϕ
v i s

u
v( ) =

if = ,

otherwise.
i

j j

i

It is an easy exercise to see that this constitutes a good, homogeneous ssee, which we denote
by Q.

Remark 3.1. In fact, we still get a good, homogeneous ssee if we consider any of the
other natural collections of embeddings ϕ on hypercubes, such as for example all the
embeddings ϕ obtained by selecting ∈ Qu n and an injection →ψ N n: [ ] [ ] and letting





ϕ
v u i ψ j

u
v( ) =

+ (mod 2) if = ( ),

otherwise,
i

j i

i

but we do not pursue this here.

Let ∈c >0. Recall that a function →f Q: [0, 1]n is c‐Lipschitz if changing a coordinate of
∈u {0, 1}n changes the values of f u( ) by at most c. Our aim in this subsection is to show that

the probability a random function →f Q: [0, 1]n is c‐Lipschitz is c2n o+ (1)
:

Theorem 3.2. Let ∈c (0, 1). Let →f Q: [0, 1]n be a random function chosen according
to the uniform measure on [0, 1]Qn . Then

f c c( is ‐Lipschitz) = .o2 + (2 )n n

We prove Theorem 3.2 via a simple extremal entropy result, Theorem 3.3, from which
Theorem 3.2 can be easily deduced via Theorem 1.16. Fix ∈c (0, 1). Clearly, the collection of
functions →Q [0, 1]n can be identified with the set of [0, 1]‐decorations of Qn. Consider the
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hereditary property  of [0, 1]‐decorations of the (good, homogeneous) sseeQ corresponding to
being c‐Lipschitz.

Theorem 3.3. Q Q cex( , ) = −| |logn n n .

Proof. For the upper bound, observe that the box b c= [0, ]Qn lies wholly inside n and
has entropy exactly Q c−| |log( )n .

For the lower bound, fix ε > 0 with c ε+ < 1. Let ∈b QBox( )n be such that
b QEnt( ) = ex( , )n n and ⧹bvol( ) = 0n . Then ∈b A= Qx xn

, where the Ax are measurable
subsets of [0, 1]. Set  A cx= { : | | > }x . Consider ∈x , and assume A| | = ℓx . Then for
any η > 0, there exists an interval ⊆I u η u η= [ + , + ℓ − ] [0, 1] such that both
⧹A u η[0, + ℓ − ]x and ⧹A u η[ + , 1]x have strictly positive measure. Let ∈ Qy n be

obtained by modifying exactly one coordinate of x. Since ⧹bvol( ) = 0n and
⧹A u η[0, + ℓ − ]x has a positive measure, the definition of c‐Lipschitz implies that
∩A u η c[0, + ℓ − − ]y must have zero measure. Similarly ⧹A u η[ + , 1]x having a

positive measure implies ∩A u η c[ + + , 1]y has zero measure. Overall we obtain
∩A u η c u η c A| [ + ℓ − − , + + ]| = | |y y . Since η > 0 was arbitrarily chosen, this

implies in fact that up to a zero‐measure set Ay is contained inside the interval
u c u c[ + ℓ − , + ]. In particular we must have ≤ cℓ 2 , and ≤A c c| | (2 − ℓ) <y .

Now partitionQn into pairs v v{ × {0}, × {1}}, with v running over all possible choices
∈ Qv n−1. By the above, we have that each such pair x y{ , } contains at most one element

of  . Moreover if this element is x and satisfies A| | = ℓx , then ≤A c| | (2 − ℓ)y , and

⋅ ≤ ⋅A A c c| | | | ℓ (2 − ℓ) < .x y
2

Thus we have

 ≤
∈

    b A A c c cvol( ) = | || | = ,
Qv

v v×{0} ×{1}
2 −2 2 2

n

n n

−1

with equality if and only if ∅= and for every ∈ Qx n we have A c| | =x . This shows that
 ≥Q Q cex( , ) −| |logn n n , as claimed. □

Proof of Theorem 3.2. Let  denote, as above, the property of being c‐Lipschitz, viewed
as a hereditary property of [0, 1]‐decorations of the good homogeneous ssee Q. By
Theorem 3.3, π c( ) = −log , whence the volume estimate

  e cvol( ) = =n
c o Q o(log( )+ (1)) 2 + (2 )n

n n

follows immediately from Theorem 1.16, implying the desired estimate for ∈f( )n . □

3.2 | Metric polytopes

Given a set S and a positive integer s, we write S s( ) for the collection of subsets of S of size s. Let
K V E= ( , )n denote the complete graph on the vertex‐set V V K n= ( ) = [ ]n with edge‐set
E E K n= ( ) = [ ]n

(2) . It is an easy exercise to check that the sequence ∈E K( ( ) )n n together with
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the collection of embeddings ϕ corresponding to graph isomorphisms →K KN n constitutes a
good homogeneous ssee, which we denote by K.

A [0, 1]‐decoration ∈d [0, 1]E K( )n of the edges of Kn can be seen as an assignment of
distances to pairs of vertices of Kn. Letn denote the collection of such d which satisfy the
triangle inequality (and for which V K d( ( ), )n is thus a metric space). The bodyn is known as
themetric polytope. The property  ∈= ( )n n is hereditary, since a subset of a metric space is
itself a metric space. Thus we can use an easy extremal argument together with our main
results to estimate the volume ofn, and thereby prove a weak form of a recent theorem of
Kozma, Meyerovitch, Peled and Samotij [24].

Theorem 3.4 (Rough estimate for the volume of the metric polytope).

 ( )( )
vol( ) =n

o n1

2

+ ( )n
2

2

.

Theorem 3.4 will follow from the following extremal result:

Theorem 3.5. For all ≥ ( )n K3, ex( , ) = log 2n
n

2
.

Proof. For the upper bound, observe that the box ⊆






b = , 1n

E K

n
1

2

( )n
and has

entropy ( ) log 2
n

2
(since clearly for every ∈d bn, the associated assignment of distances to

the edges of Kn satisfies the triangle inequality). Thus  ≤ ( )Kex( , ) log 2n
n

2
for all

≥n 3.
For the lower bound, consider a simple box ∈b E KBox( ( ))3 with ⧹bvol( ) = 03 .

Then b I I I= × ×1 2 3, where Ii is a union of nonempty intervals (and corresponds
to the edge ⧹ i[3] { } of K3). Set a I= mini i and b I= maxi i. Clearly, we have
⊆ ⊆ b a b a[ , ] [ , 1]i i i i i . In particular we have

≤ ≤ b b a b avol( ) ( − ) and vol( ) (1 − ).
i

i i

i

i (6)

Let A a= i i. Since ⧹bvol( ) = 03 , it follows by the triangle inequality that for all
∈ ≤i b a a[3], +i i i+1 +2 (where the indices are taken modulo 3). Summing over all i

and subtracting A from both sides, we get ≤ b a A( − )i i i . Simple calculus then tells
us that for A fixed, we have ≤ ∕ b a A( − ) ( 3)i i i

3. On the other hand, again by simple
calculus, for A fixed we have ≤ ∕ a A(1 − ) (1 − 3)i i

3. Combining these two bounds
with (6), we get that

≤ ∕ ∕b A Avol( ) min(( 3) , (1 − 3) ) = 2 .3 3 −3

As b was an arbitrary simple box with ⧹bvol( ) = 03 , this implies

 ( )Kex( , ) = log 23
3

2
. Since K is homogeneous, it follows from Proposition 1.15 that

 ≥ ( )Kex( , ) log 2n
n

2
for all ≥n 3, as required. □

Proof of Theorem 3.4. Immediate from Theorems 3.5 and 1.16 applied to the good
homogeneous ssee K. □

120 | FALGAS‐RAVRY ET AL.

 10970118, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22951 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [14/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The problem of estimating vol( )n has been previously considered by several other
researchers, who obtained significantly stronger estimates than Theorem 3.4. As observed
by Kozma, Meyerovitch, Peled and Samotij, the problem of estimating vol( )n is related to
the problem of estimating the number of metric spaces on n points with integer distances,
which was studied by Mubayi and Terry [30] using the container method. Balogh and

Wagner [7, Theorem 3.7] used the container method to show  ≤
∕

( )( )
vol( )n

n1

2

+n o
2

11 6+ (1)

.

Finally, in a recent and impressive paper using entropy techniques, Kozma, Meyerovitch,
Peled and Samotij obtained much more precise estimates on vol( )n : they proved in
[24, Theorem 1.2] that

≤ ≤
∕

∕ ∕

 


 


 




( ) ( )
e e

1

2
vol( )

1

2
.

n
n o n

n

n

O n2
6

+ ( ) 2 ( )
3 2

3 2 3 2

They also showed in Section 5.3 of the paper, in joint work with Morris, how using the
more precise container theorems of [5] (rather than the simple containers of [34] that
underpin Theorem 2.1 and all the results in this paper) could be made to yield slightly

weaker upper bounds of
∕( )( )

eO n n1

2
( (log ))

n
2 3 2

on vol( )n , improving on the earlier container

results of Balogh and Wagner. The point of Theorem 3.4 is thus not to prove a new or
optimal upper bound, but rather to illustrate how the results of this paper give a simple,
streamlined approach to such problems.

3.3 | Weighted graphs

A [0, 1]‐decoration w of the edges of Kn may be identified may be viewed as an assignment of
weights ∈w e( ) [0, 1] to the edges ∈e E K( )n . Given such a decoration, we may define the
weight of a set ⊆S V K( )n as ≔ ∈w S w e( ) ( )e S(2) . For a fixed integer ≥s 2 and a real number

∈


( ( )r 0,

s

r
, let  s r( , ) be the hereditary property of [0, 1]‐decorations of the edges of K

corresponding to having no s‐set of vertices whose weight exceeds r .

Theorem 3.6. For all ≥n s we have 






( ) ( )

E K s rex( ( ), ( , )) = logn n
n

r2

s

2 , with equality

uniquely attained up to zero‐measure sets by the box









( )

0,
r

E K( )

s

n

2

.

Proof. For the upper bound, note that









( )

0,
r

E K( )

s

n

2

is a box lying wholly inside n and

having the claimed volume. For the lower bound, note first of all that up to a zero‐
measure set, any entropy‐maximiser b for n must be of the form ∈b w e= [0, ( )]e E K( )n

,

where →w E K: ( ) [0, 1]n is an edge‐weighting from n. By averaging the weight w S( )

over all s‐sets S and using the fact that ∈w s r( , ), we see that
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≤
∈



 


 


 


n

s
w V K w S r

n

s

− 2

− 2
( ( )) = ( ) .n

S n[ ] s( )

In particular, ≤∈ ( )( )
w e w K( ) = ( )e E K n

r n
( ) 2n s

2

. It then follows from the AM‐GM

inequality that

≤
∈












( )

( )
b w e

r
vol( ) = ( ) ,

e E K
s

n

( )
2

2

n

which gives the required lower bound on the entropy of b. Furthermore the AM‐GM
inequality also implies that equality is attained if and only if ∕( )w e r( ) = [0, ]

s

2
for every

∈e E K( )n , that is, if and only if up to a zero‐measure set b is equal to the box w[0, ]E K( )n ,
as claimed. □

Corollary 3.7. 






( )

( )
s r ovol( ( , )) = + (1)n

r
s

n

2

2

.

Proof. Theorem 3.6 shows  ∕( )π s r r( ( , )) =
s

2
. The result is then immediate from an

application of Theorem 1.16 to the good, homogeneous ssee K. □

We should note here that Mubayi and Terry [31, 32] considered the related problem of
maximising the product of edge‐multiplicities in multigraphs in which every s‐set of vertices
spans at most r edges. In this case the fact that edge‐multiplicities have to be positive integers
completely changes the nature of the problem, which becomes highly nontrivial (see [13, 15]
for recent progress on the Mubayi–Terry problem).

4 | ENTROPY OF k[ ]‐DECORATED GRAPH LIMITS

As another application of our work, we prove a generalisation of the result of Hatami, Janson
and Szegedy on the entropy of graph limits to k[ ]‐decorated graph limits. Hatami, Janson and
Szegedy defined and studied the entropy of a graphon in [22]. They used this notion to give an
alternative proof of the Alekseev–Bollobás–Thomason theorem [2, 9] and to describe the typical
structure of a graph in a hereditary property. The Hatami–Janson–Szegedy notion of entropy
can be viewed as a graphon analogue of the classical notion of the entropy of a discrete random
variable. Generalising their result to k[ ]‐decorated graphons was one of the original motivations
for our foray into container theory (as containers allow for an easy transfer of certain results to
the limit setting). In fact, we sought unsuccessfully to obtain a generalisation to [0, 1]‐decorated
graph limits, which we now define.

Let  be a compact second‐countable Hausdorff space. A ‐decorated graph is a function
→w E K: ( )n assigning to each edge of the complete graph Kn a label from . In [28], Lovász
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and Szegedy initiated the study of the limits of sequences of ‐decorated graphs. Generalising
the well‐established theory of graph limits, given a ‐decorated graph G they defined
homomorphism densities t F G( , ) for C [ ]‐decorated graphs F in G, where C [ ] is the
collection of all continuous functions  → . They defined convergence relative to this notion
of homomorphism density, and showed the limit objects in this theory were‐graphons, which
are symmetric measurable functions  →W : [0, 1] ( )2 , where  [ ] denotes the set of
Borel probability measures on. Further contributions to the study of‐decorated graph limits
were made by Kunszenti‐Kovács, Lovász and Szegedy [25], who defined a modified notion of
cut distance (called jumble distance, which they used to provide weak regularity lemma and a
counting lemma for ‐graphons) and showed that the space of ‐decorated graph limits was
closed under the homomorphism density notion of convergence. However a number of
questions, such as the uniqueness of the representation of the limits of ‐decorated graph
sequences or the compactness of that space under their modified notion of cut distance, remain
open.

Our goal was to extend the results of Hatami–Janson–Szegedy on graphon entropy to [0, 1]‐
decorated graphons. However, we were unable to show that every sequence of [0, 1]‐decorated
graphs contains a convergent subsequence of [0, 1]‐decorated graphs. Thus we had to content
ourselves with proving a generalisation of Hatami–Janson–Szegedy to the easier setting of
k[ ]‐decorated graphs, which we now give. Before we can state our results, we must recall the
definitions of templates and realisations from Section 2, and also recall from [18] that the
entropy of a k[ ]‐colouring template t for Kn is

≔
∈

t t eEnt( ) log | ( )|.k
e E K( )n

Note that for any template t we have ≤ ≤ ( )t0 Ent( )
n

2
, and the number of realisations of t is

exactly  t k| | = tEnt( ) . For a hereditary property  of k[ ]‐decorated graphs, we defined

 ≔ ⊆ n t t k K tex( , ) max{Ent( ) : is a ‐colouring template for with }.n n n

Finally, let us recall the k[ ]‐decorated graph analogue of Theorem 1.16 from [18].

Theorem 4.1 (Falgas‐Ravry et al. [18, Corollary 2.15]). Let  be a hereditary property of
k[ ]‐decorated graphs with  ≠ ∅n for every ∈n and let ε > 0 be fixed. There exists ∈n0

such that for all ≥n n0,

 ≤ ≤( ) ( )k k| | .π n

n
π ε n( )

2
( ( )+ )

2

Given a k[ ]‐graphon W and ∈i k[ ], we denote by ≔W x y W x y i( , ) ( , )( )i the probability
of i{ } under the probability measure W x y( , ) on k[ ]. As noted by Lovász and Szegedy [28,
Example 2.8] each Wi is a graphon. Given a probability measure P on k[ ] with P i p( ) = i, we
define the k‐ary entropy of P to be

≔
∈

h P p p( ) − log .k

i k
i k i

[ ]
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Then the entropy of a k[ ]‐graphonW is

≔ W h W x y dAEnt( ) ( ( , )) .k k
[0,1]2

Note that ≤ ≤W0 Ent( ) 1. For k = 2 our definition of decorated graphon entropy coincides
with that of Hatami, Janson and Szegedy. Given a property  of k[ ]‐decorated graphs, we
denote by ̂ the closure under the cut norm (see Section 4.1 for a definition of the cut norm) of
the collection of k[ ]‐graphons that can be obtained as a limit of a convergent sequence of
elements of  . We can at last state the main result of this section.

Theorem 4.2. Let  be a hereditary property of k[ ]‐decorated graphs and let



≔

∈
m W( ˆ ) max Ent( )

W ˆ
. Then




→∞ ( )
mlim

log | |
= ( ˆ ).

n

k n

n

2

Given Theorem 4.1, the theorem above is equivalent to the assertion that  π m( ) = ( ˆ ),
which in fact is what we shall prove.

4.1 | A cut distance for k[ ]‐graphons

We require convergence in our proof, but rather than using convergence with respect to
homomorphisms, we use convergence with respect to an appropriately defined cut distance.
Frieze and Kannan [19] introduced a cut norm ⋅ □  that has become central to the theory of
graph limits (see [23, Section 4] for an overview of the history of the cut norm in other
contexts). The cut norm of a graphonW is

≔□
⊆

 W W x y dx dysup ( , ) ,
S T S T, [0,1] ×

where the supremum is over all pairs S T( , ) of measurable subsets of [0, 1]. If U and W are
graphons, then

≔□ □
⊆

 d U W U W U x y W x y dx dy( , ) − = sup ( ( , ) − ( , )) .
S T S T, [0,1] ×

Given a measure‐preserving transformation →φ : [0, 1] [0, 1], we define W φ by
≔W x y W φ x φ y( , ) ( ( ), ( ))φ . The cut distance between U andW is

≔□
→

□δ U W d U W( , ) inf ( , ),
φ

φ

:[0,1] [0,1]

where the infimum is taken over all measure‐preserving transformations →φ : [0, 1] [0, 1]. We
introduce an appropriate generalisation of the cut distance here (this was also previously
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considered in [25]). If G and H are two k[ ]‐decorated graphs with edge labellings
→g h E K k, : ( ) [ ]n , respectively, and with vertex‐set n[ ], we define

≔□
⊆ ∈

 d G H
n

g uv i h uv i( , ) max
1

( ( ( ) = ) − ( ( ) = )) .
S T n i

k

u v S T, [ ] 2
=1 ( , ) ×

k

If U andW are k[ ]‐graphons, we define

≔□
⊆

d U W U x y W x y dx dy( , ) sup ( ( , ) − ( , ) .
S T i

k

S T
i i

, [0,1] =1 ×
k

We define the cut distance □δ k
for k[ ]‐graphons analogously to the definition for graphons,

mutatis mutandis. Lettingk denote the set of all k[ ]‐graphons, we let ∼k denote the quotient
of k obtained by identifying U andW whenever □δ U W( , ) = 0

k
.

Theorem 4.3. The space 
∼

□δ( , )k k
is compact.

The proof is essentially identical to the proof of compactness with respect to cut distance for
ordinary graphons as given by the original argument of Lovász and Szegedy [27, Theorem 5.1].
Therefore we only give a brief sketch here.

Sketch proof of Theorem 4.3. First note that a weak regularity lemma for k[ ]‐
graphons follows very quickly from the weak regularity lemma for ordinary graphons
(Lemma 3.1 in [27]), simply by running it for each ∈W x y i k( , ), [ ]i simultaneously. Now

given a sequence of k[ ]‐graphons ∈
∼

W W, , … k1 2 , using the weak regularity lemma, we
find for every ∈n a sequence of step‐functions ∈W , ℓn,ℓ , converging toWn. Now for
each ℓ we find a subsequence ∈n i,i for whichWn ,ℓi converges in cut distance to a k[ ]‐
graphonUℓ. Then by the Martingale Convergence Theorem, the sequence U( )ℓ converges
to a limit U . Finally one can show →□δ W U( , ) 0ik

using a ε3 ‐argument. □

4.2 | Going between templates and graphons

Fundamental to the theory of graph limits is a natural way of obtaining a graphon from
a given graph, and conversely (via sampling) a way of obtaining a graph on n vertices
from a given graphon. These transformations respect homomorphism densities and cut
distance, and in particular, with probability one, a sequence of n‐vertex graphs ∈G( )n n

sampled fromW converges toW itself (as established in [10]). Similarly here, we obtain a
way of going between the discrete and limit objects. The only property we require is
that this transformation respects entropy, which as we will see follows easily from the
definitions.

Given a set of n points x x, …, n1 from [0, 1] and a k[ ]‐graphon W , we may define a
k‐colouring template for K t x x, [ , …, ]n W n1 , by setting ≔ ∈t ij c k W x x c( ) { [ ] : ( ( , ) = ) > 0}i j .
Further we may define a random k‐colouring c x x[ , …, ]W n1 by setting c ij( ) to be a random
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colour from k[ ] drawn according to the probability distribution given by W x x( , )i j . We define
the W ‐random template t n( )W and the W ‐random colouring c n( )W by selecting x x, …, n1

uniformly at random from [0, 1] and then taking the resulting (induced) k‐colouring template
and random k‐colouring, respectively.

Our W ‐random templates and colourings give us a way of going from k[ ]‐graphons to k‐
colouring templates and k‐colourings of E K( )n . We can also go in the other direction: first
divide [0, 1) into intervals ≔ ∕ ∕I i n i n[( − 1) , )i for ≤ ≤i n1 . Given a k‐colouring template t of
Kn, we may defineWt by defining for every ∈x y( , ) [0, 1]2 and ∈c k[ ],

≔

∈ ∈ ≤ ≤ ≠

∈ ≤ ≤








W
t ij

c t ij x y I I i j n i j

k
x y I I i n

( )

1

| ( )|
( ( )) if ( , ) × , 1 , , ,

1
if ( , ) × , 1 .

t c

i j

i i

In other words, for each tile I I×i j we distribute the mass evenly over the colours which
appear in t ij( ), and give the uniform distribution to the diagonal tiles I I×i i.

By viewing a k‐colouring c of E K( )n as a (zero entropy) template, we may in the same way
obtain from it a k[ ]‐graphonWc. Thus we may go in a natural way from properties of colourings
to properties of decorated graphons, and vice versa.

Note that for all k and n, and every k‐colouring template t for Kn, we have

( ) W tEnt( ) = Ent( ) +
n

t
n

2

− 1

2
. In particular for a template t and its associated k[ ]‐decorated

graphonWt we have

( )
W

t O n
Ent( ) =

Ent( ) + ( )
.t n

2

(7)

Furthermore in the reverse direction, given a k[ ]‐decorated graphon ( )W W, Ent( ) −
n n

2

− 1

2
is

exactly the expected value of the discrete k‐ary entropy of theW ‐random colouring model t n( )W .

4.3 | Proof of main result

Proof of Theorem 4.2. For each ∈n take an extremal template tn which maximises
nex( , )n . We have



→∞ →∞( ) ( )
π P

n t
( ) = lim

ex( , )
= lim

Ent( )
.

n

n

n n

n

n

2 2

Letting Wtn be the k[ ]‐graphon corresponding to tn, we have

∕( )W t O nEnt( ) = (Ent( ) + ( ))t n
n

2n
by (7). By Theorem 4.3, there exists a subsequence

∈W( )j j of ∈W( )t nn
which converges to a limit k[ ]‐graphon W , where we have

→□δ W W( , ) 0j
k

as → ∞j . Now since ⊆ tn n, for any N fixed, the probability that
the Wtn‐random colouring of KN is in N is ∕O N n o1 − ( ) = 1 − (1). It follows that a
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W ‐random colouring lies in  with probability 1, and thus ∈W ˆ . Since entropy is a
linear functional we thus have  ≥m W π P o( ˆ ) Ent( ) = ( ) + (1).

Conversely, let W be an entropy maximiser in ̂ with W mEnt( ) = ( ˆ ). For every
∈n , by the linearity of expectation if n points x x, …, n1 are chosen uniformly at random

from [0, 1] then with strictly positive probability

≥


 


t x x m

n
Ent( [ , …, ]) ( ˆ )

2
.W n1

Furthermore, as ∈W ˆ , almost surely ⊆ t x x[ , …, ]W n n1 , which implies that

 ≥ ( )k| |n
m ( ˆ ) n

2 for every ∈n . By Theorem 4.1, we have  ≤ ( )k| |n
π o( ( )+ (1)) n

2 , and thus
 ≥π o m( ) + (1) ( ˆ ) as required. □

5 | CONCLUDING REMARKS

In this paper, we have explored some consequences of the simple versions of the container
theorems of Balogh–Morris–Samotij and Saxton–Thomason for the problem of estimating
volume or approximating by boxes for certain hereditary bodies. Many problems remain open
however.

5.1 | Alternative approaches to containers?

Using the Saxton–Thomason simple container theorem as a black box (which, as we stated at
the beginning of Section 2, is the result behind Theorem 2.1 and thus the main tool behind all
our results), we showed in Theorem 1.12 that hereditary properties of [0, 1]‐decorated ssee‐s
can be approximated by a “small” union of boxes.

A natural question to ask is whether one can go in the other direction: is it possible to
obtain a container theorem from purely geometric considerations on approximations of
hereditary bodies by boxes? A simplest version of this question is the following: suppose we
have a sequence ∈b( )n n of bodies with ⊆b [0, 1]n

n and every strict projection of bn into
[0, 1]N (where we use strict projection in the sense of Definition 1.7) is a subset of bN . Does
it follow (by measure‐theoretic/geometric arguments) that for all n sufficiently large there
exists a “fine” approximation of bn by a “small” collection of simple boxes?

5.2 | Questions about graph limits

In a different direction, we have tried to connect some container‐derived results with
questions about limit objects. A natural question is, again, whether one can go in the other
direction, and derive some finitary container theorems from infinitary arguments about
limit objects?

The simplest example of this is perhaps the following: suppose we have a hereditary
property  of {0, 1}‐decorations of E K( )n (i.e., of ordinary graphs). Let ̂ denote the closure of
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the family of limits of sequences of graphs from  under the cut norm. Let  denote the
collection of graphons that lie at graph distance at most ε from ̂—this is a closed and hence
compact set. Introduce a partial order on  by setting ≻W W1 2 if almost everywhere either

W x yEnt( ( , )) > 01 or W x y W x y( , ) = ( , )1 2 holds. Then for each ∈W , let B W( ) denote the
interior of the collection of ∈W ′ with ≻W W ′. Clearly the B W( ) are open sets in the closed,
compact set  . Thus if one could show that they also cover  it would follow by compactness
that there exists some finite set S (with size depending on ε) of elements of  such that

∈ B W( ) = ˆ
W S . One could then plausibly extract from the graphons in S a small family of

containers for n. This or other approaches to the construction of containers “from the limit”
and from purely analytic considerations strike us as an intriguing problem.

With regard to limit objects, the other obvious question is generalising Theorem 4.2 to
[0, 1]‐decorated graphons. Here our problem is that we did not prove the compactness
of the limit space under the cut distance (i.e., we do not have a [0, 1]‐decorated version of
Theorem 4.3), and so given a sequence of boxes from n we could not extract a subsequence
converging to an element of ̂ , which we needed to bound m P( ˆ) below. Addressing
this issue would immediately extend our results to [0, 1]‐decorated graphons and in
addition would advance the project of Lovász and Szegedy of building a theory for
‐decorated graph limits for second‐countable compact Hausdorff spaces , a worthwhile
goal in itself.

5.3 | Quality of the container approximation

Can one improve assumption (ii) in Theorem 1.11 (and hence Theorem 1.12)? For instance,
could we guarantee that, say




≤
∈



  


c Cvol vol( )

c
ε n

for some n‐independent constant C > 1ε ? Or could one show a weaker bound of the form

⧹c ε cvol( ) < vol( )?n

Putting it in slightly different terms: How fine can we make our approximation of a
hereditary body b by simple boxes? There should be a trade‐off between the fineness of our
approximation and the number of boxes it contains. Is it the case that, for example, the worst‐
case product of the approximation ratio and the size of the approximation family is bounded
below by some function of V| |n ? Further, what do the bodies that are hardest to approximate
look like?

5.4 | Relaxing homogeneity

In Theorem 1.16 we obtained a rather clean statement concerning the volume of hereditary
properties for homogeneous ssee‐s. Homogeneity is a strong condition, however, and it is
natural to ask whether it can be relaxed. Explicitly, call an ssee V almost homogeneous if there
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exist constants C c> > 0 such that for every ≥n N , every ∈x Vn is contained in at least

( )c
V

V

V

V

| |

| |
n

N

N

n
and at most ( )C

V

V

V

V

| |

| |
n

N

N

n
embeddings ϕ V( )N with ∈ ( )ϕ

V

V
n

N
.

Can one obtain a version of Theorem 1.16 in which the homogeneity assumption is relaxed
to almost homogeneity? This would increase the generality of the results in this paper and
allow us to cover some important cases, such as that of the ssee I where I n= [ ]n and the
embeddings →I Iϕ : N n consist of the injections from N[ ] into arithmetic progressions of
length N in n[ ]. Another example would be that of permutations, see Section 5.5.

5.5 | Containers for thin bodies

In this paper, we have been content with a simple container bound  ≤  e| | ε Vn on the size of the
container family  . This is sufficient to estimate the volume of n when the maximum volume of a
box contained in n (up to a zero‐measure set) is of order  e θ V− ( )n . However, for “thinner” bodies
when this extremal volume is of order  e ω V− ( )n , our results (more specifically Theorem 1.16) say
nothing more precise than   evol( ) =n

ω V− ( )n . This is definitely a limitation of our work—the
original container theorems of Balogh–Morris–Samotij and Saxton–Thomason can give much better
estimates, but require information on the degree measure (something which, as Saxton and
Thomason [34] observe is unnecessary in the case of “thicker” bodies).

There are a number of interesting examples within our framework where more precise
estimates would be advantageous—for instance, that of permutations, which we discuss below.

Denote by Sn the collection of all permutations of n[ ]. Given a [0, 1]‐decoration of n[ ], we may
define a permutation in Sn as follows. Let  denote the collection of ∈x [0, 1] n[ ] which have at least
two coordinates equal. Note that this is a zero‐measure set. Given ∈ ⧹x [0, 1] n[ ] , we equip n[ ] with
a linear order ≤x by setting ≤i jx if ≤x xi j. Then for each i, let σ i( )x denote the rank of i in this
order. Clearly σx is a permutation of n[ ], and every permutation can be realised in this way.
Conversely, to each permutation σ of n[ ] we may associate the body bσ of all ∈ ⧹x [0, 1] n[ ] such
that σ σ=x . Observe that (i) if σ σ, ′ are distinct elements of Sn, then bσ and bσ′ are disjoint subsets of
[0, 1] n[ ] , and (ii) ∕b nvol( ) = 1 !σ for all ∈σ Sn. (It is also worth remarking that given a body
⊆b [0, 1]Vn , we can define a b‐random permutation by selecting ∈x b uniformly at random. This

gives an interesting nonuniform model for random permutations.)
Given permutations ∈σ SN and ∈τ Sn, we say σ is a subpattern of τ if there is an order‐

preserving injection →ϕ N n: [ ] [ ] such that for every ∈i j N σ i σ j, [ ], ( ) < ( ) if and only if
τ ϕ i τ ϕ j( ( )) < ( ( )). One important topic of study in permutation theory is that of pattern avoidance.
Can one count or characterise the permutations in Sn avoiding a given pattern ∈σ SN?

Definition 5.1. A permutation class  is a sequence  ∈( )n n of subsets  ⊆ Sn n which is
closed under taking subpatterns. (i.e., if ∈τ n and ∈σ SN is a subpattern of τ then ∈σ N .).

Definition 5.2. Given a permutation ∈π SN , let S π( )n denote the collection of all
∈τ Sn that do not contain π as a subpattern.
The Stanley–Wilf limit of the permutation class  ∈S π= ( ( ))n n is

≔
→∞

∕L π S π( ) lim | ( )| .
n

n
n1

FALGAS‐RAVRY ET AL. | 129

 10970118, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22951 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [14/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(The existence of the limit L π( ) is highly nontrivial. Its existence was established by Marcus
and Tardos in 2004 in [29].) We observe here that pattern‐avoidance and Stanley–Wilf limits for
permutation classes fit very nicely within the framework of [0, 1]‐decorated ssee‐s. To wit: let

V be the ssee with V n= [ ]n and ( )V

V
n

N
being the collection of all order‐preserving injections

→ϕ V V: N n. One can easily check that this constitutes a good ssee. Given a forbidden pattern
∈π SN , let  b= Forb( )π . Clearly, we have ∕ ∕S π n| ( )| = ( !vol( ))n

n
n

n1 1 . Thus providing a good
estimate on vol( )n via containers could potentially give a good estimate on L π( ). However, as
pointed out in Section 5.4, the consequences of simple container theory obtained in this paper
are not sufficiently precise to do so: In the language of graph theory, what we study corresponds
to the “dense” case with strictly positive Turán density, whereas pattern avoidance belongs to
the “sparse” case with zero Turán density.

The example of permutations suggests it would be interesting to obtain versions of
Theorem 1.12 that work in a sparser setting, that is, with sharper estimates on the size of the
container family  than are given by (iii). In this case, one will have to go back to the original
theorems of Balogh–Morris–Samotij and Saxton–Thomason, rather than use the simple (but
weaker) container theorem of Saxton–Thomason as a black box.

5.6 | Entropy maximisation in the decorated graph setting

Recall that the discrete entropy or Shannon entropy of a random variable X taking values inside
a discrete set S is ∈ X s X s− ( = )log( ( = ))s s . The entropy we consider in this paper (see
Definition 1.6) can be viewed as a continuous analogue of discrete entropy when X is a point
sampled uniformly at random from some body ∈b n.

In the {0, 1}‐decorated setting, the rough structure of discrete entropy maximisers for
hereditary properties of graphs is well‐understood, via the choice number χc (see [2, 8] for the
set of possible “entropy densities” π ( ) and [4] for the possible structure of entropy
maximisers). By contrast, it is less clear what the set of possible values of entropy densities or
the possible rough structure of graphs maximising entropy should be in the k[ ]‐decorated
setting for ≥k 3, let alone the set of entropy maximisers in the setting of [0, 1]‐decorated
graphs. We are only aware of one partial result in this area: Alekseev and Sorochan [3]
who established a dichotomy on the growth rate of a symmetric hereditary property of
k[ ]‐decorations of E K( )n . Moreover, it is clear that the possible structures of entropy maximisers
are much more varied than in the case k = 2, see the discussion at the end of [18]. This leads to
the following analytic problems.

Problem 5.3. Let ∈k with ≥k 3. Let  be a hereditary property of k[ ]‐decorations
of E K( )n and  be its completion under the cut norm. Determine the set of possible
values for  ∈m W( ) = sup Ent( )

W
, as well as the possible structures of entropy

maximisers.

Problem 5.4. Let  be a hereditary property of [0, 1]‐decorated graphs and 
be its completion under the cut norm. Determine the set of possible values for

 ∈m W( ) = sup Ent( )
W

, as well as the possible structures of entropy maximisers.
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