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Abstract: The consumption of milk contaminated with antibiotic-resistant bacteria poses a significant
health threat to humans. This study aimed to investigate the prevalence of Enterobacteriaceae
producing β-lactamases (ESBL, MBL, and AmpC) in cow and buffalo milk samples from two Indian
states, Haryana and Assam. A total of 401 milk samples were collected from dairy farmers and
vendors in the specified districts. Microbiological assays, antibiotic susceptibility testing, and PCR-
based genotyping were employed to analyze 421 Gram-negative bacterial isolates. The overall
prevalence of β-lactamase genes was 10% (confidence interval (CI) (7–13)), with higher rates in
Haryana (13%, CI (9–19)) compared to Assam (7%, CI (4–11)). The identified β-lactamase genes
in isolates were blaCMY, blaMOX, blaFOX, blaEBC, and blaDHA associated with AmpC production.
Additionally, blaCTX-M1, blaSHV, and blaTEM were detected as ESBL producers, while blaVIM, blaIMP,
blaSPM, blaSIM, and blaGIM were identified as MBL producers. Notably, Shigella spp. were the
dominant β-lactamase producers among identified Enterobacteriaceae. This study highlights the
presence of various prevalent β-lactamase genes in milk isolates, indicating the potential risk of
antimicrobial-resistant bacteria in dairy products. The presence of β-lactam resistance raises concern
as this could restrict antibiotic options for treatment. The discordance between genotypic and
phenotypic methods emphasizes the necessity for comprehensive approaches that integrate both
techniques to accurately assess antibiotic resistance. Urgent collaborative action incorporating rational
and regulated use of antibiotics across the dairy value chain is required to address the global challenge
of β-lactam resistance.

Keywords: antimicrobial resistance; AMR; enterobacteriaceae; β-lactamase; ESBL; MBL; AmpC;
dairy milk; intensification; food safety

1. Introduction

India is the world’s largest milk-producing country, with 24% of the world’s milk
output [1], leading over the USA, China, Pakistan, and Brazil [2]. Milk serves as a vital
source of animal protein, particularly in a country such as India, where a substantial
population follows a vegetarian diet. Additionally, it plays a crucial role in generating
income and employment opportunities for countless households engaged in the milk value
chain [2].
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In India, the majority (around 80%) of milk is produced by smallholder dairy farmers
and traded through an unorganized dairy sector [3]. While this sector provides economic
and social advantages, it also poses food safety concerns [4]. Unorganized dairy farms
often lack essential resources, infrastructure, and access to animal health services [5–7].
Milk plays a significant role in the transmission of various foodborne bacteria from animals
to humans [8]. Consuming milk contaminated with antimicrobial residues [9] or resistant
bacteria poses a potential hazard for the spread of antimicrobial resistance (AMR).

Antibiotics play a crucial role in India’s dairy sector, serving as a means of disease
control and ensuring the overall welfare of animals to sustain productivity. Moreover,
they are frequently employed prophylactically or metaphylactically in India and other
low and middle-income countries (LMIC) to prevent infections and promote growth and
production [10–12]. While antibiotics can enhance the health and productivity of dairy
animals, their usage can also foster the emergence of resistant strains [13]. The irrational
and non-therapeutic use of antibiotics in farm animals can have a substantial impact on
public health [14,15].

In livestock, β-lactam antibiotics are widely used for treating bacterial infections [16].
However, bacterial β-lactamases possess the capacity to hydrolyze the β-lactam ring found
in these antibiotics. Although third-generation cephalosporins and aztreonam exhibit
relative resistance to most bacterial β-lactamases, the emergence of extended-spectrum-β-
lactamase (ESBL) poses a challenge. ESBL-producing bacteria have acquired the capability
to hydrolyze these antibiotics as well [17,18].

ESBL-producing Gram-negative bacteria (GNB) pose a significant challenge as they
often demonstrate resistance to multiple drug classes, including aminoglycosides, cot-
rimoxazole, tetracycline, and fluoroquinolones [18]. This multidrug resistance pattern
adds complexity to treatment options and underscores the critical need to curb the further
spread of ESBL-producing bacteria to preserve the efficacy of multiple antibiotics against
these pathogens.

Another concern pertains to GNB that produces AmpC-β-lactamases, capable of
inactivating a broad spectrum β-lactam antibiotics, including penicillins, cephalosporins,
and monobactams [19]. Carbapenems, on the other hand, are broad-spectrum antibiotics
used to combat GNB infections resistant to penicillins or cephalosporins [20], and severe
bacterial infections caused by β-lactamase-producing GNB [21]. However, resistance
to carbapenems has emerged due to their extensive and indiscriminate use, inadequate
sanitation practices, and population growth [22].

The rapid global spread of GNB carrying plasmid-mediated ESBL, AmpC and MBL
poses a significant clinical concern [23–25]. The presence of GNB with β-lactam resistance
in milk, holds significant importance in the Indian subcontinent. This is due to the fact that
some individuals consume raw milk for its perceived health benefits, and a considerable
number of people regularly consume naturally fermented milk as lassi [26].

Food-producing animals, particularly cattle, have been identified as the primary source
of antibiotic-resistant pathogenic bacteria within the Enterobacteriaceae family across
multiple countries [27–33]. Among the most encountered members of Enterobacteriaceae
in this category is Escherichia coli, Klebsiella spp., Shigella spp., and Salmonella spp., owing
to their role in causing diseases in dairy cattle [34–36]. Investigating β-lactam resistance
in these bacteria is of utmost importance to address and manage the emergence and
spread of antibiotic-resistant strains among food-producing animals, a critical measure for
safeguarding both animal and human health.

Previous studies on antibiotic resistance has predominantly focused on human pop-
ulations, with limited attention given to animals [13,37]. Even when studies involving
animals were conducted, they predominantly focused on clinical scenarios involving dairy
animals in India and other countries [38–44]. Consequently, there exists a dearth of evidence
concerning bacteria carrying resistance genes in milk intended for human consumption.
Thus, the objective of this study is to assess the prevalence of β-lactamases in the dairy
value chain. Our study aimed to evaluate antibiotic resistance in milk obtained from farms
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and points of sale, intended for human consumption to address the gap in knowledge of
the exposure to consumers.

To achieve this, we conducted a cross-sectional study in two Indian states, Haryana
and Assam, with the objective of investigating the occurrence of ESBLs, AmpC, and MBLs
in Enterobacteriaceae isolated from dairy milk meant for consumption. To achieve this, both
pasteurized milk and raw milk samples were included in the analysis. Furthermore, our
study encompassed an assessment of the concordance and discordance between phenotypic
and genotypic methods employed to identify β-lactam resistance within milk isolates.

2. Results
2.1. Isolation of Bacteria

A total of 421 GNB isolates, which included multiple distinct isolates from the same
samples, were obtained from 401 milk samples. To ensure a comprehensive study, all
different isolates were included, resulting in an increased isolate count of 421 (Table 1).

Table 1. Numbers of bacterial isolates and milk samples collected in Assam and Haryana, India.

Milk Source Sample Type Assam Haryana Total

Milk from dairy farmer Raw milk 116 126 242
Sample positive * 113 112 225

Isolate 148 115 263

Milk from dairy vendor Raw milk 63 74 137
Sample positive * 63 73 136

Isolate 63 73 136
Pasteurized milk 0 22 22
Sample positive * 0 22 22

Isolates 0 22 22

Total sample 179 222 401
Total positive * 176 207 383

Total isolate 211 210 421
* Positive sample represents at least one isolated bacterial isolate in the sample.

2.2. Antibiotic Susceptibility Testing (AST)

Two-hundred-ninety-five antibiotic resistant isolates were found among 421 total
isolates screened by the disc diffusion test (DDT). Significantly (p = 0.003) more isolates in
milk from Assam were found to be antibiotic resistant (77%, CI (70–82)) versus (63%, CI
(56–70)) compared to Haryana. There was no difference in the number of resistant isolates
in milk from vendors or farmers (Table 2). Only 1% (CI (0.2–4)) of the isolates in the milk
from Haryana and none of the isolates from Assam were resistant to all six antibiotics
(Table 3).

Table 2. Gram-negative bacterial isolates resistant to β-lactam antibiotics by the disc diffusion test.

Total Isolates
(n = 421)

Isolates from
Haryana
(n = 210)

Isolates from
Assam

(n = 211)
p-Value

Isolates from
Farmers
(n = 263)

Isolates from
Vendors
(n = 158)

p-Value

n (%) n (%) n (%) n (%) n (%)

Resistant isolates 295 (70.07) 133 (63.33) 162 (76.78)
0.003

183 (69.58) 112 (70.89) 0.826

Non-resistant
isolates 126 (29.93) 77 (36.67) 49 (23.22) 80 (30.42) 46 (29.11)
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Table 3. Gram-negative bacterial isolates resistant and susceptible to a number of β-lactam antibiotics
by the disc diffusion test.

Milk Sources

Isolates

Resistant to 6
Antibiotics

Resistant to 5
Antibiotics

Resistant to 4
Antibiotics

Resistant to 3
Antibiotics

Resistant to 2
Antibiotics

Resistant to 1
Antibiotics

Sensitive
Isolates

n (%) n (%) n (%) n (%) n (%) n (%) n (%)

Assam
(n = 211) 0 4 (1.90) 20 (9.48) 31 (14.69) 49 (23.22) 58 (27.49) 49 (23.22)

Haryana
(n = 210) 3 (1.43) 2 (0.95) 15 (7.14) 29 (13.81) 38 (18.10) 46 (21.90) 77 (36.67)

Farmer
(n = 263) 2 (0.76) 3 (1.14) 18 (6.84) 33 (12.55) 57 (21.67) 70 (26.62) 80 (30.42)

Vendor
(n = 158) 1 (0.63) 3 (1.90) 17 (10.76) 27 (17.09) 30 (18.99) 34 (21.52) 46 (29.11)

Total
(n = 421) 3 (0.71) 6 (1.43) 35 (8.31) 60 (14.25) 87 (20.67) 104 (24.70) 126 (29.93)

2.3. Polymerase Chain Reaction (PCR) Detection of Resistance Genes

All the isolated bacteria (n = 421) were subjected to multiplex PCR, to screen for
selected ESBL, MBL, and AmpC producing genes using 17 PCR primer pairs. The PCR
identified 43 isolates as producers of β-lactamases. Among these, 9 isolates were found
to carry genes associated with ESBL, 11 isolates carried genes associated with MBL, and
28 isolates carried genes associated with AmpC. Notably, certain isolates exhibited a
combination of resistance genes, involving ESBL, MBL, or AmpC. Overall, the prevalence
of β-lactamases was found to be 10% in total, with 13% prevalence in Haryana, and 7%
prevalence in Assam. However, a similar prevalence (11 vs. 10%) was observed among the
isolates from milk from farmers and from vendors.

Most of the resistant isolates from milk of Haryana harbored an AmpC associated
genes (10%, CI (6–15)), next most common was ESBL (3%, CI (1–6)) and then MBL (2%,
CI (0.7–5)) associated genes. Similarly, isolates from milk from Assam more commonly
had AmpC (3%, CI (1–6)), followed by MBL (3%, CI (1–6)) and ESBL (1%, CI (0.2–4))
associated genes. Within the group of 43 PCR-positive isolates, there were 5 isolates
displaying combinations of resistance genes. Specifically, there was one isolate each with
the combination of ESBL + AmpC and ESBL + MBL, observed in isolates sourced from milk
in Haryana. Additionally, three isolates exhibited the AmpC + MBL combination (n = 3)
and originated from Assam (Table 4).

The observed β-lactamase genes in milk isolates were blaCMY (n = 13), blaMOX
(n = 10), blaFOX (n = 6), blaEBC (n = 2), and blaDHA (n = 1), associated with AmpC
producers. Additionally, blaVIM (n = 5), blaIMP, and blaSPM (n = 4), blaSIM (n = 3), and
blaGIM (n = 1) were detected, which are found in MBL producers. Furthermore, blaCTX-M1
(n = 7), blaSHV, and blaTEM (n = 1) were detected, which are associated with ESBL producers
(Supplementary Materials).

The 43 isolates that were confirmed as β-lactamases (ESBL, MBL and AmpC) by the
PCR genotyping method were further identified at the genus level as Shigella spp. (n = 12),
Klebsiella spp. (n = 6), and Escherichia coli (E. coli) (n = 2) with 23 “other Enterobacteriaceae”
that were not identified further (Table 5).

The genus Shigella spp. were found carrying seven AmpC, six MBL and one ESBL
associated gene. Similarly, the Klebsiella spp. carried five AmpC and two ESBL associated
genes, whereas the E. coli was found to carry only one each of MBL and ESBL associated
genes. Among the other Enterobacteriaceae, the majority of the isolates were found to carry
genes associated with AmpC (n = 17) followed by ESBL (n = 5) and MBL (n = 4) genes
(Table 5).
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Table 4. Isolates positive for β-lactamase genes by the PCR genotyping method.

Milk Source

β-Lactamases
Positive

* ESBL Genes
Positive

* MBL Genes
Positive

* AmpC
Genes

Positive

AMR Genes in Combination
(n = 421)

AmpC + MBL ESBL + AmpC ESBL + MBL
n (%) n (%) n (%) n (%) n (%) n (%) n (%)

Assam
(n = 211) 15 (7.11) 3 (1.42) 6 (2.84) 7 (3.31) 1 (0.23) 0 0

Haryana
(n = 210) 28 (13.33) 6 (2.86) 5 (2.38) 21 (10.00) 2 (0.47) 1 (0.23) 1 (0.23)

Total
(n = 421) 43 (10.21) 9 (2.13) 11 (2.61) 28 (6.65) 3 (0.71) 1 (0.23) 1 (0.23)

Farmer
(n = 263) 28 (10.65) 6 (2.28) 10 (3.80) 16 (6.08) 3 (0.71) 1 (0.23) 1 (0.23)

Vendor
(n = 158) 15 (10.13) 3 (1.89) 1 (0.63) 12 (7.59) 0 0 0

Total
(n = 421) 43 (10.21) 9 (2.13) 11 (2.61) 28 (6.65) 3 (0.71) 1 (0.23) 1 (0.23)

* Including AMR genes in combination.

Table 5. Identification of bacterial isolates confirmed to harbor β-lactamase genes by PCR.

Milk Source
E. coli Shigella spp. Klebsiella spp. Other Enterobacteriaceae Total Isolates
n (%) n (%) n (%) n (%) n

Assam
(n = 15) 0 10 (66.67) 0 5 (33.33) 15

Haryana
(n = 28) 2 (7.14) 2 (7.14) 6 (21.43) ** 18 (64.29) 28

Total
(n = 43) 2 (4.65) 12 (27.90) 6 (13.95) 23 (53.48) 43

Milk source
E. coli Shigella spp. Klebsiella spp. Other Enterobacteriaceae Total isolates
n (%) n (%) n (%) n (%) n

Farmer’s
(n = 28) 2 (7.14) 12 (42.86) 4 (14.29) 10 (35.71) 28

Vendor’s
(n = 15) 0 0 2 (13.33) ** 13 (86.67) 15

Total
(n = 43) 2 (4.65) 12 (27.90) 6 (13.95) 23 (53.48) 43

β-Lactamases E. coli Shigella spp. Klebsiella spp. Other Enterobacteriaceae * Total Genes
Identified

n (%) n (%) n (%) n (%) n

AmpC genes *
(n = 28) 0 7 (25.00) 5 (17.85) 17 ** (60.71) 28

MBL genes *
(n = 11) 1 (9.09) 6 (54.54) 0 4 (36.36) 11

ESBL genes *
(n = 9) 1 (11.11) 1 (11.11) 2 (18.18) 5 (55.55) 9

* Including AMR genes in combination ** Including one pasteurized milk sample.

It is noteworthy that one isolate from pasteurized milk was positive for blaFOX and
blaCMY, genes associated with AmpC, while the other genes were found only in isolates
from raw milk. Since the isolated bacteria from pasteurized milk carrying the AmpC
associated genes was not identified, it was classified as “other Enterobacteriaceae”.

2.4. Comparison between Results

The results of the Epsilometer test (E-test) and the DDT were compared to the geno-
typically confirmed isolates carrying the β-lactamases genes to check the sensitivity and
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consistency of the phenotypic tests (DDT and E-test) in detecting β-lactamases. Among
the genotypically confirmed β-lactamase producing isolates, the DDT showed 68% (CI
(48–84)) and 57% (CI (37–76)) resistance for cefoxitin and cefotetan, whereas the E-test
showed 71% (CI (51–87)) and 46% (CI (28–66)) for the respective antibiotics. In detecting
ESBL, DDT showed 67% (CI (30–92)) and 44% (CI (14–79)) resistance to cefotaxime and
ceftazidime, whereas the E-test showed 44% (CI (14–79)) and 33% (CI (7–70)), respectively.
For detecting MBL, DDT showed 9% (CI (0.2–41)) and 0% resistance to imipenem and
meropenem, whereas the E-test showed 9% (CI (0.2–41)) for both the antibiotics (Table 6).

Table 6. Genotypically confirmed β-lactamase isolates and their phenotypic resistance by the disc
diffusion test (DDT) and Epsilometer test (E-test).

Antibiotic Classes
Phenotypic
Resistance

by DDT

ESBL
Positive
Genes #
(n = 9)

MBL
Positive
Genes *
(n = 11)

AmpC
Positive
Genes $
(n = 28)

Phenotypic
Resistance
by E-Test

ESBL
Positive
Genes #
(n = 9)

MBL
Positive
Genes *
(n = 11)

AmpC
Positive
Genes $
(n = 28)

n (%) n (%) n (%) n (%) n (%) n (%)

2nd generation
cephalosporin

(AmpC Resistance $)

Resistant to
cefoxitin 5 (55.56) 6 (54.54) 19 (67.86) Resistant to

cefoxitin 3 (33.33) 3 (27.27) 20 (71.43)

Resistant to
cefotetan 4 (44.44) 4 (36.36) 16 (57.14) Resistant to

cefotetan 3 (33.33) 3 (27.27) 13 (46.43)

3rd generation
cephalosporin

(ESBL Resistance #)

Resistant to
cefotaxime 6 (66.67) 6 (54.55) 6 (21.43) Resistant to

cefotaxime 4 (44.44) 3 (27.27) 12 (42.86)

Resistant to
ceftazidime 4 (44.44) 4 (36.36) 9 (32.14) Resistant to

ceftazidime 3 (33.33) 0 12 (42.86)

Carbapenem-
β-lactam

(MBL Resistance *)

Resistant to
imipenem 1 (11.11) 1 (9.09) 1 (3.57) Resistant to

imipenem 1 (11.11) 1 (9.09) 1 (3.57)

Resistant to
meropenem 1 (11.11) 0 0 Resistant to

meropenem 1 (11.11) 1 (9.09) 7 (25)

$—AmpC-β-lactamase, #—Extended spectrum-β-lactamase, *—Metallo-β-lactamase.

The DDT was found to detect more β-lactam resistance than the E-test among the
isolates with resistance genes. For the genotypically confirmed isolates with MBL genes, the
DDT showed 73% (CI (39–94)) of isolates to be positive for MBL, whereas the E-test showed
only 36% (CI (11–69)) of isolates as MBL. For the genotypically confirmed isolates with
AmpC genes there were slight differences between the DDT and E-test (79%, CI (59–92) vs.
75%, CI (55–89)), respectively. However, the E-test was found to be slightly more sensitive
than the DDT in detecting phenotypic resistance in isolates with confirmed ESBL genes
(78%, CI (40–97) vs. 67%, CI (30–93)) (Table 7). The AST results for the quality control
strain Escherichia coli ATCC 25922, were between the acceptable range as per CLSI 2015 [45]
(Supplementary Materials).

Table 7. Proportion of β-lactamases detected by the genotypic method and β-lactam resistance by
phenotypic methods; disc diffusion test (DDT) and Epsilometer test (E-test).

Milk Source
Isolates

PCR Positive # Resistant by DDT Resistant by E-Test
n (%) n (%) n (%)

Assam 15/43 (34.88) 13/15 (86.67) 8/15 (53.33)

Haryana 28/43 (65.11) 20/28 (71.43) 21/28 (75.00)

Total 43/43 (100.00) 33/43 (76.74) 29/43 (67.44)

β-lactamases
Isolates

AMR genes * Resistant by DDT Resistant by E-test
n n (%) n (%)
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Table 7. Cont.

Milk Source
Isolates

PCR Positive # Resistant by DDT Resistant by E-Test
n (%) n (%) n (%)

ESBL genes (n = 9) 9 6 (66.67) 7 (77.78)

MBL genes (n = 11) 11 8 (72.73) 4 (36.36)

AmpC genes (n = 28) 28 22 (78.57) 21 (75.00)

Total 43 36 (83.72) 32 (74.41)
* Including AMR genes in combination (n = 5), # individual isolates.

3. Discussion

In the current study we found 43 GNB harboring β-lactamase genes, and the overall
prevalence of β-lactamases by PCR genotyping in milk was 10% (CI (7–13)). However, this
was lower than the previous reports (22–30%) in milk [46,47], probably because the milk
samples in our studies were obtained from points of sale meant for consumption.

The prevalence of genotypic β-lactamases was 13% (CI (9–19)) in Haryana (a developed
dairy sector) and 7% (CI (4–11)) in Assam (mainly informal dairy sector). These findings
could indicate that intensive farms have a higher prevalence of antibiotic resistance genes,
which has also been reported by others [48,49] and was similarly found in our previous
study on Gram-positive bacteria in milk [50]. Even though we observed a higher prevalence
of β-lactamase genes in milk isolates from Haryana compared to isolates from Assam, we
discovered that milk isolates from Assam (77%, CI (70–82)) exhibited a higher phenotypic
β-lactam resistance compared to isolates from Haryana (63%, CI (56–70)), and we therefore
cannot conclude on the difference between the states. This disagreement further indicates
that factors other than the presence of these β-lactamase genes may contribute to the
observed phenotypic resistance.

Among the genotypically confirmed β-lactamase producing isolates, the most domi-
nant bacteria identified, besides “other Enterobacteriaceae” (53%, CI (38–69)) was Shigella
spp. (28%, CI (15–44)), next was Klebsiella spp. (14%, CI (5–28)), then E. coli (5%, CI (0.5–16))
(Table 7). The isolated Shigella spp. outnumbered other identified species and exhibited a
varied antimicrobial resistance pattern that included resistant genes associated with AmpC,
MBL and ESBL, including resistance in combination. The increase in disease associated
with Shigella spp. is contributing to a great burden of hospitalizations due to food poisoning,
making it of significant concern to public health in India and beyond [51–54].

However, global surveillance investigations have revealed high frequencies (exceeding
50%) of E. coli and Klebsiella spp. producing β- lactamases in Asia, Africa, and Latin
America [15]. The presence of β-lactamases among Shigella spp., Klebsiella spp., and E. coli,
is a significant concern as it has been linked to numerous outbreaks of foodborne illnesses
in humans. This finding highlights a potential foodborne public health hazard [55–60].
Understanding the prevalence and resistance profile of Enterobacteriaceae in dairy settings
is crucial for implementing effective control measures and safeguarding public health.

The combination of antibiotic resistance genes (ARG’s) associated with AmpC + MBL
was detected in isolates from both Haryana and Assam. However, combined ARG’s
associated with ESBL + AmpC and ESBL + MBL were detected in isolates from Haryana
only (Table 5). Even though the co-occurrence of β-lactamases enzymes, especially AmpC
and ESBLs, is a common phenomenon [61], the presence of combined ARGs from AmpC
+ MBL, as observed in our study with Shigella spp., is rare and most likely the result of
plasmid circulation within strains from different environments [62]. However, we did not
conduct a genomic study to determine the specific genomic location of the resistant genes
to establish the presence of plasmid circulation in isolates.

Among the β-lactamase genes found in Enterobacteriaceae, blaCTX-M1, blaSHV, blaTEM,
blaCTX-M3 were previously identified in Indian cow milk. Additionally, a few also reported
the presence of blaNDM, blaCTX-M9 and blaCTX-M15 genes in cow milk in India [63–67]. These
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genes grant resistance to bacterial isolates against β-lactam antibiotics such as penicillin and
cephalosporin, commonly observed in clinical settings and often associated with human
infections [68,69].

The AmpC-associated genes that have been identified in this study, namely blaCMY,
blaMOX, blaFOX, blaEBC, and blaDHA, have been previously documented in both humans
and animals in certain countries, including India [57,70–76].

In contrast, the occurrence of blaVIM, blaIMP, blaSPM, blaSIM, and blaGIM genes associ-
ated with MBL is a relatively rare phenomenon, and these genes have not been previously
reported in dairy animals within the country. The observation of these genes in our study
raises intriguing questions about the mechanisms by which these genes or pathogens enter
the dairy value chain, especially given the limited reports of MBL resistance in humans.
One study reported the emergence of plasmid-mediated resistance, including ESBL, AmpC,
and MBL, in wild animals, which were regarded as indicators of environmental antibiotic
resistance contamination [77].

It is worth noting that there have been no prior comprehensive studies conducted in
India and elsewhere that focused on investigating the existence of β-lactamase genes in
milk intended for human consumption, however, a study carried out in Indonesia also
undertook a similar investigation involving bulk tank milk [78]. The β-lactamase genes
are recognized for their association with antibiotic resistance, rendering bacterial strains
carrying them less susceptible to important antibiotics. The clinical significance of these
genes lies in their potential to undermine the effectiveness of antibiotic treatments, making
infections caused by bacteria harboring these genes more difficult to manage [79–81]. This
can lead to a higher likelihood of treatment failure causing increased morbidity, longer
hospital stays, and higher case fatality.

The presence of MBL/AmpC/ESBL-associated genes in milk isolates underscores the
need for additional research to uncover the routes by which these genes enter the dairy
value chain. Exploring their spread mechanisms within and beyond this chain is a complex
process and requires further investigation. Although certain antibiotic-resistant bacteria
might naturally exist in animals and their environment, misuse of antibiotics in agriculture
can enhance the selection and endurance of resistant strains [77]. The possibility of these
genes transferring from livestock to humans through consumption of contaminated dairy
products underscores the importance of strict hygiene protocols and responsible antibiotic
management in both animal husbandry and food production.

We found a low concordance between the genotyping and phenotyping methods.
Among the PCR confirmed β-lactamases (n = 43) from Assam and Haryana,
63% (CI (47–77)) isolates showed resistance by both the DDT and the E-test. Notably,
eight isolates found negative by both DDT and the E-test were positive by PCR. Some inves-
tigations also highlight inconsistent sensitivity of different phenotypic techniques [82]. Our
results indicate that the DDT is slightly more sensitive than the E-test and supports the idea
that the E-test alone is not a reliable method for the detection of β-lactamases [83]. Thus, the
present study demonstrated variations in concordance between the two phenotypic tests
and the confirmed β-lactamase isolates identified through the PCR genotyping method.

In our analysis, the PCR genotyping method detected a 10% prevalence of ARGs, which
is significantly lower when compared to the prevalence observed using the DDT (70%) as
the phenotypic method. These substantial differences in detecting β-lactamases suggest that
resistance genes may not always be actively expressed, and there could be other mechanisms
of resistance involved (not explored in this study). Thus, a comprehensive approach combin-
ing both phenotypic and genotypic testing offers a more accurate understanding of antibiotic
resistance, helping inform treatment strategies and control measures.

We found that while most of the AmpC-producing isolates were resistant to second-
generation cephalosporins, some were also resistant to third generation cephalosporins
and carbapenems, as indicated by both the DDT and E-test results. Similarly, although
ESBL-producing isolates were primarily resistant to third generation cephalosporins, some
were also found to be resistant to carbapenems. Additionally, among the MBL-producing



Antibiotics 2023, 12, 1449 9 of 19

isolates, most isolates exhibited resistance to carbapenems, and a significant number of
them also displayed resistance to third generation cephalosporins.

In a populated nation such as India, resistance to third-generation cephalosporins
presents a significant challenge to control the rapid rise in infection caused by resistant
bacteria [84]. In developed nations such as in Europe, carbapenems are banned from
being used in food producing animals while third and fourth generation cephalosporins
are approved only in cattle and pigs [85]; but making similar restrictions in LMIC is a
challenge [86–88] owing to poor regulation and unrestricted sale of antibiotics.

It is generally known that pasteurization kills most bacteria [89], and the milk in India
goes through ultra-high temperature (UHT) treatment for pasteurization. However, the
discovery of one antibiotic-resistant isolate (“other Enterobacteriaceae”) from pasteurized
milk harboring the AmpC associated gene is alarming. To our knowledge, no other study
from India has reported β-lactamases in GNB isolated from pasteurized milk. This finding
aligns with our previous report, which identified methicillin-resistant Gram-positive bac-
teria in pasteurized milk [50]. It could also be due to post-pasteurization contamination,
potentially exacerbated by inadequate quality packaging and cold storage that encourages
bacterial growth. However, one study reported that some bacteria, especially those with
antibiotic resistance genes, may not always be eliminated unless an efficient pasteurization
technique is used [90]. In India, milk is used in a variety of products such as cheese,
yoghurt, sweets etc., and these are consumed widely. The antimicrobial resistance in milk
can have an impact on the entire dairy food manufacturing chain [90]. The fact that several
microorganisms can contaminate milk, there is indiscriminate use of antimicrobials in milk
production, together with a lack of hygiene during milk processing and storage, are of
great concern [91,92].

Additionally, the rising global population and economic prosperity are both contribut-
ing to a rising demand for animal-sourced food [93]. Therefore, it is not surprising that
livestock industries use more antibiotics than are used for humans [94]. Moreover, during
the past ten years, use of antibiotics in animal agriculture has increased by 70% driven
mainly by an increase in global demand for dairy, fish, eggs and meat [10,95]. Hence, more
emphasis should be given to sensitizing the value chain actors about antibiotic usage and
associated risks in food animals [7,96,97].

However, the study was limited by the relatively small sample size utilized, which
may affect the generalizability of our findings. It is crucial to note that the analysis was
confined to pasteurized milk from a single Indian state, Haryana. This limited scope could
introduce biases for the broader applicability of our results. Furthermore, while the broader
category of “other Enterobacteriaceae” was identified as β-lactam producers we did not
identify them further. If future studies could include a more extensive sample size for the
analysis of pasteurized milk and identify all the β-lactamase producing Enterobacteriaceae,
it would yield a more accurate portrayal of the magnitude of the resistant bacteria, as well
as shed light on potential entry points for contamination post-pasteurization. Exploring
viable solutions necessitates an enlarged dataset to yield meaningful insights.

The targeted β-lactamase gene variants we selected may not be representative of all
possible variants, potentially leading to an underestimation of the prevalence of ARGs,
as it may not encompass the entire spectrum of possible variants. In forthcoming studies,
we recommend adopting a broader approach such as sequencing of amplified fragments
to avoid potential occurrence of false positive genes to ensure a more comprehensive
representation of ARGs.

In shaping the trajectory of future investigations, we propose a multi-faceted approach.
Firstly, expanding the sample size to include representative states heavily involved in
cattle milk production and distribution would provide a more comprehensive view of the
issue. Moreover, performing a thorough risk assessment is crucial for accurately assessing
the potential repercussions on public health, especially concerning antibiotic resistance
within food and the associated risks linked to food consumption. An intriguing avenue
for further exploration lies in the development of a model for human risk assessment
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associated with AMR in animal-derived food products. Such a model could offer insights
into the potential ramifications of AMR on human health, guiding regulatory decisions and
facilitating effective risk management strategies.

The significance of this study extends beyond India’s borders. With the growing
influence of globalization and trade, the widespread use of antibiotics and the rise of AMR
poses a global public health concern. Thus, action is imperative to address this challenge
on a worldwide scale.

4. Materials and Methods
4.1. Ethical Statement

Ethical approval for the study was granted by the Institutional Research Ethics Com-
mittee (IREC) of the International Livestock Research Institute (ILRI) on 21 September 2015
(No. ILRI-IREC2015-12) and 27 February 2017 (No. ILRI-IREC2017-05) and approved by
the collaborating institutes from the Indian Council of Agricultural Research (ICAR).

4.2. Sample Collection

A cross-sectional study was conducted in two Indian states—Assam and Haryana
(Figure 1). The two states were chosen based on the differences in geography, infrastructure,
and dairy development. Haryana is located at the center of north India, whereas Assam is
situated in the north-eastern part. Assam has an unorganized (informal) dairy system with
many local-breed dairy animals while Haryana has a more developed dairy sector with
many high yielding cattle and buffalo [98].
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The sample size calculation was performed using a one-sample binomial calculation,
assuming a 95% level of confidence, 5% level of precision, and assuming that 15% of
the samples contained resistant bacteria. This yielded a result of about 200 samples per
state [99]; to account for a small design effect, we aimed for 240 samples. The study finally
involved the collection of 401 milk samples, with 222 samples obtained from Haryana
and 179 samples from Assam. The samples were sourced from two distinct groups, dairy
farmers (n = 242) and vendors (n = 137). For the dairy farmer samples, milk samples
were collected from specific districts in Haryana and Assam. In Haryana, the samples
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were collected from the districts of Karnal, Bhiwani, and Kaithal. In Assam, the samples
were collected from the districts of Golaghat, Baska and Kamrup during December 2016 to
February 2017. Regarding the vendor samples, two categories were distinguished, raw milk
and pasteurized milk. For Haryana, both raw and pasteurized milk samples were collected
from the districts of Karnal, Bhiwani, and Kaithal. In Assam, only raw milk samples were
collected from the same districts, with the addition of the Kokrajhar district. The collection
period for the vendor samples in both states was from September to November 2017.

The sampling process involved a multi-level random sampling method that encom-
passed villages, dairy farms, milk traders, and vendors within the selected districts as had
been previously described in detail in previous publications. Among the vendor samples,
22 were pasteurized milk samples obtained from milk retail outlets or grocery stalls, while
the remaining vendor samples were raw milk collected from milk vendors (Table 1). The
study collected milk at the point of consumption or sale for consumption, including both
cow and buffalo milk.

The study collected 10 mL milk samples aseptically in sterile 50 mL Falcon tubes
(Tarson, Kolkata, India). These samples were obtained from two primary sources, bulk milk
cans at dairy farms for consumption and milk cans held by vendors for sale. Additionally,
packaged pasteurized milk was purchased in pouches from vendors to represent the
associated public health risk with milk consumption. The samples were then transported
to the laboratory while maintaining a cold chain and kept at 4 ◦C until processing. The
duration between sample collection and the commencement of analysis did not exceed
48 h.

4.3. Isolation of Bacteria

The samples were processed by inoculating in buffered peptone water (Hi-media,
Maharashtra, India) and incubated at 37 ◦C for 18–24 h to grow presumptive GNB. The
culture broth was inoculated on MacConkey agar plates (Hi-media, Maharashtra, India)
and incubated at 37 ◦C for 18–24 h to grow presumptive E. coli, Shigella spp. and Kleb-
siella spp. Suspected E. coli were further inoculated in Eosin Methylene Blue (EMB) agar
(Hi-media, Maharashtra, India) for differential detection. Brain heart infusion agar (Hi-
media, Maharashtra, India) was used for subculturing and purification. The colonies were
initially identified based on colony morphology, Gram staining and biochemical tests. If
morphologically distinct colonies were present from a single sample, they were considered
as separate isolates for further analysis, meaning that there were more isolates than original
samples according to the schematic represented in Figure 2.

The purified bacterial isolates were subjected to antibiotic susceptibility testing (AST)
by a DDT using six antibiotics (Table 8).

Table 8. β-lactam antibiotics with classes and concentrations used in a disc diffusion test (DDT) and
in the E-test to determine minimum inhibitory concentration.

Classes β-Lactam Antibiotics
Concentration
of Antibiotic
Disc (in µg)

Breakpoints
for Resistance by

DDT (mm)

Concentration
of Antibiotic

Strips
(µg/mL)

Breakpoints
for Resistance by

E-Test
(µg/mL)

3rd generation
cephalosporins

For ESBL
detection

Cefotaxime
Ceftazidime

30
30

≤22
≤17

0.016–256
0.016–256

>4
>16

2nd generation
cephalosporins

For AmpC
detection

Cefoxitin
Cefotetan

30
30

≤14
≤12

0.016–256
0.016–256

>32
>64

Carbapenem-
β-lactams

For MBL
detection

Imipenem
Meropenem

30
30

≤19
≤19

0.002–32
0.002–32

≥4
>4
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Figure 2. Flow chart representing the isolation of Gram-negative bacteria, phenotypic and genotyping
screening of β-lactamases (ESBL, AmpC, MBL) and determination of MIC by the Epsilometer test
(E-test).

4.4. Antibiotic Susceptibility Testing (AST)

All the purified isolates were subjected to AST for phenotypic detection of β-lactam
resistance using the Kirby–Bauer DDT [100] method following the guidelines of the Clinical
and Laboratory Standards Institute [45]. Prior to AST, a bacterial cell suspension in normal
saline solution (0.85%) was made and the turbidity was set to 0.5 McFarland units. A
sterile cotton swab was dipped into the broth culture tube and rotated several times to
get an adequate amount of culture and uniformly spread on the surface of the Mueller–
Hinton Agar (MHA) (Hi-media, Maharashtra, India) plates. The antibiotic discs (Hi-media,
Maharashtra, India) were placed on the cultured MHA plates. Within 15 min of placing the
antibiotic discs on the cultured plates, the plates were incubated at 37 ◦C for 18–24 h. The
plates were then examined for confluent growth and circular zones of inhibition around the
antibiotic discs were measured according to the manufacturer’s instruction. As outlined
in Table 8, for the purpose of this study, the isolates were classified as ESBL if resistant to
cefotaxime and ceftazidime. Similarly, the isolates were classified as AmpC if resistant to
cefoxitin and cefotetan; and as MBL if resistant to imipenem and meropenem. Isolates that
were found resistant to any single tested antibiotic were designated as “resistant isolates”.
Escherichia coli ATCC 25922 was used as a quality control.

4.5. Molecular Detection of Resistance Genes by PCR

Genomic DNA of the isolates was extracted using a DNA extraction kit (Qiagen,
Germantown, USA). PCR was performed to detect the β-lactamase producing genes. The
target genes blaTEM, blaSHV, blaCTX-M1, blaCTX-M2, blaCTX-M3, blaCTX-M4 were used for ESBL
detection; blaIMP, blaVIM, blaGIM, blaSIM, blaSPM for MBL detection and blaFOX, blaMOX,
blaEBC, blaACC, blaDHA, blaCMY for AmpC detection. The amplicons were regarded as
positive for the specific β-lactam resistance gene if any single bands appeared post-gel
electrophoresis and referred to here as being genotypically resistant to differentiate from
the phenotypic results.

When isolates were found positive for any of the β-lactamase genes associated with
ESBL, MBL or AmpC by PCR, the isolates were further identified for Shigella spp., Klebsiella
spp., and E. coli using PCR (Table 9) to confirm the preliminary identification that was
performed based on colony morphology, Gram staining and biochemical tests. The isolates
were categorized as “other Enterobacteriaceae”, if they could not be confirmed as Shigella
spp., and Klebsiella spp., or E. coli. To verify the results, the PCR was repeated twice for all
samples and a positive control was always utilized for PCR confirmation. Shigella spp., and
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Klebsiella spp., and E. coli were selected as they are important pathogens in cows and have
been found in milk in an earlier report on dairy farms of Kenya [101].

Table 9. PCR primer details for identifying β-lactamases (ESBL, MBL and AmpC) genes and identifi-
cation of bacterial species.

Gene Forward (5′-3′) Reverse (5′-3′) Length
(* bp) * AT * Ref.

ESBL genes

60 ◦C

[1
02

–1
04

]blaTEM ATGAGTATTCAACATTTTCG TTACCAATGCTTAATCAGTG 861
blaSHV ATGCGTTATATTCGCCTGTG TTAGCGTTGCCAGTGCTCGA 860

blaCTXM1 GACGATGTCACTGGCTGAGC AGCCGCCGACGCTAATACA 499
blaCTXM2 GCGACCTGGTTAACTACAATCC CGGTAGTATTGCCCTTAAGCC 351
blaCTXM3 CGCTTTGCCATGTGCAGCACC GCTCAGTACGATCGAGCC 307
blaCTXM4 GCTGGAGAAAAGCAGCGGAG GTAAGCTGACGCAACGTCTG 474

MBL genes

53 ◦C [1
05

]

blaIMP GAATAG(A/G)(A/G)TGGCTTAA(C/T)TCTC CCAAAC(C/T ACTA(G/C)GTTATC 188
blaVIM GTTTGGTCGCATATCGCAAC AATGCGCAGCACCAGGATAG 382
blaGIM TCAATTAGCTCTTGGGCTGAC CGGAACGACCATTTGAATGG 72
blaSIM GTACAAGGGATTCGGCATCG TGGCCTGTTCCCATGTGAG 569
blaSPM CTAAATCGAGAGCCCTGCTTG CCTTTTCCGCGACCTTGATC 798

AmpC genes

64 ◦C

[1
06

]

blaFOX AACATGGGGTATCAGGGAGATG CAAAGCGCGTAACCGGATTGG 190
blaMOX GCTGCTCAAGGAGCACAGGAT CACATTGACATAGGTGTGGTGC 520
blaEBC TCGGTAAAGCCGATGTTGCGG CTTCCACTGCGGCTGCCAGTT 302
blaACC AACAGCCTCAGCAGCCGGTTA TTCGCCGCAATCATCCCTAGC 346
blaDHA AACTTTCACAGGTGTGCTGGGT CCGTACGCATACTGGCTTTGC 405
blaCMY TGGCCAGAACTGACAGGCAAA R TTTCTCCTGAACGTGGCTGGC 462

E. coli

60 ◦C

[1
07

,1
08

]

lacY CTACCGGTGAACAGGGTAGC GTCGCTGAAAAACGCACTTC 289
lacZ ATGAAAGCTGGCTACAGGAAGG CTCCACACAGTTTCGGGTTTTC 517
cyd CCGTATCATGGTGGCGTGTGG GCCGGCTGAGTAGTCGTGGAAG 398

uidA CGCCGATGCAGATATTCG GCTGTGACGCACAGTTCATAG 603
phoA GGTAACGTTTCACCGCAGAGTTG CAGGGTTGGTACACTGTCATTACG 468

Shigella spp.
phoA GGTAACGTTTCACCGCAGAGTTG CAGGGTTGGTACACTGTCATTACG 468

Klebsiella spp.
62 ◦C

[1
09

]

gyrA CGCGTACTATACGCCATGAACGTA ACCGTTGATCACTTCGGTCAGG 441

* AT—Annealing Temperature, bp—base pairs, Ref.—References.

4.6. Epsilometer Test

All the PCR confirmed β-lactamase isolates were subjected to an E-test to determine
the MIC required to inhibit/kill the bacteria [45]. To perform an E-test, a bacterial cell
suspension was made in normal saline solution (0.85%) and the turbidity was set equivalent
to 0.5 McFarland units [100]. A sterile cotton swab was dipped into the broth culture tube
and rotated several times to get an adequate amount of culture; it was then uniformly
applied on the surface of the MHA (Hi-media, Maharashtra, India) plate. The antibiotic
(Hi-media, Maharashtra, India) strips were placed on the MHA agar plate, using sterile
forceps, by gently pressing the antibiotic strips to ensure their complete contact with the
surface of the agar plate. The inoculation was performed within 10–15 min of the inoculum
being prepared in normal saline. The plates were then incubated at 37 ◦C for 16–20 h, and
then examined for the MIC value from the scale in terms of µg/mL where the ellipse edge
intersects the strip. Escherichia coli ATCC 25922 was used as quality control and results
were in the acceptable range in all runs.

5. Conclusions

This study provides compelling evidence of antibiotic-resistant bacterial contamina-
tion in milk intended for human consumption. The presence of β-lactamases, including
ESBL, AmpC, and MBL, among the isolated E. coli, Shigella spp., Klebsiella spp., and other
Enterobacteriaceae in dairy milk at the point of consumption poses a significant public
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health risk. The organized dairy sector seems more likely to exhibit AMR genes, which may
be attributed to the consequent treatment pressure on animals due to rising demand for
milk and milk products. The observed disparity between genotypic and phenotypic meth-
ods highlights the importance of comprehensive approaches that integrate both techniques
for accurate assessment of antibiotic resistance. The emergence of β-lactam resistance
presents a formidable challenge globally, particularly in India, highlighting the urgent need
for joint action involving all the value chain actors.

These findings underscore the importance of responsible antibiotic use, establishment
of stringent regulations, strict monitoring, implementation of pasteurization, protection of
the milk meant for consumption and implementation of proper hygiene practices to avoid
contamination post-pasteurization that would greatly impact food safety and public health
to mitigate the emergence and spread of antibiotic resistance in the dairy sector. Further,
risk assessment is essential to establish the safety of public health and must be performed
in future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12091449/s1, Table S1: Details of milk samples, results
of antibiotic-resistance profile for the isolated Gram-negative bacteria, their molecular characterization
and the AST result for the QC Escherichia coli ATCC 25922.
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