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Abstract
We establish new local and global estimates for evolutionary partial differential equations in classical Banach and
quasi-Banach spaces that appear most frequently in the theory of partial differential equations. More specifically, we
obtain optimal (local in time) estimates for the solution to the Cauchy problem for variable-coefficient evolutionary
partial differential equations. The estimates are achieved by introducing the notions of Schrödinger and general
oscillatory integral operators with inhomogeneous phase functions and prove sharp local and global regularity
results for these in Besov–Lipschitz and Triebel–Lizorkin spaces.
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1. Introduction

In this paper, we prove sharp estimates for the solutions to initial value problems for a large class of linear
evolutionary partial differential equations (PDEs) in classical function spaces. Examples include linear
water-wave and capillary-wave equations, the Klein–Gordon equation, the Schrödinger-type equations,
the Airy equation and higher-order dispersive equations. To achieve this, we develop a fairly general
framework for the investigation of the regularity of a wide range of oscillatory integral operators that
appear in the theory of partial differential equations and mathematical physics. Our results are obtained
in the Besov–Lipschitz and Triebel–Lizorkin spaces which contain most classical function spaces such
as the 𝐿 𝑝 , Sobolev, Hölder (or Lipschitz), Hardy and BMO spaces, just to mention some well-known
examples.

In the context of well-posedness of the initial value problems for linear evolutionary PDEs, one has
a variety of optimal regularity results for;

i) Local and global regularity of variable-coefficient strictly hyperbolic linear PDEs in various function
spaces; see, for example, [20] and [29].

ii) Regularity of variable-coefficient linear Schrödinger-type PDEs in modulation spaces as well as
certain Sobolev spaces (however, not 𝐿𝑝− spaces with 𝑝 ≠ 2); see, for example, [7] and [8].

iii) Regularity of constant coefficient linear dispersive PDEs of the form

−𝑖𝜕𝑡𝑢 + Δ 𝑘/2𝑢 = 0 (1)

in Hardy and Hölder spaces; see, for example, [12] and [23].

The main contributions of this paper are twofold.
Firstly, from the point of view of PDE theory, we prove regularity results for variable coefficient Klein–

Gordon equations which are hyperbolic equations that are solved with oscillatory integral ansatzs with
inhomogeneous phase functions (see further improvements of our results in the Klein–Gordon setting
in [21]). This is in contrast to the strictly hyperbolic equations in item 𝑖) above, where the corresponding
phase functions are positively homogeneous of degree one. We also obtain optimal regularity results
for variable coefficient Schrödinger equations, in 𝐿𝑝 , Hölder, Hardy and BMO spaces, which widely
extends the results mentioned in item 𝑖𝑖). For the dispersive equations of item 𝑖𝑖𝑖), we not only handle
the case of variable coefficient dispersive equations but also extend the regularity results to the realm of
more general function spaces than just Hardy and Hölder spaces.

Secondly, from the point of view of Fourier analysis, we extend the local 𝐿𝑝-regularity theory of
Fourier integral operators as was done in [29], to the case of general oscillatory integral operators with
inhomogeneous phase functions. Furthermore, we investigate the action of pseudodifferential operators
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on the general oscillatory integrals in the same spirit as in [18], which can be used in developing a
calculus for general oscillatory integral operators.

1.1. Some relevant results regarding boundedness of nondegenerate oscillatory integral operators

We start by giving an overview of the previously known regularity results for oscillatory integral
operators, which is to a large extent biased by their relevance to our current paper.

For simplicity, we confine ourselves to oscillatory integral operators of the form

𝑇
𝜑
𝑎 𝑓 (𝑥) :=

∫
R𝑛

𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑎(𝑥, 𝜉) �̂� (𝜉) đ𝜉, (2)

with amplitude 𝑎(𝑥, 𝜉) and phase function 𝜑(𝑥, 𝜉). Here, following L. Hörmander [18] one can assume
that the 𝑎(𝑥, 𝜉) belongs to the class 𝑆𝑚

𝜌,𝛿 (R
𝑛), which means that the amplitude is in C∞(R𝑛 × R𝑛) and

satisfies ���𝜕𝛼
𝜉 𝜕

𝛽
𝑥 𝑎(𝑥, 𝜉)

��� ≤ 𝐶𝛼,𝛽 (1 + |𝜉 |)𝑚−𝜌 |𝛼 |+𝛿 |𝛽 | . (3)

It was shown by Hörmander [18] and G. I. Eskin [10] that if 𝑎(𝑥, 𝜉) ∈ 𝑆0
1,0 (R

𝑛) is smooth and compactly
supported in x and if 𝜑 ∈ C∞(R𝑛 ×R𝑛 \ {0}) is positively homogeneous of degree 1 in 𝜉 and the mixed
Hessian matrix of 𝜑(𝑥, 𝜉) has a nonzero determinant on the support of 𝑎(𝑥, 𝜉) (the nondegeneracy
condition), then the operator 𝑇 𝜑

𝑎 is 𝐿2-bounded. These type of operators are examples of the so-called
Fourier integral operators, which were officially introduced in [18]. The global extension of the 𝐿2-
boundedness result of Eskin and Hörmander to all possible amplitudes in the class 𝑆𝑚

𝜌,𝛿 (R
𝑛) was done

by D. Dos Santos Ferreira and W. Staubach [9]. In that paper, it was shown that, if the phase function 𝜑 is
positively homogeneous of degree 1 in 𝜉, the determinant of the mixed Hessian of 𝜑 is globally bounded
from below by a nonzero constant (the strong nondegeneracy condition), and 𝜑 satisfies the bound

sup
(𝑥, 𝜉 ) ∈R𝑛×R𝑛\{0}

|𝜉 |−1+|𝛼 |
���𝜕𝛼

𝜉 𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉)

��� ≤ 𝐶𝛼,𝛽 , |𝛼 + 𝛽 | ≥ 2,

then the Fourier integral operator 𝑇 𝜑
𝑎 is globally 𝐿2-bounded, provided that 𝜌, 𝛿 ∈ [0, 1], 𝛿 ≠ 1 and

𝑚 = min(0, 𝑛(𝜌 − 𝛿)/2), or 𝜌 ∈ [0, 1], 𝛿 = 1 and 𝑚 < 𝑛(𝜌 − 1)/2. This result is sharp, and therefore
completes the study of Hörmander-class Fourier integral operators with nondegenerate phase functions.

Regarding operators 𝑇 𝜑
𝑎 where the phase function 𝜑 is inhomogeneous, it was shown by D. Fujiwara

[13] that if 𝜑 ∈ C∞(R𝑛 × R𝑛) satisfies the condition���𝜕𝛼
𝜉 𝜕

𝛽
𝑥 𝜑(𝑥, 𝜉)

��� ≤ 𝑐𝛼,𝛽 , |𝛼 + 𝛽 | ≥ 2, (4)

aforementioned satisfies the strong nondegeneracy condition, and if the amplitude belongs to the class
𝑆0

0,0 (R
𝑛), then 𝑇

𝜑
𝑎 is globally 𝐿2-bounded. In [6], E. Cordero, F. Nicola and L. Rodino gave an elegant

proof of this 𝐿2-boundednes result, which completely avoids many of the technicalities (e.g., the use of
the Cotlar–Stein lemma) involved in the previous proofs and instead relies on techniques from the theory
of modulation spaces. Therefore, one could assert that the 𝐿2-regularity of operators 𝑇 𝜑

𝑎 with smooth
amplitudes and smooth nondegenerate phase functions has been brought to completion. However, the
extent of the impact of [6] was not confined to the aforementioned 𝐿2-result, and indeed the investigations
of Cordero–Nicola–Rodino also paved the way and inspired much activity in the field and, not least,
some of the results of this paper.

Turning to the problem of 𝐿𝑝-regularity for 𝑝 ≠ 2, J. Peral [25] and A. Miyachi [22] studied the
problem of 𝐿 𝑝-boundedness of Fourier multipliers of the form 𝑚(𝜉) = 𝑒𝑖𝜑 ( 𝜉 ) 𝜎(𝜉), 𝜎(𝜉) ∈ 𝑆𝑚

1,0 (R
𝑛)

and 𝜑 positively homogeneous of degree one. It was realised that for a 𝜎 ∈ 𝑆𝑚
1,0 (R

𝑛) the 𝐿 𝑝-boundedness
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can (in general) not hold if 𝑚 > −(𝑛 − 1) |1/𝑝 − 1/2|. M. Beals [2] extended their results to operators
of the form (2) when the phase function is analytic in 𝜉 ∈ R𝑛 \ {0}, nondegenerate and positively
homogeneous of degree one in 𝜉.

For oscillatory Fourier multipliers of the form 𝑚(𝜉) = 𝑒𝑖 |𝜉 |𝑘𝜓(𝜉) |𝜉 |𝑚, 𝜓 smooth and vanishing
near the origin, 0 < 𝑘 < 1 and 𝑚 < 0, C. Fefferman and E.M. Stein proved the 𝐿𝑝 boundedness for
1 < 𝑝 < ∞ in their seminal paper [12] on 𝐻 𝑝-spaces. The 𝐿 𝑝-boundedness of multipliers 𝑚(𝜉) in the
case of 𝑘 > 1 was established by H. Ishii [19]. All these results were further extended in an influential
paper by Miyachi [23], which has had a significant impact on the development of the regularity theory
of oscillatory integral operators in Banach and quasi-Banach spaces. Miyachi showed that for 𝑘 = 1 the
Fourier multiplier defined by 𝑚(𝜉) is 𝐻 𝑝-bounded for 0 < 𝑝 < ∞ if and only if 𝑚 ≤ −(𝑛−1) |1/𝑝−1/2|,
and for 𝑘 > 0 (but 𝑘 ≠ 1) 𝑇 𝜑

𝑎 is 𝐻 𝑝-bounded if and only if 𝑚 ≤ −𝑘𝑛|1/𝑝 − 1/2|. Moreover, Miyachi
proves 𝐿∞(R𝑛) → BMO(R𝑛) estimates as well as boundedness results in Lipschitz (or Hölder) spaces
for the aforementioned Fourier multipliers.

In the range 1 < 𝑝 < ∞, Peral’s and Miyachi’s results for the ordinary wave operator were generalised
by A. Seeger, C. Sogge and E. Stein [29] to Fourier integral operators with amplitudes 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚

1,0 (R
𝑛),

𝑚 ≤ −(𝑛−1) |1/𝑝−1/2|, with compact spatial support and homogeneous of degree one (nondegenerate)
phase functions 𝜑(𝑥, 𝜉). Using a novel method which was also partly inspired by Fefferman’s paper
[11], Seeger–Sogge–Stein thus proved the optimal local 𝐿𝑝-boundedness of Fourier integral operators.
Extensions to global estimates in more general function spaces were carried out by A. Israelsson, S.
Rodríguez-López and W. Staubach in [20]. Thus, the investigations mentioned above complete the picture
regarding the regularity of Fourier integral operators of the form (2) with nondegenerate homogeneous
of degree one phase functions and amplitudes in 𝑆𝑚

1,0 (R
𝑛).

For the so-called Schrödinger integral operators which are operators of the form (2) with nonde-
generate phase functions 𝜑(𝑥, 𝜉) satisfying equation (4), the question of boundedness has so far only
been treated in the context of modulation spaces. Indeed Cordero, Nicola and Rodino [6] showed that
Schrödinger integral operators with amplitudes in the class 𝑆0

0,0 (R
𝑛) are bounded from the modulation

space 𝑀𝑝 to itself for 1 ≤ 𝑝 < ∞. Regarding calculi for Schrödinger integral operators, Asada and
Fujiwara [1] studied the action of pseudodifferential operators on their class of oscillatory integrals and
showed that their class is closed under composition with pseudodifferential operators of order zero.
In 2013, E. Cordero, K-H. Gröchenig, F. Nicola and L. Rodino showed in [5] that the class of oper-
ators that we here refer to as Schrödinger integral operators (of order zero) is actually closed under
composition.

1.2. Some relevant results in the theory of linear partial differential equations

In the paper [29], the authors prove optimal local regularity results for the solutions of strictly hyperbolic
variable coefficients in 𝐿𝑝-based Sobolev spaces for fixed time and their results were extended in [20]
to global estimates in Besov–Lipschitz and Triebel–Lizorkin spaces.

The earlier investigations of B. Helffer and D. Robert [16] and those of Helffer [15] in connection
to the study of propagators for Schrödinger equations (for example, the harmonic oscillator) have
demonstrated the importance of Schrödinger integral operators; see, for example, the paper of Cordero–
Nicola–Rodino [7]. Furthermore, in the remarkable paper [8], P. D’Ancona and F. Nicola established
sharp 𝐿𝑝-frequency-truncated estimates (for certain 𝑝′s) for the Schrödinger group 𝑒𝑖𝑡𝐻 , where H is a
nonnegative self-adjoint operator in 𝐿2 (R𝑛) whose heat operator 𝑒−𝑡𝐻 satisfies a suitable off-diagonal
algebraic decay estimate.

For dispersive equations of the form (1) with initial data 𝑓 (𝑥), the solutions are given by oscillatory
integrals of the form

𝑇 𝑓 (𝑥) =
∫
R𝑛

𝑒𝑖𝑥 ·𝜉+𝑖𝑡 |𝜉 |𝑘 �̂� (𝜉) đ𝜉 (5)
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for which one can apply the results of [12] and [23] to obtain certain regularity results in Hardy and
Hölder spaces.

1.3. Synopsis of the results of this paper

Given the discussion above, some natural open problems are:

◦ The extension of the results of Seeger–Sogge–Stein to global results that also accommodate the case
of Klein–Gordon-type equations and also to the setting of both Banach and quasi-Banach spaces.

◦ Development of the 𝐿 𝑝-regularity theory for oscillatory integral operators with phase functions in
C∞(R𝑛 × R𝑛) that are associated to variable-coefficient Schrödinger equations.

◦ The extension of the results of Miyachi to the variable-coefficient setting in the case of 𝑘 ≠ 1. In
other words, investigation of the regularity properties of oscillatory integral operators, with phase
functions in C∞(R𝑛 ×R𝑛 \ {0}) that fall beyond the scope of the theory of Fourier integral operators.

◦ Estimates for variable coefficient Schrödinger as well as other dispersive equations in Triebel–Lizorkin
and Besov–Lipschitz spaces.

In this paper, we have made progress in solving these problems and summarise our results as follows:

i) Established an optimal 𝐿𝑝-regularity theory (and indeed even 𝐿 𝑝 − 𝐿𝑞 , 1 < 𝑝 ≤ 𝑞 < ∞), for
Schrödinger integral operators. We also go beyond these classes of operators and investigate the
regularity of general oscillatory integral operators (see Definition 2.15) in classical function spaces.
Furthermore, our results extend the range of validity of the estimates obtained by D’Ancona and
Nicola in [8].

ii) Investigated the boundedness problem in both Banach and quasi-Banach spaces. Our regularity
results are valid in Besov–Lipschitz and Triebel–Lizorkin spaces with both Banach and quasi-
Banach scales.

iii) The abolition of the usual homogeneity assumption in the phase functions and improvement on the
order of decay of the amplitudes. We show that it is enough for the amplitudes to merely belong to
the class 𝑆𝑚

0,0 (R
𝑛), as opposed to the usual class 𝑆𝑚

1,0 (R
𝑛) (which is used in all previously obtained

𝐿 𝑝−regularity results).
vi) Sharp boundedness results were obtained, namely we show that our results are optimal for the

specific order of decay m that we choose. Our results are not only sharp regarding the order of the
amplitudes but also optimal regarding their type, which is measured by the lowercase indices of the
classes of amplitudes. Indeed, for those oscillatory integral operators that are not Fourier integral
operators, choosing an amplitude in the better class 𝑆𝑚

1,0 (R
𝑛) would not yield any improvement in

the order of decay m (which is required for the regularity in various functions spaces).
v) Thorough analysis of the singular low-frequency part of globally defined oscillatory integral op-

erators. The phase functions of oscillatory integrals such as those given by equation (5) have a
singularity at origin when k is not an even positive integer. In previous investigations in the litera-
ture (i.e., Fefferman–Stein [12], Ishii [19], Miyachi [23], Peral [25] and Seeger–Sogge–Stein [29]),
this singularity is always cut out in order to confine the analysis to the high-frequency part of the
operator. However, in PDE theory, it is important to investigate the regularity of the whole operator
(i.e., both the low- and high-frequency portions). In fact, the low-frequency part has a decisive im-
pact on the range of the validity of global estimates in the quasi-Banach setting, as we have clearly
demonstrated in the paper.

vi) Steps towards construction of a calculus for oscillatory integral operators. We prove a basic com-
position theorem (similar to that of Hörmander’s in the Fourier integral operator setting) for the
composition of a pseudodifferential operator and a general oscillatory integral operator. The advan-
tages of our ‘calculus’ as compared to Hörmander’s composition formula for Fourier multipliers
and Fourier integral operators are (a) our composition result is global, (b) the composition works for
operators with inhomogeneous phase functions and (c) our composition is parameter dependent and
the dependency on the parameter is carefully tracked. We show the usefulness of this composition
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theorem in our demonstration of the regularity results in Besov–Lipschitz and Triebel–Lizorkin
spaces.

vii) Sharp estimates for linear dispersive PDEs in Banach and quasi-Banach spaces. The oscillatory
integrals that are studied in this paper can be used to construct solutions to various evolutionary
PDEs and our oscillatory integral estimates provide new sharp estimates for the solutions to initial
value problems in Besov–Lipshitz and Triebel–Lizorkin spaces.

The proofs of the results are divided into essentially two categories. Those for oscillatory inte-
gral operators whose phases have a singularity at the origin (the simplest examples are provided by
equation (5)), and those oscillatory integrals whose phases are smooth everywhere (e.g., the case of
Schrödinger integral operators). In the former case, we split the operator into, low-, middle-, and
high-frequency pieces and deal with each piece separately. It turns out that the low-frequency por-
tion requires an additional condition which is also reflected in the optimal range of the validity of
the boundedness results. The high-frequency portion can be dealt with methods based on Littlwood–
Paley theory. However, the differences here compared to that of the case of Fourier integral operators
treated in [29] are that we deal with a larger class of amplitudes and also have to deal with inhomo-
geneous phase functions. This forces a different approach towards the proof of the boundedness of
general oscillatory integral operators. Indeed, the usual approach of first showing the 𝐻1 − 𝐿1 bound-
edness, which was carried out successfully for Fourier integral operators in [29], fails in our case.
Moreover, the lack of a calculus (once again as opposed to the case of local Fourier integral opera-
tors in [29]) hampers the way of using duality arguments. To remedy this, we prove the boundedness
of the operator and its adjoint in the quasi-Banach realm of the ℎ𝑝 − 𝐿 𝑝 spaces (0 < 𝑝 < 1 and ℎ𝑝

is the local Hardy space of D. Goldberg’s [14]). Thereafter, we lift these boundedness results to the
ℎ𝑝 − ℎ𝑝 boundedness and then use appropriate interpolation of Triebel–Lizorkin spaces to extend mat-
ters to all ranges of 𝑝′𝑠. Thus, utilising the quasi-Banach Hardy spaces in this context is crucial for
our goals.

Concerning the proof of the boundedness of Schrödinger integral operators under the mere assump-
tions of strong nondegeneracy of the phase function and condition (4), it is not enough to simply use
the Littlewood–Paley theory. Here, we once again use quasi-Banach spaces and use yet another fre-
quency localisation superimposed on the first Littlewood–Paley decomposition adapted specifically to
Schrödinger integral operators. In this connection, we have a domain of influence for Littlewood–Paley
pieces of the operator and one has to use an atomic decomposition of the Hardy spaces to be able to
estimate the 𝐿 𝑝-norms of various pieces of the operator (and its adjoint) in the interior and the exterior
of the aforementioned domain of influence. Putting the partial results together and summing up, we can
show the global ℎ𝑝 − 𝐿 𝑝 boundedness of the Schrödinger integral operators and use interpolation to
obtain results for a wider range of 𝑝′𝑠.

In obtaining regularity results in Besov–Lipschitz and Triebel–Lizorkin spaces, it behooves one to
consider the action of Fourier multipliers on various oscillatory integral operators. To achieve that, one
needs some sort of a calculus (or asymptotic expansion for the composition). The proof of this special
form of calculus, which is also extended to the composition of a pseudodifferential operator and an
oscillatory integral operator, is a rather technical task that has been carried out by a suitable splitting of
the operators into various pieces and delicate oscillatory integral estimates.

The paper is organised as follows: In Section 2, we recall some of the basic definitions and facts
from the theory of function spaces. We also define our classes of phase functions, amplitudes and the
corresponding operators which will be treated in this paper. In Section 3, we state the main results of
the paper and outline the proofs of the theorems. This includes both local and global regularity results
in Besov–Lipschitz and Triebel–Lizorkin spaces, 𝐿𝑝 − 𝐿𝑞 estimates and also our parameter-dependent
composition theorem. Furthermore, in the same section we also provide some examples regarding
applications of our results within harmonic analysis and partial differential equations. For example, we
show the regularity of operators with phase functions of the form 𝑥 · 𝜉 + 𝑡 (𝑥) |𝜉 |𝑘 with 0 < 𝑘 ≤ 1 and
𝑥 · 𝜉 + 𝑡 (𝑥)〈𝜉〉, with 𝑡 (𝑥) being smooth and bounded together with all of its derivatives. The former is
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significant in the study of water-wave equation (𝑘 = 1/2), and the latter example is of significance in
the study of Klein–Gordon equations. Since our regularity results are also valid for phase functions of
the form 𝑥 · 𝜉 + |𝜉 |𝑘 with 0 < 𝑘 < ∞, this enables us to prove sharp basic estimates (in both Banach
and quasi-Banach scales) for the solutions of a large class of dispersive PDEs. Thereafter, we turn to
variable-coefficient Schrödinger equations and show sharp estimates in classical function spaces for
the solutions of Schrödinger equations with quadratic potentials (including the case of the harmonic
oscillator).

Section 4 is devoted to the basic kernel estimates for oscillatory integral operators. In Section 5,
we discuss the 𝐿2-regularity of the operators, and in Section 6, we deal with the boundedness of the
low-frequency portion of the operators in Besov–Lipschitz and Triebel–Lizorkin spaces. Since we will
sometimes divide the operators in question into low-frequency, middle-frequency and high-frequency
portions, in Section 7 we treat the boundedness of the middle-frequency portion of the operators.
In Section 8, we prove a local ℎ𝑝 − 𝐿 𝑝 result for the oscillatory integral operators and Section 9 is
devoted to the study of the ℎ𝑝 − 𝐿 𝑝 boundedness of the high-frequency portion of the operators. The
same problem for the Schrödinger integral operators is treated in Section 10. In Section 11, we prove
a parameter-dependent composition formula and an expansion for the action of a pseudodifferential
operator on an oscillatory integral operator. Section 12 and Section 13 are devoted to regularity results
in Besov–Lipschitz and Triebel–Lizorkin spaces, respectively. The sharpness of the results is discussed
in Section 14.

2. Definitions and preliminaries

In this section, we will collect all the definitions that will be used throughout this paper. We also state
some useful results from both harmonic and microlocal analysis which will be used in the proofs.

2.1. Notations

We will denote constants which can be determined by known parameters in a given situation, but whose
values are not crucial to the problem at hand, by C, or c or 𝑐𝛼 and so on. Such parameters in this paper
would be, for example, m, p, n, and the constants connected to the seminorms of various amplitudes
or phase functions. The value of the constants may differ from line to line, but in each instance could
be estimated if necessary. We also write 𝑎 � 𝑏 as shorthand for 𝑎 ≤ 𝐶𝑏 and 𝑎 ∼ 𝑏 when 𝑎 � 𝑏
and 𝑏 � 𝑎.

Also, we shall denote the normalised Lebesgue measure d𝜉/(2𝜋)𝑛 by đ𝜉, 〈𝜉〉 := (1 + |𝜉 |2)1/2,
the space of smooth functions with compact support by C∞

𝑐 (R𝑛), the space of smooth functions with
bounded derivatives of all orders by C∞

𝑏 (R𝑛), the Schwartz class of rapidly decreasing smooth functions
by 𝒮(R𝑛) and the set of nonnegative integers {0, 1, 2, . . . } by Z+. In what follows, we use the notation

�̂� (𝜉) :=
∫
R𝑛

𝑓 (𝑥) 𝑒−𝑖𝑥 ·𝜉 d𝑥,

for the Fourier transform of the function f and 𝜉 and 𝜂 will denote frequency variables.

2.2. Function spaces

We start this section by defining the standard Littlewood–Paley decomposition which is a basic ingredient
in our proofs and is also used to define the function spaces that we are concerned with here.

Definition 2.1. Let 𝜓0 ∈ C∞
𝑐 (R𝑛) be equal to 1 on 𝐵(0, 1) and have its support in 𝐵(0, 2). Then let

𝜓 𝑗 (𝜉) := 𝜓0
(
2− 𝑗𝜉

)
− 𝜓0

(
2−( 𝑗−1)𝜉

)
,
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where 𝑗 ≥ 1 is an integer and 𝜓(𝜉) := 𝜓1 (𝜉). Then 𝜓 𝑗 (𝜉) = 𝜓
(
2−( 𝑗−1)𝜉

)
and one has the following

Littlewood–Paley partition of unity

∞∑
𝑗=0

𝜓 𝑗 (𝜉) = 1 for all 𝜉 ∈ R𝑛.

Observe that 𝜓 𝑗 is supported inside the annulus {𝜉 ∈ R𝑛 : 2 𝑗−1 ≤ |𝜉 | ≤ 2 𝑗+1}. It is sometimes also
useful to define a sequence of smooth and compactly supported functions Ψ 𝑗 with Ψ 𝑗 = 1 on the support
of 𝜓 𝑗 and Ψ 𝑗 = 0 outside a slightly larger compact set. Explicitly, one could set

Ψ 𝑗 := 𝜓 𝑗+1 + 𝜓 𝑗 + 𝜓 𝑗−1,

with 𝜓−1 := 𝜓0.
Next, we proceed with the definition of local Hardy space, ℎ𝑝 (R𝑛) due to D. Goldberg; see [14].

This space plays an important role in the paper since many of the subsequent results will be obtained
by means of interpolation with the local Hardy spaces.

Definition 2.2. For 0 < 𝑝 ≤ 1, the local Hardy space ℎ𝑝 (R𝑛) is the set of distributions 𝑓 ∈ 𝒮′(R𝑛)
such that

‖ 𝑓 ‖ℎ𝑝 (R𝑛) :=
(∫
R𝑛

sup
0<𝑡<1

|𝜓0(𝑡𝐷) 𝑓 (𝑥) |𝑝 d𝑥
)1/𝑝

< ∞,

where 𝜓0 is given in Definition 2.1, and for 𝑡 ∈ R

𝜓0 (𝑡𝐷) 𝑓 (𝑥) :=
∫
R𝑛

𝑒𝑖𝑥 ·𝜉 𝜓0 (𝑡𝜉) �̂� (𝜉) đ𝜉.

Another useful definition of the Hardy spaces is based on the so-called atoms and is given as follows.

Definition 2.3. For 0 < 𝑝 ≤ 1, a function 𝔞 is called an ℎ𝑝-atom (or a p-atom for short) if for some
𝑥0 ∈ R𝑛 and 𝑟 > 0 the following three conditions are satisfied:

i) supp𝔞 ⊂ 𝐵(𝑥0, 𝑟),
ii) |𝔞(𝑥) | ≤ |𝐵(𝑥0, 𝑟) |−1/𝑝 ,

iii) if 𝑟 ≤ 1, then
∫
R𝑛

𝑥𝛼 𝔞(𝑥) d𝑥 = 0, for any multi-index 𝛼 with |𝛼 | ≤ [𝑛(1/𝑝 − 1)], and no further
condition if 𝑟 > 1. Here, [𝑥] denotes the integer part of x.

Then one has that a distribution 𝑓 ∈ ℎ𝑝 (R𝑛) has an atomic decomposition

𝑓 =
∑
𝑗

𝜆 𝑗𝔞 𝑗 ,

where the 𝜆 𝑗 are constants such that

inf
( ∑

𝑗

|𝜆 𝑗 |𝑝
) 1

𝑝 ∼ ‖ 𝑓 ‖ℎ𝑝 (R𝑛) ,

and the 𝑎 𝑗 are p-atoms.

For 1 < 𝑝 < ∞, we identify ℎ𝑝 (R𝑛) with 𝐿 𝑝 (R𝑛). The dual of the local Hardy space ℎ1 (R𝑛) is the
local BMO(R𝑛) and is denoted by bmo(R𝑛), which consists of locally integrable functions that verify

‖ 𝑓 ‖bmo(R𝑛) := ‖ 𝑓 ‖BMO(R𝑛) + ‖𝜓0 (𝐷) 𝑓 ‖𝐿∞ (R𝑛) < ∞,
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where BMO(R𝑛) is the usual John–Nirenberg space of functions of bounded mean oscillation and 𝜓0
is the cut-off function introduced in Definition 2.1.

Using the Littlewood–Paley decomposition above, we define the Besov–Lipschitz spaces.

Definition 2.4. Let 0 < 𝑝, 𝑞 ≤ ∞ and 𝑠 ∈ R. The Besov–Lipschitz spaces are defined by

𝐵𝑠
𝑝,𝑞 (R𝑛) :=

{
𝑓 ∈ 𝒮′(R𝑛) : ‖ 𝑓 ‖𝐵𝑠

𝑝,𝑞 (R𝑛) :=
( ∞∑

𝑗=0
2 𝑗𝑞𝑠 ‖𝜓 𝑗 (𝐷) 𝑓 ‖𝑞

𝐿𝑝 (R𝑛)

)1/𝑞
< ∞

}
.

It is worth mentioning that for 𝑝 = 𝑞 = ∞ and 0 < 𝑠 ≤ 1 we obtain the familiar Lipschitz (or Hölder)
space Λ𝑠 (R𝑛), that is,

𝐵𝑠
∞,∞(R𝑛) = Λ𝑠 (R𝑛).

We will also produce boundedness results in the realm of Triebel–Lizorkin spaces which can be
defined using Littlewood–Paley theory, as follows.

Definition 2.5. Let 0 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞ and 𝑠 ∈ R. The Triebel–Lizorkin spaces are given by

𝐹𝑠
𝑝,𝑞 (R𝑛) :=

{
𝑓 ∈ 𝒮′(R𝑛) : ‖ 𝑓 ‖𝐹 𝑠

𝑝,𝑞 (R𝑛) :=
���( ∞∑

𝑗=0
2 𝑗𝑞𝑠 |𝜓 𝑗 (𝐷) 𝑓 |𝑞

)1/𝑞���
𝐿𝑝 (R𝑛)

< ∞
}
.

It is well known (see, for example, [31, p. 51]) that

𝐹𝑠
𝑝,𝑞 (R𝑛) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐿 𝑝 (R𝑛), 𝑠 = 0, 1 < 𝑝 < ∞, 𝑞 = 2,
ℎ𝑝 (R𝑛), 𝑠 = 0, 0 < 𝑝 ≤ 1, 𝑞 = 2,
bmo(R𝑛), 𝑠 = 0, 𝑝 = ∞, 𝑞 = 2,
𝐻𝑠, 𝑝 (R𝑛), −∞ < 𝑠 < ∞, 1 < 𝑝 < ∞, 𝑞 = 2,

(6)

where 𝐻𝑠, 𝑝 (R𝑛) are various Sobolev–Slobodecskij spaces.

Remark 2.6. Different choices of the basis {𝜓 𝑗 }∞𝑗=0 give equivalent (quasi)-norms of 𝐵𝑠
𝑝,𝑞 (R𝑛) and

𝐹𝑠
𝑝,𝑞 (R𝑛) in Definition 2.4 and 2.5,; see, for example, [31, p. 41]. We will use either {𝜓 𝑗 }∞𝑗=0 or {Ψ 𝑗 }∞𝑗=0

to define the norm of 𝐵𝑠
𝑝,𝑞 (R𝑛) and 𝐹𝑠

𝑝,𝑞 (R𝑛).

Another fact which will be useful to us is that for −∞ < 𝑠 < ∞ and 0 < 𝑝 ≤ ∞

𝐵𝑠
𝑝,𝑝 (R𝑛) = 𝐹𝑠

𝑝,𝑝 (R𝑛) (7)

and that one has the two continuous embeddings

𝐹𝑠+𝜀
𝑝,𝑞0 (R

𝑛) ↩→ 𝐹𝑠
𝑝,𝑞1 (R

𝑛) and 𝐵𝑠+𝜀
𝑝,𝑞0 (R

𝑛) ↩→ 𝐵𝑠
𝑝,𝑞1 (R

𝑛) (8)

for −∞ < 𝑠 < ∞, 0 < 𝑝 < ∞, 0 < 𝑞0, 𝑞1 ≤ ∞ and all 𝜀 > 0. Furthermore, for 𝑠′ ∈ R, the operator
(1 − Δ)𝑠′/2 maps 𝐹𝑠

𝑝,𝑞 (R𝑛) isomorphically into 𝐹𝑠−𝑠′
𝑝,𝑞 (R𝑛) and 𝐵𝑠

𝑝,𝑞 (R𝑛) isomorphically into 𝐵𝑠−𝑠′
𝑝,𝑞 (R𝑛);

see [31, p. 58].
We will also make repeated use of the estimate; for and all 𝑠, 𝑝, 𝑞

‖ 𝑓 𝑢‖𝐴𝑠
𝑝,𝑞 (R𝑛) �

( ∑
|𝛼 | ≤𝑀

sup
𝑥∈R𝑛

|𝜕𝛼 𝑓 (𝑥) |
)
‖𝑢‖𝐴𝑠

𝑝,𝑞 (R𝑛) , (9)

which is valid for 𝐴 = 𝐵 (Besov–Lipschitz spaces) or 𝐴 = 𝐹 (Triebel–Lizorkin spaces), and 𝑀 ∈ Z+
large enough; see [28, p. 229, eq. (9), (10)]. For all the other facts about function spaces that are used
in this paper, we refer the reader to [31].
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We will state the following lemma which is a consequence of a lemma originally due to J. Peetre [24],
which turns out to be useful in proving quasi-Banach Besov–Lipschitz/Triebel–Lizorkin boundedness
of the low-frequency portions of oscillatory integral operators studied in forthcoming sections.

Lemma 2.7. Let 𝑓 ∈ C1(R𝑛) with Fourier support inside the unit ball. Then for every 𝜌 > 𝑛, and
𝑟 ∈ (𝑛/𝜌, 1] one has

(〈·〉−𝜌 ∗ | 𝑓 |) (𝑥) �
(
𝑀 (| 𝑓 |𝑟 ) (𝑥)

)1/𝑟
, 𝑥 ∈ R𝑛,

where M denotes the Hardy–Littlewood maximal function on R𝑛.

Proof. As was shown by Peetre, see, for example, [28, Proposition 2, p. 22], one has for 𝑟 ≥ 𝑛/𝜌 that

sup
𝑦∈R𝑛

| 𝑓 (𝑥 − 𝑦) |
〈𝑦〉𝜌 �

(
𝑀 (| 𝑓 |𝑟 ) (𝑥)

)1/𝑟
. (10)

Now, taking 𝑟 ∈ (𝑛/𝜌, 1], and using equation (10) we obtain

|〈·〉−𝜌 ∗ 𝑓 (𝑥) | �
∫
R𝑛

| 𝑓 (𝑥 − 𝑦) |
〈𝑦〉𝜌 d𝑦 ≤

(
sup
𝑦∈R𝑛

| 𝑓 (𝑥 − 𝑦) |
〈𝑦〉𝜌

)1−𝑟 ∫
R𝑛

| 𝑓 (𝑥 − 𝑦) |𝑟
〈𝑦〉𝜌𝑟 d𝑦

�
(
𝑀 (| 𝑓 |𝑟 ) (𝑥)

)1/𝑟−1 (
𝑀 (| 𝑓 |𝑟 ) (𝑥)

)
=

(
𝑀 (| 𝑓 |𝑟 ) (𝑥)

)1/𝑟
. �

In establishing the local boundedness of oscillatory integral operators in the range 0 < 𝑝 < 1, the
following Bernstein-type estimate will be useful. The proof can be found in [31, p. 22].

Lemma 2.8. Let K ⊂ R𝑛 be a compact set, and let 0 < 𝑝 ≤ 𝑟 ≤ ∞. Then

‖𝜕𝛼 𝑓 ‖𝐿𝑟 (R𝑛) � ‖ 𝑓 ‖𝐿𝑝 (R𝑛) ,

for all multi-indices 𝛼 and all 𝑓 ∈ 𝐿 𝑝
K (R

𝑛), where

𝐿 𝑝
K (R

𝑛) :=
{
𝑓 ∈ 𝒮′(R𝑛) : ‖ 𝑓 ‖𝐿𝑝 (R𝑛) < ∞, supp �̂� ⊂ K

}
.

2.3. Oscillatory integral operators

The class of amplitudes which are the basic building blocks of the oscillatory integral operators were
first introduced by L. Hörmander in [17].

Definition 2.9. Let 𝑚 ∈ R and 0 ≤ 𝜌, 𝛿 ≤ 1. An amplitude (symbol) 𝑎(𝑥, 𝜉) in the class 𝑆𝑚
𝜌,𝛿 (R

𝑛) is a
function 𝑎 ∈ C∞(R𝑛 × R𝑛) that verifies the estimate���𝜕𝛼

𝜉 𝜕
𝛽
𝑥 𝑎(𝑥, 𝜉)

��� ≤ 𝐶𝛼,𝛽 〈𝜉〉𝑚−𝜌 |𝛼 |+𝛿 |𝛽 | ,

for all multi-indices 𝛼 and 𝛽 and (𝑥, 𝜉) ∈ R𝑛 × R𝑛. We shall henceforth refer to m as the order of the
amplitude and 𝜌, 𝛿 as its type.

Given the symbol classes defined above, one associates to the symbol its Kohn–Nirenberg quantisa-
tion as follows.
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Definition 2.10. Let a be a symbol. Define a pseudodifferential operator (ΨDO for short) as the operator

𝑎(𝑥, 𝐷) 𝑓 (𝑥) :=
∫
R𝑛

𝑒𝑖𝑥 ·𝜉 𝑎(𝑥, 𝜉) �̂� (𝜉) đ𝜉,

a priori defined on the Schwartz class 𝒮(R𝑛).

In order to define the oscillatory integral operators that are studied in this paper, we also define
classes of phase functions, which together with the amplitudes of Definition 2.9 are useful and natural
conditions to assume in the study of oscillatory integral operators.

Definition 2.11. For 0 < 𝑘 < ∞, we say that a real-valued phase function 𝜑(𝑥, 𝜉) belongs to the class
F
𝑘 , if 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛 ×R𝑛 \ {0}) and satisfies the following estimates (depending on the range of 𝑘):

◦ for 𝑘 ≥ 1, ���𝜕𝛼
𝜉 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉)

��� ≤ 𝑐𝛼 |𝜉 |𝑘−1, |𝛼 | ≥ 1,

◦ for 0 < 𝑘 < 1, ���𝜕𝛼
𝜉 𝜕

𝛽
𝑥 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉)

��� ≤ 𝑐𝛼,𝛽 |𝜉 |𝑘−|𝛼 | , |𝛼 + 𝛽 | ≥ 1,

for all 𝑥 ∈ R𝑛 and |𝜉 | ≥ 1.

Remark 2.12. Allowing a singularity (in the frequency) at the origin in the phase functions is a natural
assumption for both 𝑘 ≥ 1 and 𝑘 < 1 and is motivated by the PDE applications. Indeed, the phase
function associated to the wave equation is 𝑥 · 𝜉 + |𝜉 | (𝑘 = 1), the phase associated to the water-wave
equation is 𝑥 · 𝜉 + |𝜉 |1/2 (𝑘 < 1) and the phase associated to the capillary waves is 𝑥 · 𝜉 + |𝜉 |3/2 (𝑘 > 1),
all of which are nonsmooth at 𝜉 = 0.

We will also need to consider phase functions that satisfy a certain nondegeneracy condition. To this
end, we have

Definition 2.13. One says that the phase function 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛 × R𝑛 \ {0}) satisfies the strong
nondegeneracy condition (or 𝜑 is SND for short) if��� det

(
𝜕2
𝑥 𝑗 𝜉𝑘

𝜑(𝑥, 𝜉)
)��� ≥ 𝛿,

for some 𝛿 > 0, all 𝑥 ∈ R𝑛 and all |𝜉 | ≥ 1.
In case 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛 × R𝑛), then we require that the condition above is satisfied for all (𝑥, 𝜉) ∈

R
𝑛 × R𝑛.

In order to guarantee that our operators are globally 𝐿2-bounded we should also put yet another
condition of the phase which we shall henceforth simply refer to as the 𝐿2-condition (motivated by D.
Fujiwara’s result in [13]).

Definition 2.14. One says that the phase function 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛×R𝑛 \{0}) satisfies the 𝐿2-condition
if ��𝜕𝛼

𝜉 𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉)

�� ≤ 𝑐𝛼,𝛽 , |𝛼 | ≥ 1, |𝛽 | ≥ 1, (11)

for all 𝑥 ∈ R𝑛 and all |𝜉 | ≥ 1.
In case 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛 × R𝑛), then we require that the condition above is satisfied for all (𝑥, 𝜉) ∈

R
𝑛 × R𝑛.
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Having the definitions of the amplitudes and the phase functions at hand, one has

Definition 2.15. An oscillatory integral operator 𝑇 𝜑
𝑎 with amplitude 𝑎 ∈ 𝑆𝑚

𝜌,𝛿 (R
𝑛) and a real-valued

phase function 𝜑 is defined (once again a priori on 𝒮(R𝑛)) by

𝑇
𝜑
𝑎 𝑓 (𝑥) :=

∫
R𝑛

𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑎(𝑥, 𝜉) �̂� (𝜉) đ𝜉. (12)

If 𝜑 ∈ F
𝑘 and is SND, then these operators will be referred to as oscillatory integral operators of order k.

The formal adjoint of 𝑇 𝜑
𝑎 is denoted by

(
𝑇

𝜑
𝑎

)∗ and is given by

(
𝑇

𝜑
𝑎

)∗
𝑓 (𝑥) =

∫
R𝑛

∫
R𝑛

𝑒𝑖𝑥 ·𝜉−𝑖𝜑 (𝑦, 𝜉 ) 𝑎(𝑦, 𝜉) 𝑓 (𝑦) d𝑦 đ𝜉. (13)

To deal with the low-frequency portion of an oscillatory integral, which is frequency supported in a
neighborhood of the origin, one would need a separate analysis because the phase function might be,
and it usually is singular at the origin. This typically doesn’t affect the Banach space results so much, but
as we shall see, it certainly restricts the ranges of parameters in the quasi-Banach spaces. Therefore, to
be able to prove regularity results for the low-frequency portions of the operators, one should put a mild
condition on the phase functions. From the point of view of the applications into PDEs, this condition
will always be satisfied and would not cause any loss of generality.

Definition 2.16. Assume that 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛 ×R𝑛 \ {0}) is real-valued and 0 < μ ≤ 1. We say that 𝜑
satisfies the low-frequency phase condition of order μ, (𝜑 satisfies LF(μ)-condition for short), if one has���𝜕𝛼

𝜉 𝜕
𝛽
𝑥 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉)

��� ≤ 𝑐𝛼 |𝜉 |μ−|𝛼 | , (14)

for all 𝑥 ∈ R𝑛, 0 < |𝜉 | ≤ 2 and all multi-indices 𝛼, 𝛽.

2.4. Schrödinger integral operators

Another important class of oscillatory integrals is the following.

Definition 2.17. An operator of the form (12) with a real-valued phase function 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛 ×R𝑛)
that verifies ���𝜕𝛼

𝜉 𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉)

��� ≤ 𝑐𝛼,𝛽 , |𝛼 + 𝛽 | ≥ 2, (15)

for all (𝑥, 𝜉) ∈ R𝑛 × R𝑛, will be referred to as a Schrödinger integral operator.

Remark 2.18. Observe that in one dimension sin 𝑥 sin 𝜉 + 𝜉2 + (2𝜉 +1)𝑥 is an example of an SND phase
function satisfying equation (15) which is not in F

2.

Our motivation for such a name stems from the fact that the solution to the Cauchy problem with
initial data f, for the free Schrödinger equation is given by the operator 𝑒𝑖𝑡Δ 𝑓 . Observe that for a fixed
time (say 𝑡 = 1), the phase function of the oscillatory integral defining the Schrödinger semigroup is
given by 𝑥 · 𝜉 + |𝜉 |2 which satisfies equation (15) and is also SND, and its amplitude is identically equal
to one which is trivially in the class 𝑆0

1,0 (R
𝑛). A less naive example, which once again motivates our

choice of designation above, stems for the Cauchy problem for the Schrödinger equation associated to
the quantum mechanical harmonic oscillator −Δ + |𝑥 |2. In this case, the solution is given by 𝑒𝑖𝑡 (−Δ+| · |

2) 𝑓 ,
which is also a Schrödinger integral operator according to Definition 2.17 with a phase function which
is once again SND and verifies equation (15); see [15].
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For the purpose of proving boundedness results for oscillatory integral operators, it turns out that, in
most of the cases, the following order of the amplitude is the critical one, namely

𝑚𝑘 (𝑝) := −𝑘𝑛
��� 1
𝑝
− 1

2

���,
where 0 < 𝑝 ≤ ∞ and 𝑘 > 0 stems from the so-called F

𝑘 -condition, which is given in Definition
2.11. The corresponding critical order for the Schrödinger integral operators will be 𝑚2 (𝑝). This means
that, we will be able to establish various boundedness results for the oscillatory integral operators (and
Schrödinger integral operators) when the order of the amplitude is less than or equal to 𝑚𝑘 (𝑝) (or
𝑚2 (𝑝)), respectively.

A common method throughout the paper will be to split the amplitude 𝑎(𝑥, 𝜉) into several pieces
with respect to 𝜉. This is used when there is a singularity at the origin 𝜉 = 0 that needs to be treated
separately. In some cases, we divide the amplitude into a low- and a high-frequency part

𝑎(𝑥, 𝜉) = 𝜓0 (𝜉) 𝑎(𝑥, 𝜉) + (1 − 𝜓0 (𝜉)) 𝑎(𝑥, 𝜉) =: 𝑎𝐿 (𝑥, 𝜉) + 𝑎𝐻 (𝑥, 𝜉),

where 𝜓0 is given in Definition 2.1. In other cases, we divide the amplitude into three different pieces,
a low-, middle- and high-frequency part

𝑎(𝑥, 𝜉) = 𝜓0 (𝜉) 𝑎(𝑥, 𝜉) + (𝜓0 (𝜉/𝑅) − 𝜓0(𝜉)) 𝑎(𝑥, 𝜉) + (1 − 𝜓0 (𝜉/𝑅)) 𝑎(𝑥, 𝜉)
=: 𝑎𝐿 (𝑥, 𝜉) + 𝑎𝑀 (𝑥, 𝜉) + 𝑎𝐻 (𝑥, 𝜉),

where R is some large constant that typically depends only on the dimension and the upper and lower
bound of the mixed Hessian of 𝜑.

Remark 2.19. We should emphasise here that the conditions that are put on the phases of the oscillatory-
and the Schrödinger integral operators are quite natural and indeed without the SND-condition and
boundedness of the mixed derivatives (11), the operators under consideration (i.e., with inhomogeneous
phase functions) are not (in general) even 𝐿2-bounded. Assuming, say homogeneity of degree one in the
frequency variable of the phase function, which is the case of Fourier integral operators, enables one to
improve on the order of decay of the amplitude. This is, however, not possible for the Schrödinger- and
general oscillatory integral operators. The other conditions on the phase functions are there to guarantee
𝐿 𝑝-boundedness, and the ability to develop a calculus in order to be able to establish boundedness in
Besov–Lipschitz and Triebel–Lizorkin spaces.

3. Main regularity results and applications

In this section, we gather the main regularity results of this paper and briefly outline the proofs or rather
refer to the relevant sections where the various proofs could be found. At the end of this section, we
shall discuss the application of our results to regularity problems in harmonic analysis and theory of
partial differential equations.

3.1. Local regularity results

This subsection deals with local regularity of both Schrödinger integral operators and oscillatory
integral operators on Besov–Lipschitz and Triebel–Lizorkin spaces. This, as usual, amounts to study
the operators whose amplitude 𝑎(𝑥, 𝜉) is compactly supported in the spatial variables.

3.1.1. Local boundedness of oscillatory integrals
First, we start by the following basic theorem which is the counterpart of the available local 𝐿𝑝-
boundedness result in the more familiar context of Fourier integral operators.
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In what follows, the operator 𝑇 𝜑
𝑎 will denote an oscillatory integral of the form (12).

Theorem 3.1. Let 𝑘 ≥ 1, 𝑝 ∈ (1,∞) and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)
0,0 (R𝑛) with compact support in the x-variable.

Assume that one of the following assumptions hold true:

i) 𝜑(𝑥, 𝜉) ∈ F
𝑘 ∩ C∞(R𝑛 × R𝑛) is SND and satisfies the 𝐿2-condition (11).

ii) 𝜑(𝑥, 𝜉) ∈ F
𝑘 is SND, satisfies equation (11) and additionally satisfies the estimate

|𝜕𝛼
𝜉 𝜕

𝛽
𝑥 𝜑(𝑥, 𝜉) | ≤ 𝑐𝛼,𝛽 |𝜉 |− |𝛼 | , |𝛼 + 𝛽 | ≥ 1, 0 < |𝜉 | ≤ 2

√
𝑛.

Then in either case, the operator 𝑇 𝜑
𝑎 maps 𝐿 𝑝 (R𝑛) into 𝐿 𝑝 (R𝑛) continuously. In the case 0 < 𝑘 < 1,

all the results above are true provided that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)
1,0 (R𝑛).

Outline of the proof.

For the high-frequency portion of the operator, we use Propositions 9.1 and 9.2 to show that for
𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝0)

0,0 (R𝑛) (when 𝑘 ≥ 1), and for 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝0)
1,0 (R𝑛) (when 0 < 𝑘 < 1), the

operators 𝑇
𝜑
𝑎 and

(
𝑇

𝜑
𝑎

)∗ are bounded from ℎ𝑝0 (R𝑛) to 𝐿 𝑝0 (R𝑛) for all 0 < 𝑝0 < 1. Now, using
analytic interpolation to the analytic family of operators in the Hardy space setting due to R. Macías
(see, e.g., [4, Theorem E, p. 597]), one considers 𝑇 𝜑

𝑎𝑧
and (𝑇 𝜑

𝑎𝑧
)∗, with 0 ≤ Re 𝑧 ≤ 1 and

𝑎𝑧 (𝑥, 𝜉) := |𝜉 |𝑚𝑘 (𝑝0) 𝜀−(1+𝜀)𝑚𝑘 (𝑝0)𝑧 𝑎(𝑥, 𝜉),

with 𝜀 = (1/𝑞 − 1/2)/(1/𝑝0 − 1/2) − 1 and 𝑞 < 1 chosen such that [𝑛(1/𝑞 − 1/2)] = [𝑛/2]. Now,
the method of proof of Propositions 9.1 and 9.2 reveals that 𝑇 𝜑

𝑎𝑖Im 𝑧
and (𝑇 𝜑

𝑎𝑖Im 𝑧
)∗ are bounded from

ℎ𝑞 (R𝑛) to 𝐿𝑞 (R𝑛) with bounds that depend on a positive power of (1 + | Im 𝑧 |) while Theorem
5.1 yields that 𝑇 𝜑

𝑎1+𝑖Im 𝑧
and (𝑇 𝜑

𝑎1+𝑖Im 𝑧
)∗ are bounded from 𝐿2 (R𝑛) to 𝐿2 (R𝑛) with constant bounds

independent of z. This enables one to interpolate these results in accordance with [4, Theorem E, p.
597] to show that 𝑇 𝜑

𝑎 and (𝑇 𝜑
𝑎 )∗ are bounded from ℎ𝑝0 (R𝑛) to 𝐿 𝑝0 (R𝑛) for all 0 < 𝑝0 ≤ 2. Hence,

the claimed 𝐿𝑝-boundedness follows by duality.
For the low-frequency portion of the operator, when the phase function is smooth we use Proposition
8.1, Lemma 6.2 and interpolation with Fujiwara’s 𝐿2-boundedness result in [13] (see the proof
of Theorem 5.1 for details). For the low-frequency portion in the nonsmooth case, we just use
Lemma 6.1. �

The next theorem deals with the local regularity of oscillatory integral operators on Besov–Lipschitz
and Triebel–Lizorkin spaces.

Theorem 3.2. Let 𝑚, 𝑠 ∈ R and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛) with compact support in the x-variable. Assume that
𝑘 ≥ 1, 𝜑 ∈ F

𝑘 is SND, satisfies the 𝐿2-condition (11) and the LF(μ)-condition (14) for some 0 < μ ≤ 1.
Then the following statements hold true:

i) If 𝑝 ∈ (0,∞], 𝑞 ∈ (0,∞], then 𝑇
𝜑
𝑎 : 𝐵𝑠+𝑚−𝑚𝑘 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐵𝑠
𝑝,𝑞 (R𝑛).

ii) If 𝑝 ∈ (0,∞), 𝑞 ∈ (0,∞] and 𝜀 > 0, then 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚𝑘 (𝑝)+𝜀

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛).

iii) If 𝑝 ∈ (0,∞), min (2, 𝑝) ≤ 𝑞 ≤ max (2, 𝑝), then 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚𝑘 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛).

iv) 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚𝑘 (∞)

∞,2 (R𝑛) → 𝐹𝑠
∞,2 (R

𝑛).

In the case 0 < 𝑘 < 1, all the results above are true provided that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
1,0 (R

𝑛).

Outline of the proof.

i) See Section 12.
ii)-iv) See Section 13. �
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3.1.2. Local boundedness of Schrödinger integrals
The following theorem deals with the question of the local regularity of the Schrödinger integral
operators in Besov–Lipschitz and Triebel–Lizorkin spaces.

Theorem 3.3. Let 𝑚, 𝑠 ∈ R and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛) with compact support in the x-variable. Assume
that 𝜑 satisfies equation (15) and is SND. Then the following statements hold true:

i) If 𝑝 ∈ (0,∞], 𝑞 ∈ (0,∞], then 𝑇
𝜑
𝑎 : 𝐵𝑠+𝑚−𝑚2 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐵𝑠
𝑝,𝑞 (R𝑛).

ii) If 𝑝 ∈ (0,∞), 𝑞 ∈ (0,∞] and 𝜀 > 0, then 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚2 (𝑝)+𝜀

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛).

iii) If 𝑝 ∈ (0,∞), min (2, 𝑝) ≤ 𝑞 ≤ max (2, 𝑝), then 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚2 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛).

iv) 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚2 (∞)

∞,2 (R𝑛) → 𝐹𝑠
∞,2 (R

𝑛).

Outline of the proof.

i) See Section 12.
ii)-iv) See Section 13. �

3.2. Global regularity results

In this subsection, we deal with global regularity of both Schrödinger integral and oscillatory integral
operators on Besov–Lipschitz and Triebel–Lizorkin spaces. We shall see that the global results concern-
ing oscillatory integral operators (but not Schrödinger integrals) also require a further restriction of the
range of p in case of operators with phase functions that are nonsmooth (at the origin) in the frequency
variables.

3.2.1. Global boundedness of oscillatory integrals
We start with a global 𝐿 𝑝-boundedness theorem.

Theorem 3.4. Let 𝑘 ≥ 1, 𝑝 ∈ (1,∞) and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)
0,0 (R𝑛). Assume that 𝜑(𝑥, 𝜉) ∈ F

𝑘 is SND and
satisfies the 𝐿2-condition (11), and for some μ > 0 and some 𝑅 > 𝑛 verifies the estimate

|𝜕𝛼
𝜉 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉) | ≤ 𝑐𝛼 |𝜉 |μ−|𝛼 | , |𝛼 | ≥ 0, 0 < |𝜉 | ≤ 2𝑅.

Then the operator 𝑇 𝜑
𝑎 as defined in equation (12) maps 𝐿 𝑝 (R𝑛) into 𝐿 𝑝 (R𝑛) continuously. In the case

0 < 𝑘 < 1, all the results above are true provided that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)
1,0 (R𝑛).

Outline of the proof.

For the low-frequency part of the operator, using 𝑎𝐿 (𝑥, 𝜉) = 𝜓0(𝜉/𝑅) 𝑎(𝑥, 𝜉), one applies Lemma
4.3 with condition (33).
For the high-frequency part, using 𝑎𝐻 (𝑥, 𝜉) = (1 − 𝜓0 (𝜉/𝑅)) 𝑎(𝑥, 𝜉), we shall use Propositions 9.1
and 9.2. To this end, we break up the operator 𝑇 𝜑

𝑎 into pieces 𝑇 �̃�
𝑎ℓ that satisfy 𝜕

𝛽
𝑥 �̃�(𝑥, 𝑒ℓ) ∈ 𝐿∞(R𝑛).

To do this, we make the following construction: define the set of unit vectors {𝑒ℓ }2𝑛
ℓ=1 by letting

{𝑒2𝛾−1}𝑛𝛾=1 be the standard basis in R𝑛 and 𝑒2𝛾 := −𝑒2𝛾−1 for 1 ≤ 𝛾 ≤ 𝑛.Next, let 𝜒 be a nonnegative
function in C∞

𝑏 (R) with

supp 𝜒 = {𝑡 ∈ R; 𝑡 ≥ 1}, 𝜒(𝑡) ≥ 1 if 𝑡 ≥ 𝑅/
√
𝑛,

with R as in the statement of the theorem, and let 𝜒ℓ be the functions in C∞
𝑏 (R𝑛) defined by

𝜒2𝛾−1(𝜉) = 𝜒(𝜉𝛾), 𝜒2𝛾 (𝜉) = 𝜒(−𝜉𝛾), 1 ≤ 𝛾 ≤ 𝑛,

where 𝜉 = (𝜉1, . . . , 𝜉𝑛).
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Furthermore, define 𝜆ℓ (𝜉) := 𝜒ℓ (𝜉)/
∑2𝑛

ℓ=1 𝜒ℓ (𝜉) for 1 ≤ ℓ ≤ 2𝑛 so that 𝜆ℓ ∈ C∞(R𝑛), and∑2𝑛
ℓ=1 𝜆ℓ (𝜉) = 1 for every 𝜉 ∈ R𝑛 \ 𝐵(0, 𝑅). Observe that on the 𝜉-support of 𝑎𝐻 (𝑥, 𝜉), the sum∑2𝑛
ℓ=1 𝜒ℓ (𝜉) is bounded from below by 1. This is because of the fact that if |𝜉 | ≥ 𝑅, then at least one

coordinate 𝜉𝛾 must satisfy
��𝜉𝛾 �� ≥ 𝑅/

√
𝑛 and hence one of the 𝜒ℓ’s is bounded from below by 1. This

yields that, for all multi-indices 𝛼, one has |𝜕𝛼𝜆ℓ (𝜉) | � 1. Now, split

𝑇
𝜑
𝑎𝐻

𝑓 (𝑥) =
2𝑛∑
ℓ=1

∫
R𝑛

𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑎𝐻 (𝑥, 𝜉) 𝜆ℓ (𝜉) �̂� (𝜉) đ𝜉 =:
2𝑛∑
ℓ=1

𝑇
𝜑
𝑎ℓ 𝑓 (𝑥).

The proof reduces to showing the 𝐿𝑝-boundedness of each 𝑇
𝜑
𝑎ℓ . By letting �̃�(𝑥, 𝜉) := 𝜑(𝑥, 𝜉) −

𝜑(𝑥, 𝑒ℓ), we can write 𝑇
𝜑
𝑎ℓ 𝑓 (𝑥) = 𝑒𝑖𝜑 (𝑥,𝑒ℓ ) 𝑇

�̃�
𝑎ℓ 𝑓 (𝑥) with �̃�(𝑥, 𝑒ℓ) = 0 and since 𝐿 𝑝-norms are

invariant under multiplications by factors of the form 𝑒𝑖𝜑 (𝑥,𝑒ℓ ) , the results are unchanged. Now, the
rest of the argument goes exactly as in the proof of Theorem 3.1; however, this does not require
compact support in the x-variable. In particular, Proposition 9.2 goes through since the new phase
function �̃� trivially satisfies 𝜕𝛽

𝑥 �̃�(𝑥, 𝑒ℓ) ∈ 𝐿∞(R𝑛) for every integer ℓ ∈ [1, 2𝑛].

Next, we prove the global Besov–Lipschitz and Triebel–Lizorkin regularity of oscillatory integral
operators.

Theorem 3.5. Let 𝑚, 𝑠 ∈ R and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛). Assume that 𝑘 ≥ 1, 𝜑 ∈ F
𝑘 is SND, satisfies the

𝐿2-condition (11) and the LF(μ)-condition (14) for some 0 < μ ≤ 1. Then the following statements
hold true:

i) If 𝑝 ∈ (𝑛/(𝑛 + μ),∞], 𝑞 ∈ (0,∞], then 𝑇
𝜑
𝑎 : 𝐵𝑠+𝑚−𝑚𝑘 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐵𝑠
𝑝,𝑞 (R𝑛).

ii) If 𝑝 ∈ (𝑛/(𝑛 + μ),∞), 𝑞 ∈ (0,∞] and 𝜀 > 0, then 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚𝑘 (𝑝)+𝜀

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛).

iii) If 𝑝 ∈ (𝑛/(𝑛 + μ),∞), min (2, 𝑝) ≤ 𝑞 ≤ max (2, 𝑝), then 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚𝑘 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛).

iv) 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚𝑘 (∞)

∞,2 (R𝑛) → 𝐹𝑠
∞,2 (R

𝑛).

In the case 0 < 𝑘 < 1, all the results above are true provided that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
1,0 (R

𝑛).
If one deals with smooth phase functions, that is, if we assume that 𝜑 ∈ F

𝑘 ∩ C∞(R𝑛 × R𝑛), is SND
and verifies the 𝐿2-condition (11) (both conditions for all (𝑥, 𝜉) ∈ R𝑛×R𝑛), and |∇𝑥𝜑(𝑥, 0) | ∈ 𝐿∞(R𝑛),
then the range of validity of the results above can be extended to 𝑝 > 0.

Outline of the proof.

i) See Section 12.
ii)-iv) See Section 13. �

3.2.2. Global boundedness of Schrödinger integrals
For the case of Schrödinger integral operators, as in the case of smooth phase functions treated above, we
only need to have control on |∇𝑥𝜑(𝑥, 0) |, instead of the LF(μ)-condition (14) thanks to the smoothness
of the phase and assumption (15). However, for the purpose of the 𝐿 𝑝-boundedness, no assumption on
the phase other that strong nondegeneracy and equation (15) are needed.

Theorem 3.6. Let 𝑚, 𝑠 ∈ R and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛). Assume that 𝜑 satisfies equation (15), is SND and
|∇𝑥𝜑(𝑥, 0) | ∈ 𝐿∞(R𝑛). Then the following statements hold true:

i) If 𝑝 ∈ (0,∞], 𝑞 ∈ (0,∞], then 𝑇
𝜑
𝑎 : 𝐵𝑠+𝑚−𝑚2 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐵𝑠
𝑝,𝑞 (R𝑛).

ii) If 𝑝 ∈ (0,∞), 𝑞 ∈ (0,∞] and 𝜀 > 0, then 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚2 (𝑝)+𝜀

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛).

iii) If 𝑝 ∈ (0,∞), min (2, 𝑝) ≤ 𝑞 ≤ max (2, 𝑝), then 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚2 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛).

iv) 𝑇
𝜑
𝑎 : 𝐹𝑠+𝑚−𝑚2 (∞)

∞,2 (R𝑛) → 𝐹𝑠
∞,2 (R

𝑛).
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Outline of the proof.

i) See Section 12.
ii)-iv) See Section 13. �

Remark 3.7. Using the function space table (6), one immediately sees that the above regularity results
yield in particular the local and global boundedness of the Schrödinger and oscillatory integral operators
on 𝐿 𝑝 (R𝑛), ℎ𝑝 (R𝑛), bmo(R𝑛) and Λ𝑠 (R𝑛).

Remark 3.8. In dealing with the 𝐿 𝑝-boundedness in the smooth case of Theorem 3.5 and Theorem 3.6
the assumption on the boundedness of the gradient of 𝜑(𝑥, 0) is superfluous. Indeed, if this is not the
case, then we can simply replace 𝜑(𝑥, 𝜉) by 𝜑(𝑥, 𝜉) − 𝜑(𝑥, 0) + 𝜑(𝑥, 0). Now, the new phase function
�̃�(𝑥, 𝜉) := 𝜑(𝑥, 𝜉) − 𝜑(𝑥, 0) is also SND, verifies equation (15) and last but not least �̃�(𝑥, 0) = 0.
Since 𝐿 𝑝-norms are invariant under multiplications by factors of the form 𝑒𝑖𝜑 (𝑥,0) , the results are
unchanged.

An interesting question here is whether one can prove global regularity results for Schrödinger integral
operators when |∇𝑥𝜑(𝑥, 0) | ∉ 𝐿∞(R𝑛). This case already appears for the phase function associated to
the propagator of the harmonic oscillator where 𝜑(𝑥, 0) exhibits quadratic behaviour. The following
theorem provides an answer to this question.

Theorem 3.9. Assume that 𝜑 satisfies equation (15) and is SND. Then the following statements hold
true:

i) If 𝑝 ∈ (0,∞) and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚2 (𝑝)
0,0 (R𝑛), then 𝑇

𝜑
𝑎 : ℎ𝑝 (R𝑛) → ℎ𝑝 (R𝑛).

ii) If 𝑚 ∈ R, 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛), 𝑝 ∈ [2,∞) and 𝑠 ∈ [𝑚2 (𝑝), 0], then 𝑇
𝜑
𝑎 : 𝐻𝑠+𝑚−𝑚2 (𝑝) , 𝑝 (R𝑛) →

𝐻𝑠, 𝑝 (R𝑛). Furthermore, this estimate is sharp with respect to s.

Outline of the proof.

i) See Section 13.
ii) Assume that 𝑇

𝜑
𝑎 is any Schrödinger integral operator with 𝑎 ∈ 𝑆𝑚

0,0 (R
𝑛) 𝑚2(𝑝) ≤ 𝑠 ≤ 0

for 2 ≤ 𝑝 < ∞. By [8, Theorem 5.3], one has 𝑇
𝜑
𝑎 : 𝐿 𝑝 (R𝑛) → 𝐻𝑚2 (𝑝) , 𝑝 (R𝑛) if 𝑚 = 0,

which directly generalises to 𝑇
𝜑
𝑎 : 𝐻𝑚,𝑝 (R𝑛) → 𝐻𝑚2 (𝑝) , 𝑝 (R𝑛) for any 𝑚 ∈ R. It follows

from Theorem 10.1 that 𝑇
𝜑
𝑎 : 𝐻𝑚−𝑚2 (𝑝) , 𝑝 (R𝑛) → 𝐿 𝑝 (R𝑛) and hence complex interpolation

𝐻𝑠, 𝑝 (R𝑛) =
(
𝐻0, 𝑝 (R𝑛), 𝐻𝑚2 (𝑝) , 𝑝 (R𝑛)

)
𝜃 (taking 𝜃 = 𝑠/𝑚2(𝑝)) yields the desired estimate.

To prove the sharpness in s, define the operator 𝑇 𝑓 (𝑥) := 𝑒𝑖 |𝑥 |
2
𝑓 (𝑥) and let 𝑎(𝑥, 𝜉) := 〈𝜉〉𝑚 and

𝜑(𝑥, 𝜉) := 𝑥 · 𝜉 + |𝑥 |2. Using the fact that 𝑇 𝜑
𝑎 = 𝑇 (1 − Δ)𝑚/2, we note that the estimate��𝑇 𝜑

𝑎 𝑓
��
𝐻 𝑠,𝑝 (R𝑛) � ‖ 𝑓 ‖𝐻 𝑠+𝑚−𝑚2 (𝑝) , 𝑝 (R𝑛) ,

is equivalent to

‖𝑇 𝑓 ‖𝐻 𝑠,𝑝 (R𝑛) � ‖ 𝑓 ‖𝐻 𝑠−𝑚2 (𝑝) , 𝑝 (R𝑛) .

Hence, from now on, we can take 𝑚 = 0.
We start by assuming that 𝑠 > 0. If μ := −𝑠 − 𝑛/𝑝 and 𝑠′ > 0, then (1 − Δ)𝑠′/2〈𝑥〉μ ∼ 〈𝑥〉μ ∈

𝐿𝑝 (R𝑛), but (1 − Δ)𝑠/2𝑇 〈𝑥〉μ ∼ 〈𝑥〉μ+𝑠 = 〈𝑥〉−𝑛/𝑝 ∉ 𝐿 𝑝 (R𝑛). This shows that T does not map
𝐻𝑠′, 𝑝 (R𝑛) into 𝐻𝑠, 𝑝 (R𝑛) continuously for any 𝑠, 𝑠′ > 0 and in particular, if we choose 𝑠′ = 𝑠−𝑚2(𝑝),
then this is true.

We now assume that 𝑠 < 𝑚2 (𝑝). Since 𝑇∗ 𝑓 (𝑥) = 𝑒−𝑖 |𝑥 |
2
𝑓 (𝑥) we see by a duality argument that

for any 𝑠, 𝑠′ < 0, T does not map 𝐻𝑠′, 𝑝 (R𝑛) into 𝐻𝑠, 𝑝 (R𝑛) continuously for any 𝑠, 𝑠′ < 0. If one
takes 𝑠′ = 𝑠 − 𝑚2(𝑝), then 𝑠 < 𝑚2 (𝑝) implies 𝑠, 𝑠′ < 0, and this concludes the proof. �

One can also show the sharpness of the results in Theorem 3.9 in a much larger scale, as the following
corollary shows.

https://doi.org/10.1017/fms.2023.76 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.76


18 A. J. Castro et al.

Corollary 3.10. If 𝑠 < 𝑚2 (𝑝) or 𝑠 > 0, then there is a Schrödinger integral operator 𝑇 𝜑
𝑎 of order 𝑚2 (𝑝)

that is not 𝐹𝑠
𝑝,𝑞- or 𝐵𝑠

𝑝,𝑞-bounded for 1 < 𝑝 < ∞ and 0 < 𝑞 ≤ ∞.

Proof. The proofs for 𝐹𝑠
𝑝,𝑞 (R𝑛) and 𝐵𝑠

𝑝,𝑞 (R𝑛) can be done in one single step, so let A denote either F
or B. We proceed using a proof by contradiction. Assume that 𝑠 < 𝑚2 (𝑝) or 𝑠 > 0 and that all 𝑇 𝜑

𝑎 are
𝐴𝑠

𝑝,𝑞-bounded. Take 0 < 𝜀 < |𝑠/4|. Then according to the boundedness assumption one has��𝑇 𝜑
𝑎 𝑓

��
𝐻 𝑠−4𝜀,𝑝 (R𝑛) �

��𝑇 𝜑
𝑎 𝑓

��
𝐹 𝑠−3𝜀
𝑝,𝑝 (R𝑛) =

��𝑇 𝜑
𝑎 𝑓

��
𝐴𝑠−3𝜀

𝑝,𝑝 (R𝑛) �
��𝑇 𝜑

𝑎 𝑓
��
𝐴𝑠−2𝜀

𝑝,𝑞 (R𝑛)

� ‖ 𝑓 ‖𝐴𝑠−2𝜀
𝑝,𝑞 (R𝑛) � ‖ 𝑓 ‖𝐴𝑠−𝜀

𝑝,𝑝 (R𝑛) = ‖ 𝑓 ‖𝐹 𝑠−𝜀
𝑝,𝑝 (R𝑛) � ‖ 𝑓 ‖𝐻 𝑠,𝑝 (R𝑛) ,

using the embeddings in equations (7) and (8). Now, this is a contradiction since 𝑠 − 4𝜀 < 𝑚2(𝑝) or
𝑠 − 4𝜀 > 0 and the Schrödinger integral operator 𝑒𝑖 |𝑥 |2 (1 −Δ)𝑚2 (𝑝)/2 is not bounded from 𝐻𝑠, 𝑝 (R𝑛) to
𝐻𝑠−4𝜀,𝑝 (R𝑛) as was shown in the proof of Theorem 3.9 ii). �

3.3. A parameter-dependent composition formula

The next result describes the action of a parameter-dependent pseudodifferential operator on a general
oscillatory integral operator. Its significance is twofold. On one hand, it provides a step towards a
calculus for the oscillatory integral operators. On the other, it enables one to prove regularity results
for the operators on classical function spaces in both Banach and quasi-Banach scales. The result also
generalises the asymptotic expansion that was obtained in [27].

Theorem 3.11. Let 𝑚, 𝑠 ∈ R and 𝜌 ∈ [0, 1]. Suppose that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
𝜌,0(R

𝑛), 𝑏(𝑥, 𝜉) ∈ 𝑆𝑠
1,0 (R

𝑛) and
𝜑 is a phase function that is smooth on supp 𝑎 and verifies the conditions

i) |𝜉 | � |∇𝑥𝜑(𝑥, 𝜉) | � |𝜉 | and
ii) for all |𝛼 | ≥ 0 and all |𝛽 | ≥ 1, |𝜕𝛼

𝜉 𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉) | � 〈𝜉〉1−|𝛼 | ,

for all (𝑥, 𝜉) ∈ supp 𝑎. For 0 < 𝑡 ≤ 1, consider the parameter-dependent pseudodifferential operator

𝑏(𝑥, 𝑡𝐷) 𝑓 (𝑥) :=
∫
R𝑛

𝑒𝑖𝑥 ·𝜉 𝑏(𝑥, 𝑡𝜉) �̂� (𝜉) đ𝜉,

and the oscillatory integral operator

𝑇
𝜑
𝑎 𝑓 (𝑥) :=

∫
R𝑛

𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑎(𝑥, 𝜉) �̂� (𝜉) đ𝜉.

Let 𝜎𝑡 be the amplitude of the composition operator 𝑇 𝜑
𝜎𝑡

:= 𝑏(𝑥, 𝑡𝐷)𝑇 𝜑
𝑎 given by

𝜎𝑡 (𝑥, 𝜉) :=
∬
R𝑛×R𝑛

𝑎(𝑦, 𝜉) 𝑏(𝑥, 𝑡𝜂) 𝑒𝑖 (𝑥−𝑦) ·𝜂+𝑖𝜑 (𝑦, 𝜉 )−𝑖𝜑 (𝑥, 𝜉 ) đ𝜂 d𝑦.

Then for any 𝑀 ≥ 1 and all 0 < 𝜀 < 1/2, one can write 𝜎𝑡 as

𝜎𝑡 (𝑥, 𝜉) = 𝑏(𝑥, 𝑡∇𝑥𝜑(𝑥, 𝜉)) 𝑎(𝑥, 𝜉) +
∑

0< |𝛼 |<𝑀

𝑡 𝜀 |𝛼 |

𝛼!
𝜎𝛼 (𝑡, 𝑥, 𝜉) + 𝑡 𝜀𝑀 𝑟 (𝑡, 𝑥, 𝜉), (16)

where, for all multi-indices 𝛽, 𝛾 one has

|𝜕𝛽
𝜉 𝜕

𝛾
𝑥 𝜎𝛼 (𝑡, 𝑥, 𝜉) | � 𝑡min(𝑠,0) 〈𝜉〉𝑠+𝑚−(1/2−𝜀) |𝛼 |−𝜌 |𝛽 | , for 0 < |𝛼 | < 𝑀,

|𝜕𝛽
𝜉 𝜕

𝛾
𝑥 𝑟 (𝑡, 𝑥, 𝜉) | � 𝑡min(𝑠,0) 〈𝜉〉𝑠+𝑚−(1/2−𝜀)𝑀−𝜌 |𝛽 | .
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Outline of the proof.

See Section 11. �

Remark 3.12. We shall frequently use the previous theorem when t is replaced by 2− 𝑗 and 𝑏(𝑥, 𝑡𝐷) =
𝜓(2− 𝑗𝐷) with 𝜓 as in Definition 2.1. This yields the following formula for the composition 𝜓(2− 𝑗𝐷)𝑇 𝜑

𝑎 .
For any integer 𝑀 ≥ 1 and 0 < 𝜀 < 1/2, one can write

𝜓
(
2− 𝑗𝐷

)
𝑇

𝜑
𝑎 =

∑
|𝛼 |<𝑀

2− 𝑗 𝜀 |𝛼 |

𝛼!
𝑇

𝜑
𝜎𝛼, 𝑗

+ 2− 𝑗 𝜀𝑀𝑇
𝜑
𝑟 𝑗 , (17)

with 𝜎0, 𝑗 (𝑥, 𝜉) := 𝜓
(
2− 𝑗∇𝑥𝜑(𝑥, 𝜉)

)
𝑎(𝑥, 𝜉) and

|𝜕𝛽
𝜉 𝜕

𝛾
𝑥 𝜎𝛼, 𝑗 (𝑥, 𝜉) | � 〈𝜉〉𝑚−(1/2−𝜀) |𝛼 |−𝜌 |𝛽 | , |𝛼 | ≥ 0 (18)

supp𝜉 𝜎𝛼, 𝑗 (𝑥, 𝜉) =
{
𝜉 ∈ R𝑛 : 𝐶12 𝑗 ≤ |𝜉 | ≤ 𝐶22 𝑗

}
,

|𝜕𝛽
𝜉 𝜕

𝛾
𝑥 𝑟 𝑗 (𝑥, 𝜉) | � 〈𝜉〉𝑚−(1/2−𝜀)𝑀−𝜌 |𝛽 | . (19)

Moreover, if 𝑎(𝑥, 𝜉) is supported outside the origin in the 𝜉-variable, then 𝑟 𝑗 (𝑥, 𝜉) also vanishes in a
neighbourhood of 𝜉 = 0. See the proof of Theorem 3.11 for the details.

3.4. Global 𝐿𝑝 − 𝐿𝑞 estimates

In this section, we state and prove basic global 𝐿𝑝 − 𝐿𝑞 estimates for the oscillatory integral and the
Schrödinger integral operators. The 𝐿𝑝−𝐿𝑞 estimates for the oscillatory integral operators are as follows.

Theorem 3.13. Let 𝑚, 𝑠 ∈ R and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛). Assume that 𝑘 ≥ 1, 𝜑 ∈ F
𝑘 is SND, satisfies the

𝐿2-condition (11) and for some μ > 0 and some 𝑅 > 𝑛 verifies the estimate

|𝜕𝛼
𝜉 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉) | ≤ 𝑐𝛼 |𝜉 |μ−|𝛼 | , |𝛼 | ≥ 0, 0 < |𝜉 | ≤ 2𝑅.

Then for 1 < 𝑝 ≤ 𝑞 < ∞, 𝑇 𝜑
𝑎 : 𝐿 𝑝 (R𝑛) → 𝐿𝑞 (R𝑛), provided that 𝑚 ≤ 𝑚𝑘 (𝑞) − 𝑛(1/𝑝 − 1/𝑞). In the

case 0 < 𝑘 < 1, all the results above are true provided that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
1,0 (R

𝑛).

Proof. We write

𝑇
𝜑
𝑎 = 𝑇

𝜑
𝑎 (1 − Δ) (𝑚𝑘 (𝑞)−𝑚)/2(1 − Δ) (𝑚−𝑚𝑘 (𝑞))/2.

Then since 𝑇
𝜑
𝑎 (1 − Δ) (𝑚𝑘 (𝑞)−𝑚)/2 is an oscillatory integral operator with an amplitude in the class

𝑆𝑚𝑘 (𝑞)
0,0 (R𝑛) for 𝑘 ≥ 1 and 𝑆𝑚𝑘 (𝑞)

1,0 (R𝑛) when 0 < 𝑘 < 1, Theorem 3.4 yields that

‖𝑇 𝜑
𝑎 (1 − Δ) (𝑚𝑘 (𝑞)−𝑚)/2𝑢‖𝐿𝑞 (R𝑛) � ‖𝑢‖𝐿𝑞 (R𝑛) .

Therefore, applying the Sobolev embedding theorem and taking 𝑢 = (1 − Δ) (𝑚−𝑚𝑘 (𝑞))/2 𝑓 , we obtain

‖𝑇 𝜑
𝑎 𝑓 ‖𝐿𝑞 (R𝑛) � ‖ 𝑓 ‖𝐿𝑝 (R𝑛) ,

provided that 1 < 𝑝 ≤ 𝑞 < ∞ and 1/𝑝 − 1/𝑞 ≤ (𝑚𝑘 (𝑞) − 𝑚)/𝑛. �

For the Schrödinger integral operators, we have

Theorem 3.14. Assume that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛) and 𝜑 satisfies equation (15) and is SND. Then for
1 < 𝑝 ≤ 𝑞 < ∞, 𝑇 𝜑

𝑎 : 𝐿 𝑝 (R𝑛) → 𝐿𝑞 (R𝑛), provided that 𝑚 ≤ 𝑚2 (𝑞) − 𝑛(1/𝑝 − 1/𝑞).
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Proof. The proof is similar to that of Theorem 3.13. The only difference is that instead of using Theorem
3.4, we use Theorem 3.6 part 𝑖𝑖𝑖), noting that due to the 𝐿𝑝 − 𝐿𝑞 nature of our result, no requirement on
the gradient of the phase function is needed. �

3.5. Applications to harmonic analysis and PDEs

In this subsection, we outline some of the applications of the main results of this paper. We start by
giving a couple of basic examples to highlight how the results obtain here can provide boundedness
results for operators whose regularity has (hitherto) remained elusive.

For any 𝑡 (𝑥) ∈ C∞
𝑏 (R𝑛), the function

𝜑1 (𝑥, 𝜉) := 𝑥 · 𝜉 + 𝑡 (𝑥)〈𝜉〉

is in F
1. This example in not covered by the theory of Fourier integral operators due to lack of

homogeneity and exhibits the simplest example of a phase function related to equations of Klein–
Gordon type. Moreover if we also choose 𝑡 (𝑥) such that |∇𝑡 (𝑥) | is small enough, then this phase function
also satisfies the SND-condition. It is also easily checked that this phase verifies the 𝐿2-condition and
𝜕
𝛽
𝑥 𝜑1(𝑥, 0) = 𝜕𝛽𝑡 (𝑥) ∈ 𝐿∞(R𝑛).

Now, Theorem 3.5 (the part for smooth phase functions) shows that if 𝑚 ∈ R and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛),
then for the oscillatory integral operator 𝑇 𝜑1

𝑎 , 𝑚1 (𝑝) = −𝑛|1/𝑝 − 1/2| and 𝑠 ∈ R, one has the following
regularity results:

i) For 𝑝 ∈ (0,∞], 𝑞 ∈ (0,∞], 𝑇 𝜑1
𝑎 : 𝐵𝑠+𝑚−𝑚1 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐵𝑠
𝑝,𝑞 (R𝑛) continuously.

ii) If 𝑝 ∈ (0,∞), 𝑞 ∈ (0,∞] and 𝜀 > 0, then 𝑇
𝜑1
𝑎 : 𝐹𝑠+𝑚−𝑚1 (𝑝)+𝜀

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛) continuously.

iii) If 𝑝 ∈ (0,∞), min (2, 𝑝) ≤ 𝑞 ≤ max (2, 𝑝), then 𝑇 𝜑1
𝑎 : 𝐹𝑠+𝑚−𝑚1 (𝑝)

𝑝,𝑞 (R𝑛) → 𝐹𝑠
𝑝,𝑞 (R𝑛) continuously.

iv) 𝑇
𝜑1
𝑎 : 𝐹𝑠+𝑚+𝑛/2

∞,2 (R𝑛) → 𝐹𝑠
∞,2 (R

𝑛) continuously.

Another example is that of

𝜑2(𝑥, 𝜉) := 𝑥 · 𝜉 + 𝑡 (𝑥) |𝜉 |𝑘

with 0 < 𝑘 ≤ 1 which is in F
𝑘 . Once again, if we choose 𝑡 (𝑥) such that |∇𝑡 (𝑥) | is small enough, then 𝜑2

is also satisfies the SND-condition. Furthermore, we have that

|𝜕𝛼
𝜉 𝜕

𝛽
𝑥 (𝑥 · 𝜉 + 𝑡 (𝑥) |𝜉 |𝑘 − 𝑥 · 𝜉) | ≤ 𝑐𝛼,𝛽 |𝜉 |𝑘−|𝛼 | , |𝛼 + 𝛽 | ≥ 0, |𝜉 | ≤ 2,

which yields that the LF(μ) condition is satisfied with μ = 𝑘 . Finally,

|𝜕𝛼
𝜉 𝜕

𝛽
𝑥 (𝑥 · 𝜉 + 𝑡 (𝑥) |𝜉 |𝑘 ) | ≤ 𝑐𝛼,𝛽 , |𝛼 | ≥ 1, |𝛽 | ≥ 1, |𝜉 | ≥ 1,

implies that the 𝐿2-condition is also satisfied. Thus, once again Theorem 3.5 shows that if 𝑚 ∈ R and
𝑎(𝑥, 𝜉) ∈ 𝑆𝑚

0,0 (R
𝑛), then for the oscillatory integral operator 𝑇 𝜑2

𝑎 , 𝑚𝑘 (𝑝) = −𝑘𝑛|1/𝑝 − 1/2| and 𝑠 ∈ R,
one has similar regularity results in Besov–Lipschitz and Triebel–Lizorkin spaces, as above with the
only difference that 𝑚1 (𝑝) is replaced by 𝑚𝑘 (𝑝) and the range of validity of the results in p has to be
taken larger than 𝑛/(𝑛 + 𝑘).

The applications to partial differential equations concern local and global Besov–Lipschitz and
Triebel–Lizorkin estimates for solutions to dispersive PDEs. First, let us consider the basic example of
a dispersive equation in R𝑛+1{

𝑖𝜕𝑡𝑢(𝑥, 𝑡) + 𝜙(𝐷)𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ R𝑛, 𝑡 ≠ 0,
𝑢(𝑥, 0) = 𝑓 (𝑥), 𝑥 ∈ R𝑛,

(20)
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where �𝜙(𝐷)𝑢(𝜉, 𝑡) = 𝜙(𝜉) �̂�(𝜉, 𝑡). It is well known that the solution to this Cauchy problem is given by

𝑢(𝑥, 𝑡) =
∫
R𝑛

𝑒𝑖𝑥 ·𝜉+𝑖𝑡 𝜙 ( 𝜉 ) �̂� (𝜉) đ𝜉. (21)

Theorem 3.15. Assume that 0 < 𝑘 < ∞, 𝜙(𝜉) ∈ C∞(R𝑛 \ {0}) and

|𝜕𝛼𝜙(𝜉) | ≤ 𝑐𝛼 |𝜉 |𝑘−|𝛼 | for 𝜉 ≠ 0 and |𝛼 | ≥ 1, (22)

and 𝑢(𝑥, 𝑡) is the solution of the Cauchy problem (20) represented by the oscillatory integral above.
Then for any 𝜏 > 0 and each 𝑡 ∈ [−𝜏, 𝜏] and all 𝑝 ∈ (𝑛/(𝑛 + min(1, 𝑘)),∞], 0 < 𝑞 ≤ ∞, 𝑠 ∈ R and
𝑚𝑘 (𝑝) = −𝑘𝑛|1/𝑝 − 1/2|, one has

sup
𝑡 ∈[−𝜏,𝜏 ]

‖𝑢‖𝐵𝑠
𝑝,𝑞 (R𝑛) ≤ 𝐶𝜏 ‖ 𝑓 ‖𝐵𝑠−𝑚𝑘 (𝑝)

𝑝,𝑞 (R𝑛) . (23)

Similarly, we have for any 𝑠 ∈ R, 𝑝 ∈ (𝑛/(𝑛 + min(1, 𝑘)),∞), min (2, 𝑝) ≤ 𝑞 ≤ max (2, 𝑝) that

sup
𝑡 ∈[−𝜏,𝜏 ]

‖𝑢‖𝐹 𝑠
𝑝,𝑞 (R𝑛) ≤ 𝐶𝜏 ‖ 𝑓 ‖𝐹 𝑠−𝑚𝑘 (𝑝)

𝑝,𝑞 (R𝑛) . (24)

All the results are sharp when 𝑘 > 1.
Furthermore, one also has for 1 < 𝑝 ≤ 𝑞 < ∞ and 𝑠 ∈ R, the Sobolev space estimate

sup
𝑡 ∈[−𝜏,𝜏 ]

‖𝑢‖𝐻 𝑠−𝑛(1/𝑝−1/𝑞) ,𝑞 (R𝑛) ≤ 𝐶𝜏 ‖ 𝑓 ‖𝐻 𝑠−𝑚𝑘 (𝑞) , 𝑝 (R𝑛) . (25)

Proof. Observe that, the phase function in the integral representation (21) is 𝑥 · 𝜉 + 𝑡𝜙(𝜉). Now, for
any 𝜏 > 0 and each 𝑡 ∈ [−𝜏, 𝜏] the estimate (22) yields that this phase function is SND and in F

𝑘 and
also satisfies the LF(μ)-condition (14) with μ = min(1, 𝑘). Moreover, the amplitude of the oscillatory
integral (21) is identically equal to 1, which is trivially in 𝑆0

1,0 (R
𝑛) ⊂ 𝑆0

0,0 (R
𝑛). Using equation (21)

and Theorem 3.5, it follows that the solution equation (20) verifies equation (23). The proof of equation
(24) is similar and hence omitted. For the proof of the sharpness, see Section 14. Finally, equation (25)
follows from Theorem 3.13. �

Remark 3.16. If the function 𝜙 in Theorem 3.15 is assumed to be positively homogeneous of degree 1,
then the relevant order 𝑚1 (𝑝) in the theorem above could be improved to −(𝑛 − 1) |1/𝑝 − 1/2|; see [20,
Section 10].

Concerning Schrödinger equations, let us consider the Cauchy problem for a variable-coefficient
Schrödinger equation {

𝑖𝜕𝑡Ψ(𝑥, 𝑡) +ℋ(𝑥, 𝐷)Ψ(𝑥, 𝑡) = 0, 𝑥 ∈ R𝑛, 𝑡 ≠ 0,
Ψ(𝑥, 0) = Ψ0(𝑥), 𝑥 ∈ R𝑛,

(26)

where ℋ(𝑥, 𝐷) is the Hamiltonian of the quantum mechanical system. For example, one can have
ℋ(𝑥, 𝐷) = −Δ +𝑉 (𝑥), which corresponds to the Hamiltonian function ℋ(𝑥, 𝜉) = |𝜉 |2 +𝑉 (𝑥). Now, if
in generalℋ is real valued and |𝜕𝛼

𝜉 𝜕
𝛽
𝑥ℋ(𝑥, 𝜉) | � 1 for |𝛼+ 𝛽 | ≥ 2 (for example, the harmonic oscillator

−Δ + |𝑥 |2 yields such a Hamiltonian), then the Cauchy problem above can be solved locally in time and
modulo smoothing operators by

Ψ(𝑥, 𝑡) =
∫
R𝑛

𝑒𝑖𝜑 (𝑥, 𝜉 ,𝑡) 𝑎(𝑥, 𝜉, 𝑡) Ψ̂0(𝜉) đ𝜉, (27)

where for 𝑡 ∈ (−𝜏, 𝜏), 𝜏 sufficiently small, one has that |𝜕𝛼
𝜉 𝜕

𝛽
𝑥 𝜑(𝑥, 𝜉, 𝑡) | � 1 for |𝛼 + 𝛽 | ≥ 2, 𝜑 is SND

and 𝑎(𝑥, 𝜉, 𝑡) ∈ 𝑆0
0,0 (R

𝑛); see [7, Proposition 4.1]. This yields the following.
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Theorem 3.17. Let Ψ(𝑥, 𝑡) be the solution of the Schrödinger Cauchy problem (26) with initial data Ψ0,
where the Hamiltonian ℋ is real valued and satisfies the estimate |𝜕𝛼

𝜉 𝜕
𝛽
𝑥ℋ(𝑥, 𝜉) | � 1 for |𝛼 + 𝛽 | ≥ 2.

Then there exists 𝜏 > 0 such that for all 𝑝, 𝑞 ∈ (0,∞] and 𝑠 ∈ R, 𝑚2 (𝑝) = −2𝑛|1/𝑝 − 1/2|, we have the
local Besov–Lipschitz space estimate

sup
𝑡 ∈[−𝜏,𝜏 ]

‖Ψ‖𝐵𝑠,loc
𝑝,𝑞 (R𝑛) ≤ 𝐶𝜏 ‖Ψ0‖𝐵𝑠−𝑚2 (𝑝)

𝑝,𝑞 (R𝑛) .

Here, the superscript “loc” means that we first multiply the function (distribution) with a smooth cut-off
function and then take the norm.

Similarly, for any 𝑠 ∈ R, 0 < 𝑝 < ∞, min (2, 𝑝) ≤ 𝑞 ≤ max (2, 𝑝), one has the local Triebel–Lizorkin
estimate

sup
𝑡 ∈[−𝜏,𝜏 ]

‖Ψ‖𝐹 𝑠,loc
𝑝,𝑞 (R𝑛) ≤ 𝐶𝜏 ‖Ψ0‖𝐹 𝑠−𝑚2 (𝑝)

𝑝,𝑞 (R𝑛) ,

which also holds when 𝑝 = ∞ and 𝑞 = 2. Moreover, if 𝑚 < 𝑚2 (𝑝) then for all 𝑠 ∈ R and 𝑝, 𝑞 ∈ (0,∞]
one has

sup
𝑡 ∈[−𝜏,𝜏 ]

‖Ψ‖𝐹 𝑠,loc
𝑝,𝑞 (R𝑛) ≤ 𝐶𝜏 ‖Ψ0‖𝐹 𝑠−𝑚

𝑝,𝑞 (R𝑛) .

Furthermore, we also have the following global (in space) sharp estimates

⎧⎪⎪⎨⎪⎪⎩
sup

𝑡 ∈[−𝜏,𝜏 ]
‖Ψ‖𝐹 𝑠

𝑝,2 (R𝑛) ≤ 𝐶𝜏 ‖Ψ0‖𝐹 𝑠−𝑚2 (𝑝)
𝑝,2 (R𝑛) , 2 ≤ 𝑝 < ∞, 𝑠 ∈ [𝑚2 (𝑝), 0],

sup
𝑡 ∈[−𝜏,𝜏 ]

‖Ψ‖𝐹0
𝑝,2 (R𝑛)

≤ 𝐶𝜏 ‖Ψ0‖𝐹−𝑚2 (𝑝)
𝑝,2 (R𝑛) , 0 < 𝑝 < ∞,

Proof. The local results all follow from the oscillatory integral representation (27) and Theorem 3.3.
The global estimates are all consequences of Theorem 3.9 parts 𝑖𝑖) and 𝑖), respectively. �

4. Estimates for phases and kernels

In this section, we prove some basic kernel estimates for oscillatory integral operators.
The following lemma will enable us to use a composition formula and an asymptotic expansion

for the action of a pseudodifferential operator on an oscillatory integral operator. It is also helpful in
the proof of Proposition 9.2 below. Once this is done, we shall then prove Theorem 3.11 using only
equations (11), (29) and (30).

Lemma 4.1. Assume that 𝑎(𝑥, 𝜉) is an amplitude, and let 𝜑 be a SND phase function satisfying��∇𝜉 𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉)

�� ≤ 𝑐𝛽 , |𝛽 | ≥ 1 and |𝜉 | ≥ 1. (28)

Then for all |𝛽 | ≥ 1, the following estimates

|𝜉 | � |∇𝑥𝜑(𝑥, 𝜉) | � |𝜉 |, (29)

|𝜕𝛽
𝑥 𝜑(𝑥, 𝜉) | � 〈𝜉〉 (30)

hold true for the phase function 𝜑, on the support of 𝑎(𝑥, 𝜉), provided that either

i) the 𝜉-support of 𝑎(𝑥, 𝜉) lies outside the ball 𝐵(0, 𝑅) for some large enough 𝑅 � 1 and 𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉) ∈

𝐿∞(R𝑛 × S𝑛−1), for |𝛽 | ≥ 1
or
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ii) the amplitude 𝑎(𝑥, 𝜉) has compact x-support and has its 𝜉-support outside the ball 𝐵(0, 𝑅) for some
large enough 𝑅 � 1
or

iii) 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛 × R𝑛), 𝜑(𝑥, 0) = 0, and
��∇𝜉 𝜕

𝛽
𝑥 𝜑(𝑥, 𝜉)

�� ≤ 𝑐𝛽 , |𝛽 | ≥ 1, for (𝑥, 𝜉) ∈ R𝑛 × R𝑛.

Proof. We would like to compare 𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉) with some 𝜕

𝛽
𝑥 𝜑(𝑥, 𝜉0) for |𝛽 | ≥ 1. In 𝑖) and 𝑖𝑖), we choose

𝜉0 = 𝜉/|𝜉 |. Note that the line segment 𝜉0 + 𝑡 (𝜉 − 𝜉0), with 𝑡 ∈ (0, 1) and |𝜉 | ≥ 𝑅 does not intersect
𝐵(0, 1) so we can use equation (28) without problem. In 𝑖𝑖𝑖), we choose 𝜉0 = 0. Therefore, on the
support of 𝑎(𝑥, 𝜉), using equation (28) and the mean-value theorem yield for |𝛽 | ≥ 1 that

|𝜕𝛽
𝑥 𝜑(𝑥, 𝜉) | ≤ |𝜕𝛽

𝑥 𝜑(𝑥, 𝜉) − 𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉0) | + |𝜕𝛽

𝑥 𝜑(𝑥, 𝜉0) | � |𝜉 − 𝜉0 | + |𝜕𝛽
𝑥 𝜑(𝑥, 𝜉0) |

� |𝜉 | + |𝜕𝛽
𝑥 𝜑(𝑥, 𝜉0) |.

Thus, for both cases 𝑖) and 𝑖𝑖) one has that |𝜕𝛽
𝑥 𝜑(𝑥, 𝜉0) | � 1 � |𝜉 |, uniformly in x on the support of

𝑎(𝑥, 𝜉), and the same is also true in case 𝑖𝑖𝑖) due to the vanishing of the derivatives. This proves equation
(30) and the second inequality of (29).

To prove the first inequality of equation (29), Schwartz’s global inverse function theorem can be used
just as in the proof of in [9, Proposition 1.11] to obtain

|𝜉 | − |𝜉0 | ≤ |𝜉 − 𝜉0 | � |∇𝑥𝜑(𝑥, 𝜉) − ∇𝑥𝜑(𝑥, 𝜉0) | ≤ |∇𝑥𝜑(𝑥, 𝜉) | + |∇𝑥𝜑(𝑥, 𝜉0) |. (31)

Therefore, to prove the desired lower bound for |∇𝑥𝜑(𝑥, 𝜉) | in case 𝑖) and 𝑖𝑖), let 𝜉0 be defined above and
insert it into equation (31). Then for a certain constant 𝐴 = 𝐴(𝑛, 𝛿, 𝑐1) > 0 (where n is the dimension,
𝛿 is the lower bound in the SND-condition and 𝑐1 is the upper bound on the norm of the mixed Hessian
of 𝜑(𝑥, 𝜉) when |𝜉 | ≥ 1) equation (31) yields that

|𝜉 | ≤ 𝐴
(
|∇𝑥𝜑(𝑥, 𝜉) | + |∇𝑥𝜑(𝑥, 𝜉0) |

)
+ 1.

However, since |𝜉 | > 𝑅, on the support of 𝑎(𝑥, 𝜉) and R can be chosen large enough by taking

𝑅 ≥ 2𝐴
(

max
𝑥∈supp 𝑎 (𝑥, 𝜉0)

| (∇𝑥𝜑(𝑥, 𝜉0) |
)
+ 2,

we obtain

|𝜉 | � |∇𝑥𝜑(𝑥, 𝜉) |.

In case 𝑖𝑖𝑖), the same inequality is once gain valid since we take 𝜉0 = 0 and ∇𝑥𝜑(𝑥, 0) = 0 in equation
(31). �

Next, we turn to kernel estimates of the operators in various settings. A simple case is when the
amplitude is spatially localised.

Lemma 4.2. Let 𝑚 ∈ R, 𝜑(𝑥, 𝜉) be a real-valued function and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛) has compact support
in the spatial variable x. Define

𝐾 𝑗 (𝑥, 𝑦) :=
∫
R𝑛

𝑎 𝑗 (𝑥, 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑒−𝑖𝑦 ·𝜉 đ𝜉,

where 𝑎 𝑗 (𝑥, 𝜉) := 𝜓 𝑗 (𝜉) 𝑎(𝑥, 𝜉) is a Littlewood–Paley piece of the amplitude a. Then for each 𝑗 ∈ Z+
and all multi-indices 𝛽 we have���𝜕𝛽

𝑦 𝐾 𝑗 (𝑥, 𝑦)
���𝐿∞

𝑥,𝑦 (R𝑛×R𝑛) � 2 𝑗 (𝑚+|𝛽 |+𝑛) .
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Proof. Observe that

|𝜕𝛽
𝑦 𝐾 𝑗 (𝑥, 𝑦) | =

���𝜕𝛽
𝑦

∫
R𝑛

𝑎 𝑗 (𝑥, 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑒−𝑖𝑦 ·𝜉 đ𝜉
��� = ��� ∫

R𝑛
𝑎 𝑗 (𝑥, 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝜉𝛽 𝑒−𝑖𝑦 ·𝜉 đ𝜉

���
�

∫
R𝑛

|𝑎 𝑗 (𝑥, 𝜉) | |𝜉 | |𝛽 | đ𝜉 � ‖𝑎 𝑗 ‖𝐿∞ (R𝑛×R𝑛) 2 𝑗 ( |𝛽 |+𝑛) � 2 𝑗 ( |𝛽 |+𝑚+𝑛) ,

for any 𝑥, 𝑦 ∈ R𝑛. �

Next, we prove a kernel estimate for the low-frequency portion of oscillatory integral operators.
Lemma 4.3. Let μ > 0, 𝑎𝐿 (𝑥, 𝜉) be a symbol that is compactly supported and smooth outside the origin
in the 𝜉-variable and 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛×R𝑛 \ {0}) be a phase function. Assume that one of the following
conditions hold. {

‖𝜕𝛼
𝜉 𝑎𝐿 (·, 𝜉)‖𝐿∞ (R𝑛) ≤ 𝑐𝛼 |𝜉 |μ−|𝛼 | , |𝛼 | ≥ 0,

‖𝜕𝛼
𝜉 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉)‖𝐿∞

𝑥 (R𝑛) ≤ 𝑐𝛼 |𝜉 |− |𝛼 | , |𝛼 | ≥ 1,
(32){

‖𝜕𝛼
𝜉 𝑎𝐿 (·, 𝜉)‖𝐿∞ (R𝑛) ≤ 𝑐𝛼, |𝛼 | ≥ 0,

‖𝜕𝛼
𝜉 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉)‖𝐿∞

𝑥 (R𝑛) ≤ 𝑐𝛼 |𝜉 |μ−|𝛼 | , |𝛼 | ≥ 0,
(33)

for 𝜉 ≠ 0 and on the support of 𝑎𝐿 (𝑥, 𝜉). Then the modulus of the integral kernel

𝐾 (𝑥, 𝑦) :=
∫
R𝑛

𝑎𝐿 (𝑥, 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑦 ·𝜉 đ𝜉,

and that of 𝐾 (𝑦, 𝑥) are both bounded by 〈𝑥 − 𝑦〉−𝑛−𝜀μ for any 0 ≤ 𝜀 < 1.
Proof. Since |𝐾 (𝑥, 𝑦) | � 1, it is enough to show that that |𝐾 (𝑥, 𝑦) | � |𝑥 − 𝑦 |−𝑛−𝜀μ .

In order to prove the lemma under assumptions (32), we set 𝜎(𝑥, 𝜉) := 𝑎𝐿 (𝑥, 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑥 ·𝜉

𝐾 (𝑥, 𝑦) :=
∫
R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜉 𝜎(𝑥, 𝜉) đ𝜉.

Observe that |𝜕𝛼
𝜉 𝜎(𝑥, 𝜉) | � |𝜉 |μ−|𝛼 | for any |𝛼 | ≥ 0 and 𝜉 ∈ supp𝜉 𝑎𝐿 (𝑥, 𝜉). Now, one introduces a

Littlewood–Paley partition of unity

∞∑
𝑗=−∞

𝜓(2− 𝑗𝜉) = 1, for 𝜉 ≠ 0, with supp𝜓(𝜉) ⊂ {1/2 ≤ |𝜉 | ≤ 2},

and defines

𝐾 𝑗 (𝑥, 𝑦) :=
∫
R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜉 𝜎(𝑥, 𝜉) 𝜓(2− 𝑗𝜉) đ𝜉.

Integration by parts N times yields��𝐾 𝑗 (𝑥, 𝑦)
�� � |𝑥 − 𝑦 |−𝑁

∑
|𝛼 |+ |𝛽 |=𝑁

∫
R𝑛

���𝜕𝛼
𝜉 𝜎(𝑥, 𝜉)

���|𝜕𝛽
𝜉𝜓(2

− 𝑗𝜉) | đ𝜉

� |𝑥 − 𝑦 |−𝑁 2 𝑗 (μ+𝑛−𝑁 ) .

(34)

However, if H is any positive real number, then one can write H as the sum 𝑁 + 𝜃, where N is a
positive integer and 𝜃 ∈ [0, 1). Now, since equation (34) implies that

|𝐾 𝑗 (𝑥, 𝑦) | � 2 𝑗 (𝑛−𝑁+μ) |𝑥 − 𝑦 |−𝑁 , (35)
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and

|𝐾 𝑗 (𝑥, 𝑦) | � 2 𝑗 (𝑛−(𝑁+1)+μ) |𝑥 − 𝑦 |−(𝑁+1) , (36)

raising equation (35) to the power 1 − 𝜃 and equation (36) to the power 𝜃, and using the fact that
𝐻 = 𝑁 + 𝜃, yield that

|𝐾 𝑗 (𝑥, 𝑦) | = |𝐾 𝑗 (𝑥, 𝑦) |1−𝜃 |𝐾 𝑗 (𝑥, 𝑦) |𝜃 � 2 𝑗 (𝑛−𝐻+μ) |𝑥 − 𝑦 |−𝐻 ,

for all 𝐻 ≥ 0.
Observe that there exists 𝑀 > 0 such that supp𝜉 𝑎𝐿 (𝑥, 𝜉) ⊆ 𝐵(0, 2𝑀 ). Therefore, we can write

𝐾 (𝑥, 𝑦) =
𝑀∑

𝑗=−∞
𝐾 𝑗 (𝑥, 𝑦),

and hence setting 𝐻 := 𝑛 + 𝜀μ, we obtain

|𝐾 (𝑥, 𝑦) | �
𝑀∑

𝑗=−∞
|𝑥 − 𝑦 |−𝑛−𝜀μ2 𝑗μ (1−𝜀) � |𝑥 − 𝑦 |−𝑛−𝜀μ .

To prove the lemma under assumptions (33), split the kernel into 𝐾 (𝑥, 𝑦) = 𝐾 ′(𝑥, 𝑦) + 𝐾 ′′(𝑥, 𝑦),
where

𝐾 ′(𝑥, 𝑦) :=
∫
R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜉 𝑎𝐿 (𝑥, 𝜉) đ𝜉,

and

𝐾 ′′(𝑥, 𝑦) :=
∫
R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜉 𝑎𝐿 (𝑥, 𝜉) (𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑥 ·𝜉 − 1) đ𝜉.

Integration by parts N times yields that |𝐾 ′(𝑥, 𝑦) | � |𝑥 − 𝑦 |−𝑁 for all N. To obtain the estimate for
𝐾 ′′(𝑥, 𝑦), we set 𝜎(𝑥, 𝜉) := 𝑎𝐿 (𝑥, 𝜉) (𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑥 ·𝜉 −1) and note that for all |𝛼 | ≥ 0, |𝜕𝛼

𝜉 (𝑒
𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑥 ·𝜉 −

1) | � |𝜉 |μ−|𝛼 | so that |𝜕𝛼
𝜉 𝜎(𝑥, 𝜉) | � |𝜉 |μ−|𝛼 | for any |𝛼 | ≥ 0. Now, the rest of the proof proceeds as in

the previous case above.
The proof for 𝐾 (𝑦, 𝑥) is identical and hence omitted. �

Remark 4.4. Observe that for phase functions of the form 𝑥 · 𝜉 + |𝜉 |𝑘 with 𝑘 > 1 and symbols
𝑎(𝑥, 𝜉) = 𝜒(𝜉) ∈ C∞

𝑐 (R𝑛), a decay of the form 〈𝑥 − 𝑦〉−𝑛−1 was already proven in, for example, [3,
Lemma 2.3].

The next lemma yields a sufficient condition for the ℎ𝑝 − 𝐿 𝑝 boundedness of linear operators and
will be quite useful in what follows.

Lemma 4.5. Assume that 0 < 𝑝 < 1 and 𝑇
𝜑
𝑎 is an 𝐿2-bounded oscillatory or Schrödinger integral

operator. Let 𝑇𝑗 be either 𝑇
𝜑
𝑎 𝜓 𝑗 (𝐷) or 𝜓 𝑗 (𝐷) (𝑇 𝜑

𝑎 )∗ with 𝜓 𝑗 as in Definition 2.1 (i.e., the familiar
j-th Littlewood–Paley piece of 𝑇 𝜑

𝑎 and its formal adjoint (𝑇 𝜑
𝑎 )∗). We also assume that for a p-atom 𝔞

supported in a ball of radius r one has

‖𝑇𝑗𝔞‖𝐿𝑝 (R𝑛) � 𝑟𝑛−𝑛/𝑝 2 𝑗 (𝑛−𝑛/𝑝) . (37)

Moreover, assume that whenever 𝑟 < 1,

‖𝑇𝑗𝔞‖𝐿𝑝 (R𝑛) � 𝑟𝑁+1+𝑛−𝑛/𝑝 2 𝑗 (𝑁+1+𝑛−𝑛/𝑝) , (38)
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for some 𝑁 > 𝑛/𝑝 − 𝑛 − 1. Then 𝑇
𝜑
𝑎 (or (𝑇 𝜑

𝑎 )∗ when the 𝑇𝑗 ’s are associated to the adjoint) is bounded
from ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛).

Proof. Using the atomic characterisation of ℎ𝑝 (R𝑛), and following the strategy in [30, p. 402] for 𝑇 𝜑
𝑎

and the strategy in [29, p. 237] for (𝑇 𝜑
𝑎 )∗, it is enough to show that for any p-atom 𝔞, one has the uniform

estimates

‖𝑇 𝜑
𝑎 𝔞‖𝐿𝑝 (R𝑛) � 1,

or

‖(𝑇 𝜑
𝑎 )∗𝔞‖𝐿𝑝 (R𝑛) � 1,

in each case. We only prove the result in the case of 𝑇 𝜑
𝑎 since the case of the adjoint is similar. We split

the proof in two different cases, namely 𝑟 < 1 and 𝑟 ≥ 1. For 𝑟 ≥ 1, equation (37) yields that

‖𝑇 𝜑
𝑎 𝔞‖ 𝑝𝐿𝑝 (R𝑛) �

∞∑
𝑗=0

‖𝑇𝑗𝔞‖ 𝑝𝐿𝑝 (R𝑛) �
∞∑
𝑗=0

𝑟𝑛𝑝−𝑛 2 𝑗 (𝑛𝑝−𝑛) � 1.

Assume now that 𝑟 < 1. Choose ℓ ∈ Z+ such that 2−ℓ−1 ≤ 𝑟 < 2−ℓ . Using the facts that 2−ℓ ∼ 𝑟 ,
𝑁 + 1 + 𝑛 − 𝑛/𝑝 > 0, 𝑛 − 𝑛/𝑝 < 0, equations (37) and (38) we conclude that

‖𝑇 𝜑
𝑎 𝔞‖ 𝑝𝐿𝑝 (R𝑛) �

ℓ∑
𝑗=0

(
𝑟𝑁+1+𝑛−𝑛/𝑝 2 𝑗 (𝑁+1+𝑛−𝑛/𝑝)

) 𝑝
+

∞∑
𝑗=ℓ+1

(
𝑟𝑛−𝑛/𝑝 2 𝑗 (𝑛−𝑛/𝑝)

) 𝑝

�
(
𝑟𝑁+1+𝑛−𝑛/𝑝 2ℓ (𝑁+1+𝑛−𝑛/𝑝)

) 𝑝
+

(
𝑟𝑛−𝑛/𝑝 2ℓ (𝑛−𝑛/𝑝)

) 𝑝

∼
(
𝑟𝑁+1+𝑛−𝑛/𝑝 𝑟−(𝑁+1+𝑛−𝑛/𝑝)

) 𝑝
+

(
𝑟𝑛−𝑛/𝑝 𝑟−(𝑛−𝑛/𝑝)

) 𝑝
= 1.

�

As an application of the previous lemma, we have the following ℎ𝑝 − 𝐿 𝑝 boundedness result, based
entirely on kernel estimates of the corresponding operators.

Lemma 4.6. Let 0 < 𝑝 ≤ 1, 𝑘 > 0, 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)
0,0 (R𝑛), 𝜑(𝑥, 𝜉) ∈ F

𝑘 , and let the operator 𝑇𝑗 given
in Lemma 4.5 have either the representation∫

R𝑛
𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦) 𝑓 (𝑦) d𝑦, (39)

or the representation ∫
R𝑛

𝐾2, 𝑗 (𝑦, 𝑥 − 𝑦) 𝑓 (𝑦) d𝑦. (40)

◦ If ���(𝑥 − 𝑦)𝛼𝜕𝛽
𝑦

(
𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦)

)���𝐿2
𝑥 (R𝑛) � 2 𝑗 ( |𝛼 | (𝑘−1)+ |𝛽 |+𝑚𝑘 (𝑝)+𝑛/2) , (41)

uniformly in 𝑦 ∈ R𝑛, and 𝑇
𝜑
𝑎 :=

∑∞
𝑗=0 𝑇𝑗 (in the case of equation (39)) is 𝐿2-bounded, then 𝑇

𝜑
𝑎 is

bounded from ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛).
◦ If ���(𝑥 − 𝑦)𝛼𝜕𝛽

𝑦

(
𝐾2, 𝑗 (𝑦, 𝑥 − 𝑦)

)���𝐿2
𝑥 (R𝑛) � 2 𝑗 ( |𝛼 | (𝑘−1)+ |𝛽 |+𝑚𝑘 (𝑝)+𝑛/2) (42)
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uniformly in 𝑦 ∈ R𝑛, and (𝑇 𝜑
𝑎 )∗ :=

∑∞
𝑗=0 𝑇𝑗 (in the case of equation (40)) is 𝐿2-bounded, then (𝑇 𝜑

𝑎 )∗
is bounded from ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛).

Proof. Once again, we only treat the case of 𝑇 𝜑
𝑎 since that of the adjoint is done in a similar manner.

Let 𝔞 be a p-atom supported in the ball 𝐵 := 𝐵( �̄�, 𝑟), and let 2𝐵 := 𝐵( �̄�, 2𝑟). By Hölder’s inequality and
the 𝐿2-boundedness of 𝑇 𝜑

𝑎 , we have

‖𝑇 𝜑
𝑎 𝔞‖𝐿𝑝 (2𝐵) � ‖𝑇 𝜑

𝑎 𝔞‖𝐿2 (2𝐵) ‖1‖𝐿2𝑝/(2−𝑝) (2𝐵) � ‖𝔞‖𝐿2 (R𝑛)𝑟
𝑛(2−𝑝)/2𝑝

� 𝑟𝑛(𝑝−2)/2𝑝 𝑟𝑛(2−𝑝)/2𝑝 = 1.

We proceed to the boundedness of ‖𝑇 𝜑
𝑎 𝔞‖𝐿𝑝 (R𝑛\2𝐵) , which is more subtle. By Lemma 4.5, it is

enough to show estimates (37) and (38) for
��𝑇𝑗𝔞

��
𝐿𝑝 (R𝑛\2𝐵) . For all multi-indices 𝛼, equation (41) yields���(2− 𝑗 (𝑘−1) (𝑥 − 𝑦))𝛼𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦)

���𝐿2
𝑥 (R𝑛) � 2 𝑗 (𝑛/2+𝑚𝑘 (𝑝))

so that for any integer M, if one sums over |𝛼 | ≤ 𝑀 ,���(1 + 2− 𝑗 (𝑘−1) |𝑥 − 𝑦 |)𝑀𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦)
���𝐿2

𝑥 (R𝑛) � 2 𝑗 (𝑛/2+𝑚𝑘 (𝑝)) . (43)

We now observe that for 𝑡 ∈ [0, 1], 𝑥 ∈ R𝑛 \ 2𝐵 and 𝑦 ∈ 𝐵, one has

|𝑥 − �̄� | � |𝑥 − �̄� − 𝑡 (𝑦 − �̄�) |. (44)

Next, we introduce

𝑔(𝑥) :=
(
1 + 2− 𝑗 (𝑘−1) |𝑥 − �̄� |

)−𝑀
,

where 𝑀 > 𝑛/𝑞 and 1/𝑞 = 1/𝑝 − 1/2. The Hölder and the Minkowski inequalities together with
equations (43) and (44) (with 𝑡 = 1) yield

��𝑇𝑗𝔞
��
𝐿𝑝 (R𝑛\2𝐵) =

��� ∫
𝐵
𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦)𝔞(𝑦) d𝑦

���
𝐿
𝑝
𝑥 (R𝑛\2𝐵)

≤
��� 1
𝑔(𝑥)

∫
𝐵
𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦)𝔞(𝑦) d𝑦

���
𝐿2
𝑥 (R𝑛\2𝐵)

‖𝑔‖𝐿𝑞 (R𝑛)

� 2 𝑗𝑛(𝑘−1)/𝑞
∫
𝐵

��� 1
𝑔(𝑥)𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦)𝔞(𝑦)

���
𝐿2
𝑥 (R𝑛\2𝐵)

d𝑦

� 2 𝑗𝑛(𝑘−1) (1/𝑝−1/2)
∫
𝐵
|𝔞(𝑦) |

���(
1 + 2− 𝑗 (𝑘−1) |𝑥 − 𝑦 |

)𝑀
𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦)

���
𝐿2
𝑥 (R𝑛\2𝐵)

d𝑦

� 𝑟𝑛−𝑛/𝑝2 𝑗𝑛(𝑘−1) (1/𝑝−1/2)2 𝑗 (𝑛/2+𝑚𝑘 (𝑝)) .

Recalling that 𝑚𝑘 (𝑝) = −𝑘𝑛(1/𝑝 − 1/2), we get equation (37).
We proceed to show estimate (38). Taking 𝑁 := [𝑛(1/𝑝 − 1)] (note that 𝑁 > 𝑛/𝑝 − 𝑛 − 1), a Taylor

expansion of the kernel at the point 𝑦 = 𝑦 yields that

𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦) =
∑

|𝛽 | ≤𝑁

(𝑦 − �̄�)𝛽
𝛽!

𝜕
𝛽
𝑦 (𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦))|𝑦=�̄�

+ (𝑁 + 1)
∑

|𝛽 |=𝑁+1

(𝑦 − �̄�)𝛽
𝛽!

∫ 1

0
(1 − 𝑡)𝑁 𝜕

𝛽
𝑦 (𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦))|𝑦=�̄�+𝑡 (𝑦−�̄�) d𝑡,
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and due to vanishing moments of the atom in Definition 2.3, 𝑖𝑖𝑖), we may express the operator as

𝑇𝑗𝔞(𝑥) = (𝑁 + 1)
∑

|𝛽 |=𝑁+1

∫
𝐵

∫ 1

0

(𝑦 − �̄�)𝛽
𝛽!

(1 − 𝑡)𝑁 𝜕
𝛽
𝑦 (𝐾1, 𝑗 (𝑥, 𝑥 − 𝑦))|𝑦=�̄�+𝑡 (𝑦−�̄�)𝔞(𝑦) d𝑡 d𝑦.

Now, noting that
��(𝑦 − �̄�)𝛽

�� � 𝑟𝑁+1 and applying the same procedure as above together with estimates
(44) and (41), we obtain

‖𝑇𝑗𝔞‖𝐿𝑝 (R𝑛\2𝐵) � 𝑟𝑁+1−𝑛/𝑝+𝑛2 𝑗 (𝑁+1+𝑚𝑘 (𝑝)+𝑛/2+𝑛(𝑘−1) (1/𝑝−1/2)) ,

which yields equation (38). �

5. 𝐿2-boundedness

In the forthcoming sections, we will also need the following important theorem about 𝐿2-boundedness
of an oscillatory integral operator.

Theorem 5.1. Let 𝑎(𝑥, 𝜉) ∈ 𝑆0
0,0 (R

𝑛), and assume that 𝜑(𝑥, 𝜉) fulfills the 𝐿2-condition (11) and is SND.
Then the oscillatory integral operator 𝑇 𝜑

𝑎 given by equation (12) is bounded from 𝐿2 (R𝑛) to itself under
either of the following circumstances:

i) The amplitude 𝑎(𝑥, 𝜉) is compactly supported in x.
ii) One of the assumptions (32) or (33) holds true.

Proof. We divide the proof into low- and high-frequency cases by writing 𝑎(𝑥, 𝜉) = 𝜓0(𝜉) 𝑎(𝑥, 𝜉) +
(1 − 𝜓0 (𝜉)) 𝑎(𝑥, 𝜉) =: 𝑎L (𝑥, 𝜉) + 𝑎H (𝑥, 𝜉), with 𝜓0 is in Definition 2.1. For 𝑇 𝜑

𝑎𝐻
, the phase function is

smooth and doesn’t have any singularity. This enables one to use an 𝐿2-boundedness result for oscillatory
integrals proven by D. Fujiwara in [13], since the assumptions of Theorem 5.1 fulfill conditions (A-
I)−(A-IV) in [13], on the support of 𝑎𝐻 .

For 𝑇
𝜑
𝑎𝐿
, part of the case 𝑖), using the compact support in 𝜉, Cauchy–Schwarz’s inequality and

Plancherel’s theorem allow us to write

|𝑇 𝜑
𝑎𝐿

𝑓 (𝑥) | =
��� ∫
R𝑛

𝑎𝐿 (𝑥, 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 ) �̂� (𝜉) đ𝜉
��� � ‖ 𝑓 ‖𝐿2 (R𝑛) .

Now, the fact that 𝑇 𝜑
𝑎𝐿

𝑓 (𝑥) is compactly supported yields that

‖𝑇 𝜑
𝑎𝐿

𝑓 (𝑥)‖𝐿2 (R𝑛) � ‖ 𝑓 ‖𝐿2 (R𝑛) .

For the 𝑇 𝜑
𝑎𝐿
, part of the case 𝑖𝑖), we use Lemma 4.3 to conclude that the kernel satisfies

|𝐾 (𝑥, 𝑦) | � 〈𝑥 − 𝑦〉−𝑛−𝜀μ ,

for any 𝜀 ∈ [0, 1). Therefore, Schur’s lemma applies in this case. �

Remark 5.2. In dimension one, for 𝑘 > 0, if we take the phase function

𝜑(𝑥, 𝜉) := 𝑥𝜉 − 1
2

sin 𝑥 cos 𝜉 + |𝜉 |𝑘 ,

then one can verify that for 𝑘 ≥ 1 the low-frequency assumption of equation (33) holds with μ = 1 and
for 0 < 𝑘 < 1 with μ = 𝑘. Moreover,���𝜕𝛼

𝜉 𝜕
𝛽
𝑥

(
𝑥𝜉 − 1

2
sin 𝑥 cos 𝜉 + |𝜉 |𝑘

)��� � 1, |𝛼 |, |𝛽 | ≥ 1
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and the SND-condition is also satisfied thanks to���𝜕𝜉 𝜕𝑥

(
𝑥𝜉 − 1

2
sin 𝑥 cos 𝜉 + |𝜉 |𝑘

)��� ≥ 1/2.

This together with an amplitude in 𝑆0
0,0 (R

𝑛) gives rise to an 𝐿2-bounded operator. However, this is not
entirely covered by the 𝐿2-boundedness results of Hörmander [18] (because of lack of homogeneity and
also lack of compact support in the x-variable) or Fujiwara [13] (due to lack of smoothness). It is also
important to note that the rather strong assumptions on the phase function are needed to deal with the
lack of decay in the amplitude (i.e., an amplitude in 𝑆0

0,0 (R
𝑛)).

6. Boundedness of low-frequency portion

The kernel estimate obtained in Lemma 4.3 can be used to show that the corresponding oscillatory
integral operators are bounded in various Banach, as well as quasi-Banach spaces. Now, as far as the
𝐿 𝑝-regularity is concerned, the Mikhlin multiplier theorem yields the following boundedness result for
operators with amplitudes that are compactly supported in the spatial variables.

Lemma 6.1. Let 𝑎𝐿 (𝑥, 𝜉) ∈ C∞
𝑐 (R𝑛×R𝑛) be an amplitude and assume that 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛×R𝑛 \{0})

with

|𝜕𝛼
𝜉 𝜕

𝛽
𝑥 𝜑(𝑥, 𝜉) | ≤ 𝑐𝛼,𝛽 |𝜉 |− |𝛼 | , |𝛼 + 𝛽 | ≥ 1, (𝑥, 𝜉) ∈ supp 𝑎𝐿 .

Then the operator 𝑇 𝜑
𝑎𝐿

of the form (12) is bounded on 𝐿 𝑝 (R𝑛) for 1 < 𝑝 < ∞.

Proof. Set 𝜎(𝑥, 𝜉) := 𝑎𝐿 (𝑥, 𝜉) 𝑒𝑖 (𝜑 (𝑥, 𝜉 )−𝑥 ·𝜉 ) , and observe that the condition on the phase function
implies that |𝜕𝛼

𝜉 𝜕
𝛽
𝑥 𝜎(𝑥, 𝜉) | � |𝜉 |− |𝛼 | . Now, we write

𝑇
𝜑
𝑎𝐿

𝑓 (𝑥) =
∫
R𝑛

𝜎(𝑥, 𝜉) 𝑒𝑖𝑥 ·𝜉 �̂� (𝜉) đ𝜉,

and using the fact that 𝜎 is compactly supported in x we have that for any integer 𝑁 > 0

𝑇
𝜑
𝑎𝐿

𝑓 (𝑥) =
∫
R𝑛

〈𝜂〉−2𝑁
(∫
R𝑛

〈𝜂〉2𝑁 �̂�(𝜂, 𝜉) 𝑒𝑖𝑥 ·𝜉 �̂� (𝜉) đ𝜉
)
𝑒𝑖𝑥 ·𝜂 đ𝜂. (45)

The compact support of 𝜎(𝑥, 𝜉) also implies that

〈𝜂〉2𝑁 |𝜕𝛼
𝜉 �̂�(𝜂, 𝜉) | =

����∫
R𝑛

𝑒−𝑖𝑥 ·𝜂 (1 − Δ 𝑥)𝑁 𝜕𝛼
𝜉 𝜎(𝑥, 𝜉) d𝑥

���� � |𝜉 |− |𝛼 | ,

uniformly in 𝜂. Now, the boundedness of 〈𝜂〉2𝑁 �̂�(𝜂, 𝜉) and the estimate above show that the aforemen-
tioned function is a Mikhlin multiplier and therefore bounded on 𝐿𝑝 (R𝑛) for 1 < 𝑝 < ∞. Therefore,
using Minkowski’s integral inequality to equation (45), which is valid for the Banach space scales of
𝐿𝑝-spaces and choosing N large enough yield the desired boundedness. �

The following lemma establishes the local boundedness of the low-frequency portion of adjoint
operator

(
𝑇

𝜑
𝑎

)∗.
Lemma 6.2. Let 0 < 𝑝 < 1. Moreover, assume 𝜑(𝑥, 𝜉) ∈ C∞(R𝑛 × R𝑛) and 𝑎𝐿 (𝑥, 𝜉) ∈ C∞

𝑐 (R𝑛 × R𝑛).
Then

(
𝑇

𝜑
𝑎𝐿

)∗ given as in equation (13) is a bounded operator from ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛).

Proof. Set 𝜎(𝑦, 𝜉) := 𝑎𝐿 (𝑦, 𝜉) 𝑒−𝑖𝜑 (𝑦, 𝜉 )+𝑖𝑦 ·𝜉 , and consider the kernel of
(
𝑇

𝜑
𝑎𝐿

)∗
𝐾∗(𝑦, 𝑥 − 𝑦) =

∫
R𝑛

𝑎𝐿 (𝑦, 𝜉) 𝑒−𝑖 (𝜑 (𝑦, 𝜉 )−𝑦 ·𝜉−(𝑥−𝑦) ·𝜉 ) đ𝜉 =
∫
R𝑛

𝜎(𝑦, 𝜉) 𝑒𝑖 (𝑥−𝑦) ·𝜉 đ𝜉.
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Leibniz’s rule and integration by parts yield

(𝑥 − 𝑦)𝛼𝜕𝛽
𝑦 (𝐾∗(𝑦, 𝑥 − 𝑦)) = (𝑥 − 𝑦)𝛼

∫
R𝑛

𝜕
𝛽
𝑦 (𝜎(𝑦, 𝜉) 𝑒𝑖 (𝑥−𝑦) ·𝜉 ) đ𝜉

=
∑

𝛼1+𝛼2=𝛼
𝛽1+𝛽2=𝛽
𝛽2≥𝛼2

𝐶𝛼,𝛽

∫
R𝑛

𝜕𝛼1
𝜉 𝜕

𝛽1
𝑦 𝜎(𝑦, 𝜉) 𝜉𝛽2−𝛼2 𝑒𝑖 (𝑥−𝑦) ·. 𝜉 đ𝜉

= (𝜌(𝑦, ·))∧(𝑦 − 𝑥),

where

𝜌(𝑦, 𝜉) :=
∑

𝛼1+𝛼2=𝛼
𝛽1+𝛽2=𝛽
𝛽2≥𝛼2

𝐶𝛼,𝛽 𝜕
𝛼1
𝜉 𝜕

𝛽1
𝑦 𝜎(𝑦, 𝜉) 𝜉𝛽2−𝛼2 .

Therefore, Plancherel’s formula yields that���(𝑥 − 𝑦)𝛼𝜕𝛽
𝑦 (𝐾∗(𝑦, 𝑥 − 𝑦))

���𝐿2
𝑥 (R𝑛) = ‖𝜌(𝑦, ·)‖𝐿2

𝜉 (R𝑛)
� ‖𝜌(𝑦, ·)‖𝐿∞

𝜉 (R𝑛) � 1.

Hence, Lemma 4.6 can be applied with 𝑇0 := (𝑇 𝜑
𝑎𝐿
)∗ and 𝑇𝑗 := 0, 𝑗 ≥ 1, since by Theorem 5.1, 𝑇0 is

also bounded on 𝐿2 (R𝑛) and has an integral representation∫
R𝑛

𝐾∗(𝑦, 𝑥 − 𝑦) 𝑓 (𝑦) d𝑦

with

𝐾∗(𝑦, 𝑥 − 𝑦) =
∫
R𝑛

𝑎𝐿 (𝑦, 𝜉) 𝑒−𝑖 (𝜑 (𝑦, 𝜉 )−𝑦 ·𝜉−(𝑥−𝑦) ·𝜉 ) đ𝜉. �

Next, we prove the main result concerning the regularity of the low-frequency portions of oscillatory
integral operators.

Lemma 6.3. Assume that 𝜓0(𝜉) ∈ C∞
𝑐 (R𝑛) is a smooth cut-off function supported in a neighborhood

of the origin as in Definition 2.1, 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛) for some 𝑚 ∈ R, 𝑎𝐿 (𝑥, 𝜉) := 𝜓0(𝜉) 𝑎(𝑥, 𝜉), and
let 𝜑(𝑥, 𝜉) be a phase function. Finally, let the operator 𝑇 𝜑

𝑎𝐿
be defined as in equation (12). Then the

following statements hold:

i) If either equation (32) or (33) holds, then

‖𝑇 𝜑
𝑎𝐿

𝑓 ‖𝐿∞ (R𝑛) � ‖ 𝑓 ‖bmo(R𝑛) .

ii) Assume that 𝜑(𝑥, 𝜉) satisfy the LF(μ)-condition (14) for 0 < μ ≤ 1 and that 𝑛/(𝑛 + μ) < 𝑝 ≤ ∞.
Then for any 𝑠1, 𝑠2 ∈ (−∞,∞), and 𝑞1, 𝑞2 ∈ (0,∞], one has

‖𝑇 𝜑
𝑎𝐿

𝑓 ‖𝐵𝑠2
𝑝,𝑞2 (R

𝑛) � ‖ 𝑓 ‖𝐵𝑠1
𝑝,𝑞1 (R

𝑛) .

iii) Assume that 𝜑(𝑥, 𝜉) satisfy the LF(μ)-condition (14) for 0 < μ ≤ 1 and that 𝑎(𝑥, 𝜉) has compact
support in the x-variable. Then for any 𝑠1, 𝑠2 ∈ (−∞,∞), and 𝑝, 𝑞1, 𝑞2 ∈ (0,∞]

‖𝑇 𝜑
𝑎𝐿

𝑓 ‖𝐵𝑠2
𝑝,𝑞2 (R

𝑛) � ‖ 𝑓 ‖𝐵𝑠1
𝑝,𝑞1 (R

𝑛) .
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Moreover, all the Besov–Lipschitz estimates above can be replaced by the corresponding Triebel–
Lizorkin estimates.

Proof of Lemma 4.3, 𝑖). We are going to show that (𝑇 𝜑
𝑎𝐿
)∗ : 𝐿1 (R𝑛) → ℎ1 (R𝑛). By Lemma 4.3 and the

definition of the ℎ1-space (regarded as the Triebel–Lizorkin space 𝐹0
1,2 (R

𝑛)), we obtain

��(𝑇 𝜑
𝑎𝐿
)∗ 𝑓

��
ℎ1 (R𝑛) =

���( ∞∑
𝑗=0

��𝜓 𝑗 (𝐷) (𝑇 𝜑
𝑎𝐿
)∗ 𝑓

��2)1/2���
𝐿1 (R𝑛)

∼
��(𝑇 𝜑

𝑎𝐿
)∗ 𝑓

��
𝐿1 (R𝑛)

� ‖ 𝑓 ‖𝐿1 (R𝑛) ,

where we have also used the fact that 𝜓 𝑗 (𝐷) (𝑇 𝜑
𝑎𝐿
)∗ = (𝑇 𝜑

𝑎𝐿
𝜓 𝑗 (𝐷))∗ = 0 when 𝑗 ≥ 1 and used the kernel

estimate in Lemma 4.3 to deal with the last 𝐿1-estimate. �

Proof of Lemma 4.3, 𝑖𝑖) − 𝑖𝑖𝑖). Assume that 𝑓0 = Ψ0(𝐷) 𝑓 , where Ψ is a smooth cut-off function that is
equal to one on the support of 𝜓0 so that 𝑇 𝜑

𝑎𝐿
𝑓 = 𝑇

𝜑
𝑎𝐿

𝑓0. Define the self-adjoint operators

𝐿 𝜉 := 1 − Δ 𝜉 , 𝐿𝑦 := 1 − Δ 𝑦 ,

and note that

〈𝜉〉−2𝐿𝑦 𝑒
𝑖 (𝑥−𝑦) ·𝜉 = 〈𝑥 − 𝑦〉−2𝐿 𝜉 𝑒

𝑖 (𝑥−𝑦) ·𝜉 = 𝑒𝑖 (𝑥−𝑦) ·𝜉 .

Take integers 𝑁1 and 𝑁2 large enough. Integrating by parts, we have

𝜓 𝑗 (𝐷)𝑇 𝜑
𝑎𝐿

𝑓 (𝑥) =
∬
R𝑛×R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜉 𝜓 𝑗 (𝜉) 𝑇 𝜑
𝑎𝐿

𝑓0(𝑦) d𝑦 đ𝜉

=
∬
R𝑛×R𝑛

〈𝜉〉−2𝑁1𝐿𝑁1
𝑦

(
〈𝑥 − 𝑦〉−2𝑁2 𝐿𝑁2

𝜉 𝑒𝑖 (𝑥−𝑦) ·𝜉
)
𝜓 𝑗 (𝜉) 𝑇 𝜑

𝑎𝐿
𝑓0(𝑦) d𝑦 đ𝜉

=
∬
R𝑛×R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜉 𝐿𝑁2
𝜉

(
〈𝜉〉−2𝑁1𝜓 𝑗 (𝜉)

)
〈𝑥 − 𝑦〉−2𝑁2 𝐿𝑁1

𝑦 𝑇
𝜑
𝑎𝐿

𝑓0(𝑦) d𝑦 đ𝜉.

Since 𝜓 𝑗 is supported on an annulus of size 2 𝑗 , one has∫
R𝑛

���𝐿𝑁2
𝜉 〈𝜉〉−2𝑁1 𝜓 𝑗 (𝜉)

��� đ𝜉 �
∑

|𝛼 | ≤2𝑁2

∫
|𝜉 |∼2 𝑗

���𝜕𝛼
𝜉

(
〈𝜉〉−2𝑁1 𝜓 𝑗 (𝜉)

)��� đ𝜉

� 2 𝑗𝑛
∑

|𝛼 | ≤2𝑁2

2− 𝑗 (2𝑁1+|𝛼 |) � 2 𝑗 (𝑛−2𝑁1) .

Also, applying Leibniz’s rule and Faà di Bruno’s formulae, we have that

𝐿𝑁1
𝑦 𝑇

𝜑
𝑎𝐿

𝑓 (𝑦) =
∫
R𝑛

𝐿𝑁1
𝑦

(
𝑎𝐿 (𝑦, 𝜂) 𝑒𝑖𝜑 (𝑦,𝜂) ) �̂�0(𝜂) đ𝜂

=
∫
R𝑛

𝜎(𝑦, 𝜂) 𝑒𝑖𝜑 (𝑦,𝜂) �̂�0(𝜂) đ𝜂 =: 𝑇 𝜑
𝜎 𝑓0(𝑦),

with

𝜎(𝑦, 𝜂) :=
∑

|𝛼 | ≤2𝑁1

∑
1≤ |𝛽 | ≤2𝑁1

∑
ℓ≤2𝑁1

𝐶𝛼,𝛽,ℓ 𝜕
𝛼
𝑦 𝑎𝐿 (𝑦, 𝜂)

(
𝜕
𝛽
𝑦 𝜑(𝑦, 𝜂)

)ℓ
. (46)

https://doi.org/10.1017/fms.2023.76 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.76


32 A. J. Castro et al.

Thus, we have

��𝜓 𝑗 (𝐷)𝑇 𝜑
𝑎𝐿

𝑓 (𝑥)
�� � 2 𝑗 (𝑛−2𝑁1)

(
〈·〉−2𝑁2 ∗

��𝑇 𝜑
𝜎 𝑓0

��) (𝑥). (47)

Using the LF(μ) assumption, one has

���𝜕𝛼
𝜂 𝜕

𝛽
𝑦 𝜑(𝑦, 𝜂)

��� � |𝜂 |μ−|𝛼 | ,

for |𝛼 | ≥ 0, |𝛽 | ≥ 1. The terms of equation (46), where ℓ = 0 are bounded by 1 and the terms where
ℓ ≥ 1 are bounded by |𝜂 |μ−|𝛼 | .

Hence, Lemma 4.3, using both equations (33) (ℓ = 0) and (32) (ℓ ≥ 1), yields that for all 0 < 𝜀 < 1
the kernel of 𝑇 𝜑

𝜎 satisfies the estimate

|𝐾 (𝑥, 𝑦) | � 〈𝑥 − 𝑦〉−𝑛−𝜀μ .

Now, it follows from equation (47), the kernel estimate above and Lemma 2.7 with 𝑟 > 𝑛/(𝑛+μ) that

��𝜓 𝑗 (𝐷)𝑇 𝜑
𝑎𝐿

𝑓 (𝑥)
�� � 2 𝑗 (𝑛−2𝑁1)

∫
R𝑛

(∫
R𝑛

〈𝑥 − 𝑧〉−2𝑁2 〈𝑧 − 𝑦〉−𝑛−𝜀μ d𝑧
)
| 𝑓0 (𝑦) | d𝑦

� 2 𝑗 (𝑛−2𝑁1)
∫
R𝑛

〈𝑥 − 𝑦〉−𝑛−𝜀μ | 𝑓0(𝑦) | d𝑦

� 2 𝑗 (𝑛−2𝑁1)
(
𝑀 ( | 𝑓0 |𝑟 )(𝑥)

)1/𝑟
.

(48)

This yields that for 𝑟 < 𝑝 ≤ ∞ one has

‖𝜓 𝑗 (𝐷)𝑇 𝜑
𝑎𝐿

𝑓 ‖𝐿𝑝 (R𝑛) � 2 𝑗 (𝑛−2𝑁1) ‖ 𝑓0‖𝐿𝑝 (R𝑛) . (49)

In case 𝑖𝑖𝑖), we would also like to extend (49) to the range 0 < 𝑝 ≤ ∞ when 𝑎(𝑥, 𝜉) has compact support
in x. If K := supp𝑦 𝜎(𝑦, 𝜂), then since 𝑓0 is frequency localised, Lemma 2.7 and Peetre’s inequality
yield that for 𝑟 > 𝑛/(𝑛 + μ), we have the pointwise estimate

��𝜓 𝑗 (𝐷)𝑇 𝜑
𝑎𝐿

𝑓 (𝑥)
�� � 2 𝑗 (𝑛−2𝑁1)

(
〈·〉−2𝑁2 ∗ 𝜒K

(
𝑀 ( | 𝑓0 |𝑟 )

)1/𝑟 )
(𝑥)

� 2 𝑗 (𝑛−2𝑁1) 〈𝑥〉−2𝑁2

∫
K

(
𝑀 ( | 𝑓0 |𝑟 )(𝑦)

)1/𝑟
d𝑦,

(50)

where 𝜒K is the characteristic function of K. Now, taking the 𝐿𝑝-norm, choosing 𝑁2 large enough,
using the 𝐿∞-boundedness of the Hardy–Littlewood maximal operator, and finally using Lemma 2.8,
we obtain for 0 < 𝑝 ≤ ∞

‖𝜓 𝑗 (𝐷)𝑇 𝜑
𝑎𝐿

𝑓 ‖𝐿𝑝 (R𝑛) � 2 𝑗 (𝑛−2𝑁1) ‖ | 𝑓0 |𝑟 ‖1/𝑟
𝐿∞ (R𝑛) � 2 𝑗 (𝑛−2𝑁1) ‖ 𝑓0‖𝐿∞ (R𝑛)

� 2 𝑗 (𝑛−2𝑁1) ‖ 𝑓0‖𝐿𝑝 (R𝑛) .
(51)
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Thus, equations (49) and (51) yield for 𝑁1 large enough

��𝑇 𝜑
𝑎𝐿

𝑓
��
𝐵
𝑠2
𝑝,𝑞2 (R

𝑛) =
( ∞∑

𝑗=0
2 𝑗𝑠2𝑞2

��𝜓 𝑗 (𝐷)𝑇 𝜑
𝑎𝐿

𝑓
��𝑞2
𝐿𝑝 (R𝑛)

)1/𝑞2

�
( ∞∑

𝑗=0
2 𝑗𝑞2 (𝑠2+𝑛−2𝑁1) ‖ 𝑓0‖𝑞2

𝐿𝑝 (R𝑛)

)1/𝑞2
= ‖ 𝑓0‖𝐿𝑝 (R𝑛)

( ∞∑
𝑗=0

2 𝑗𝑞2 (𝑠2+𝑛−2𝑁1)
)1/𝑞2

� ‖ 𝑓0‖𝐿𝑝 (R𝑛) � ‖ 𝑓 ‖𝐵𝑠1
𝑝,𝑞1 (R

𝑛) .

In the case of boundedness in Triebel–Lizorkin spaces for 𝑖𝑖), we use equation (48) and the assumption
that 𝑝 > 𝑟 > 𝑛/(𝑛 + μ) which yield for 𝑁1 large enough that

��𝑇 𝜑
𝑎𝐿

𝑓
��
𝐹

𝑠2
𝑝,𝑞2 (R

𝑛) =
���( ∞∑

𝑗=0
2 𝑗𝑠2𝑞2

��𝜓 𝑗 (𝐷)𝑇 𝜑
𝑎𝐿

𝑓
��𝑞2

)1/𝑞2
���
𝐿𝑝 (R𝑛)

�
���( ∞∑

𝑗=0
2 𝑗𝑠2𝑞2

���2 𝑗 (𝑛−2𝑁1)
(
𝑀 (| 𝑓0 |𝑟 )

)1/𝑟 ���𝑞2 )1/𝑞2
���
𝐿𝑝 (R𝑛)

�
( ∞∑

𝑗=0
2 𝑗𝑞2 (𝑠2+𝑛−2𝑁1)

)1/𝑞2
���(
𝑀 ( | 𝑓0 |𝑟 )

)1/𝑟���
𝐿𝑝 (R𝑛)

� ‖ 𝑓0‖𝐿𝑝 (R𝑛) � ‖ 𝑓 ‖𝐹 𝑠1
𝑝,𝑞1 (R

𝑛) .

In the case of boundedness in Triebel–Lizorkin spaces for 𝑖𝑖𝑖), we use equation (50) and Lemma 2.8 to
see that for all 𝑝 > 0 one has

��𝑇 𝜑
𝑎𝐿

𝑓
��
𝐹

𝑠2
𝑝,𝑞2 (R

𝑛) =
���( ∞∑

𝑗=0
2 𝑗𝑠2𝑞2

��𝜓 𝑗 (𝐷)𝑇 𝜑
𝑎𝐿

𝑓
��𝑞2

)1/𝑞2
���
𝐿𝑝 (R𝑛)

�
( ∞∑

𝑗=0
2 𝑗𝑞2 (𝑠2+𝑛−2𝑁2)

)1/𝑞2��〈·〉−2𝑁2
��
𝐿𝑝 (R𝑛)

∫
K

(
𝑀 (| 𝑓0 |𝑟 ) (𝑥)

)1/𝑟
d𝑥

� ‖ 𝑓0‖𝐿∞ (R𝑛) � ‖ 𝑓 ‖𝐹 𝑠1
𝑝,𝑞1 (R

𝑛) ,

by choosing 𝑁2 large enough. �

Remark 6.4. Note that the type of the phase (i.e., the μ in the LF(μ)-condition (14)) enters the picture
only at the level of quasi-Banach boundedness of the oscillatory integral operators.

7. Boundedness of middle-frequency portion

In this section, we show that for the portion of the operator where the frequency support of the amplitude
is bounded below, away from the origin and also bounded from above by a fixed 𝑅 � 1, then the middle
portion of the operator is bounded on Besov–Lipschitz and Triebel–Lizorkin spaces, as the following
lemma shows.

Lemma 7.1. Assume that 𝜓0 (𝜉) ∈ C∞
𝑐 (R𝑛) is a smooth cut-off function supported in a neighborhood

of the origin as in Definition 2.1, 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛) for some 𝑚 ∈ R, 𝑎𝑀 (𝑥, 𝜉) := (𝜓0(𝜉/𝑅) −
𝜓0 (𝜉)) 𝑎(𝑥, 𝜉) for some 𝑅 > 1, and let 𝜑(𝑥, 𝜉) be a phase function satisfying the F

𝑘 -condition. Finally,
let the operator 𝑇 𝜑

𝑎𝑀
be defined as in equation (12). Then the following statements hold:
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i) 𝑇
𝜑
𝑎𝑀

satisfies

‖𝑇 𝜑
𝑎𝑀

𝑓 ‖𝐿∞ (R𝑛) � ‖ 𝑓 ‖bmo(R𝑛) .

ii) Assume that 𝜕𝛽
𝑥 𝜑(𝑥, 𝜉) ∈ 𝐿∞(R𝑛 × S𝑛−1), for any |𝛽 | ≥ 1 and that 𝜑 satisfy the 𝐿2-condition (11).

Then for any 𝑠1, 𝑠2 ∈ (−∞,∞) and 𝑝, 𝑞1, 𝑞2 ∈ (0,∞] one has

‖𝑇 𝜑
𝑎𝑀

𝑓 ‖𝐵𝑠2
𝑝,𝑞2 (R

𝑛) � ‖ 𝑓 ‖𝐵𝑠1
𝑝,𝑞1 (R

𝑛) .

iii) Assume that 𝑎(𝑥, 𝜉) has compact support in the x-variable and that 𝜑(𝑥, 𝜉) satisfies the 𝐿2-condition
(11). Then for any 𝑠1, 𝑠2 ∈ (−∞,∞), and 𝑝, 𝑞1, 𝑞2 ∈ (0,∞]

‖𝑇 𝜑
𝑎𝑀

𝑓 ‖𝐵𝑠2
𝑝,𝑞2 (R

𝑛) � ‖ 𝑓 ‖𝐵𝑠1
𝑝,𝑞1 (R

𝑛) .

Moreover, all the Besov–Lipschitz estimates above can be replaced by the corresponding Triebel–
Lizorkin estimates.

Proof. The proof is similar to that of Lemma 6.3. The only difference is that we cannot use any of
equation (14), (32) or (33) to obtain kernel estimates. Instead, we observe that for any 𝑁 ≥ 0

|𝐾 (𝑥, 𝑦) | =
��� ∫
R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜉 𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑥 ·𝜉 𝑎𝑀 (𝑥, 𝜉) đ𝜉
���

=
���〈𝑥 − 𝑦〉−2𝑁

∫
R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜉 (1 − Δ 𝜉 )𝑁 𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑥 ·𝜉 𝑎𝑀 (𝑥, 𝜉) đ𝜉
���

� 〈𝑥 − 𝑦〉−2𝑁 ,

(52)

using the F
𝑘 -condition. This is enough to conclude the result in 𝑖).

For 𝑖𝑖) and 𝑖𝑖𝑖), we need to replace 𝑎𝐿 with 𝑎𝑀 in equation (46) and obtain estimate (52) for the
kernel of 𝑇 𝜑

𝜎 . The only problem here is to control the factors of the form 𝜕𝛼
𝜂 𝜕

𝛽
𝑦 𝜑(𝑦, 𝜂), where |𝛼 | ≥ 0

and |𝛽 | ≥ 1. But they are uniformly bounded because of the 𝐿2-condition when |𝛼 | ≥ 1 and

|𝜕𝛽
𝑦 𝜑(𝑦, 𝜂) | ≤ |𝜕𝛽

𝑦 𝜑(𝑦, 𝜂) − 𝜕
𝛽
𝑦 𝜑(𝑦, 𝜂0) | + |𝜕𝛽

𝑦 𝜑(𝑦, 𝜂0) | � |𝜂 − 𝜂0 | + |𝜕𝛽
𝑦 𝜑(𝑦, 𝜂0) | � 1,

for |𝛼 | = 0 and 𝜂 ∈ supp 𝑎𝑀 , if we choose 𝜂0 := 𝜂/|𝜂 |. Hence,
��𝜕𝛼

𝜂 𝜎(𝑦, 𝜂)
�� � 1 which yields the

estimate (52), and we can proceed as in Lemma 6.3 from equation (48) onwards. �

8. Local ℎ𝑝 − 𝐿 𝑝 boundedness

In this section, we prove the local ℎ𝑝 − 𝐿 𝑝 boundedness of oscillatory integral operators. As it turns
out, for the case of 0 < 𝑝 < 1 and the local ℎ𝑝 − 𝐿 𝑝 boundedness of 𝑇 𝜑

𝑎 , no condition on the phase
function is required. Moreover, the order of the amplitude could also be larger than the critical order
𝑚𝑘 (𝑝). More explicitly, we have

Proposition 8.1. Let 0 < 𝑝 < 1 and 𝑚 = −𝑛/𝑝, and suppose that 𝜑(𝑥, 𝜉) is a measurable real-valued
function, 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚

0,0 (R
𝑛) with compact support in the x-variable. Then 𝑇

𝜑
𝑎 as given in equation (12)

is a bounded operator from ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛).

Proof. Fix a p-atom 𝔞 supported in the ball 𝐵 := 𝐵( �̄�, 𝑟), with �̄� ∈ R𝑛 and 𝑟 > 0. Also, make the
Littlewood–Paley decomposition using Definition 2.1 so that 𝑇 𝜑

𝑎 =
∑∞

𝑗=0 𝑇𝑗 , where 𝑇𝑗 := 𝑇
𝜑
𝑎 𝜓 𝑗 (𝐷). By

Lemma 4.5 and since 𝑇𝑗𝔞 has compact support, it is enough to show that

‖𝑇𝑗𝔞‖𝐿∞ (R𝑛) � 𝑟𝑛−𝑛/𝑝2 𝑗 (𝑛−𝑛/𝑝) , (53)
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and whenever 𝑟 < 1

‖𝑇𝑗𝔞‖𝐿∞ (R𝑛) � 𝑟𝑁+1+𝑛−𝑛/𝑝2 𝑗 (𝑁+1+𝑛−𝑛/𝑝) , (54)

for some 𝑁 > 𝑛/𝑝 − 𝑛 − 1.
First of all, Lemma 4.2 taken with 𝛽 = 0, yields for all 𝑥 ∈ R𝑛

|𝑇𝑗𝔞(𝑥) | ≤
∫
𝐵
|𝐾 𝑗 (𝑥, 𝑦) | |𝔞(𝑦) | d𝑦 � 𝑟𝑛−𝑛/𝑝 2 𝑗 (𝑛+𝑚) ,

which gives equation (53).
On the other hand, if 𝑟 < 1, we Taylor expand the kernel as follows:

𝐾 𝑗 (𝑥, 𝑦) =
∑

|𝛽 | ≤𝑁

(𝑦 − �̄�)𝛽
𝛽!

(𝜕𝛽
𝑦 𝐾 𝑗 ) (𝑥, �̄�)

+ (𝑁 + 1)
∑

|𝛽 |=𝑁+1

(𝑦 − �̄�)𝛽
𝛽!

∫ 1

0
(1 − 𝑡)𝑁 (𝜕𝛽

𝑦 𝐾 𝑗 ) (𝑥, 𝑡𝑦 + (1 − 𝑡) �̄�) d𝑡,

and taking advantage of the vanishing moments of the atom, we obtain

𝑇𝑗𝔞(𝑥) = (𝑁 + 1)
∑

|𝛽 |=𝑁+1

∫
𝐵

∫ 1

0

(𝑦 − �̄�)𝛽
𝛽!

(1 − 𝑡)𝑁 (𝜕𝛽
𝑦 𝐾 𝑗 ) (𝑥, 𝑡𝑦 + (1 − 𝑡) �̄�)𝔞(𝑦) d𝑡 d𝑦.

Therefore, applying once again Lemma 4.2, with |𝛽 | = 𝑁 + 1 and 𝑁 := [𝑛(1/𝑝 − 1)], we obtain

|𝑇𝑗𝔞(𝑥) | � 𝑟𝑁+1+𝑛−𝑛/𝑝 2 𝑗 (𝑁+1+𝑛+𝑚) ,

which yields equation (54). �

Remark 8.2. We observe that interpolating the result of Proposition 8.1 with the 𝐿2-boundedness of
operators with amplitudes in 𝑆0

0,0 (R
𝑛) yields that 𝑇 𝜑

𝑎 is bounded from ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛) for 0 < 𝑝 ≤ 2
with a SND phase function verifying equation (11) and 𝑚 < 𝑚1 (𝑝).

9. Boundedness of high-frequency portion

In this section, we treat the global regularity of the high-frequency portion of oscillatory integral
operators. Here we prove ℎ𝑝 − 𝐿 𝑝 boundedness results.

Proposition 9.1. Suppose that 𝜑 ∈ F
𝑘 is SND, for some 𝑘 ≥ 1 and satisfy the 𝐿2-condition (11). Let

𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)
0,0 (R𝑛) and 𝑎𝐻 (𝑥, 𝜉) := (1 − 𝜓0 (𝜉)) 𝑎(𝑥, 𝜉), where 𝜓0 is given in Definition 2.1. Then,

𝑇
𝜑
𝑎𝐻

as in equation (12) is a bounded operator from ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛) when 0 < 𝑝 < 1. In the case
0 < 𝑘 < 1, the result above is true provided that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)

1,0 (R𝑛).

Proof. We consider a generic Littlewood–Paley piece of the kernel of 𝑇 𝜑
𝑎𝐻

:

𝐾 𝑗 (𝑥, 𝑥 − 𝑦) :=
∫
R𝑛

𝑎 𝑗 (𝑥, 𝜉) 𝑒𝑖 (𝜑 (𝑥, 𝜉 )−𝑥 ·𝜉+(𝑥−𝑦) ·𝜉 ) đ𝜉, (55)

where 𝑎 𝑗 (𝑥, 𝜉) := 𝑎𝐻 (𝑥, 𝜉) 𝜓 𝑗 (𝜉). In light of Lemma 4.6, we only need to show that𝑇 𝜑
𝑎𝐻

is 𝐿2-bounded,
which is indeed the case by Theorem 5.1, and that

‖(𝑥 − 𝑦)𝛼 𝜕
𝛽
𝑦 𝐾 𝑗 (𝑥, 𝑥 − 𝑦)‖𝐿2

𝑥 (R𝑛) � 2 𝑗 ( |𝛼 | (𝑘−1)+ |𝛽 |+𝑚𝑘 (𝑝)+𝑛/2) .
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However, since differentiating equation (55) 𝛽 times in y will only introduce factors of the size 2 𝑗 |𝛽 | , it
is enough to establish the above estimate for 𝛽 = 0. To this end, take Ψ 𝑗 as in Definition 2.1, integrate
by parts, and rewrite

(𝑥 − 𝑦)𝛼𝐾 𝑗 (𝑥, 𝑥 − 𝑦) =
∫
R𝑛

𝑎 𝑗 (𝑥, 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑥 ·𝜉 𝜕𝛼
𝜉 𝑒

𝑖 (𝑥−𝑦) ·𝜉 đ𝜉

=
∫
R𝑛

𝜕𝛼
𝜉

[
𝑎 𝑗 (𝑥, 𝜉)𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑥 ·𝜉

]
𝑒𝑖 (𝑥−𝑦) ·𝜉 Ψ 𝑗 (𝜉) đ𝜉

=
∑

𝛼1+𝛼2=𝛼

𝐶𝛼1 ,𝛼2

∫
R𝑛

𝜕𝛼1
𝜉 𝑎 𝑗 (𝑥, 𝜉) 𝜕𝛼2

𝜉 𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑥 ·𝜉 𝑒𝑖 (𝑥−𝑦) ·𝜉 Ψ 𝑗 (𝜉) đ𝜉

=
∑

𝛼1+𝛼2=𝛼
𝜆1+···+𝜆𝑟=𝛼2

𝐶𝛼1 ,𝛼2 ,𝜆1 ,...𝜆𝑟

∫
R𝑛

𝜕𝛼1
𝜉 𝑎 𝑗 (𝑥, 𝜉)

× 𝜕𝜆1
𝜉 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉) · · · 𝜕𝜆𝑟

𝜉 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑒−𝑖𝑦 ·𝜉 Ψ 𝑗 (𝜉) đ𝜉

=
∑

𝛼1+𝛼2=𝛼
𝜆1+···+𝜆𝑟=𝛼2

𝐶𝛼1 ,𝛼2 ,𝜆1 ,...𝜆𝑟 2 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼 |)
∫
R𝑛

𝑏𝛼1 ,𝛼2 ,𝜆1 ,...,𝜆𝑟
𝑗 (𝑥, 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑒−𝑖𝑦 ·𝜉 Ψ 𝑗 (𝜉) đ𝜉

=:
∑

𝛼1+𝛼2=𝛼
𝜆1+···+𝜆𝑟=𝛼2

𝐶𝛼1 ,𝛼2 ,𝜆1 ,...𝜆𝑟 2 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼 |)𝑆𝛼1 ,𝛼2 ,𝜆1 ,...𝜆𝑟
𝑗 (𝜏−𝑦Ψ̂ 𝑗 ) (𝑥),

where 𝜏−𝑦 is a translation by −𝑦, |𝜆 𝑗 | ≥ 1 and

𝑏𝛼1 ,𝛼2 ,𝜆1 ,...,𝜆𝑟
𝑗 (𝑥, 𝜉) := 2− 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼 |)

× 𝜕𝛼1
𝜉 𝑎 𝑗 (𝑥, 𝜉) 𝜕𝜆1

𝜉 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉) . . . 𝜕𝜆𝑟
𝜉 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉).

Now, we claim that 𝑏𝛼1 ,𝛼2 ,𝜆1 ,...,𝜆𝑟
𝑗 (𝑥, 𝜉) ∈ 𝑆0

0,0 (R
𝑛) uniformly in j. Indeed, since 𝑎 ∈ 𝑆𝑚𝑘 (𝑝)

0,0 (R𝑛) and
𝜑 ∈ F

𝑘 (with 𝑘 ≥ 1), we can write���𝑏𝛼1 ,𝛼2 ,𝜆1 ,...,𝜆𝑟
𝑗 (𝑥, 𝜉)

��� � 2− 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼 |) 2 𝑗𝑚𝑘 (𝑝) 2 𝑗 (𝑘−1)𝑟

≤ 2− 𝑗 (𝑘−1) |𝛼 | 2 𝑗 (𝑘−1)𝑟� 1.

In a similar way, using the F
𝑘 -condition, we can also check that, for any multi-indices 𝛾 and 𝛽,���𝜕𝛾

𝜉 𝜕
𝛽
𝑥 𝑏𝛼1 ,𝛼2 ,𝜆1 ,...,𝜆𝑟

𝑗 (𝑥, 𝜉)
��� � 1, (56)

hence 𝑏𝛼1 ,𝛼2 ,𝜆1 ,...,𝜆𝑟
𝑗 ∈ 𝑆0

0,0 (R
𝑛). In the case 0 < 𝑘 < 1, the hypothesis on a and 𝜑 yield that

|𝜕𝛼
𝜉 𝜕

𝛽
𝑥 𝑎 𝑗 (𝑥, 𝜉) | � 2 𝑗 (𝑚𝑘 (𝑝)−|𝛼 |) ,

and on the support of 𝑎 𝑗

|𝜕𝛼
𝜉 𝜕

𝛽
𝑥 (𝜑(𝑥, 𝜉) − 𝑥 · 𝜉) | � 2 𝑗 (𝑘−|𝛼 |) ,

which together imply equation (56).
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Therefore, Theorem 5.1 yields that

‖(𝑥 − 𝑦)𝛼𝐾 𝑗 (𝑥, 𝑥 − 𝑦)‖𝐿2
𝑥 (R𝑛) �

∑
𝛼1+𝛼2=𝛼

𝜆1+···+𝜆𝑟=𝛼2

2 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼 |) ‖𝑆𝛼1 ,𝛼2 ,𝜆1 ,...𝜆𝑟
𝑗 (𝜏𝑦Ψ̂ 𝑗 )‖𝐿2 (R𝑛)

� 2 𝑗 ( |𝛼 | (𝑘−1)+𝑚𝑘 (𝑝)) ‖Ψ̂ 𝑗 ‖𝐿2 (R𝑛) � 2 𝑗 ( |𝛼 | (𝑘−1)+𝑚𝑘 (𝑝)+𝑛/2) ,

and the proof is completed. �

We would like to have a similar result for the adjoint operator, but in this case, we need to add an
extra condition. However, this extra condition is automatically fulfilled if one assumes LF(μ)-condition
(14), and it turns out to be superfluous as far as the 𝐿 𝑝-boundedness is concerned. Since the result is
only applied in these two cases, this extra condition will not have any impact on any of the main results.
In the following proposition, we let 𝑒ℓ be the unit vectors as in the proof of Theorem 3.4 on page 16.

Proposition 9.2. Let 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)
0,0 (R𝑛) and 𝑎𝐻 (𝑥, 𝜉) := (1 − 𝜓0 (𝜉/

√
𝑛)) 𝑎(𝑥, 𝜉), where 𝜓0 is given

in Definition 2.1. Suppose that, for 𝑘 ≥ 1, 𝜑 ∈ F
𝑘 is SND and satisfies the 𝐿2-condition (11). Moreover,

assume that for all 𝜉 ∈ supp𝜉 𝑎𝐻 (𝑥, 𝜉), there exists 1 ≤ ℓ ≤ 2𝑛 such that the line segment between 𝜉

and 𝑒ℓ does not pass through the unit ball 𝐵(0, 1) and such that 𝜕𝛽
𝑥 𝜑(𝑥, 𝑒ℓ) ∈ 𝐿∞(R𝑛), for all |𝛽 | ≥ 1.

Then, (𝑇 𝜑
𝑎𝐻

)∗ given as in equation (13) is a bounded operator from ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛) when 0 < 𝑝 < 1.
In the case 0 < 𝑘 < 1, the result above is true provided that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)

1,0 (R𝑛).

Proof. The proof follows the same lines as that of Lemma 6.2. Indeed, since (𝑇 𝜑
𝑎𝐻

)∗ is 𝐿2-bounded, we
only need to show that ��𝜌 𝑗 (𝑦, ·)

��
𝐿2
𝜉 (R𝑛)

� 2 𝑗 ( |𝛼 | (𝑘−1)+ |𝛽 |+𝑚𝑘 (𝑝)+𝑛/2) , (57)

where

𝜌 𝑗 (𝑦, 𝜉) :=
∑

𝛼1+𝛼2=𝛼
𝛽1+𝛽2=𝛽
𝛽2≥𝛼2

𝐶𝛼,𝛽𝜕
𝛼1
𝜉 𝜕

𝛽1
𝑦 𝜎𝑗 (𝑦, 𝜉) 𝜉𝛽2−𝛼2 , (58)

𝜎𝑗 (𝑦, 𝜉) := 𝑎 𝑗 (𝑦, 𝜉) 𝑒−𝑖𝜑 (𝑦, 𝜉 )+𝑖𝑦 ·𝜉 ,

and 𝑎 𝑗 (𝑦, 𝜉) := 𝑎𝐻 (𝑦, 𝜉) 𝜓 𝑗 (𝜉) is the usual Littlewood–Paley piece. To this end, Leibniz’s rule yields
that

|𝜕𝛼1
𝜉 𝜕

𝛽1
𝑦 𝜎𝑗 (𝑦, 𝜉) | = |𝜕𝛼1

𝜉 𝜕
𝛽1
𝑦 (𝑎 𝑗 (𝑦, 𝜉) 𝑒−𝑖𝜑 (𝑦, 𝜉 )+𝑖𝑦 ·𝜉 ) |

�
∑

𝛼′
1+𝛼

′′
1 =𝛼1

𝛽′
1+𝛽

′′
1 =𝛽1

|𝜕𝛼′
1

𝜉 𝜕
𝛽′

1
𝑦 𝑎 𝑗 (𝑦, 𝜉) | |𝜕

𝛼′′
1

𝜉 𝜕
𝛽′′

1
𝑦 𝑒−𝑖𝜑 (𝑦, 𝜉 )+𝑖𝑦 ·𝜉 |.

Now, if we let Φ(𝑦, 𝜉) := 𝜑(𝑦, 𝜉) − 𝑦 · 𝜉, then Faà di Bruno’s formulae implies

|𝜕𝛼
𝜉 𝜕

𝛽
𝑦 𝑒

−𝑖Φ(𝑦, 𝜉 ) | �
∑

(𝛾1 , 𝛿1)+···+(𝛾𝑟 , 𝛿𝑟 )=(𝛼,𝛽)
|𝜕𝛾1

𝜉 𝜕 𝛿1
𝑦 Φ(𝑦, 𝜉) |...|𝜕𝛾𝑟

𝜉 𝜕 𝛿𝑟
𝑦 Φ(𝑦, 𝜉) |, (59)

where the sum above runs over all possible partitions of (𝛼, 𝛽) such that |𝛾𝜈 | + |𝛿𝜈 | ≥ 1 for 𝜈 = 1, . . . , 𝑟 .
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The F
𝑘 -condition isn’t enough to estimate the terms in equation (59), and we also need to derive

estimates for the derivatives in x. For any 𝜉 ∈ supp𝜉 𝑎𝐻 (𝑦, 𝜉), take ℓ as in the statement of this theorem.
Then the 𝐿2-condition and the mean-value theorem yield that��𝜕𝛾

𝑦 𝜑(𝑦, 𝜉)
�� ≤ ��𝜕𝛾

𝑦 𝜑(𝑦, 𝜉) − 𝜕
𝛾
𝑦 𝜑(𝑦, 𝑒ℓ)

�� + ��𝜕𝛾
𝑦 𝜑(𝑦, 𝑒ℓ)

��
� |𝜉 − 𝑒ℓ | +

��𝜕𝛾
𝑦 𝜑(𝑦, 𝑒ℓ)

�� � |𝜉 |.
(60)

Hence, on the support of 𝑎 𝑗 one has, for 𝑘 ≥ 1,

|𝜕𝛾
𝜉 𝜕

𝛿
𝑦 Φ(𝑦, 𝜉) | =

{
𝑂 (2 𝑗 ), 𝛾 = 0,
𝑂 (2 𝑗 (𝑘−1) ), 𝛾 ≠ 0,

and for 0 < 𝑘 < 1

|𝜕𝛾
𝜉 𝜕

𝛿
𝑦 Φ(𝑦, 𝜉) | =

{
𝑂 (2 𝑗 ), 𝛾 = 0,
𝑂 (2 𝑗 (𝑘−|𝛾 |) ), 𝛾 ≠ 0,

where we have used the F
𝑘 -condition, 𝐿2-condition and equation (60). Therefore, for 𝑘 ≥ 1, using

equation (59) we get

|𝜕𝛼1
𝜉 𝜕

𝛽1
𝑦 𝜎𝑗 (𝑦, 𝜉) | � 2 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼1 |+ |𝛽1 |) .

On the other hand, in the case 0 < 𝑘 < 1 using the assumption 𝑎 ∈ 𝑆𝑚𝑘 (𝑝)
1,0 (R𝑛) we obtain

|𝜕𝛼1
𝜉 𝜕

𝛽1
𝑦 𝜎𝑗 (𝑦, 𝜉) | �

∑
𝛼′

1+𝛼
′′
1 =𝛼1

𝛽′
1+𝛽

′′
1 =𝛽1

|𝜕𝛼′
1

𝜉 𝜕
𝛽′

1
𝑦 𝑎 𝑗 (𝑦, 𝜉) | |𝜕

𝛼′′
1

𝜉 𝜕
𝛽′′

1
𝑦 𝑒−𝑖𝜑 (𝑦, 𝜉 )+𝑖𝑦 ·𝜉 |

�
∑

𝛼′
1+𝛼

′′
1 =𝛼1

𝛽′
1+𝛽

′′
1 =𝛽1

2 𝑗 (𝑚𝑘 (𝑝)−|𝛼′
1 |+ |𝛼

′′
1 |𝑘−|𝛼

′′
1 |+ |𝛽

′′
1 |)

� 2 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼1 |+ |𝛽1 |) .

Thus, in both cases

|𝜕𝛼1
𝜉 𝜕

𝛽1
𝑦 𝜎𝑗 (𝑦, 𝜉) | � 2 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼1 |+ |𝛽1 |)

= 2 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼 |−(𝑘−1) |𝛼2 |+ |𝛽1 |)

� 2 𝑗 (𝑚𝑘 (𝑝)+(𝑘−1) |𝛼 |+ |𝛼2 |+ |𝛽1 |) .

(61)

Finally, combining equations (61) and (58) we obtain equation (57). Hence, Lemma 4.6 holds and the
proof is concluded. �

10. The ℎ𝑝 − 𝐿 𝑝 boundedness of Schrödinger integral operators

This section deals with the regularity of the Schödinger integral operators. An important tool in the
proof of the following theorem is a Littelwood–Paley decomposition of the amplitude, where each
Littlewood–Paley annulus is further decomposed into a union of balls with constant radii, in contrast
to the second frequency localisation introduced by C. Fefferman in [11], where different pieces of the
amplitude are supported in ‘angular-radial rectangles’.

Theorem 10.1. Let 𝑇 𝜑
𝑎 be a Schrödinger integral operator according to Definition 2.17 with amplitude

𝑎(𝑥, 𝜉) ∈ 𝑆𝑚2 (𝑝)
0,0 (R𝑛) and phase function 𝜑 that is SND. Then 𝑇

𝜑
𝑎 is a bounded operator from ℎ𝑝 (R𝑛)
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to 𝐿𝑝 (R𝑛) for 0 < 𝑝 < ∞. Moreover, if |∇𝑥𝜑(𝑥, 0) | ∈ 𝐿∞(R𝑛), then 𝑇
𝜑
𝑎 is bounded from 𝐿∞(R𝑛) to

bmo(R𝑛).

Proof. We start by the analysis of the case of 0 < 𝑝 < 1. We make the following decomposition of the
integral kernel

𝐾 (𝑥, 𝑦) =
∫
R𝑛

𝑎(𝑥, 𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑦 ·𝜉 đ𝜉

of the operator 𝑇 𝜑
𝑎 . We introduce a standard Littlewood–Paley partition of unity

∑∞
𝑗=0 𝜓 𝑗 (𝜉) = 1 with

supp𝜓0 ⊂ 𝐵(0, 2), and supp𝜓 𝑗 ⊂ {2 𝑗−1 ≤ |𝜉 | ≤ 2 𝑗+1} for 𝑗 ≥ 1. Then for every 𝑗 ≥ 0 we cover
supp𝜓 𝑗 with open balls 𝐶𝜈

𝑗 with radius 1 and center 𝜉𝜈𝑗 , where 𝜈 runs from 1 to 𝑂 (2 𝑗𝑛). Observe that
|𝐶𝜈

𝑗 | � 1 uniformly in j and 𝜈. Now, take 𝑢 ∈ C∞
𝑐 (R𝑛), with 0 ≤ 𝑢 ≤ 1 and supported in 𝐵(0, 2) with

𝑢 = 1 on 𝐵(0, 1). Define 𝜆𝜈
𝑗 (𝜉) ∈ C∞

𝑐 (R𝑛) to be equal to 𝑢(𝜉 − 𝜉𝜈𝑗 ). Next, set 𝜒𝜈
𝑗 (𝜉) := 𝜆𝜈

𝑗 (𝜉)/
∑

𝜈 𝜆
𝜈
𝑗 (𝜉)

and observe that for each 𝜉 ∈ supp𝜓 𝑗 the sum
∑

𝜈 𝜆
𝜈
𝑗 (𝜉) ≥ 1, and also

∑∞
𝑗=0

∑
𝜈 𝜒𝜈

𝑗 (𝜉) 𝜓 𝑗 (𝜉) = 1. Now,
consider the kernel

𝐾𝜈
𝑗 (𝑥, 𝑦) :=

∫
R𝑛

𝜓 𝑗 (𝜉) 𝜒𝜈
𝑗 (𝜉) 𝑒𝑖𝜑 (𝑥, 𝜉 )−𝑖𝑦 ·𝜉 𝑎(𝑥, 𝜉) đ𝜉.

Therefore, for any multi-index 𝛼 and any 𝑗 ≥ 0 we have

𝜕𝛼
𝑦 𝐾

𝜈
𝑗 (𝑥, 𝑦) =

∫
R𝑛

𝜓 𝑗 (𝜉) 𝜒𝜈
𝑗 (𝜉) 𝜕𝛼

𝑦 𝑒
𝑖 (𝜑 (𝑥, 𝜉 )−𝑦 ·𝜉 ) 𝑎(𝑥, 𝜉) đ𝜉

=
∫
R𝑛

𝑒𝑖 (𝜑 (𝑥, 𝜉 )−𝑦 ·𝜉 ) 𝜎𝛼,𝜈
𝑗 (𝑥, 𝜉) đ𝜉,

where

𝜎𝛼,𝜈
𝑗 (𝑥, 𝜉) := 𝜓 𝑗 (𝜉) 𝜒𝜈

𝑗 (𝜉) (−𝑖𝜉)𝛼 𝑎(𝑥, 𝜉).

Using the assumption that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚2 (𝑝)
0,0 (R𝑛), we deduce that for any multi-index 𝛾, any 𝑗 ≥ 0 and

any 𝜈 one has

|𝜕𝛾
𝜉𝜎

𝛼,𝜈
𝑗 (𝑥, 𝜉) | � 2 𝑗 (𝑚2 (𝑝)+ |𝛼 |) . (62)

If we now set 𝜗(𝑥, 𝜉) := 𝜑(𝑥, 𝜉) − 𝜉 · ∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ), then we can write

𝜕𝛼
𝑦 𝐾

𝜈
𝑗 (𝑥, 𝑦) =

∫
R𝑛

𝑒𝑖 (∇𝜉 𝜑 (𝑥, 𝜉 𝜈
𝑗 )−𝑦) ·𝜉 𝑒𝑖𝜗 (𝑥, 𝜉 ) 𝜎𝛼,𝜈

𝑗 (𝑥, 𝜉) đ𝜉.

Now, we claim that the derivatives of 𝜗 in 𝜉 are uniformly bounded on the support of 𝜎𝛼,𝜈
𝑗 (𝑥, 𝜉). To

this end, the mean-value theorem and equation (15) yield

|𝜕𝜉𝑙𝜗(𝑥, 𝜉) | =
���𝜕𝜉𝑙𝜑(𝑥, 𝜉) − 𝜕𝜉𝑙𝜑(𝑥, 𝜉𝜈𝑗 )

��� = ���(𝜉 − 𝜉𝜈𝑗

)
·
∫ 1

0
𝜕𝜉𝑙∇𝜉𝜑(𝑥, 𝑡𝜉 + (1 − 𝑡)𝜉𝜈𝑗 ) d𝑡

���
�

���𝜉 − 𝜉𝜈𝑗

��� ≤ 1,

and ���𝜕μ
𝜉𝜗(𝑥, 𝜉)

��� = ���𝜕μ
𝜉𝜑(𝑥, 𝜉)

��� � 1, for all |μ | ≥ 2.
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Defining the differential operator L by

𝐿 := 1 − 𝑖(∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − 𝑦) · ∇𝜉 ,

one can easily verify that〈
∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − 𝑦

〉−2𝑀
𝐿𝑀 𝑒

𝑖
(
∇𝜉 𝜑

(
𝑥, 𝜉 𝜈

𝑗

)
−𝑦

)
·𝜉

= 𝑒
𝑖
(
∇𝜉 𝜑

(
𝑥, 𝜉 𝜈

𝑗

)
−𝑦

)
·𝜉
,

for all integers 𝑀 ≥ 0. Therefore, integrating by parts yields

𝜕𝛼
𝑦 𝐾

𝜈
𝑗 (𝑥, 𝑦) = 〈∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − 𝑦〉−2𝑀

∫
R𝑛

𝑒𝑖 (∇𝜉 𝜑 (𝑥, 𝜉 𝜈
𝑗 )−𝑦) ·𝜉 (𝐿∗)𝑀 𝑒𝑖𝜗 (𝑥, 𝜉 ) 𝜎𝛼,𝜈

𝑗 (𝑥, 𝜉) đ𝜉.

This equality, the observation that supp𝜎𝛼,𝜈
𝑗 ⊂ 𝐶𝜈

𝑗 , with |𝐶𝜈
𝑗 | = 𝑂 (1) uniformly in 𝜈 and j, the estimates

for the derivatives of 𝜗 and equation (62) yield

|𝜕𝛼
𝑦 𝐾

𝜈
𝑗 (𝑥, 𝑦) | �

2 𝑗 (𝑚2 (𝑝)+ |𝛼 |)〈
∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − 𝑦

〉𝑀 , (63)

for all multi-indices 𝛼 and all 𝑗 ≥ 0.
Let 𝑇 𝜈

𝑗 be the operators corresponding to the kernels 𝐾𝜈
𝑗 and 𝔞 be a p-atom supported in the ball

𝐵 := 𝐵( �̄�, 𝑟) with �̄� ∈ R𝑛 and 𝑟 > 0. Define the domain of influence of 𝑇 𝜈
𝑗 by

𝐵𝜈
𝑗 := {𝑥 : |∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − �̄� | ≤ 2𝑟}.

Since 0 < 𝑝 < 1 we have��𝑇 𝜑
𝑎 𝔞

��𝑝
𝐿𝑝 (R𝑛) �

∑
𝑗

∑
𝜈

���𝑇 𝜈
𝑗 𝔞

���𝑝
𝐿𝑝 (R𝑛)

=
∑
𝑗

∑
𝜈

(���𝑇 𝜈
𝑗 𝔞

���𝑝
𝐿𝑝 (𝐵𝜈

𝑗 )
+

���𝑇 𝜈
𝑗 𝔞

���𝑝
𝐿𝑝 (R𝑛\𝐵𝜈

𝑗 )

)
. (64)

We start with the first term in equation (64). Since, by the SND-condition, the map 𝑥 ↦→ ∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 )
is a global diffeomorphism, one has that |𝐵𝜈

𝑗 | � 𝑟𝑛 uniformly in j and 𝜈. Therefore, the 𝐿2-boundedness
of 2− 𝑗𝑚2 (𝑝)𝑇 𝜈

𝑗 proven in [13] and Hölder’s inequality yield���𝑇 𝜈
𝑗 𝔞

���𝐿𝑝 (𝐵𝜈
𝑗 ) � 𝑟𝑛(1/𝑝−1/2)2 𝑗𝑚2 (𝑝)

���2− 𝑗𝑚2 (𝑝)𝑇 𝜈
𝑗 𝔞

���𝐿2 (R𝑛)

� 𝑟𝑛(1/𝑝−1/2)2 𝑗𝑚2 (𝑝) ‖𝔞‖𝐿2 (R𝑛) � 2 𝑗𝑚2 (𝑝) ,

where the 𝐿2-boundedness of the second inequality is uniform in j and 𝜈. This is because the symbol of
2− 𝑗𝑚2 (𝑝)𝑇 𝜈

𝑗 fulfills

|𝜕𝛼
𝜉 𝜕

𝛽
𝑥 (2− 𝑗𝑚2 (𝑝) 𝜓 𝑗 (𝜉) 𝜒𝜈

𝑗 (𝜉) 𝑎(𝑥, 𝜉)) | � 1,

uniformly in j and 𝜈 and is hence an element of 𝑆0
0,0 (R

𝑛).
We turn to the second term in equation (64) and estimate that in two different ways. First, we observe

that for 𝑥 ∈ R𝑛 \ 𝐵𝜈
𝑗 and 𝑦 ∈ 𝐵 one has

|∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − 𝑦 | ≥ 1
2
|∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − �̄� |.
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Now, using the SND-condition of the phase and equation (63) with 𝛼 = 0, we obtain (taking M large
enough) ���𝑇 𝜈

𝑗 𝔞
���𝑝
𝐿𝑝 (R𝑛\𝐵𝜈

𝑗 )
�

∫
R𝑛\𝐵𝜈

𝑗

( ∫
𝐵
|𝐾𝜈

𝑗 (𝑥, 𝑦) | |𝔞(𝑦) | d𝑦
) 𝑝

d𝑥

�
∫
R𝑛

( ∫
𝐵

2 𝑗𝑚2 (𝑝)𝑟−𝑛/𝑝〈
∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − �̄�

〉𝑀 d𝑦
) 𝑝

d𝑥 � 2 𝑗 (𝑛𝑝−2𝑛)𝑟𝑛𝑝−𝑛.
(65)

Second, if 𝑟 < 1, Taylor expansion of 𝐾𝜈
𝑗 in the y-variable around �̄�, using the moment conditions of

𝔞, and finally equation (63) yield that for 𝑁 := [𝑛(1/𝑝 − 1)]���𝑇 𝜈
𝑗 𝔞

���𝑝
𝐿𝑝 (R𝑛\𝐵𝜈

𝑗 )
�

∑
|𝛼 |=𝑁+1

∫
R𝑛\𝐵𝜈

𝑗

( ∫
𝐵
|𝜕𝛼

𝑦 𝐾
𝜈
𝑗 (𝑥, 𝑦∗) | |𝑦 − �̄� |𝑁+1 |𝔞(𝑦) | d𝑦

) 𝑝
d𝑥

� 2 𝑗 (𝑛𝑝−2𝑛+𝑝 (𝑁+1))𝑟𝑛𝑝−𝑛+𝑝 (𝑁+1) ,

where 𝑦∗ is a point on the line segment connecting y and �̄�. Note that we have also used that for
𝑥 ∈ R𝑛 \ 𝐵𝜈

𝑗 , one has

|∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − �̄� | � |∇𝜉𝜑(𝑥, 𝜉𝜈𝑗 ) − 𝑦∗ |.

Since 𝑟 < 1, take the unique integer ℓ ∈ Z+ such that 2−ℓ−1 ≤ 𝑟 < 2−ℓ . Then recalling that there are
𝑂 (2 𝑗𝑛) terms in the sum in 𝜈, we have

∞∑
𝑗=0

∑
𝜈

(���𝑇 𝜈
𝑗 𝔞

���𝑝
𝐿𝑝 (𝐵𝜈

𝑗 )
+

���𝑇 𝜈
𝑗 𝔞

���𝑝
𝐿𝑝 (R𝑛\𝐵𝜈

𝑗 )

)
�

∑
𝑗≥ℓ

∑
𝜈

(
2−2 𝑗𝑛(1−𝑝/2) + 2 𝑗 (𝑛𝑝−2𝑛)𝑟𝑛𝑝−𝑛

)
+

∑
𝑗<ℓ

∑
𝜈

(
2−2 𝑗𝑛(1−𝑝/2) + 2 𝑗 (𝑛𝑝−2𝑛+𝑝𝑁+𝑝)𝑟𝑛𝑝−𝑛+𝑝𝑁+𝑝

)
�

∑
𝑗≥ℓ

(
2− 𝑗𝑛(1−𝑝) + 2 𝑗 (𝑛𝑝−𝑛)𝑟𝑛𝑝−𝑛

)
+

∑
𝑗<ℓ

(
2− 𝑗𝑛(1−𝑝) + 2 𝑗 (𝑛𝑝−𝑛+𝑝𝑁+𝑝)𝑟𝑛𝑝−𝑛+𝑝𝑁+𝑝

)
� 1 + 2ℓ (𝑛𝑝−𝑛)𝑟𝑛𝑝−𝑛 + 2ℓ (𝑛𝑝−𝑛+𝑝𝑁+𝑝)𝑟𝑛𝑝−𝑛+𝑝𝑁+𝑝 ∼ 1.

Now, if 𝑟 ≥ 1, we do the same calculation as above, except that we take ℓ = 0 and do not consider
the case 𝑗 < ℓ. Hence, only equation (65) is needed to estimate

���𝑇 𝜈
𝑗 𝔞

���𝑝
𝐿𝑝 (R𝑛\𝐵𝜈

𝑗 )
, and we conclude that��𝑇 𝜑

𝑎 𝔞
��𝑝
𝐿𝑝 (R𝑛) is also uniformly bounded when 𝑟 ≥ 1.

Interpolating this with the 𝐿2-boundedness result in [13] yields the result for 0 < 𝑝 ≤ 2.
For the 𝐿 𝑝-boundedness of 𝑇 𝜑

𝑎 in the range 2 ≤ 𝑝 < ∞, using Remark 3.8 we can without loss of
generality assume that 𝜑(𝑥, 0) = 0 in 𝑇

𝜑
𝑎 . Now, using duality and interpolation, the 𝐿 𝑝-boundedness of

𝑇
𝜑
𝑎 (with this kind of phase function) would be a consequence of the ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛) boundedness

of the adjoint operator (𝑇 𝜑
𝑎 )∗, for 0 < 𝑝 ≤ 2.

Therefore, we start by showing the ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛) boundedness of the adjoint operator (𝑇 𝜑
𝑎 )∗

(with 𝜑(𝑥, 0) = 0), for 0 < 𝑝 < 1 and make the following observations. The kernel of (𝑇 𝜑
𝑎 )∗ is given by

𝐾𝜈∗
𝑗 (𝑥, 𝑦) =

∫
R𝑛

𝜓 𝑗 (𝜉) 𝜒𝜈
𝑗 (𝜉) 𝑒−𝑖 (𝜑 (𝑦, 𝜉 )−𝑥 ·𝜉 ) 𝑎(𝑦, 𝜉) đ𝜉,
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therefore for any multi-index 𝛼 we have

𝜕𝛼
𝑦 𝐾

𝜈∗
𝑗 (𝑥, 𝑦) =

∫
R𝑛

𝜓 𝑗 (𝜉) 𝜒𝜈
𝑗 (𝜉) 𝜕𝛼

𝑦

(
𝑒−𝑖 (𝜑 (𝑦, 𝜉 )−𝑥 ·𝜉 ) 𝑎(𝑦, 𝜉)

)
đ𝜉

=
∫
R𝑛

𝑒−𝑖 (𝜑 (𝑦, 𝜉 )−𝑥 ·𝜉 ) 𝜎𝛼,𝜈∗
𝑗 (𝑦, 𝜉) đ𝜉,

where

𝜎𝛼,𝜈∗
𝑗 (𝑦, 𝜉) := 𝜓 𝑗 (𝜉) 𝜒𝜈

𝑗 (𝜉)
∑

𝛼1+𝛼2=𝛼
𝜆1+···+𝜆𝑟=𝛼2

𝐶𝛼1 ,𝛼2 ,𝜆1 ,...𝜆𝑟 𝜕
𝛼1
𝑦 𝑎(𝑦, 𝜉) 𝜕𝜆1

𝑦 𝜑(𝑦, 𝜉) · · · 𝜕𝜆𝑟
𝑦 𝜑(𝑦, 𝜉),

and |𝜆 𝑗 | ≥ 1. Now, for |𝜆 𝑗 + 𝛽 | ≥ 2,

|𝜕𝜆 𝑗
𝑦 𝜕

𝛽
𝜉 𝜑(𝑦, 𝜉) | � 1,

and using that 𝜑(𝑦, 0) = 0 and the mean-value theorem, we obtain

|∇𝑦𝜑(𝑦, 𝜉) | � |𝜉 |.

From these estimates, we deduce that for any multi-index 𝛾 one has |𝜕𝛾
𝜉𝜎

𝛼,𝜈∗
𝑗 (𝑦, 𝜉) | � 2 𝑗 (𝑚2 (𝑝)+ |𝛼 |) .

Therefore, following the same line of reasoning as for the case of 𝑇 𝜑
𝑎 yields for all multi-indices 𝛼 and

all 𝑗 ≥ 0 that

|𝜕𝛼
𝑦 𝐾

𝜈∗
𝑗 (𝑥, 𝑦) | � 2 𝑗 (𝑚2 (𝑝)+ |𝛼 |)〈

∇𝜉𝜑(𝑦, 𝜉𝜈𝑗 ) − 𝑥
〉𝑀 .

Now, the rest of the proof proceeds almost exactly as in the case of 𝑇 𝜑
𝑎 .

Having established the ℎ𝑝 − 𝐿 𝑝 boundedness of (𝑇 𝜑
𝑎 )∗ for 0 < 𝑝 < 1, we can use interpolation to

extend this to the desired range 0 < 𝑝 ≤ 2. Summing up, this (together with duality and interpolation)
shows the ℎ𝑝-𝐿 𝑝 boundedness of 𝑇 𝜑

𝑎 for 0 < 𝑝 < ∞.
Now, for the boundedness of 𝑇 𝜑

𝑎 from 𝐿∞(R𝑛) to bmo(R𝑛) one can write 𝑇
𝜑
𝑎 = 𝑒𝑖𝜑 (𝑥,0)𝑇

�̃�
𝑎 with

�̃�(𝑥, 0) = 0. Then given the assumption on the phase function of Schrödinger integral operators and
the extra assumption |∇𝑥𝜑(𝑥, 0) | ∈ 𝐿∞(R𝑛) on the phase, one can use equation (9) to reduce matters to
the boundedness of 𝑇 �̃�

𝑎 . But the boundedness of 𝑇 �̃�
𝑎 from 𝐿∞(R𝑛) to bmo(R𝑛) is a consequence of the

boundedness of (𝑇 �̃�
𝑎 )∗ from ℎ1 (R𝑛) to 𝐿1 (R𝑛) which is achieved in the same way, as in the analysis of

(𝑇 𝜑
𝑎 )∗ above. The details are left to the interested reader. �

11. Action of parameter-dependent pseudodifferential operators on oscillatory integrals

Here, we prove the result concerning the composition of parameter-dependent pseudodifferential op-
erators and oscillatory integral operators and also derive an asymptotic expansion for the composition
operator.

Proof of Theorem 3.11. The idea of the proof is similar to that of the asymptotic expansion proved in
[26]; however, the details are somewhat different. Let 𝜒(𝑥 − 𝑦) ∈ C∞(R𝑛 × R𝑛) such that 0 ≤ 𝜒 ≤ 1,
𝜒(𝑥 − 𝑦) ≡ 1 for |𝑥 − 𝑦 | < 𝜅/2 and 𝜒(𝑥 − 𝑦) = 0 for |𝑥 − 𝑦 | > 𝜅, for some small 𝜅 to be specified later.
We now decompose 𝜎𝑡 (𝑥, 𝜉) into two parts I1 (𝑡, 𝑥, 𝜉) and I2(𝑡, 𝑥, 𝜉), where

I1(𝑡, 𝑥, 𝜉) :=
∬
R𝑛×R𝑛

𝑎(𝑦, 𝜉) 𝑏(𝑥, 𝑡𝜂) (1 − 𝜒(𝑥 − 𝑦)) 𝑒𝑖 (𝑥−𝑦) ·𝜂+𝑖𝜑 (𝑦, 𝜉 )−𝑖𝜑 (𝑥, 𝜉 ) đ𝜂 d𝑦,
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and

I2 (𝑡, 𝑥, 𝜉) :=
∬
R𝑛×R𝑛

𝑎(𝑦, 𝜉) 𝑏(𝑥, 𝑡𝜂) 𝜒(𝑥 − 𝑦) 𝑒𝑖 (𝑥−𝑦) ·𝜂+𝑖𝜑 (𝑦, 𝜉 )−𝑖𝜑 (𝑥, 𝜉 ) đ𝜂 d𝑦.

Step 1 – The analysis of I1(𝑡, 𝑥, 𝜉)
To this end, we introduce the differential operators

𝐿𝜂 := −𝑖 𝑥 − 𝑦

|𝑥 − 𝑦 |2
· ∇𝜂 and 𝐿𝑦 :=

1
〈∇𝑦𝜑(𝑦, 𝜉)〉2 − 𝑖Δ 𝑦𝜑(𝑦, 𝜉)

(1 − Δ 𝑦).

Because of equation (29), one has

|〈∇𝑦𝜑(𝑦, 𝜉)〉2 − 𝑖Δ 𝑦𝜑(𝑦, 𝜉) | ≥ 〈∇𝑦𝜑(𝑦, 𝜉)〉2 � 〈𝜉〉2.

Now, integration by parts yields

I1(𝑡, 𝑥, 𝜉) =
∬
R𝑛×R𝑛

(𝐿∗
𝑦)𝑁2 {𝑒−𝑖𝑦 ·𝜂 𝑎(𝑦, 𝜉) (𝐿∗

𝜂)𝑁1 [(1 − 𝜒(𝑥 − 𝑦)) 𝑏(𝑥, 𝑡𝜂)]}

× 𝑒𝑖𝑥 ·𝜂+𝑖𝜑 (𝑦, 𝜉 )−𝑖𝜑 (𝑥, 𝜉 ) đ𝜂 d𝑦.

Now, since 0 < 𝑡 ≤ 1, provided 0 < 𝑁3 < 𝑁1 − 𝑠, we have���𝜕𝑁1
𝜂 𝑗

𝑏(𝑥, 𝑡𝜂)
��� � 𝑡𝑁1 〈𝑡𝜂〉𝑠−𝑁1 = 𝑡𝑁1 〈𝑡𝜂〉−𝑁3 〈𝑡𝜂〉𝑠−(𝑁1−𝑁3)

� 𝑡𝑁1
(
𝑡2 + |𝑡𝜂 |2

)−𝑁3/2
〈𝑡𝜂〉𝑠−(𝑁1−𝑁3) � 𝑡𝑁1−𝑁3 〈𝜂〉−𝑁3 .

Therefore, choosing 𝑁1 > 𝑛 and 2𝑁2 < 𝑁3 − 𝑛

|I1(𝑡, 𝑥, 𝜉) | � 𝑡𝑁1−𝑁3 〈𝜉〉−2𝑁2+𝑚
∬

|𝑥−𝑦 |>𝜅
〈𝜂〉2𝑁2 |𝑥 − 𝑦 |−𝑁1 〈𝜂〉−𝑁3 đ𝜂 d𝑦

� 𝑡𝑁1−𝑁3 〈𝜉〉−2𝑁2+𝑚.

Estimating derivatives of I1(𝑡, 𝑥, 𝜉) with respect to x and 𝜉 may introduce factors estimated by powers
of 〈𝜉〉, 〈𝜂〉, and |𝑥 − 𝑦 |, which can all be handled by choosing 𝑁1 and 𝑁2 appropriately. Therefore, for
all N and any 𝜈 > 0 ���𝜕𝛼

𝜉 𝜕
𝛽
𝑥 I1 (𝑡, 𝑥, 𝜉)

��� � 𝑡𝜈 〈𝜉〉−𝑁 ,

and so I1(𝑡, 𝑥, 𝜉) forms part of the error term 𝑡 𝜀𝑀 𝑟 (𝑡, 𝑥, 𝜉) in equation (16).

Step 2 – The analysis of I2(𝑡, 𝑥, 𝜉)
First, we make the change of variables 𝜂 = ∇𝑥𝜑(𝑥, 𝜉) + 𝜁 in the integral defining I2(𝑡, 𝑥, 𝜉) and then

expand 𝑏(𝑥, 𝑡𝜂) in a Taylor series to obtain

𝑏(𝑥, 𝑡∇𝑥𝜑(𝑥, 𝜉) + 𝑡𝜁) =
∑

0≤ |𝛼 |<𝑀

𝑡 |𝛼 | 𝜁
𝛼

𝛼!

(
𝜕𝛼
𝜂 𝑏

)
(𝑥, 𝑡∇𝑥𝜑(𝑥, 𝜉)) + 𝑡𝑀

∑
|𝛼 |=𝑀

𝐶𝛼𝜁
𝛼𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁),

where

𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁) :=
∫ 1

0
(1 − 𝜏)𝑀−1

(
𝜕𝛼
𝜂 𝑏

)
(𝑥, 𝑡∇𝑥𝜑(𝑥, 𝜉) + 𝜏𝑡𝜁) d𝜏. (66)
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If we set

Φ(𝑥, 𝑦, 𝜉) := 𝜑(𝑦, 𝜉) − 𝜑(𝑥, 𝜉) + (𝑥 − 𝑦) · ∇𝑥𝜑(𝑥, 𝜉),

we obtain

I2 (𝑡, 𝑥, 𝜉) =
∑

|𝛼 |<𝑀

𝑡 𝜀 |𝛼 |

𝛼!
𝜎𝛼 (𝑡, 𝑥, 𝜉) + 𝑡 𝜀𝑀

∑
|𝛼 |=𝑀

𝐶𝛼 𝑅𝛼 (𝑡, 𝑥, 𝜉),

where, using integration by parts, we have

𝜎𝛼 (𝑡, 𝑥, 𝜉) := 𝑡 (1−𝜀) |𝛼 |
∬
R𝑛×R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜁+𝑖Φ(𝑥,𝑦, 𝜉 ) 𝜁 𝛼 𝑎(𝑦, 𝜉)𝜒(𝑥 − 𝑦) (𝜕𝛼
𝜂 𝑏) (𝑥, 𝑡∇𝑥𝜑(𝑥, 𝜉)) d𝑦 đ𝜁

= 𝑡 (1−𝜀) |𝛼 |
(
𝜕𝛼
𝜂 𝑏

)
(𝑥, 𝑡∇𝑥𝜑(𝑥, 𝜉)) (𝑖)−|𝛼 |𝜕𝛼

𝑦

[
𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) 𝑎(𝑦, 𝜉) 𝜒(𝑥 − 𝑦)

]
|𝑦=𝑥

,

and

𝑅𝛼 (𝑡, 𝑥, 𝜉) := 𝑡 (1−𝜀) |𝛼 |
∬
R𝑛×R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜁 𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) 𝜁 𝛼 𝑎(𝑦, 𝜉) 𝜒(𝑥 − 𝑦) 𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁) d𝑦 đ𝜁 .

Step 2.1 – The analysis of 𝜎𝛼 (𝑡, 𝑥, 𝜉)
We now claim that ���𝜕𝛾

𝑦 𝑒
𝑖Φ(𝑥,𝑦, 𝜉 )

|𝑦=𝑥

��� � 〈𝜉〉 |𝛾 |/2. (67)

We first observe that when 𝛾 = 0, equation (67) is obvious. To obtain equation (67) for 𝛾 ≠ 0, we recall
Faà di Bruno’s formulae

𝜕
𝛾
𝑦 𝑒

𝑖Φ(𝑥,𝑦, 𝜉 ) =
∑

𝛾1+···+𝛾𝑘=𝛾
𝐶𝛾

(
𝜕
𝛾1
𝑦 Φ(𝑥, 𝑦, 𝜉)

)
· · ·

(
𝜕
𝛾𝑘
𝑦 Φ(𝑥, 𝑦, 𝜉)

)
𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) ,

where the sum ranges of 𝛾 𝑗 such that |𝛾 𝑗 | ≥ 1 for 𝑗 = 1, 2, . . . , 𝑘 and 𝛾1 + · · · + 𝛾𝑘 = 𝛾 for some 𝑘 ∈ Z+.
Since Φ(𝑥, 𝑥, 𝜉) = 0 and 𝜕𝑦Φ(𝑥, 𝑦, 𝜉)

��
𝑦=𝑥 = 0, setting 𝑦 = 𝑥 in the expansion above leaves only terms

in which |𝛾 𝑗 | ≥ 2 for all 𝑗 = 1, 2, . . . , 𝑘 . But
∑𝑘

𝑗=1 |𝛾 𝑗 | ≤ |𝛾 |, so we actually have 2𝑘 ≤ |𝛾 |, that is
𝑘 ≤ |𝛾 |/2. Estimate (30) on the phase tells us that |𝜕𝛾 𝑗

𝑦 Φ(𝑥, 𝑦, 𝜉) | � 〈𝜉〉, so���𝜕𝛾
𝑦 𝑒

𝑖Φ(𝑥,𝑦, 𝜉 )
|𝑦=𝑥

��� � 〈𝜉〉 · · · 〈𝜉〉 � 〈𝜉〉𝑘 � 〈𝜉〉 |𝛾 |/2,

which is equation (67).
If we use the fact that 𝑡 ≤ 1 and the assumption 𝑖) of Theorem 3.11 on the phase function 𝜑, then we

have

|𝜎𝛼 (𝑡, 𝑥, 𝜉) | � 𝑡 (1−𝜀) |𝛼 | 〈𝑡∇𝑥𝜑(𝑥, 𝜉)〉𝑠−|𝛼 | 〈𝜉〉 |𝛼 |/2〈𝜉〉𝑚

� 𝑡 (1−𝜀) |𝛼 | 〈𝑡𝜉〉𝑠−(1−𝜀) |𝛼 | 〈𝑡𝜉〉−𝜀 |𝛼 | 〈𝜉〉𝑚+|𝛼 |/2

� 𝑡min(𝑠,0) 〈𝜉〉𝑠+𝑚−(1/2−𝜀) |𝛼 | ,

when |𝛼 | > 0.

https://doi.org/10.1017/fms.2023.76 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.76


Forum of Mathematics, Sigma 45

By the assumptions of the theorem, the derivatives of 𝜎𝛼 with respect to x or 𝜉 do not change the
estimates when applied to b, and the same is true when derivatives are applied to 𝜕𝛼

𝑦 𝑒
𝑖Φ(𝑥,𝑦, 𝜉 ) |𝑦=𝑥 .

Therefore, for all multi-indices 𝛽, 𝛾 ∈ Z+,���𝜕𝛽
𝜉 𝜕

𝛾
𝑥 𝜎𝛼 (𝑡, 𝑥, 𝜉)

��� � 𝑡min(𝑠,0) 〈𝜉〉𝑠+𝑚−(1/2−𝜀) |𝛼 |−𝜌 |𝛽 | ,

as required.

Step 2.2 – The analysis of 𝑅𝛼 (𝑡, 𝑥, 𝜉)
Take 𝑔 ∈ C∞

𝑐 (R𝑛) such that 𝑔(𝑥) = 1 for |𝑥 | < 𝛿/2 and 𝑔(𝑥) = 0 for |𝑥 | > 𝛿, for some small 𝛿 > 0 to
be chosen later. We then decompose

𝑅𝛼 (𝑡, 𝑥, 𝜉) = 𝑡 (1−𝜀) |𝛼 |
∬
R𝑛×R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜁 𝑔
( 𝜁

〈𝜉〉

)
𝜕𝛼
𝑦

[
𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) 𝜒(𝑥 − 𝑦) 𝑎(𝑦, 𝜉) 𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁)

]
d𝑦 đ𝜁

+ 𝑡 (1−𝜀) |𝛼 |
∬
R𝑛×R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜁
(
1 − 𝑔

( 𝜁

〈𝜉〉

))
× 𝜕𝛼

𝑦

[
𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) 𝜒(𝑥 − 𝑦) 𝑎(𝑦, 𝜉) 𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁)

]
d𝑦 đ𝜁

=: 𝑅𝐼
𝛼 (𝑡, 𝑥, 𝜉) + 𝑅𝐼𝐼

𝛼 (𝑡, 𝑥, 𝜉).

Step 2.2.1 – The analysis of 𝑅𝐼
𝛼 (𝑡, 𝑥, 𝜉)

Note that the inequality

〈𝜉〉 ≤ 1 + |𝜉 | ≤
√

2〈𝜉〉,

and equation (29) yield

〈𝑡∇𝑥𝜑(𝑥, 𝜉) + 𝑡𝜏𝜁〉 ≤ (𝐶2
√

2 + 𝛿)〈𝑡𝜉〉,

and
√

2〈𝑡∇𝑥𝜑(𝑥, 𝜉) + 𝑡𝜏𝜁〉 ≥ 1 + |𝑡∇𝑥𝜑| − |𝑡𝜁 |
≥ 1 + 𝐶1 |𝑡𝜉 | − 𝑡𝛿〈𝜉〉
≥ (1 − 𝛿) + (𝐶1 − 𝛿) |𝑡𝜉 | ≥ (min{1, 𝐶1} − 𝛿)〈𝑡𝜉〉.

Therefore, if we choose 𝛿 < min{1, 𝐶1}, then for any 𝜏 ∈ (0, 1), 〈𝑡∇𝑥𝜑(𝑥, 𝜉) + 𝑡𝜏𝜁〉 and 〈𝑡𝜉〉 are
equivalent.

This yields that for |𝜁 | ≤ 𝑟 〈𝜉〉, 𝜕𝛽
𝜁 𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁) are dominated by 𝑡 |𝛽 | 〈𝑡𝜉〉𝑠−|𝛼 |− |𝛽 | . Furthermore, for

𝑡 ≤ 1, it follows from the representation (66) for 𝑟𝛼 that���𝜕𝛽
𝜁

(
𝑔
( 𝜁

〈𝜉〉

)
𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁)

)��� � ∑
𝛾≤𝛽

���𝜕𝛾
𝜁 𝑔

( 𝜁

〈𝜉〉

)
𝜕
𝛽−𝛾
𝜁 𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁)

���
≤ 𝐶𝛼,𝛽

∑
𝛾≤𝛽

𝑡 |𝛽 |− |𝛾 | 〈𝜉〉−|𝛾 | 〈𝑡𝜉〉𝑠−|𝛼 |− |𝛽 |+ |𝛾 |

�
∑
𝛾≤𝛽

𝑡min(𝑠,0)+ |𝛽 |− |𝛾 |−(1−𝜀) |𝛼 | 〈𝜉〉−|𝛾 | 〈𝜉〉𝑠−(1−𝜀) |𝛼 |𝑡−( |𝛽 |− |𝛾 |) 〈𝜉〉−( |𝛽 |− |𝛾 |)

� 𝑡min(𝑠,0)−(1−𝜀) |𝛼 | 〈𝜉〉𝑠−(1−𝜀) |𝛼 |− |𝛽 | .

(68)

At this point, we also need estimates for 𝜕𝛼
𝑦 𝑒

𝑖Φ(𝑥,𝑦, 𝜉 ) off the diagonal, that is, when 𝑥 ≠ 𝑦. This
derivative has at most |𝛼 | powers of terms ∇𝑦𝜑(𝑦, 𝜉) − ∇𝑥𝜑(𝑥, 𝜉), possibly also multiplied by at most
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|𝛼 | higher order derivatives 𝜕𝛽
𝑦 𝜑(𝑦, 𝜉), which can be estimated by (|𝑦 − 𝑥 |〈𝜉〉) |𝛼 | using equation (30).

The term containing the difference ∇𝑦𝜑(𝑦, 𝜉) − ∇𝑥𝜑(𝑥, 𝜉) is the product of at most |𝛼 |/2 terms of the
type 𝜕

𝛽
𝑦 𝜑(𝑦, 𝜉), which can be estimated by 〈𝜉〉 |𝛼 |/2 in view of equation (30). These observations yield

|𝜕𝛼
𝑦 𝑒

𝑖Φ(𝑥,𝑦, 𝜉 ) | � (1 + |𝑥 − 𝑦 |〈𝜉〉) |𝛼 | 〈𝜉〉 |𝛼 |/2,

and therefore we also have���𝜕𝛼
𝑦

[
𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) 𝜒(𝑥 − 𝑦)

] ��� � (1 + |𝑥 − 𝑦 |〈𝜉〉) |𝛼 | 〈𝜉〉 |𝛼 |/2. (69)

Let

𝐿𝜁 :=
(1 − 〈𝜉〉2Δ 𝜁 )

1 + 〈𝜉〉2 |𝑥 − 𝑦 |2
, so 𝐿𝑁

𝜁 𝑒𝑖 (𝑥−𝑦) ·𝜁 = 𝑒𝑖 (𝑥−𝑦) ·𝜁 .

Integration by parts with 𝐿𝜁 yields

𝑅𝐼
𝛼 (𝑡, 𝑥, 𝜉) = 𝑡 (1−𝜀) |𝛼 |

∬
R𝑛×R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜁 𝜕𝛼
𝑦

[
𝜒(𝑥 − 𝑦) 𝑎(𝑦, 𝜉) 𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) ]

(1 + 〈𝜉〉2 |𝑥 − 𝑦 |2)𝑁

× (1 − 〈𝜉〉2Δ 𝜁 )𝑁
{
𝑔
( 𝜁

〈𝜉〉

)
𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁)

}
d𝑦 đ𝜁

= 𝑡 (1−𝜀) |𝛼 |
∬
R𝑛×R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜁 𝜕𝛼
𝑦

[
𝜒(𝑥 − 𝑦) 𝑎(𝑦, 𝜉) 𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) ]

(1 + 〈𝜉〉2 |𝑥 − 𝑦 |2)𝑁

×
∑

|𝛽 | ≤2𝑁
𝑐𝛽 〈𝜉〉 |𝛽 |

{
𝜕
𝛽
𝜁

(
𝑔
( 𝜁

〈𝜉〉

)
𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁)

)}
d𝑦 đ𝜁 .

Using estimates (68), (69) and that the size of the support of 𝑔(𝜁/〈𝜉〉) in 𝜁 is bounded by (𝛿〈𝜉〉)𝑛 yield

��𝑅𝐼
𝛼 (𝑡, 𝑥, 𝜉)

�� � 𝑡min(𝑠,0)
∑

|𝛽 | ≤2𝑁
〈𝜉〉𝑛+|𝛽 | 〈𝜉〉−(1−𝜀) |𝛼 |− |𝛽 | 〈𝜉〉 |𝛼 |/2+𝑠+𝑚

∫
|𝑥−𝑦 |<𝜅

(1 + |𝑥 − 𝑦 |〈𝜉〉) |𝛼 |

(1 + 〈𝜉〉2 |𝑥 − 𝑦 |2)𝑁
d𝑦

� 𝑡min(𝑠,0)
∑

|𝛽 | ≤2𝑁
〈𝜉〉𝑛+|𝛽 | 〈𝜉〉𝑠−(1−𝜀) |𝛼 |− |𝛽 | 〈𝜉〉 |𝛼 |/2+𝑚〈𝜉〉−𝑛

∫ ∞

0

𝜏𝑛−1(1 + 𝜏) |𝛼 |

(1 + 𝜏2)𝑁
d𝜏

� 𝑡min(𝑠,0) 〈𝜉〉𝑠+𝑚−(1/2−𝜀) |𝛼 | ,

if we choose 𝑁 > (𝑛+ |𝛼 |)/2, and the hidden constants in the estimates are independent of t (because of
(68)). The derivatives of 𝑅𝐼

𝛼 (𝑡, 𝑥, 𝜉) with respect to x and 𝜉 give an extra power of 𝜁 under the integral.
This amounts to taking more y-derivatives, yielding a higher power of 〈𝜉〉. However, for a given number
of derivatives of the remainder 𝑅𝐼

𝛼 (𝑡, 𝑥, 𝜉), we are free to choose 𝑀 = |𝛼 | as large as we like and
therefore the higher power of 〈𝜉〉 will not cause a problem. Thus, for all multi-indices 𝛽, 𝛾 and |𝛼 | large
enough we have

|𝜕𝛽
𝜉 𝜕

𝛾
𝑥 𝑅

𝐼
𝛼 (𝑡, 𝑥, 𝜉) | � 𝑡min(𝑠,0) 〈𝜉〉𝑠+𝑚−(1/2−𝜀) |𝛼 |−𝜌 |𝛽 | ,

where the hidden constant in the estimate does not depend on t.

Step 2.2.2 – The analysis of 𝑅𝐼𝐼
𝛼 (𝑡, 𝑥, 𝜉)

Define

Ψ(𝑥, 𝑦, 𝜉, 𝜁) := (𝑥 − 𝑦) · 𝜁 +Φ(𝑥, 𝑦, 𝜉) = (𝑥 − 𝑦) · (∇𝑥𝜑(𝑥, 𝜉) + 𝜁) + 𝜑(𝑦, 𝜉) − 𝜑(𝑥, 𝜉).
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It follows from equations (29) and (30) that if we choose 𝜅 < 𝛿/8𝐶0, then since |𝑥 − 𝑦 | < 𝜅 on the
support of 𝜒, one has (using that we are in the region |𝜁 | ≥ 𝛿〈𝜉〉/2)

|∇𝑦Ψ| = | − 𝜁 + ∇𝑦𝜑 − ∇𝑥𝜑| ≤ 2𝐶2 (|𝜁 | + 〈𝜉〉), and

|∇𝑦Ψ| ≥ |𝜁 | − |∇𝑦𝜑 − ∇𝑥𝜑| ≥
1
2
|𝜁 | +

( 𝛿
4
− 𝐶0 |𝑥 − 𝑦 |

)
〈𝜉〉 ≥ 𝐶 (|𝜁 | + 〈𝜉〉).

Now, using equation (30), for any 𝛽 we have the estimate���𝜕𝛽
𝑦

(
𝑒−𝑖Φ(𝑥,𝑦, 𝜉 ) 𝜕

𝛾
𝑦 𝑒

𝑖Φ(𝑥,𝑦, 𝜉 )
)��� � 〈𝜉〉 |𝛾 | . (70)

For 𝑀 = |𝛼 | > 𝑠, we also observe that

|𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁) | � 1. (71)

For the differential operator defined to be

𝐿𝑦 := 𝑖 |∇𝑦Ψ|−2
𝑛∑
𝑗=1

(𝜕𝑦 𝑗Ψ) 𝜕𝑦 𝑗 ,

induction shows that 𝐿𝑁
𝑦 has the form

(𝐿∗
𝑦)𝑁 =

1
|∇𝑦Ψ|4𝑁

∑
|𝛽 | ≤𝑁

𝑃𝛽,𝑁 𝜕
𝛽
𝑦 ,

where

𝑃𝛽,𝑁 :=
∑

|μ |=2𝑁
𝑐𝛽μ𝛿 𝑗 (∇𝑦Ψ)μ 𝜕 𝛿1

𝑦 Ψ · · · 𝜕 𝛿𝑁
𝑦 Ψ,

|𝛿 𝑗 | ≥ 1 and
∑𝑁

𝑗=𝑀 |𝛿 𝑗 | + |𝛽 | = 2𝑁 . It follows from equation (30) that |𝑃𝛽,𝑁 | ≤ 𝐶 (|𝜁 | + 〈𝜉〉)3𝑁 . Now,
Leibniz’s rule yields

𝑅𝐼𝐼
𝛼 (𝑡, 𝑥, 𝜉) = 𝑡 (1−𝜀) |𝛼 |

∬
R𝑛×R𝑛

𝑒𝑖 (𝑥−𝑦) ·𝜁
(
1 − 𝑔

( 𝜁

〈𝜉〉

))
𝑟𝛼 (𝑥, 𝜉, 𝜁)

× 𝜕𝛼
𝑦

[
𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) 𝑎(𝑦, 𝜉) 𝜒(𝑥 − 𝑦)

]
d𝑦 đ𝜁

= 𝑡 (1−𝜀) |𝛼 |
∬
R𝑛×R𝑛

𝑒𝑖Ψ(𝑥,𝑦, 𝜉 ,𝜁 )
(
1 − 𝑔

( 𝜁

〈𝜉〉

))
𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁)

×
∑

𝛾1+𝛾2+𝛾3=𝛼

(
𝑒−𝑖Φ(𝑥,𝑦, 𝜉 )𝜕

𝛾1
𝑦 𝑒𝑖Φ(𝑥,𝑦, 𝜉 )

)
𝜕
𝛾2
𝑦 𝜒(𝑥 − 𝑦) 𝜕𝛾3

𝑦 𝑎(𝑦, 𝜉) d𝑦 đ𝜁

= 𝑡 (1−𝜀) |𝛼 |
∬
R𝑛×R𝑛

𝑒𝑖Ψ(𝑥,𝑦, 𝜉 ,𝜁 ) |∇𝑦Ψ|−4𝑁
∑

|𝛽 | ≤𝑁

𝑃𝛽,𝑁 (𝑥, 𝑦, 𝜉, 𝜁)

×
(
1 − 𝑔

( 𝜁

〈𝜉〉

))
𝑟𝛼 (𝑡, 𝑥, 𝜉, 𝜁)

∑
𝛾1+𝛾2+𝛾3=𝛼

𝜕
𝛽
𝑦

[(
𝑒−𝑖Φ(𝑥,𝑦, 𝜉 )

)
× 𝜕

𝛾1
𝑦 𝑒𝑖Φ(𝑥,𝑦, 𝜉 ) 𝜕

𝛾2
𝑦 𝜒(𝑥 − 𝑦) 𝜕𝛾3

𝑦 𝑎(𝑦, 𝜉)
]

d𝑦 đ𝜁 .

https://doi.org/10.1017/fms.2023.76 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.76


48 A. J. Castro et al.

It follows now from equation (70) and (71) that

|𝑅𝐼𝐼
𝛼 (𝑡, 𝑥, 𝜉) | � 𝑡 (1−𝜀) |𝛼 |

∫
|𝜁 | ≥𝛿 〈𝜉 〉/2

∫
|𝑥−𝑦 |<𝜅

(|𝜁 | + 〈𝜉〉)−𝑁 〈𝜉〉 |𝛼 |+𝑚 d𝑦 đ𝜁

� 𝑡 (1−𝜀) |𝛼 | 〈𝜉〉 |𝛼 |+𝑚
∫
|𝜁 | ≥𝛿 〈𝜉 〉/2

|𝜁 |−𝑁 đ𝜁 ≤ 𝐶〈𝜉〉 |𝛼 |+𝑛+𝑚−𝑁 ,

which yields the desired estimate when 𝑁 > |𝛼 | + 𝑛. For the derivatives of 𝑅𝐼𝐼
𝛼 (𝑡, 𝑥, 𝜉), we can get, in a

similar way to the case for 𝑅𝐼
𝛼, an extra power of 𝜁 , which can be taken care of by choosing N large and

using the fact that |𝑥 − 𝑦 | < 𝜅. Therefore, for all multi-indices 𝛽, 𝛾 ∈ Z+,

|𝜕𝛽
𝜉 𝜕

𝛾
𝑥 𝑅

𝐼𝐼
𝛼 (𝑡, 𝑥, 𝜉) | � 〈𝜉〉 |𝛼 |+𝑛+𝑚−𝑁 ,

where the constant hidden in the estimate does not depend on t. The proof of Theorem 3.11 is now
complete. �

12. Regularity on Besov–Lipschitz spaces

In this section, we prove sharp boundedness results of oscillatory integral operators on Besov–Lipschitz
spaces. The idea here is to boost all ℎ𝑝 − 𝐿 𝑝 results in above sections to 𝐵𝑠+𝑚−𝑚𝑘 (𝑝)

𝑝,𝑞 − 𝐵𝑠
𝑝,𝑞 using the

calculus of Theorem 3.11. To this end, we prove the following proposition.

Proposition 12.1. Let 𝑘 ≥ 1, 0 < 𝑝 ≤ ∞ and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)
0,0 (R𝑛) with compact support in the

x-variable. Assume that 𝜑 ∈ F
𝑘 is SND satisfies the 𝐿2-condition (11) and the LF(μ)-condition (14)

for some 0 < μ ≤ 1. If 0 < 𝑝 < ∞, then 𝑇
𝜑
𝑎 : ℎ𝑝 (R𝑛) → 𝐿 𝑝 (R𝑛) and for 𝑝 = ∞ one has

𝑇
𝜑
𝑎 : 𝐿∞(R𝑛) → bmo(R𝑛). If one removes the condition of compact support of 𝑎(𝑥, 𝜉) in x, then the

aforementioned boundedness result is valid, but p has to be taken strictly larger than 𝑛/(𝑛 + μ). In the
case 0 < 𝑘 < 1, the results above are true provided that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚𝑘 (𝑝)

1,0 (R𝑛).

Proof. For the high-frequency portion of the operator (here is the compact support in the spatial variable
not relevant), we use Propositions 9.1 and 9.2 to show that the operators 𝑇 𝜑

𝑎 and (𝑇 𝜑
𝑎 )∗ are bounded

from ℎ𝑝 (R𝑛) to 𝐿 𝑝 (R𝑛) for all 0 < 𝑝 < 1. Observe that the condition 𝜕
𝛽
𝑥 𝜑(𝑥, 𝑒ℓ) ∈ 𝐿∞(R𝑛) is satisfied

for all ℓ due to the LF(μ)-condition. Now, using analytic interpolation, duality and the 𝐿2-boundedness
provided in Theorem 5.1, yields the desired result for the high-frequency portion of the operator 𝑇 𝜑

𝑎 .
For the low- and middle-frequency portions of the operator, we just use Lemma 6.3 and Lemma 7.1

in the Triebel–Lizorkin case with 𝑠 = 0 and 𝑞 = 2. �

Lemma 12.2. Let 𝑘 ≥ 1, 0 < 𝑝 ≤ ∞, 𝑚 ∈ R and 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
0,0 (R

𝑛). Assume that 𝜑 is SND and satisfies
the 𝐿2-condition (11). If 𝜓 𝑗 is defined as in Definition 2.1, then the operator 𝑇𝑗 given by

𝑇𝑗 𝑓 (𝑥) :=
∫
R𝑛

𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑎(𝑥, 𝜉) 𝜓 𝑗 (𝜉) �̂� (𝜉) đ𝜉

satisfies ��𝑇𝑗 𝑓
��
𝐿𝑝 (R𝑛) � 2 𝑗 (𝑚−𝑚𝑘 (𝑝))

��Ψ 𝑗 (𝐷) 𝑓
��
𝐿𝑝 (R𝑛) ,

for 𝑗 ∈ Z+, provided that one of the following holds true:

i) 𝜑 ∈ F
𝑘 , 𝑎(𝑥, 𝜉) is compactly supported in the x-variable and has frequency support in R𝑛 \ 𝐵(0, 𝑅),

for the R given in Lemma 4.1.
ii) 𝜑 ∈ F

𝑘 , 𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉) ∈ 𝐿∞(R𝑛 × S𝑛−1), for any |𝛽 | ≥ 1 and 𝑎(𝑥, 𝜉) has frequency support in

R
𝑛 \ 𝐵(0, 𝑅), for the R given in Lemma 4.1.
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iii) 𝜑 ∈ F
𝑘 ∩ C∞(R𝑛 × R𝑛).

iv) 𝑘 = 2 and 𝜑 satisfies equation (15).

If one removes the requirement on the frequency support of 𝑎(𝑥, 𝜉) and adds the LF(μ)-condition
(14) in 𝑖) − 𝑖𝑖), then one obtains the result for 0 < 𝑝 < ∞ in 𝑖) and 𝑛/(𝑛 + μ) < 𝑝 < ∞ in 𝑖𝑖).

In the case 0 < 𝑘 < 1, the results for 𝑖) − 𝑖𝑖𝑖) above are true provided that 𝑎(𝑥, 𝜉) ∈ 𝑆𝑚
1,0 (R

𝑛).

Proof. Using Remark 3.8, we can without loss of generality assume that 𝜑(𝑥, 0) = 0 in 𝑖𝑖𝑖) − 𝑖𝑣).
Observe that using the mean value theorem, and either 𝐿2-condition (11) or equation (15), yields that
𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉) ∈ 𝐿∞(R𝑛 × S𝑛−1) for |𝛽 | ≥ 1.

To simplify the calculation, we set 𝜎(𝑥, 𝜉) := 〈𝜉〉𝑚𝑘 (𝑝)−𝑚 𝑎(𝑥, 𝜉) so that 𝜎 ∈ 𝑆𝑚𝑘 (𝑝)
0,0 (R𝑛).

We start with the case 𝑝 ∈ (0,∞). Proposition 12.1 in 𝑖) − 𝑖𝑖𝑖) and Theorem 10.1 in 𝑖𝑣) yields that
𝑇

𝜑
𝜎 : ℎ𝑝 (R𝑛) → 𝐿 𝑝 (R𝑛). Next, we use the definition of the local Hardy space ℎ𝑝 (R𝑛) (see Definition

2.5) and Definition 2.1 to obtain��𝑇𝑗 𝑓
��
𝐿𝑝 (R𝑛) � 2 𝑗 (𝑚−𝑚𝑘 (𝑝))

��𝑇 𝜑
𝜎𝜓 𝑗 (𝐷) 𝑓

��
𝐿𝑝 (R𝑛) � 2 𝑗 (𝑚−𝑚𝑘 (𝑝))

��𝜓 𝑗 (𝐷) 𝑓
��
ℎ𝑝 (R𝑛)

∼ 2 𝑗 (𝑚−𝑚𝑘 (𝑝))
���( ∞∑

ℓ=0

��Ψℓ (𝐷)𝜓 𝑗 (𝐷) 𝑓
��2)1/2���

𝐿𝑝 (R𝑛)

� 2 𝑗 (𝑚−𝑚𝑘 (𝑝))
��Ψ 𝑗 (𝐷) 𝑓

��
𝐿𝑝 (R𝑛) .

If one removes the requirement on the frequency support of 𝑎(𝑥, 𝜉) and adds either equation (32) or
(33) in 𝑖) − 𝑖𝑖), then Lemma 6.3 𝑖𝑖𝑖) yields the ℎ𝑝 − 𝐿 𝑝 result for the low-frequency part of 𝑇 𝜑

𝜎 .
We turn to the case when 𝑝 = ∞, which can only be proved under the assumption |𝜉 | ≥ 𝑅 in 𝑖) − 𝑖𝑖).

Observe that Proposition 12.1 in 𝑖) − 𝑖𝑖𝑖) and Theorem 10.1 in case 𝑖𝑣) give us the ℎ1 − 𝐿1 boundedness
of the adjoint operator (𝑇 𝜑

𝜎 )
∗. We set 𝑓ℓ := 𝜓ℓ (𝐷) 𝑓 . Now, the assumptions on the phase and Lemma

4.1 enable us to apply formula (17) to (Ψℓ (𝐷)𝑇 𝜑
𝜎 )∗, which in turn yields that���𝑇∗

𝑗 𝑓
���𝐿1 (R𝑛) = 2 𝑗 (𝑚−𝑚𝑘 (𝑝))

��𝜓 𝑗 (𝐷)
(
𝑇

𝜑
𝜎

)∗
𝑓
��
𝐿1 (R𝑛)

= 2 𝑗 (𝑚−𝑚𝑘 (𝑝))
��� ∞∑
ℓ=0

𝜓 𝑗 (𝐷)
(
𝑇

𝜑
𝜎

)∗Ψℓ (𝐷)𝜓ℓ (𝐷) 𝑓
���
𝐿1 (R𝑛)

� 2 𝑗 (𝑚−𝑚𝑘 (𝑝))
∑

|𝛼 |<𝑀

��� 𝑁∑
ℓ=0

2−ℓ 𝜀 |𝛼 |𝜓 𝑗 (𝐷) (𝑇 𝜑
𝜎𝛼,ℓ

)∗ 𝑓ℓ
���
𝐿1 (R𝑛)

+ 2 𝑗 (𝑚−𝑚𝑘 (𝑝))
��� ∞∑
ℓ=0

2−ℓ 𝜀𝑀𝜓 𝑗 (𝐷) (𝑇 𝜑
𝑟ℓ )

∗ 𝑓ℓ

���
𝐿1 (R𝑛)

=: I + II,

(72)

where 𝑁 < ∞ by the properties of the Littlewood–Paley sums. We consider the main terms I above.
Observe that using the seminorm estimate (18) for 𝜎𝛼,ℓ , we can claim that

��� 𝑁∑
ℓ=0

2−ℓ 𝜀 |𝛼 |𝜓 𝑗 (𝐷) (𝑇 𝜑
𝜎𝛼,ℓ

)∗ 𝑓ℓ
���
𝐿1 (R𝑛)

�
𝑁∑
ℓ=0

���2−ℓ 𝜀 |𝛼 |𝜓 𝑗 (𝐷) (𝑇 𝜑
𝜎𝛼,ℓ

)∗ 𝑓ℓ
���𝐿1 (R𝑛)

�
𝑁∑
ℓ=0

‖ 𝑓ℓ ‖ℎ1 (R𝑛) =
𝑁∑
ℓ=0

���( ∞∑
𝑗=0

��𝜓 𝑗 (𝐷)Ψℓ (𝐷) 𝑓
��2)1/2���

𝐿1 (R𝑛)
� ‖ 𝑓 ‖𝐿1 (R𝑛) .

To prove this claim, we first observe that 𝜓 𝑗 (𝐷) maps 𝐿1 into itself (with a norm independent of j).
Then we use Proposition 12.1 in 𝑖) − 𝑖𝑖𝑖) and Theorem 10.1 in case 𝑖𝑣) to obtain the desired result.
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For the remainder term II we use the representation

(
𝑇

𝜑
𝑟ℓ

)∗
𝑓 (𝑥) =

∫
R𝑛

𝐾 (𝑥, 𝑦) 𝑓 (𝑦) d𝑦.

Then in case 𝑖) − −𝑖𝑖𝑖), integration by parts yields

|𝐾 (𝑥, 𝑦) | =
��� ∫
R𝑛

𝑒−𝑖 (𝑥−𝑦) ·𝜉 𝑒𝑖𝜑 (𝑦, 𝜉 )−𝑖𝑦 ·𝜉 𝑟ℓ (𝑦, 𝜉) đ𝜉
���

� 〈𝑥 − 𝑦〉−2𝑁
∫
R𝑛

���(1 + 𝑖(𝑥 − 𝑦) · ∇𝜉 )𝑁
(
𝑒𝑖𝜑 (𝑦, 𝜉 )−𝑖𝑦 ·𝜉 𝑟ℓ (𝑦, 𝜉)

)��� đ𝜉

� 〈𝑥 − 𝑦〉−2𝑁
∫
|𝜉 |�1

∑
|𝛼1 |+·· ·+ |𝛼𝑁 | ≤𝑁

���𝜕𝛼𝑁

𝜉 𝑟ℓ (𝑦, 𝜉)
���

×
𝑁−1∏
𝜈=1

𝐶𝛼

���(𝑥 − 𝑦)𝛼𝜈𝜕𝛼𝜈

𝜉 (𝜑(𝑦, 𝜉) − 𝑦 · 𝜉)
��� đ𝜉.

Now, since by estimate (19) we have that 𝑟ℓ ∈ 𝑆𝑚−(1/2−𝜀)𝑀
0,0 (R𝑛), choosing M large enough, the F

𝑘 -
condition yields that

|𝐾 (𝑥, 𝑦) | � 〈𝑥 − 𝑦〉−𝑁 ,

for any 𝑁 > 0. In case 𝑖𝑣), we estimate

|𝐾 (𝑥, 𝑦) | =
����∫
R𝑛

𝑒𝑖 (𝑥−∇𝜉 𝜑 (𝑦,0)) ·𝜉 𝑒𝑖∇𝜉 𝜑 (𝑦,0) ·𝜉−𝑖𝜑 (𝑦, 𝜉 ) 𝑟ℓ (𝑦, 𝜉) đ𝜉
����

�
〈
𝑥 − ∇𝜉𝜑(𝑦, 0)

〉−2𝑁
∫
R𝑛

���(1 + 𝑖(𝑥 − ∇𝜉𝜑(𝑦, 0)) · ∇𝜉 )𝑁

× 𝑒𝑖𝜑 (𝑦, 𝜉 )−𝑖∇𝜉 𝜑 (𝑦,0) ·𝜉 𝑟ℓ (𝑦, 𝜉)
��� đ𝜉

�
〈
𝑥 − ∇𝜉𝜑(𝑦, 0)

〉−2𝑁
∫
R𝑛

∑
|𝛼1 |+·· ·+ |𝛼𝑁 | ≤𝑁

���𝜕𝛼𝑁

𝜉 𝑟ℓ (𝑦, 𝜉)
���

×
𝑁−1∏
𝜈=1

���(𝑥 − ∇𝜉𝜑(𝑦, 0))𝛼𝜈 𝜕𝛼𝜈

𝜉 (𝜑(𝑦, 𝜉) − ∇𝜉𝜑(𝑦, 0) · 𝜉)
��� đ𝜉.

Here, we observe that

|𝜕𝛼𝜈

𝜉 (𝜑(𝑦, 𝜉) − ∇𝜉𝜑(𝑦, 0) · 𝜉) | =
{
𝑂 (1), |𝛼𝜈 | ≥ 2,
𝑂 (|𝜉 |), |𝛼𝜈 | = 1,

where we have used the fact that when |𝛼𝜈 | ≥ 2, then equation (15) yields the first estimate and when
|𝛼𝜈 | = 1, then the mean-value theorem yields the second. Therefore, once again choosing M large
enough, we have for any 𝑁 > 0 that

|𝐾 (𝑥, 𝑦) | �
〈
𝑥 − ∇𝜉𝜑(𝑦, 0)

〉−𝑁

and hence ��(
𝑇

𝜑
𝑟ℓ

)∗
𝑓
��
𝐿1 (R𝑛) � ‖ 𝑓 ‖𝐿1 (R𝑛) .
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Now, we estimate the remainder term of equation (72). It is bounded by

∞∑
ℓ=0

2−ℓ 𝜀𝑀
��𝜓 𝑗 (𝐷)

(
𝑇

𝜑
𝑟ℓ

)∗
𝑓ℓ

��
𝐿1 (R𝑛) �

∞∑
ℓ=0

2−ℓ 𝜀𝑀 ‖ 𝑓 ‖𝐿1 (R𝑛) � ‖ 𝑓 ‖𝐿1 (R𝑛) .

Therefore, ���𝑇∗
𝑗 𝑓

���𝐿1 (R𝑛) � ‖ 𝑓 ‖𝐿1 (R𝑛) ,

and a duality argument yields��𝑇𝑗 𝑓
��
𝐿∞ (R𝑛) =

��𝑇𝑗Ψ 𝑗 (𝐷) 𝑓
��
𝐿∞ (R𝑛) �

��Ψ 𝑗 (𝐷) 𝑓
��
𝐿∞ (R𝑛) .

Now, if one removes the requirement on the frequency support of 𝑎(𝑥, 𝜉) and adds either equation (32)
or (33) in 𝑖) −𝑖𝑖), then Lemma 6.3 𝑖) yields 𝐿∞−bmo boundedness and the rest of the argument proceeds
as before. �

Now, we are finally ready to prove the regularity of oscillatory integral operators on Besov–Lipschitz
spaces.

Proof of Theorems 3.2 and 3.5, part i). For the low- and middle-frequency portions of the operator,
we just use Lemma 6.3 and Lemma 7.1 parts 𝑖𝑖) and 𝑖𝑖𝑖). Observe that 𝜕𝛽

𝑥 𝜑(𝑥, 𝜉) ∈ 𝐿∞(R𝑛 × S𝑛−1) is
a consequence of the LF(μ)-condition (14). Thus, from now on we concentrate on the high-frequency
portion of the operator. We divide the proof into three steps. In Step 1, we invoke a composition formula
which yields a sum of two terms (a main term and a remainder term) that need to be analysed separately
and conclude that the main term is 𝐿 𝑝-bounded (in the sense of Lemma 12.2). In Step 2, we show
𝐵𝑠

𝑝,𝑞 − 𝐿 𝑝 boundedness for the remainder term, and in Step 3, we complete the proof by deducing the
𝐵𝑠+𝑚−𝑚𝑘 (𝑝)

𝑝,𝑞 − 𝐵𝑠
𝑝,𝑞 boundedness. In Step 4, we deal with the case when the phase function is smooth

everywhere in Theorem 3.5.

Step 1 – A composition formula and boundedness of the main term
In the definition of the Besov–Lipschitz norm, the expression 𝜓 𝑗 (𝐷)𝑇 𝜑

𝑎 𝑓 plays a central role. To
obtain favourable estimates for 𝜓 𝑗 (𝐷)𝑇 𝜑

𝑎 𝑓 we use formula (17) with M chosen large enough, which
states

𝜓
(
2− 𝑗𝐷

)
𝑇

𝜑
𝑎 =

∑
|𝛼 | ≤𝑀−1

2− 𝑗 𝜀 |𝛼 |

𝛼!
𝑇

𝜑
𝜎𝛼, 𝑗

+ 2− 𝑗 𝜀𝑀𝑇
𝜑
𝑟 𝑗 . (73)

From Lemma 12.2, we have, after a change of variables, that���𝑇 𝜑
𝜎𝛼, 𝑗

𝑓
���𝐿𝑝 (R𝑛) � 2 𝑗 (𝑚−𝑚𝑘 (𝑝))

��Ψ 𝑗 (𝐷) 𝑓
��
𝐿𝑝 (R𝑛) . (74)

Step 2 – The remainder term
-Paley pieces as follows:

𝑇
𝜑
𝑟 𝑗 𝑓 (𝑥) =

∞∑
ℓ=0

∫
R𝑛

𝑒𝑖𝜑 (𝑥, 𝜉 ) 𝑟 𝑗 (𝑥, 𝜉) 𝜓ℓ (𝜉) �̂� (𝜉) đ𝜉 =:
∞∑
ℓ=0

𝑇
𝜑
𝑟 𝑗,ℓ 𝑓 (𝑥),

where the 𝜓ℓ’s are given in Definition 2.1. We use the fact that for 0 < 𝑝 ≤ ∞,

‖ 𝑓 + 𝑔‖𝐿𝑝 (R𝑛) ≤ 2𝐶𝑝
(
‖ 𝑓 ‖𝐿𝑝 (R𝑛) + ‖𝑔‖𝐿𝑝 (R𝑛)

)
, (75)
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where 𝐶𝑝 := max(0, 1/𝑝 − 1). Now, Fatou’s lemma and iteration of equation (75) yield that

���𝑇 𝜑
𝑟 𝑗 𝑓

���𝐿𝑝 (R𝑛) =
��� ∞∑
ℓ=0

𝑇
𝜑
𝑟 𝑗,ℓ 𝑓

���
𝐿𝑝 (R𝑛)

≤ lim inf
𝑁→∞

��� 𝑁∑
ℓ=0

𝑇
𝜑
𝑟 𝑗,ℓ 𝑓

���
𝐿𝑝 (R𝑛)

� lim inf
𝑁→∞

𝑁∑
ℓ=0

2ℓ𝐶𝑝 ‖𝑇 𝜑
𝑟 𝑗,ℓ 𝑓 ‖𝐿𝑝 (R𝑛) �

∞∑
ℓ=0

2ℓ𝐶𝑝 ‖𝑇 𝜑
𝑟 𝑗,ℓ 𝑓 ‖𝐿𝑝 (R𝑛) ,

where the hidden constant in the last estimate depends only on p. Therefore, applying Lemma 12.2 with
𝑚 − (1/2 − 𝜀)𝑀 instead of m (recall that 𝑟 𝑗 vanishes for all 𝜉, for which a vanishes), we obtain

‖𝑇 𝜑
𝑟 𝑗 𝑓 ‖𝐿𝑝 (R𝑛) �

∞∑
ℓ=0

2ℓ𝐶𝑝 ‖𝑇 𝜑
𝑟 𝑗,ℓ 𝑓 ‖𝐿𝑝 (R𝑛)

�
∞∑
ℓ=0

2ℓ(𝐶𝑝+𝑚−𝑚𝑘 (𝑝)−(1/2−𝜀)𝑀) ‖Ψℓ (𝐷) 𝑓 ‖𝐿𝑝 (R𝑛) .

(76)

Note that the estimate (76) is uniform in j. Now, we claim that

𝑇
𝜑
𝑟 𝑗 : 𝐵𝑠

𝑝,𝑞 (R𝑛) → 𝐿 𝑝 (R𝑛). (77)

To see this, we shall analyse the cases 0 < 𝑞 < 1 and 1 ≤ 𝑞 ≤ ∞ separately. Starting with the former,
we have

���𝑇 𝜑
𝑟 𝑗 𝑓

���𝐿𝑝 (R𝑛) �
∞∑
ℓ=0

2ℓ(𝐶𝑝+𝑚−𝑚𝑘 (𝑝)−(1/2−𝜀)𝑀) ‖Ψℓ (𝐷) 𝑓 ‖𝐿𝑝 (R𝑛)

�
∞∑
ℓ=0

2ℓ (𝑠+𝑚−𝑚𝑘 (𝑝)) ‖Ψℓ (𝐷) 𝑓 ‖𝐿𝑝 (R𝑛)

≤
( ∞∑
ℓ=0

2ℓ𝑞 (𝑠+𝑚−𝑚𝑘 (𝑝)) ‖Ψℓ (𝐷) 𝑓 ‖𝑞
𝐿𝑝 (R𝑛)

)1/𝑞
= ‖ 𝑓 ‖

𝐵
𝑠+𝑚−𝑚𝑘 (𝑝)
𝑝,𝑞 (R𝑛) ,

where we used (76) for the first inequality and that M is large enough for the second. For 1 ≤ 𝑞 ≤ ∞,
Hölder’s inequality in the sum over ℓ and picking M large enough yield

���𝑇 𝜑
𝑟 𝑗 𝑓

���𝐿𝑝 (R𝑛) �
∞∑
ℓ=0

2ℓ(𝐶𝑝+𝑚−𝑚𝑘 (𝑝)−(1/2−𝜀)𝑀) ‖Ψℓ (𝐷) 𝑓 ‖𝐿𝑝 (R𝑛)

=
∞∑
ℓ=0

2ℓ(−𝑠+𝐶𝑝−(1/2−𝜀)𝑀)
(
2ℓ (𝑠+𝑚−𝑚𝑘 (𝑝)) ‖Ψℓ (𝐷) 𝑓 ‖𝐿𝑝 (R𝑛)

)
�

( ∞∑
ℓ=0

2ℓ𝑞′ (−𝑠+𝐶𝑝−(1/2−𝜀)𝑀)
)1/𝑞′ ( ∞∑

ℓ=0
2ℓ𝑞 (𝑠+𝑚−𝑚𝑘 (𝑝)) ‖Ψℓ (𝐷) 𝑓 ‖𝑞

𝐿𝑝 (R𝑛)

)1/𝑞

� ‖ 𝑓 ‖
𝐵
𝑠+𝑚−𝑚𝑘 (𝑝)
𝑝,𝑞 (R𝑛) ,

which implies equation (77). Note that the calculation above also holds for 𝑞 = ∞ with the usual
interpretation of Hölder’s inequality.
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Step 3 – The Bs+m−mk (p)
p,q − Bs

p,q boundedness
The results in (74) and (77) yield that

��𝑇 𝜑
𝑎 𝑓

��
𝐵𝑠

𝑝,𝑞 (R𝑛) =
( ∞∑

𝑗=0

(
2 𝑗𝑠

��𝜓 (
2− 𝑗𝐷

)
𝑇

𝜑
𝑎 𝑓

��
𝐿𝑝 (R𝑛)

)𝑞)1/𝑞

�
( ∞∑

𝑗=0

( ∑
|𝛼 | ≤𝑀−1

2 𝑗𝑠
��𝑇𝜎𝛼, 𝑗 𝑓

��
𝐿𝑝 (R𝑛) + 2− 𝑗 (𝜀𝑀−𝑠)��𝑇𝑟 𝑗 𝑓 ��𝐿𝑝 (R𝑛)

)𝑞)1/𝑞

�
( ∞∑

𝑗=0

(
2 𝑗 (𝑠+𝑚−𝑚𝑘 (𝑝))

��Ψ 𝑗 (𝐷) 𝑓
��
𝐿𝑝 (R𝑛) + 2− 𝑗 (𝜀𝑀−𝑠) ‖ 𝑓 ‖

𝐵
𝑠+𝑚−𝑚𝑘 (𝑝)
𝑝,𝑞 (R𝑛)

)𝑞)1/𝑞

�
( ∞∑

𝑗=0
2 𝑗𝑞 (𝑠+𝑚−𝑚𝑘 (𝑝))

��Ψ 𝑗 (𝐷) 𝑓
��𝑞
𝐿𝑝 (R𝑛) +

∞∑
𝑗=0

2− 𝑗𝑞 (𝜀𝑀−𝑠) ‖ 𝑓 ‖𝑞
𝐵
𝑠+𝑚−𝑚𝑘 (𝑝)
𝑝,𝑞 (R𝑛)

)1/𝑞

� ‖ 𝑓 ‖
𝐵
𝑠+𝑚−𝑚𝑘 (𝑝)
𝑝,𝑞 (R𝑛) .

Step 4 – The smooth case
For the smooth version, we don’t need separate proofs for low, middle and high frequencies. Note

that 𝑇 𝜑
𝑎 = 𝑒𝑖𝜑 (𝑥,0)𝑇

�̃�
𝑎 , where �̃�(𝑥, 0) = 0. Therefore, using the condition |∇𝑥𝜑(𝑥, 0) | ∈ 𝐿∞(R𝑛) and

the 𝐿2-condition (for all x and 𝜉), we have by equation (9) that ‖𝑇 𝜑
𝑎 𝑓 ‖𝐵𝑠

𝑝,𝑞
� ‖𝑇 �̃�

𝑎 𝑓 ‖𝐵𝑠
𝑝,𝑞

. Now, apply
Lemma 12.2 𝑖𝑖𝑖) and Lemma 4.1 𝑖𝑖𝑖) to 𝑇

�̃�
𝑎 and continue as above and the proof is complete. �

We can also establish the boundedness of Schrödinger integral operators on Besov–Lipschitz spaces.

Proof of Theorems 3.3 and 3.6, part i). Theorem 3.3 is a special case of Theorem 3.6 so it is enough
to consider the latter. This is identical to Step 4 in the previous proof, except that Lemma 12.2 𝑖𝑣) is
used instead. �

13. Regularity on Triebel–Lizorkin spaces

In this section, we prove various Triebel–Lizorkin regularity results as corollaries of the previous Besov–
Lipschitz results. We observe that, if we do not let the order m of the amplitude to go all the way to the
endpoint, then we have Triebel–Lizorkin boundedness for all p’s and q’s.

Proof of Theorems 3.2, 3.3, 3.5 and 3.6, part ii). Using the embedding (8), equality (7) and part i) of
the theorems, we have that

‖𝑇 𝜑
𝑎 𝑓 ‖𝐹 𝑠

𝑝,𝑞 (R𝑛) � ‖𝑇 𝜑
𝑎 𝑓 ‖

𝐹
𝑠+𝜀/2
𝑝,𝑝 (R𝑛) � ‖ 𝑓 ‖

𝐹
𝑠+𝑚−𝑚𝑘 (𝑝)+𝜀/2
𝑝,𝑝 (R𝑛)

� ‖ 𝑓 ‖
𝐹

𝑠+𝑚−𝑚𝑘 (𝑝)+𝜀
𝑝,𝑞 (R𝑛) .

�

Proof of Theorems 3.2, 3.3, 3.5 and 3.6, parts iii) and iv). We divide the proof into different steps.

Step 1 – The diagonal p = q
The theorem is true for the diagonal 𝑝 = 𝑞 because of the Besov–Lipschitz results in Theorems

3.2−3.5, 3.6, part i) and the fact that 𝐹𝑠
𝑝,𝑝 (R𝑛) = 𝐵𝑠

𝑝,𝑝 (R𝑛).

Step 2 – The hp − hp boundedness
For Theorems 3.2 and 3.5 𝑖𝑖𝑖) − 𝑖𝑣), we split the proof into low-, middle- and high-frequency

parts. The low- and middle-frequency parts were treated in Lemma 6.3 and Lemma 7.1. Observe that
𝜕
𝛽
𝑥 𝜑(𝑥, 𝜉) ∈ 𝐿∞(R𝑛 × S𝑛−1) is a consequence of the LF(μ)-condition (14).

https://doi.org/10.1017/fms.2023.76 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.76


54 A. J. Castro et al.

For the high-frequency cases, 𝑎𝐻 (𝑥, 𝜉) := (1 − 𝜓0 (𝜉/𝑅) 𝑎(𝑥, 𝜉), recall that Proposition 12.1 yields
the ℎ𝑝 − 𝐿 𝑝 boundedness, which we will now lift to the ℎ𝑝 − ℎ𝑝 level.

To this end, it is enough to show that if 𝑏(𝐷) is a Fourier multiplier with 𝑏 ∈ 𝑆0
1,0 (R

𝑛), and t a
parameter in (0, 1], then the composition 𝑏(𝑡𝐷)𝑇 𝜑

𝑎𝐻
is ℎ𝑝−𝐿 𝑝 bounded with a norm that doesn’t depend

on t. But this is indeed the case, since using the composition formula (16) with 𝑀 = 1 we see that

𝑏(𝑡𝐷)𝑇 𝜑
𝑎𝐻

= 𝑇
𝜑
𝑎𝐻𝑏 (𝑡 ·) + 𝑡 𝜀𝑇

𝜑
𝑟 ,

where |𝜕𝛼
𝜉 𝜕

𝛽
𝑥 𝑟 (𝑡, 𝑥, 𝜉) | ≤ 𝐶𝛼,𝛽 〈𝜉〉𝑚𝑘 (𝑝)−(1/2−𝜀) . Now, since 𝑎𝐻 𝑏(𝑡·) ∈ 𝑆𝑚𝑘 (𝑝)

0,0 (R𝑛) uniformly in
𝑡 ∈ (0, 1], Proposition 12.1 yields the ℎ𝑝−𝐿 𝑝 boundedness of 𝑏(𝑡𝐷)𝑇 𝜑

𝑎𝐻
with a norm that is independent

of t, and the proof for the oscillatory integral operators is concluded.
For Schrödinger integral operators (Theorems 3.3 and 3.6 𝑖𝑖𝑖) − 𝑖𝑣)) and the smooth version of

Theorem 3.5, there is no need to divide the amplitude different frequency portions, and we once again
note that 𝑇 𝜑

𝑎 = 𝑒𝑖𝜑 (𝑥,0)𝑇
�̃�
𝑎 where �̃�(𝑥, 0) = 0. Therefore, using the condition |∇𝑥𝜑(𝑥, 0) | ∈ 𝐿∞(R𝑛) and

condition (15), we see by equation (9) and the definition of the local Hardy space as a Triebel-Lizorkin
space that ‖𝑇 𝜑

𝑎 𝑓 ‖ℎ𝑝 � ‖𝑇 �̃�
𝑎 𝑓 ‖ℎ𝑝 . Now, using Lemma 4.1, Theorem 3.11 and Theorem 10.1, we can

proceed as above to show the ℎ𝑝 − 𝐿 𝑝 boundedness of 𝑏(𝑡𝐷)𝑇 �̃�
𝑎 (for 0 < 𝑝 < ∞) with a norm that is

independent of t, and the proof for the Schrödinger integral operators is also concluded.

Step 3 – Boosting F0
p,2-boundedness to arbitrary regularity

Once again for oscillatory integral operators, we decompose into low-, middle- and high-frequency
portions. For the low- and middle-frequency parts, we apply Lemma 6.3 and Lemma 7.1. For the
high-frequency parts, we proceed as follows. Write 𝑎𝐻 (𝑥, 𝜉) = 𝜎(𝑥, 𝜉)〈𝜉〉𝑚−𝑚𝑘 (𝑝) , with 𝜎(𝑥, 𝜉) ∈
𝑆𝑚𝑘 (𝑝)

0,0 (R𝑛), and use Theorem 3.11 to conclude that (1 − Δ)𝑠/2𝑇
𝜑
𝜎 (1 − Δ)−𝑠/2 is the same kind of

oscillatory integral operator as 𝑇 𝜑
𝜎 . Therefore, by Step 2 above��𝑇 𝜑

𝑎𝐻
𝑓
��
𝐹 𝑠
𝑝,2 (R𝑛) =

���(1 − Δ)𝑠/2𝑇
𝜑
𝜎 (1 − Δ)−𝑠/2(1 − Δ) (𝑚−𝑚𝑘 (𝑝)+𝑠)/2 𝑓

���𝐹0
𝑝,2 (R𝑛)

�
���(1 − Δ) (𝑚−𝑚𝑘 (𝑝)+𝑠)/2 𝑓

���𝐹0
𝑝,2 (R𝑛)

= ‖ 𝑓 ‖
𝐹

𝑠+𝑚−𝑚𝑘 (𝑝)
𝑝,2 (R𝑛) .

Now, for the Schrödinger integral operator case and the smooth phase function case, there is no need to
decompose the operator into high- and low-frequency cases; instead, we just use equation (9) to once
again reduce to the case of 𝑇 �̃�

𝑎𝐻
for which it is true, thanks to Lemma 4.1, that (1−Δ)𝑠/2𝑇

�̃�
𝜎 (1−Δ)−𝑠/2

is the same kind of oscillatory integral operator as 𝑇
�̃�
𝜎 . Therefore, we can once again run the same

argument as above and achieve the desired result.

Step 4 – Interpolation
By interpolation in q, we get the desired result (see Figure 1). Note that one cannot interpolate

between Triebel–Lizorkin spaces when 𝑝 = ∞. �

Proof of Theorem 3.9, part i). Write 𝑎(𝑥, 𝜉) = 𝜎(𝑥, 𝜉)〈𝜉〉𝑚2 (𝑝) for 𝜎 ∈ 𝑆0
0,0 (R

𝑛), and let 𝑏(𝐷) be any
pseudodifferential operator of order zero. Then [1, Theorem 6.1] asserts that [𝑏(𝑡𝐷), 𝑇 𝜑

𝜎 ] = 𝑇
𝜑
𝑟 , for

some 𝑟 (𝑡, 𝑥, 𝜉) ∈ 𝑆0
0,0 (R

𝑛) uniformly in t if 𝑡 ∈ (0, 1]. Therefore, we have that

𝑏(𝑡𝐷)𝑇 𝜑
𝑎 𝑓 (𝑥) = 𝑏(𝑡𝐷)𝑇 𝜑

𝜎 (1 − Δ)𝑚2 (𝑝)/2 𝑓 (𝑥)
= 𝑇

𝜑
𝜎𝑏(𝑡𝐷) (1 − Δ)𝑚2 (𝑝)/2 𝑓 (𝑥) + 𝑇

𝜑
𝑟 (1 − Δ)𝑚2 (𝑝)/2 𝑓 (𝑥),

with 𝑟 (𝑥, 𝜉, 𝑡) ∈ 𝑆0
0,0 (R

𝑛) uniformly in 𝑡 ∈ (0, 1]. Then since 𝑏 ∈ 𝑆0
1,0 (R

𝑛), we have that
𝜎(𝑥, 𝜉) 𝑏(𝑡𝜉)〈𝜉〉𝑚2 (𝑝) ∈ 𝑆𝑚2 (𝑝)

0,0 (R𝑛) uniformly in 𝑡 ∈ (0, 1] and also 𝑟 (𝑡, 𝑥, 𝜉)〈𝜉〉𝑚2 (𝑝) ∈ 𝑆𝑚2 (𝑝)
0,0 (R𝑛)

uniformly in 𝑡 ∈ (0, 1]. Therefore, we can apply Theorem 10.1 to conclude the desired result. �
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Figure 1. Boundedness and interpolation scheme in Triebel–Lizorkin scale.

14. Sharpness of the results

Let us start from a naive approach to the regularity problem of oscillatory integral operators, by
considering a concrete case of an oscillatory integral operator, namely

𝑇 𝑓 (𝑥) :=
∫
R𝑛

|𝜉 |𝑚 (1 − 𝜓0 (𝜉)) 𝑒𝑖𝑥 ·𝜉+𝑖 |𝜉 |𝑘 �̂� (𝜉) d𝜉,

with 𝑘 > 1 and 𝜓0 as in Definition 2.1.
Now, if we look upon T as a ΨDO with symbol

𝑎𝑘,𝑚 (𝜉) := 𝑒𝑖 |𝜉 |𝑘 (1 − 𝜓0 (𝜉)) |𝜉 |𝑚,

then we see that this symbol does not belong to any Hörmander class 𝑆𝑚
𝜌,𝛿 (R

𝑛) for any 𝜌 ∈ [0, 1], since
|𝜕𝛼𝑎𝑘,𝑚 (𝜉) | � 〈𝜉〉𝑚+(𝑘−1) |𝛼 | . Therefore, the appeal to the boundedness theory of pseudodifferential
operators fails in a rather drastic way.

To understand the significance of the order 𝑚𝑘 (𝑝) = −𝑘𝑛|1/𝑝 − 1/2|, let

𝐾𝑘,𝑚(𝑥) :=
∫
R𝑛

(1 − 𝜓0 (𝜉)) |𝜉 |𝑚 𝑒𝑖𝑥 ·𝜉+|𝜉 |𝑘 đ𝜉.

Let 1 < 𝑝 < ∞ and

𝑓𝜆 (𝑥) :=
∫
R𝑛

(1 − 𝜓0 (𝜉)) |𝜉 |−𝜆 𝑒𝑖𝑥 ·𝜉 đ𝜉.

It was shown in [23] that 𝑓𝜆 ∈ 𝐿 𝑝 (R𝑛) iff −𝜆 < 𝑛/𝑝 − 𝑛. Now, if 𝑚 > 𝑚𝑘 (𝑝) and if 𝜆 is such that
−𝜆 < 𝑛/𝑝 − 𝑛 and −𝑚 + 𝜆 − 𝑛 + 𝑛𝑘/2 < 𝑛(𝑘 − 1)/𝑝, then 𝑓𝜆 ∈ 𝐿 𝑝 (R𝑛), but 𝑇 𝑓𝜆 (𝑥) = (𝐾𝑘,𝑚 ∗ 𝑓𝜆) (𝑥) ∉
𝐿𝑝 (R𝑛); see [23, p. 301, (I-ii)].

This shows that, if we regard the operator T above as an oscillatory integral operator with the
amplitude (1 − 𝜓0(𝜉)) |𝜉 |𝑚 ∈ 𝑆𝑚

1,0 (R
𝑛) and the phase function 𝑥 · 𝜉 + |𝜉 |𝑘 , then one cannot in general

expect any 𝐿𝑝-boundedness, unless 𝑚 ≤ 𝑚𝑘 (𝑝) and thus this order of the amplitude is sharp for the
𝐿 𝑝-regularity of T.
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