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The current study aims to improve the efficiency
of automatic identification of pavement distress and
improve the status quo of difficult identification and
detection of pavement distress. First, the identification
method of pavement distress and the types of
pavement distress are analysed. Then, the design
concept of deep learning in pavement distress
recognition is described. Finally, the mask region-
based convolutional neural network (Mask R-CNN)
model is designed and applied in the recognition
of road crack distress. The results show that in the
evaluation of the model’s comprehensive recognition
performance, the highest accuracy is 99%, and
the lowest accuracy is 95% after the test and
evaluation of the designed model in different datasets.
In the evaluation of different crack identification
and detection methods, the highest accuracy of
transverse crack detection is 98% and the lowest
accuracy is 95%. In longitudinal crack detection, the
highest accuracy is 98% and the lowest accuracy is
92%. In mesh crack detection, the highest accuracy
is 98% and the lowest accuracy is 92%. This
work not only provides an in-depth reference for
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the application of deep CNNs in pavement distress recognition but also promotes the
improvement of road traffic conditions, thus contributing to the progression of smart cities
in the future.

This article is part of the theme issue ’Artificial intelligence in failure analysis of
transportation infrastructure and materials’.

1. Introduction
Since the twentieth century, especially after the Second World War, cars have become a
common means of transportation for the masses, and traffic accidents have gradually become
the most common personal injury accidents. At the same time, the road has suffered great
damage due to long-term traffic operation, so the distress on the road surface is becoming
increasingly complicated with the service time of the road [1]. The emergence of pavement
distress recognition technology based on visual technology provides many intelligent recognition
methods for pavement distress recognition. With strong advantages in image recognition, deep
convolutional neural networks (CNNs) provide a prominent means for pavement distress
recognition. Therefore, deep optimization design of pavement distress recognition technology
through deep CNN is an innovative study [2].

Hameed et al. [3] proposed that the present pavement distress plays an important role in
urban development, but the emergence of pavement distress seriously blocks the progression
of urban road traffic. Therefore, comprehensive detection of roads is conducted. Identifying and
resolving pavement distress is an important task in current society [3]. Han et al. [4] noted that
pavement distress detection plays an important role in road maintenance [4]. D’Alessandro et al.
[5] mentioned that pavement distress recognition technology needs to breakthrough manual
operation and relies on scientific and technological means. It is innovative to optimize the
pavement distress recognition programme by changing the application technology. Khan et al. [6]
pointed out that to change the traditional methods of pavement distress recognition, image-based
pavement distress detection has become a subject of competitive research in various countries. It
takes advantage of high-speed and high-precision cameras to shoot road images quickly and uses
computers for fast processing to obtain distress information [6]. Lagree et al. [7] proposed that in
recent years, based on the continuous progression of pavement distress recognition technology,
CNNs have attracted extensive attention due to their ability to automatically extract image feature
expressions. Some attempts have been made to apply it to crack detection [7]. Zhou [8] pointed out
that CNNs and intelligent algorithms can detect the types of pavement distress and automatically
identify road conditions, helping road maintenance departments carry out daily maintenance
work conveniently, efficiently and in a targeted manner [8].

In summary, first, the recognition technology of pavement distress is analysed. Then, the
application of deep learning is discussed. Finally, the mask region-based convolutional neural
network (Mask R-CNN) model is designed and applied to pavement distress detection. This work
provides technical support for the optimization of pavement distress recognition technology and
contributes to the improvement of road construction in future smart cities.

2. Pavement distress recognition and deep learning optimization

(a) Multiple distress identification on public roads
With the continuous development and progress of society, people’s daily lives have been
inseparable from traffic. Moreover, the speed of road surface damage has accelerated, and the
detection of distress on road surfaces has become increasingly heavy [9].
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Figure 1. Model of CNN and construction of its convolutional kernel.

Among various types of urban pavement distress, crack distress is one of the most
representative types of pavement distress, which is the early manifestation of other large-scale
pavement distress [10]. If not repaired in time, it will develop into a more serious pavement
distress type. Compared with other pavement distress types, it is more difficult to detect them
[11]. In addition, pavement distress also includes potholes, ruts, looseness, subsidence and surface
damage, which have a serious impact on road traffic [12]. Therefore, pavement distress is the main
hazard of urban road traffic. Therefore, the accurate identification of cracks and distress on public
roads through scientific and technological means plays an important role in the timely handling
of distress and reducing traffic losses on public roads [13]. Common road surface distress mainly
includes cracks, potholes, ruts, looseness and subsidence. The designed model carries out the
comprehensive identification and detection of road pavement cracks, among which the types of
cracks mainly include transverse cracks, longitudinal cracks and mesh cracks [14].

(b) Convolutional neural network-based highway distress recognition
Deep learning technology is a prominent technology in machine learning, which has important
research significance in the current society. Its application fields are very wide, and its functions
are also very complete, which can efficiently address various technical problems in the current
society. In the field of deep learning, image recognition and feature extraction are widely studied.
Deep CNN performs well in this task [15]. A deep CNN is a multi-layer alternating perceptron
that can efficiently detect image features through its multi-layer comprehensive calculation and
can extract image features as the technical basis of image research [16]. Figure 1 shows the CNN
model and the specific structure principle of the convolutional kernel.

In figure 1, the convolution layer is the main computing layer in the CNN model, and the size
and step of its convolution kernel determine its computing mode and computing capability [17].
The commonly used excitation functions are the sigmoid function and ReLU function, and their
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Figure 2. Two pooling operations for the pooling layer and their specific design.

calculation equations are as follows:

f (x) = 1
1 + e−x , (2.1)

and

f (x) = max(0, x) =
{

0, x < 0

x, x ≥ 0
, (2.2)

where x represents the calculation factor. Common pooling operations include average pooling
and maximum branch pooling [18]. Figure 2 shows the two pooling operations for the pooling
layer and how they work.

In figure 2, the application of the pooling layer greatly optimizes the computational efficiency
of the CNN model. The fully connected layer is the terminal structure of a CNN, which is usually
used to classify image features. The softmax regression classifier is commonly used, and its
expression is

Sj = ezj∑
k ezk

, (2.3)

where k represents the number of neurons, j represents neurons and its output can be calculated
as follows:

zj =
∑

wx + b, (2.4)

where w represents the calculated weight, and b represents the bias of the neural network layer.
The CNN model includes forward operation and reverse operation. Forward operation refers to
the process of network training, which takes the calculation results of the former layer as the input
of the latter layer to calculate the classification score and the probability of the current class. The
reverse operation refers to reversing the output errors of the output layer to the input layer to
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Figure 3. Optimal design of FPN.

optimize the model parameters. The error calculation formula is

E(W, b) = 1
2

N∑
i=1

‖ ti − yi‖2, (2.5)

where t represents the true value of the sample, i represents the serial number of the sample, y
represents the predicted value of the sample and W and b represent the weight and bias of the
neural network layer, respectively. The updating formula of the two is

Wl = Wl − η
∂

∂Wl
E(W, b), (2.6)

and

bl = bl − η
∂

∂bl
E(W, b), (2.7)

where l represents the level of the neural network and η represents the learning rate of the
model. Typical CNN models include the visual geometry group net model, which uses 3 × 3
convolutional kernels to form a deep network.

3. Design of the mask region-based convolutional neural network-based
highway distress recognition model

To optimize the model, a Mask R-CNN model is designed to detect and recognize pavement
distress. In the task of pavement crack identification, the detection network can be used to locate
the crack, but it cannot calculate the crack length, width, area and other parameters [19]. This
model using a single task (such as a detection network or segmentation network) can only
complete the detection or segmentation task of road distress [20]. Moreover, the advantages of
the Mask R-CNN model can be highlighted by the feature pyramid network (FPN), as illustrated
in figure 3, which shows the optimization design of the model convolution process by FPN.

Figure 3 also shows the optimization design of the convolution process for the FPN network
structure. Since the original Mask R-CNN algorithm uses the ResNet residual network as the
skeleton network, which has good performance, is easy to train, and can be stacked with many
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Figure 4. Optimal design of the RPN generation candidate box.

layers, ResNet is used as the basic network, and the FPN idea is added for illustration [21]. Its
calculation is as follows:

k = k0 + log2

(√
wh/224

)
, (3.1)

where k represents the feature graph, and w and h represent the width and height of the feature
graph, respectively. Then, the model’s job is to generate the RPN of the candidate region, which is
to generate a high-quality region candidate box. Figure 4 shows the optimized design of the RPN
generation candidate box for model work.

In figure 4, the red box on the left represents a convolution kernel, and a new feature graph is
generated after sliding calculation. In addition, boundary regression is used to make the positions
of the candidate boxes more accurate. Usually, (x, y, w, h) is used to represent the window of
candidate boxes [22]. Then, the calculation of boundary regression is as follows:

f (Px, Py, Pw, Ph) = (Ĝx, Ĝy, Ĝw, Ĝh) ≈ (Gx, Gy, Gw, Gh), (3.2)

where f represents the mapping, P represents the candidate box of prediction, G represents the
box of real position and Ĝ represents the box of regression window. The principle of the equation
is moving the prediction candidate box to the regression window box close to the real position
through mapping. The specific calculation is as follows:

�x = Pwdx(P), (3.3)

�y = Phdy(P), (3.4)

Ĝx = Pwdx(P) + Px, (3.5)

Ĝy = Phdy(P) + Py, (3.6)

Sw = exp(dw(P)), (3.7)

Sh = exp(dh(P)), (3.8)

Ĝw = Pwexp(dw(P)) (3.9)

and Ĝh = Phexp(dh(P)), (3.10)
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Figure 5. Specific calculation flow of the Mask R-CNNmodel.

where � represents position shift and S represents scale scaling. Then, the calculation of
translation and scale scaling is as follows:

tx = (Gx − Px)
Pw

, (3.11)

ty = (Gy − Py)
Ph

, (3.12)

tw = log
(

Gw

Pw

)
, (3.13)

th = log
(

Gh

Ph

)
(3.14)

and tG = (tx, ty, tw, th), (3.15)

where tG represents the real coordinates. Figure 5 shows the specific calculation flow of the model.
In figure 5, the model predicts pavement distress through calculation and then detects and

evaluates pavement distress [23]. Then, the loss function of the model can be calculated by

Loss =
N∑
i

(ti
∗ − ŵT∗∅5(Pi))2 (3.16)

and

W∗ = arg min
w∗

N∑
i

(ti
∗ − ŵT∗ ∅5(Pi))2 + λ ‖ ŵ∗‖2, (3.17)

where ∅5 represents the feature vector for the candidate area, W∗ represents the learning
parameter and ŵT∗∅5 represents the prediction result [24]. The regression functions of the model

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 O

ct
ob

er
 2

02
3 



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220169

...............................................................

are as follows:

tx = (x − xa)
wa

, (3.18)

ty = (y − ya)
ha

, (3.19)

tw = log
(

w
wa

)
, (3.20)

th = log
(

h
ha

)
, (3.21)

t∗x = (x∗ − xa)
wa

, (3.22)

t∗y = (y∗ − ya)
ha

, (3.23)

t∗w = log
(

w∗

wa

)
(3.24)

and t∗h = log
(

h∗

ha

)
, (3.25)

where a stands for the anchor point. Finally, the region of interest (ROI) align operation of
the model is executed, including linear interpolation and bilinear interpolation. Its task is to
accurately infer the remaining relevant data from the given data [24]. The calculation of linear
interpolation is as follows:

y = ω0y0 + ω1y1, (3.26)

y − y0

x − x0
= y − y1

x − x1
(3.27)

and y = x − x0

x1 − x0
y1 + x1 − x

x1 − x0
y0, (3.28)

where ω represents the weight. The calculation of bilinear interpolation is as follows:

f (R1) = x2 − x
x2 − x1

f (Q11) + x − x1

x2 − x1
f (Q21), (3.29)

f (R2) = x2 − x
x2 − x1

f (Q12) + x − x1

x2 − x1
f (Q22) (3.30)

and f (P) = y2 − y
y2 − y1

f (R1) + y − y1

y2 − y1
f (R2) (3.31)

where R1, R2 and P represent two given points and a calculated point, and Q11, Q21 and
Q22 are transition points used in the calculation. Linear and bilinear interpolation operations
are the basis of the ROI align operation [23]. The model designed in this work is aimed at
the recognition of multiple road diseases, so multi-task loss is designed. The relevant loss
functions include the classification loss function, regression loss function and segmentation loss
function [25].
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Figure 6. Comprehensive design of the Mask R-CNNmodel.

The designed model is for the identification of multiple distress on the road, so multi-task loss
is designed. Related loss functions include the classified loss function, regression loss function
and segmentation loss function [25], and their calculations are as follows:

Lcls = −
M∑

i=1

ylog(p), (3.32)

Lbox =
∑

i∈x,y,w,h

smooth(ti − t∗i ), (3.33)

smoothL1(x) =
{

0.5x2, |x| < 1

|x| − 0.5, others
(3.34)

and Lmask = − 1
a2

∑
1≤i,j≤a

[yijlogŷn
ij + (1 − yij)log(1 − ŷn

ij)], (3.35)

where i and j represent pixels, y represents pixel labels, ŷn
ij represents predicted values

and n represents the hierarchy of the network. Other parameters are the same as the
above equations. Figure 6 shows the comprehensive design of the optimized Mask R-CNN
model.

In figure 6, the Mask R-CNN model is comprehensively optimized, thereby improving the
recognition efficiency of the model for road diseases and providing technical support for the
improvement of road traffic conditions [26]. The workflow of the model is first to decolour
the collected image and then to extract features from the grey image. In this process, the model
will also carry out convolution and pooling operations on the graph to effectively extract image
features and ensure the working efficiency and final effect of the model.
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Table 1. Experimental configuration.

serial number experiment apparatus configure

1 operating system Windows10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 CPU Intel(R)_Xeon(R)_W-2133
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 memory 32G
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 graphics card Nvidia GTX 2080Ti
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 programming language Python3.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 frame type Pytorch
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Experimental data setting
In this work, the data used for training and evaluation of the design model are from public
datasets, including the German asphalt pavement (GAP) 384 dataset [27], which contains a total
of 1969 grey value images. The image resolution is 1920 × 1080 pixels, and each pixel represents
1.2 × 1.2 mm. The Cracktree 200 dataset [28] includes 206 road surface images of size 800 × 600
with various types of cracks. The Cracks and Potholes in Road Images dataset [29] is mainly a
collection of defective images of paved roads in Brazil. It contains 2235 images from highways,
including roads, cracks and potholes. The structural defects network (SDNET) 2018 dataset [30]
contains more than 56 000 images of cracked and non-cracked concrete bridge decks, walls and
walkways. The dataset includes cracks as narrow as 0.06 mm and as wide as 25 mm. The dataset
also includes images with various obstacles, including shadows, surface roughness, scaling,
edges, holes and background debris. In the identification of road defects, the model designed
in this work includes lateral cracks, longitudinal cracks and mesh cracks. The main method aims
to preliminarily identify and detect the length of various cracks through the input test model of
the images in the dataset, of which a total of 500 images are detected in this work. In table 1,
the basic information of the computer hardware devices for simulation detection in this work is
displayed.

5. Evaluation of convolutional neural network-based pavement distress
recognition model

(a) Comparative evaluation of optimization performance of convolutional neural network
model

By designing and optimizing the Mask R-CNN model, highway distress recognition technology
is realized to comprehensively improve the model’s recognition and detection effect and improve
the current highway distress detection status. Figure 7 shows the evaluation results of the crack
detection accuracy of the model.

In the detection of pavement distress cracks, the model is tested and evaluated in four datasets,
and it is found that the detection accuracy of the model is 99% at the highest and 95% at the lowest
(figure 7). Figure 8 shows the evaluation results of the designed model for the identification of
different cracks.

In figure 8, DLA refers to detecting lateral cracks, DLO refers to detecting longitudinal
cracks, DM refers to detecting mesh cracks, CLA refers to cutting lateral cracks, CLO refers
to cutting longitudinal cracks and CM refers to cutting mesh cracks. The results show that
the highest accuracy of the model is 98% and the lowest accuracy is 87% in transverse crack
detection.
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Figure 7. Evaluation of pavement distress detection accuracy ((a) the GAP dataset, (b) the Cracktree 200 dataset, (c) the CPRI
dataset and (d) the SDNET dataset).

(b) Mask region-based convolutional neural network model detection performance
evaluation

The optimized model can calculate the specific length of cracks by predicting the movement
distance of the frame. Therefore, this model is a breakthrough of traditional crack identification
technology to a certain extent and provides a more advantageous model for the identification of
cracks. Figure 9 shows the evaluation results of the test time for different crack lengths.

In figure 9, the legend represents the detection times. The results show that the longest
detection time of the model is 32 ms, the lowest is 25 ms, the longest cutting time of the model
is 48 ms and the lowest is 30 ms. In addition, the length detection and cutting accuracy of the
model are very high. Figure 10 shows the evaluation results of the length detection accuracy of
the model.

In figure 10, in the detection of pavement cracks, the model has a very high detection accuracy
of length, with the highest detection accuracy 98% and the lowest detection accuracy 90%. In the
cutting process, the accuracy of the model is 98% and 92%, respectively. Figure 11 shows the loss
value evaluation results of this model in road surface distress detection.

In figure 11, the loss value of the model in the detection is very low. In crack identification,
when the number of loss iterations of the model is 7, the loss value is close to the minimum value
and the minimum loss value of the model is maintained at 0.25. In crack length detection, the loss
value of the model is slightly higher, but when the number of zone times of the model is 10 times,
it is close to the lowest and tends to be stable, while the loss value of the model is 0.5.
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Figure 8. Identification and evaluation of different cracks by theMask R-CNNmodel ((a) the GAP dataset, (b) the Cracktree 200
dataset, (c) the CPRI dataset and (d) the SDNET dataset).
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Figure 9. Evaluation of detection time for different crack lengths ((a) detection, (b) cutting).

6. Conclusion
With the development of the economy, road traffic has been affected by many kinds of
transportation tools, so the road is inevitably damaged. Based on this, the recognition technology
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Figure 10. Evaluation of the length detection accuracy of the model ((a) detection, (b) cutting).
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Figure 11. Loss values in pavement distress detection ((a) the loss of crack recognition, (b) the loss of crack length detection).

of road surface diseases and the types of road diseases are discussed. Then, the application design
of deep learning technology in road disease recognition is introduced. Finally, based on deep
CNN technology, the Mask R-CNN model is designed for the recognition of road crack disease,
and the designed model is comprehensively evaluated and detected. The results show that in
the evaluation of model comprehensive recognition performance, the designed model is tested
and evaluated in different datasets, and the detection accuracy of the model is the highest, which
is superior to other recognition techniques in all aspects. Second, the accuracy of the designed
model is always higher than 92% in transverse fracture detection, longitudinal fracture detection
and mesh fracture detection. The accuracy of transverse cracks, longitudinal cracks and mesh
cracks is always higher than 87%. In the crack length detection, the longest detection time of the
model is approximately 32 ms, and the shortest detection time is approximately 25 ms. The longest
cutting time of the model is approximately 48 ms, and the shortest is approximately 30 ms. In the
detection accuracy, the highest is approximately 98% and the lowest is approximately 90%. In
cutting, the highest accuracy of the model is approximately 98% and the lowest is approximately
92%. Finally, the loss value of this model in detection is very low. In fracture identification,
when the number of loss iterations of the model is approximately 7, the loss value is close to
the minimum value of approximately 0.25. In fracture length detection, the loss value of the
model is slightly higher, but the model is close to the lowest loss value of approximately 0.5
when the number of iterations is approximately 10. Although a better model is designed and
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comprehensive evaluation results are provided in this work, the application effect of the model
in the actual environment is not tested in the model evaluation. At the same time, the evaluation
factors used are not comprehensive enough, so more comprehensive reference factors will be
designed in future research to further evaluate the performance of the model and design a more
comprehensive model application concept.
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