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1. Introduction

This is a study of symmetry in random objects making it an investigation into
the interplay between chaos and pattern. The objects of interest are primarily
random trees. To get a feeling for what a random tree is, consider the case of a
family tree where one person gets a (beforehand) random number of children
that then each gets a random number of children on their own and so on. We
can then think of this family tree growing, randomly, over time. As mathe-
maticians, we would be interested in the overall shape rather than the exact
names of each person in the tree and might picture such a tree as in Figure
1.1. Even though we sweep exactly what “random” means under the rug for
now, this is perhaps the most classical of all random tree models and this type
of structure will occur frequently in the thesis. The example of a family tree
might indicate possible connections between a random tree, seen as an abstract
mathematical object, and fields such as biology and sociology, but it is also fre-
quently occurring in the field of data science where the tree structure is used
for more efficient data storage and retrieval. Thus, interest for random trees
comes from different directions, motivating a deeper analysis of their prop-
erties. As is often the case in mathematics, we take the study one step back
from the specific domain and study their properties from a general perspective
where we hope to understand what is actually going on a fundamental level.
It is then possible to take what we have learned and apply it to any field that
might be interested in random trees when the need occurs.

Perhaps the first questions one would ask about random trees is what the
probability is of picking one specific tree or the same tree twice when per-
forming our random experiment, and this is certainly well-studied for all the
classical models. A natural variant is to ask what the probability is when pick-
ing two trees at random, of getting two trees that look the same in some way
that we decide beforehand. Certainly, one way of looking the same is to be the
same tree, but this question is more general than the previous one since there
are other ways for two trees to look the same. For example, we might consider

Figure 1.1. A visual example of a rooted tree.



(a) A pair of different ordered trees. (b) A symmetric tree.

Figure 1.2.

two trees to be different yet look the same if they are mirror images of each
other when we draw them in the plane (see e.g. Figure 1.2a). Studying these
probabilities is one of the main topics of this thesis. Another question of in-
terest is how symmetric a random tree is. Intuitively, we might argue that the
tree in Figure 1.2b exhibits some sort of symmetry as it would look the same if
we switched the order of the two branches. Mathematics has developed strong
tools to study questions of symmetry so that it is possible to specify what this
means. The (random) behavior of the number of symmetries in large random
trees is another of the main topics in this thesis. While these questions have
been the motivation for much of the research, we will also see that they lead to
many generalizations and related problems that are also answered in the text.

After this, hopefully, more accessible introduction, we go on to define the
mathematical objects, and problems, under study in a rigorous way. Recall
that a graph is a set of vertices V' together with a set of edges E between them,
see Figure 1.3. The edges can themselves be thought of as pairs e = {v, v}
of vertices since they naturally correspond to such pairs. A tree is a graph
without cycles, see Figure 1.1 for an example. Sometimes we mark one vertex
as special, and call it the root of the tree.

Both graphs and trees can be unlabeled or labeled. In the latter case, we
have some function [ : V' — [n] that assigns a number to each vertex. See
Figure 1.4 for an example. For trees, especially, we also make a distinction
between the unordered and ordered case, i.e., whether we place an ordering
on the children of each vertex or not. An ordering of a tree also implies an
embedding in the plane since we can decide to place the first child furthest to

Figure 1.3. A visual example of a graph with five vertices and seven edges.



Figure 1.4. A labeled graph.

the left, the next one just to the right of it, and so on. The two trees in Figure
1.2a are different as ordered trees but not as unordered ones.

When we talk about a random tree or graph, we are considering some set
of trees (or graphs) as a measure space, together with a probability measure to
assign probabilities to different events, such as picking a specific tree. This
means that picking a random tree can mean different things depending on
which probability measure we are using, but for many models we pick one
element uniformly at random among all objects of a given size n, meaning
that all choices are equally likely. This corresponds to the uniform probabil-
ity measure on the space of objects. Some examples of this would be random
full rooted binary trees, random ordered rooted trees and random labeled un-
ordered rooted trees, where we pick a tree of size n from the corresponding set
uniformly at random. In this setting, studying the probabilistic properties of
a random object lies very close to enumerating them, since the probability of
picking a particular one is 1 divided by the total number of objects.

Due to the close connection to enumerative combinatorics, we will have
reason to use the combinatorial notion of generating functions to study the trees
and graphs that we are interested in. If {C},}7° , is a sequence enumerating
the number of objects, e.g. a type of tree of size n, we formally define the
generating function f(z) of the object (or the sequence) to be

f(z) = Z Cpa".
n=0

When dealing with labeled objects, we often use an exponential generating
function,

0o Cn .
n=0

instead, where the factor 1/n! compensates for the large number of possible
labelings that the object might have, which could otherwise lead to rapidly
growing coefficients and series with poor convergence properties. We will use
["] f(z) to denote the coefficient in front of 2™ in the series f(x). In many
practical situations, we have some recursive formula for C,, which we can
then translate to a functional equation for f(z). If we can also show that this
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function is an analytic function in some region of the complex plane, then we
have a wealth of analytic tools available to obtain information about the nature
of {Cy,}. As we shall soon see, this will be one of our main tools throughout
the thesis.

Fairly often, we are more interested in the behavior of the random objects
when n — oo, rather than what happens for one particular size n. For example,
we might study the asymptotic probability of picking one particular tree of
large size n. Because of this, we will have use of the standard O notation as
well as the following, well known, definitions. For two sequences {a,} and
{bn}, we will use a,, = o(b,,) to mean that

QA

— —0asn — oo,
n

and let a,, ~ b,, denote the fact that

a
- 5 lasn — oo.
by,

We will also make frequent use of asymptotic expansions. Let {c;} be some
sequence of numbers, and let {¢;} be a sequence of functions that satisfies
®j+1(n) = o(¢;(n)) as n — oco. Then we say that the formal series

N
> cjoi(n)
j=0

is an asymptotic expansion of a,, of order J if

<

an =Y cjdj(n) = O(¢s11(n)), (1.1)

J=0

as n goes to infinity. Note that this means that a,, ~ Z;-]:O cj¢;(n), except in
degenerate cases when the sum is equal to 0. If (1.1) holds for all J, we will
write

Qp ~ ch¢j(n)7 (12)
=0

and call the (formal) series a full asymptotic expansion.

1.1 Models of random trees

While many types of random trees exist, we will focus on two of the most clas-
sical models, those being Galton—Watson trees (sometimes called Bienaymé—
Galton—Watson trees), together with their close relative simply generated trees,
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as well as unlabeled unordered trees, also called Polya trees. We will primar-
ily think of these trees as rooted, since not all types of Galton—Watson trees
can be thought of as unrooted in a natural way. The book [7] serves as a good
introduction to the families of trees encountered in this thesis.

Galton—Watson trees have a rich history, where early studies include [3] (see
also [16] from which the reference is taken) and [37]. They can be thought of
as a type of growth process that evolves over time, where we start with a single
vertex, the root, and let it have a number of children according to some fixed
random variable ¢ that takes values in a subset of the non-negative integers that
include at least 0 and some number larger than 1 (the restrictions are done to
avoid degenerate cases involving infinitely large trees or trees without branch-
points). We then let each of the children have a number of children of its own
according to the same probability distribution and independently of all other
vertices. By repeating this procedure, we obtain a tree that grows generation
by generation. We are mainly interested in trees where we condition on the
size of the tree being n, so called conditioned Galton—Watson trees. Many of
our results then concern the behavior of conditioned Galton—Watson trees as
n — oo.

There is a close connection between conditioned Galton—Watson trees and
simply generated trees, first introduced in [24]. Simply generated trees are de-
fined in terms of generating functions, and can thus be seen as the combinato-
rial counterpart to the probabilistically defined Galton—Watson trees. The gen-
erating function 7'(x) of the simply generated tree associated with the weight
sequence {wy, }72 satisfies

T(z) =x2®(T(x)), (1.3)

where
(o]
O(x) = Z wyxk
k=0

is called the weight generating function. The relation (1.3) captures the notion
of recursion and can be read as “any simply generated tree consists of a root
with a number of smaller trees attached to it as branches”. Then, any tree
T has a weight w(T') associated with it, which is the product of the weights
associated with each of its vertices. This can be seen by recursively expanding
the definitions in (1.3). To get a random tree of size n from a simply generated
class we pick one according to its weight

_w(T) w(T)
Yser, w(S) [z T(x)
The connection between Galton—Watson trees and simply generated trees

becomes apparent if we let w, = P(§ = k). Then, the weight w(7') is the
same as the probability of obtaining that particular tree from the growth process

P(Tn =T)
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Figure 1.5. Example of a full binary tree and the corresponding pruned binary tree.

described above. We can choose different distributions for ¢ (alternatively,
different weight sequences {wy }) to obtain different types of trees. Some ex-
amples of classical types of trees obtained in this fashion are full rooted binary
trees, labeled unordered rooted trees and ordered rooted trees with the distri-
bution generated by picking a tree uniformly at random. In the three cases, the
distribution and weight sequence can, respectively, be taken to be: Bin(2,1/2)
and {1/2,0,1/2,0,0,...}, Pois(1) and {1/k!};, (with the generating function
being an exponential one), as well as Ge(1/2) and {1}.

As an aside, we recall that full binary trees (i.e., ordered trees where all
vertices have outdegree 0 or 2) of size 2n + 1 are in bijection with what we
call pruned binary trees of size n. For pruned binary trees all vertices have
outdegree 0, 1 or 2 and for vertices with only one child we distinguish between
left children and right children. The reason that they are called pruned trees
(and the source of the bijection) is that we can obtain them by removing all the
leaves from a full binary tree. See Figure 1.5 for an example.

If we assume that there exists a positive 7 within the radius of convergence
of ®(z) such that

O(1) = 7d'(1) < 00, (1.4)

we can also find p = ﬁ such that [7, Theorem 3.6]

[z"]T(x) ~ Cn=32p=m, (1.5)

This shows that the weight or number of simply generated trees grows expo-
nentially and in the context of Galton—Watson trees, this is a statement on the
probability of obtaining a tree of size n.

IfE ¢ < 1, the tree is almost surely finite, while E £ > 1 implies that the tree
is infinite with some positive probability. The case E& = 1 is called critical
(we also speak of critical Galton—Watson trees when this holds), and is of spe-
cial interest as then the probability P(|7| = n) decays polynomially in n (i.e.,
exponentially with rate 1), as opposed to the other cases where the probability
decays exponentially. This is a direct consequence of the fact that in the critical
case (1.4) is satisfied with 7 = p = 1. Assuming that the tree is critical turns
out to not be a very strong restriction since, if we can find a 7 as above, we
can modify the weight sequence without affecting the probability measure on
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the set of trees in such a way that ®’(1) = 1, i.e., such that the corresponding
Galton—Watson trees are critical [7, Subsection 1.2.7]. This does not only hold
for conditioned Galton—Watson trees, but also for other simply generated trees
satisfying the condition, and it is often possible to translate the results for one
type of random tree to the other. Because of this, we will often use the terms
interchangeably.

One way to study the behavior of conditioned Galton—Watson trees as n —
00 is to restrict attention to the first M levels (or generations) of the tree. This
procedure will give a new tree, of size at most n, and one can try to categorize
the probability distribution on trees we get by this procedure for large condi-
tioned Galton—Watson trees. Ideally, we want to do this for all M at the same
time. It is possible to define a metric space on rooted trees (related to the so
called Ulam-Harris tree) where convergence of trees is equivalent to conver-
gence of every restriction TT(LM) — T™M)_ 1In this space, the conditioned and
critical Galton—Watson tree 7T, converges weakly to the size-biased Galton—
Watson tree, also called Kesten’s tree. See [20] and [23] for more details in
this direction. This tree can be constructed by a modification of the Galton—
Watson growth process where we have two different types of vertices which
we call normal and special, respectively. The normal vertices get a number
of children in the same way as described for the usual Galton—Watson trees,
while special vertices get a number of children according to the size-biased
random variable ¢ with distribution P(§ = k) = kP({ = k) with exactly
one of them being designated as special. We define the root to be special and
observe that the size-biased tree always has an infinite spine of vertices, start-
ing at the root, of special vertices. The size-biased tree will primarily occur
in intermediate steps in some of our arguments and can, in the context of this
thesis, be considered a technicality.

Since Galton—Watson trees are defined through a growth process that starts
with the root, there is no natural way to consider unrooted Galton—Watson trees
in the general case. However, some special cases have an unrooted counterpart
through their combinatorial interpretation. For example, we can root any la-
beled unordered unrooted tree in n different ways by simply picking one of its
vertices as the root. This means that picking any unrooted such tree uniformly
at random has the same probability as picking any of its rooted versions when
picking a labeled unordered rooted tree uniformly at random. In other words,
we get a natural connection between the unrooted and rooted case by consid-
ering the former to be a sub-o-algebra of the latter.

Unlabeled unordered rooted trees, or Polya trees, do not belong to the fam-
ily of Galton—Watson trees, although they are not too far off as they essen-
tially contain a Galton—Watson tree at its core [27] and share many of the same
properties. From the combinatorial perspective, we can describe Polya trees
in terms of their generating function P(x) which keeps track of the number of
unlabeled unordered rooted trees of size n. This generating function satisfies
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the functional equation

[e.e]

:Ek
P(x) = zexp (Z P(k )> . (1.6)

k=1

One can show that the number of trees of size n is asymptotic to An
where A is a constant and p, = 0.33832. .. is the dominant (i.e., closest to the
origin) singularity of P(x). For this singularity, we have P(p,) = 1.

The relationship between rooted and unrooted unlabeled unordered trees can
be described by the functional equation

Ulx) = P(z) — %P(M + %P(:ﬁ) (1.7)

that connects the generating function of unrooted Pdlya trees U (z) to the one
for rooted trees P(x). We will use Pélya tree and unlabeled unordered tree
interchangeably, even in the unrooted case. The equation relies on a bijec-
tion between Pdlya trees and the union of unrooted unlabeled trees together
with pairs of distinct Polya trees, a classical result from [25]. The number
of unrooted Pdlya trees of size n is asymptotic to Bn~5/2 p, " for a constant
B. Thus, the asymptotic behavior of unrooted Poélya trees is similar to that of
rooted ones but with a different constant and a factor n~%/2 instead of n—3/2.

Sometimes we will be interested in trees with out-degrees restricted to lie in
some finite set. This is natural in the context of simply generated trees as we
can simply set all large weights to 0. For Pdlya trees Pp with degrees restricted
to lie in some set D we will instead define the generating function

PD(‘r) - Z xlplv
PePp
with a corresponding modification to the functional equation (1.6)
PD .CI}]
=e2 2 15
kED Ak j

We will use 7 to denote a class of Galton—Watson trees or a random such
tree, while 7" denotes a specific realization of it. We will use P and P in the
same way for Polya trees. We also let deg(v) denote the outdegree of a vertex
v and deg(7") denote the outdegree of the root. We will use the term root
branches (or branches) to denote the trees obtained as connected components
if we remove the root.

1.2 Models of random graphs

While random trees, seen as an area in random graph theory, has received
significant attention, the wider subject of random graph models is a flourish-
ing topic in its own right. Here the most famous structure is undoubtedly the
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Erd6és-Rényi-Gilbert graph G (n, p) where we start with the complete graph on
n vertices and then, for each edge, keep it with probability p, independently of
all others ([10],[14]). While much effort has gone into studying this, and other
random graph models, many questions are much harder than they are for ran-
dom trees due to the more complex structure. A way of amending this problem
is to study graphs that are sufficiently tree-like. One could then hope to adapt
tools that have been successful in the study of trees to this setting as well.
One approach to this is the study of block-stable graph classes and, their
specification, subcritical graphs [2], [8], [15]. We will use block to denote a 2-
connected component of a graph. A graph class G is block-stable if it contains
the graph K5, consisting of a single edge, and has the property that a graph G
belongs to G if and only if all the blocks of G also belong to the class.
Subcritical graphs are a special type of block-stable graphs that we define
in terms of analytic properties of their generating functions. It is possible to
study both labeled and unlabeled graphs in this framework. The conditions
imposed are similar so, to avoid inconvenient notation, we give the definition
in the labeled case and refer the interested reader to the original article [8] for
a proper definition in the unlabeled case. We therefore let G be a block-stable
class of labeled graphs. Define C to be the class of connected graphs in G and
B be the subclass of blocks (together with K5). We will make use of rooted
graphs in the definition and use e to denote rooted objects so that C® is the
class of rooted connected graphs. We use G(z), C*(z) and B(z) to denote the
exponential generating functions of the relevant graph classes. It can be shown
that the exponential generating functions of any block-stable class satisfies

G(z) = exp(C(2)),
C*(2) = zexp(B/(C*(2))).

This recursive description is very similar to what we have for some types of
trees and one way to think of connected block-stable graphs is, in fact, as a tree
where the vertices themselves are blocks and the edges between them symbol-
ize vertices lying in two blocks (and thereby connecting them).

A subcritical graph has some additional analytic requirements attached to
it. Let pp be the radius of convergence of B'(z) and p¢ be the radius of con-
vergence of C*(z). We now say that the class G is subcritical if

C*(pc) < pB-

Some examples of subcritical graph classes are block graphs, cacti, outerplanar
graphs and series-parallel graphs. On the other hand, the class of planar graphs
is an example of a block-stable class that is not subcritical. It was shown in
[26] that the largest block of a subcritical graph of size n is of size O(logn).
This can be compared to planar graphs where a graph of size n has one giant
block that contains a fraction of n of the vertices.

There is actually more than one way to interpret a block-stable graph as a
tree structure. An alternate viewpoint can be found in [28] and [35] (see also
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[33] for the more complicated case of unlabeled graphs), where it is shown
that a subcritical graph (or, more generally, a block-stable graph) can be seen
as a random decorated tree. A decorated (also called enriched) tree is a rooted
tree where we add some object from a specified combinatorial class C' to each
vertex in the tree. Specifically, for every vertex v, we divide its children into
subsets and then add the structure of an object from the class to each such
subset together with v. See Figure 1.6 for an example including block graphs
where divide the children of a vertex into a number of subsets and decorate
each of them with the structure of a complete graph. Based on the results in
the papers, we can see a random labeled subcritical graph as a Galton—Watson
tree with decorations added randomly (depending only on the outdegree of
each vertex). Since the outdegree of any vertex is finite and since there are
only a finite number of objects in C, a suitable probability measure is easy
to define. This explicit representation of subcritical graphs in terms of trees
will let us transfer tools developed in the study of random trees to the case of
graphs. Note that the definition of a decorated tree is very general and also
covers other structures than block-stable graphs as long as we use the proper
decorations.

Unlabeled graphs can instead be seen as decorated sesqui-type trees, first
introduced in [22]. This type of tree can be described by a branching process
with two types of vertices that we call L and S. The vertices of type L get a
number of children of type L according to a random variable £ and a number
of children of type S according to a different random variable . We can also
view this as a random vector X = [, ¢]. The offspring of different vertices
are assumed to be independent but £ and ¢ for a given vertex can depend on
each other. The vertices of type .S are infertile and do not get any offspring.
Alternatively, we can think of sesqui-type trees as a Galton—Watson tree con-
sisting of vertices of type L to each of whose vertices we attach a random
number of additional children of type S. The connection to unlabeled struc-
tures comes from viewing the vertices of type L as being the fixed-points under
some automorphism of the object and decorating the vertices of type S to have
the structure of a number of isomorphic branches. Again, we can also describe
other objects than subcritical graphs in this way. One example (or a special
case) is that of Polya trees.

Figure 1.6. A rooted block graph together with its underlying decorated tree. The
colors highlight how the children of the root are divided into subsets.
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Figure 1.7. A cherry occurring as a pattern in a tree (in red).

1.3 Additive functionals of random trees

Many parameters of trees can naturally be thought of in a recursive way. Con-
sider, for example, the number of leaves in a tree. This number can be found by
counting the number of leaves in each of the root branches and adding them up,
except if there are no branches. In the latter case we find the number of leaves
by adding up the contribution from the branches (which is 0 in this case) and
then adding 1 to account for the fact that the root is a leaf. This phenomenon
is captured by the concept of an additive functional F(T') of rooted trees 7.
To the additive functional F'(T") we associate a so-called toll function f(T).
Then, the definition of an additive functional is

F(T) = f(T)+ ) F(B),
B

where the sum is over all root branches. Intuitively, f(7") describes the con-
tribution coming from the root, while the sum captures the contribution from
the branches. In the example given above, f(7') = 1{|T'| = 1}, an indicator
function for the root being the only vertex in the tree.

If we expand the definition, we find that we can also write the additive func-
tional as a sum over all fringe subtrees 7T,:

P(T) =Y f(T),

where we recall that the fringe subtree T, at the vertex v is a subtree of 7" that
contains v as the root together with all of its descendants.

Other parameters that can be described as additive functionals are the num-
ber of vertices of outdegree m € {0,1,2,...} (m = 0 gives leaves, as above),
the number of occurrences of a given tree as fringe subtree, the number of
occurrences of more general patterns like cherries (see Figure 1.7), and the
logarithm of the total number of subtrees in a tree. In fact, all parameters of
rooted trees can be described in this way by the right choice of toll function.
However, it is not always the case that the toll function is easy to understand
and the framework of additive functionals is therefore not always suitable to
use.

Due to their generality, much effort has gone into studying additive func-
tionals in a number of different models of random trees, both when it comes
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to moments and central limit theorems. For additive functionals in the context
of Galton—Watson trees, see e.g. [11], [12], [21], [31] and [36]. Less work has
been done in the context of Pdlya trees, but see e.g. [36]. The topic has also
been studied for models of trees of lesser interest to this thesis, such as m-ary
search trees and recursive trees (see for example [6], [11], [17], [18], [19]) as
well as m-ary increasing trees and generalized plane oriented recursive trees
(GPORTS) ([30]). In conclusion, we can find the moments and even central
limit theorems for various random tree models under fairly general conditions.
We will both use and prove these types of results and additive functionals on
random trees can be considered one of the main themes of this thesis.

One result that will be of particular interest to us is the central limit theorem
for almost local additive functionals from [31] which builds on results from
[21].

Theorem 1.3.1. Let T, be a conditioned Galton—Watson tree of size n with
offspring distribution £, with E€ = 1 and 0 < o2 := Varé < oco. Assume
further that E €201 < oo for some integer o > 0. Consider a functional F of
finite rooted ordered trees with the property that

f(T) = O(deg(T)%),

where f is the toll function associated with the functional.
Furthermore, assume that there exists a sequence (par) p>1 0f positive num-
bers with pyr — 0. as M — oo, such that
* for every integer M > 1,

E|f(T00) ~E ((TO)TA0)| < par,

forall N > M,
* there is a sequence of positive integers (My)n>1 such that for large
enough n,

E|f(Tn) = F(TM)] < pu,..
Ifa, = n71/2(nmax{a,l}pMn + be) satisfies
lim a, =0 andia—n<oo
n—oo nT -1 n ’

then F(T.)
n) — MU d 2
Vi = N(0,77),

where u =E f(T) and 0 < v? < 0.

The proof shows that the result still holds if we replace (F(7,) — un)/\/n
by (F(Tn) — EF(T,))/+/n. While the formulation of the theorem is fairly
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technical, it strives to capture the intuitive notion of functionals that are almost
local in the sense that if we look at only the first M levels of the tree we obtain
a sufficiently good approximation of the toll function, with the approximation
becoming better and better as M — oco. This can be compared to the notion
of local additive functionals (see [21], again), where the toll function only
depends on a fixed-size neighborhood of the root.

1.4 Symmetries and automorphisms

Counting objects up to symmetry is a classical subject in combinatorics (the
Redfield—Pdlya theorem from [29] and [32] is an important result in this direc-
tion). In many situations, this amounts to studying the automorphism group of
the combinatorial object, where an object with many symmetries has an auto-
morphism group of large cardinality. An example of the connection between
enumeration and automorphisms is the case of graphs, where the number of
unique labelings of a graph G equals V#SGI' Studying symmetry in random
combinatorial objects is one of the main themes of this thesis.

To define the automorphism group of a graph or rooted tree, we first need to
define the concept of an isomorphism between such objects. An isomorphism
between two graphs G1 = {V1, E1} and G2 = {Va, E»} is a bijection h be-
tween their vertex sets that preserves edges, i.e., if e = {v1, v2} is an edge in
E, then we must have that {h(vy), h(v2)} is an edge in Es. For isomorphisms
between rooted trees 77 and 75, we also require that h sends the root of 73 to
the root of T5. If there is an isomorphism between two objects we say that they
are isomorphic. Intuitively, two trees are isomorphic if they look the same, see
Figure 1.2a.

An automorphism of a graph (or rooted tree) is then an isomorphism from
the object to itself. The set of automorphisms is also a group: the automor-
phism that sends all vertices to themselves is the identity element, a composi-
tion of automorphisms is again an automorphism, and since an automorphism
is a bijection between vertex sets any element has an inverse.

The cardinality of the automorphism group of rooted trees satisfies a nice

recursive formula. For any rooted tree T', let 11, 15, . . ., T}, be its root branches
up to isomorphism, having multiplicities mq,mo, . . ., my, respectively. Then
we have
k
| AutT| = ] mi!| Aut T;|™. (1.8)
i=1

This follows from the observation that the automorphism group of a rooted
tree is obtained from symmetric groups by iterated direct and wreath products
(see [1], Proposition 1.15). Formulated differently, the tree is invariant under
the automorphisms of each of the root branches as well as under permutation
of isomorphic branches. Furthermore, if we take logarithms, we see that it
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satisfies

k k
log|AutT| = "log(m;!) + > m;log| AutTj, (1.9)
i=1 =1

so that log | Aut 7’| is, in fact, an additive functional with toll function f(7") =
>, log(mi!).

When it comes to random trees, there are several relevant questions related
to iso- and automorphisms. Parameters of interest include the probability of
two random trees being isomorphic as well as the distribution for the size of
the automorphism group. This has previously been studied in [4] for a certain
type of simply generated tree called phylogenetic trees. Phylogenetic trees can
be described as unordered rooted full binary trees that are labeled at the leaves
(with the size of the tree being the number of leaves). The article shows, among
other things, that the probability that two phylogenetic trees are isomorphic
decays exponentially and that the size of the automorphism group is asymptot-
ically log-normal which means that the logarithm of the size satisfies a central
limit theorem. That the distribution is log-normal is related to the logarithm in
(1.9).

It turns out that the results for random phylogenetic trees extend naturally
to some other types of rooted binary trees (in this paragraph, all trees are con-
sidered to be full binary trees unless otherwise stated). In these cases, all phy-
logenetic trees correspond to the same number of trees of the different type.
For example, this is the case for labeled unordered binary trees of size n. Note
that any full binary tree have the same number of leaves and therefore also
the same number of internal vertices and also that any phylogenetic tree has
a canonical ordering of its leaves based on an ordering of its labels. To find
a labeled unordered tree that corresponds to a given phylogenetic tree of size
(i.e., number of leaves) n, we first label the internal vertices in one of (n — 1)!
different ways and then relabel all the vertices in one of (2;}:11) ways by decid-
ing which of the labels correspond to leaves. This means that all phylogenetic
trees correspond to the same number of labeled unordered trees. As a next step,
any labeled unordered binary tree corresponds to the same number of labeled
ordered trees since, to go from one to the other, we permute the branches at
each of the internal vertices. This gives a total of 2"~ ordered trees for each
unordered one. Now, every unlabeled ordered binary tree corresponds to n!
labeled ordered trees, and, finally, we have also seen how there is a bijection
between full binary trees and pruned binary trees obtained by removing the
leaves. In conclusions, any given tree of the listed types corresponds to the
same number of trees of any other type. Neither the size of the automorphism
group nor the isomorphism class is affected by the labelings and reorderings
described above so the probability of picking a tree with certain properties is
unaffected by going between the different models. Thus, the results valid for
phylogenetic trees also hold for any of the other types.
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When studying the probability of two trees being isomorphic to each other,
one naturally encounters isomorphism classes of trees. The isomorphism class
of a given tree is the set of all trees that are isomorphic to it. Thus, the prob-
ability of two trees being isomorphic is highly related to the probability of a
random tree belonging to a given isomorphism class. Isomorphism of rooted
trees disregards order and labelings, which means that the isomorphism classes
of Galton—Watson trees are the unlabeled unordered rooted trees or, in other
words, Polya trees. This means that many of the results in this thesis say some-
thing fundamental about how Galton—Watson trees and Polya trees relate to
each other.

1.5 Analytic combinatorics and singularity analysis

Analytic combinatorics is the mathematical field concerned with attaining com-
binatorial information from generating functions of combinatorial objects us-
ing analytic tools. We have seen how the families of trees we aim to study can
be described in terms of generating functions, and a large part of this thesis, and
the field of probabilistic combinatorics in general, is devoted to estimating the
asymptotic number or weight of trees based on properties of these functions.
The strength in the generating function approach is that the functions, while
symbolically defined, often can be shown to be analytic in some region of the
complex plane. This translates the problem of enumerating combinatorial ob-
jects to one of estimating the growth of coefficients of an analytic function,
which is a classical and well studied subject (see for example the foundational
work of Cauchy [5]). For an analytic function, the coefficients will grow at an
exponential rate inverse to the radius of convergence (at this point the coeffi-
cient and x"-factor cancels out so that the underlying mechanism is related to
the observation that the geometric series ) |, =™ has radius of convergence 1).

Here, Cauchy’s coefficient formula is a fundamental tool, saying that if f(z)
is analytic in a region containing 0, and if A is a simple positively oriented loop
around 0 in the region, then

1) = s § T

C2mg Jy 2t

Singularity analysis is a method that lets us extract the asymptotic information
about the coefficients in a standardized way, without having to compute the
value of the integral directly. It does not work in all situations, but successful
applications are numerous (see [ 13], which also serves as a general reference to
the subject, for a wealth of examples). For the method to work, the generating
function needs to be analytic in a so-called A-region (see Figure 1.8). We first
define a A-region at 1 as an open set

{z||z] < R,z #1,|arg(z — 1)| > a},
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Figure 1.8. An example of a A-region in the complex plane.

for two given numbers R > 1 and 0 < a < 5. We can define a A-region at ¢
for any complex ¢ # 0 as the image of a A-region at 1 under the map z — (z.

Since the generating function of a type of combinatorial object only has pos-
itive coefficients, Pringsheim’s theorem implies that it always has a dominant
singularity on the positive real axis (but it is possible that it has more than one
dominant singularity), where, again, dominant means that it has smallest the
absolute value of all singularities.

The central step in applying singularity analysis to a problem is to find a
singular expansion of the corresponding generating function. The expansion
is taken around the singularity and is valid inside the A-region where the gen-
erating function is analytic. We will restrict the definition slightly to the cases
most relevant to us. For now, we assume that the functions only have one
dominant singularity. We will call the set of singular functions

§={(1-2)“acc),

the standard scale. A singular expansion of a function f(z) around its domi-
nant singularity p is

f(z) = a(z/p) + O((2/p)),

where 7 is a function in S and ¢ is a finite linear combination of such functions.
It is then possible to use general theorems (Theorems VI.1 and V1.3 in [13])
to translate the expression term-wise (including the error term) to an asymp-
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totic expansion for the coefficients according to

f(z) = <1—Z>_a—>fn~$<1+iz’“>

fz)=0 ((1 - ;) _a) s fy = O(n™Y

for some constants { ey, } . depending on o and some K depending on the linear
combination o. Of course, not all functions have an expansion of the form
required (nor are all functions analytic in a A-region), but in the context of
trees, this approach has turned out to be (perhaps) surprisingly successful.

Example 1.5.1 (See Section VI.7 of [13]). If the generating function 7'(z) of

a type of simply generated trees has p as its sole dominant singularity, then the
singular expansion has the shape

T(x)=T(p) — 1 (1 - x>1/2 + i(—l)kck (1 _ ”U)m

p o p
2\ E+D/2
+0|([1--
P
for some computable constants ¢, co, .. ., cx. Here, we can actually take K

to be arbitrarily large and we write

0 x k/2
T(@) = T(p) + (- 1e (1 - p)

to symbolize this.
The asymptotic behavior (1.5) of simply generated trees with weight gen-
erating function ®(x) can then be obtained using the method of singularity

analysis
p " ®(1) o~ ds
T ~ _r
e ( ) 2w
for computable constants do, ds, . . .. Recall also the definition of 7 from (1.4).

Here, again, we are writing an infinite sum to suggest that any truncation of it
is asymptotic to [2"]T(x). The asymptotic growth rate is p~!. Note that the
condition (1.4) on 7 and p is equivalent to
T = p®P(7)
1= p®'(1),
which, in words, means that the implicit function theorem fails at the point
(p, 7) and indicates that there is, indeed, a singularity at p.
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We have now defined the concepts necessary to understand our results and
explained the most important tools used to obtain them. We go on to describe
the contribution of this thesis.
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2. Summary of articles

We have already indicated that this thesis has two main themes: symmetry of
random objects and additive functionals of random trees. It consists of three
articles that study these themes from various angles. A summary of the papers
follows.

2.1 Article I: The probability of random trees being
isomorphic

This article concerns a number of questions related to isomorphisms and iso-
morphism classes of Galton—Watson trees, with one of the main points being
the asymptotic behavior of the probability that two such trees are isomorphic.
As such, this is a natural extension of some of the results in [4], valid for phy-
logenetic trees (and also some other types of binary trees as shown in the previ-
ous chapter). Recall that the isomorphism classes of Galton—Watson trees are
Pdlya trees, so that they, too, play a central role in the paper. When it comes
to the titular probabilities, we have a few different results, valid for different
classes of Galton—Watson trees and using different methods.

For labeled unordered rooted trees it is proven that the probability that two
trees are isomorphic is, asymptotically, exponentially small, and a full asymp-
totic expansion is derived.

Theorem 2.1.1. The probability p, that two labeled rooted trees are isomor-
phic has the full asymptotic expansion

where A = 2.397678, ¢; ~ 0.354379 and the ¢}, are constants that can be
calculated.

In this case, the probabilities can be extracted as coefficients from a certain
generating function and this function satisfies a functional equation derived
from the recursion (1.8). A deeper analysis of this generating function lets us
apply singularity analysis to derive the asymptotics.

At first, one might suspect that this should hold for all Galton—Watson trees
since this is fundamentally a question of how simply generated trees relate
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to their isomorphism classes, i.c., Polya trees. We observe that the weight of
simply generated trees of size n grows exponentially (possibly with rate 1, as is
the case for critical Galton—Watson trees) and that the isomorphism classes that
they are divided into are also exponentially many. However, it might be the
case that the weight concentrates on only one or a few isomorphism classes in
such a way that they decay slower than any exponential function. Somewhat
surprisingly, we show that this happens in the case of ordered rooted trees
which we can also call plane trees due to their canonical embedding in the
plane.

Theorem 2.1.2. The probability that two plane trees are isomorphic decays
subexponentially. Thus, we cannot obtain exponential bounds on the proba-
bility that two conditioned Galton—Watson trees are isomorphic in general.

The core of the proof is finding a sufficiently large set of trees of the same
size and from different isomorphism classes. This can be done by using the
pigeonhole principle. We can then attach all of them to a common root to
obtain a tree belonging to a large isomorphism class since we get a unique
embedding in the plane for each choice of embedding for its branches together
with a permutation of them.

The theorem shows that we cannot obtain exponential decay for general
Galton—Watson trees. However, if we restrict ourselves to Galton—Watson
trees with bounded degrees, we can still prove exponential decay of the prob-
abilities. However, as opposed to the labeled case in Theorem 2.1.1, we have
not been able to obtain a full asymptotic expansion except in special cases.

Theorem 2.1.3. The probability g, that two Galton—Watson trees with degrees
in a finite set D are isomorphic satisfies

gn < BC;L,

Jfor some constants B and ¢y < 1.

The result relies on the fact that sufficiently large Galton—Watson trees have
a giant branch (i.e., one that contains a fraction of the vertices that approaches
1 as n — oco) which sets the stage for a proof by induction.

A natural follow-up question to Theorem 2.1.1 is whether trees conditioned
on being isomorphic exhibit a different structure than regular labeled trees.
For example, we can compare the expected number of leaves (or vertices of
any other fixed outdegree) in the two models. This is possible since a pair
of isomorphic trees will necessarily have the same number of vertices of each
degree, so that we can condition on the event that two labeled trees are isomor-
phic and study the number of vertices with degree d which will be common to
both of them. In the general case, we have the following result on the degree
distribution of the vertices.
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Theorem 2.1.4. Let X,, be a random vector that counts the number of vertices
of (out)degree d = (dy,ds, . ..,dy) in either of a pair of isomorphic labeled
trees of size n. Then
EX, = pn+ O(1),
CovX, =3Xn+ O(1),

Jor a vector p = (i1, po, - . ., pix) and a matrix X = (04 j)1<i j<i. Further-
more, we have joint convergence to a normal distribution

X,—EX, 4

" 5 N(0,X).

vn

The proof, once again, relies on functional equations and singularity anal-
ysis. As an application we can see that the expected number of leaves in iso-
morphic trees is asymptotic to un with u = 0.340252, which is slightly lower
than for the usual model of labeled unordered rooted trees where we instead
have 1 = e~! ~ 0.367879. This implies that the structure of the trees from
the two models do indeed differ.

Recall that Polya trees (possibly with some degree restrictions) correspond
to the isomorphism classes of simply generated trees. This means that we can
associate a weight to any Polya tree in the form of the total weight of the asso-
ciated isomorphism class. This is particularly interesting when the weights w;
are integers and the coefficients of the generating function correspond to the
number of trees in the set as opposed to a weight in the more general sense.
Then the weight of a given isomorphism class is equal to the number of repre-
sentations of the underlying unordered, unlabeled tree as a tree from the simply
generated class. The prime examples are the number of orderings and label-
ings of a random Polya tree. We can show that the logarithm of the weight of
a randomly chosen Pdlya tree satisfies a central limit theorem under various
conditions. To highlight one of the themes of the thesis, we make a short re-
mark that both the number of vertices of given degrees, which was discussed
above, and the logarithm of the weight of isomorphism classes are examples
of additive functionals.

Theorem 2.1.5. Let P,, be a random tree of size n from the class of unordered,
unlabeled trees with degrees in the finite set D and Tp be a class of Galton—
Watson trees with the same degree restrictions. Then the weight W (P,,) of P,
seen as an isomorphism class of Tp has expected value and variance
EllogW(P,,)] = pun + O(1),
Var[log W (P,)] = o*n + O(1),
for some constants . and o and satisfies

logW(j;%) —H AN (0, 02).
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Just as for several of the results above, the proof of this theorem proceeds
by analyzing a functional equation and applying singularity analysis. Note
that this theorem is only valid for trees with bounded out-degrees. We can also
derive an analogue for the set of labeled trees without any degree restrictions.

Theorem 2.1.6. Let P,, be a random Polya tree of size n, then the number of
labelings L(P,,) of Py, has expected value and variance

I
EllogL(P,)] = nlogn — (1 + 1)n + % +0(1),

Var[logL(P,)] = o*n + O(1),
for numerical constants j ~ 0.137342 and 0 =~ 0.196770 and satisfies

10g L(Pn) B E[logL(Pn)]
\/ﬁ

Observe that the order of the mean, n logn, is unusual for combinatorial
limit laws where means of order n are abundant. An example of this is the
case of labeled trees with bounded degrees, which has mean of order n by
Theorem 2.1.5 above. Since the number of labelings of a tree 7" is %, the
proof of this last theorem is a direct consequence of a result on the size of the

automorphism group of labeled trees that is discussed in the next article.

4 N(0,02).

2.2 Article II: The distribution of the number of
automorphisms of random trees

This paper is concerned with the size of the automorphism group of some
classes of random trees, both rooted and unrooted. In fact, we show asymptotic
normality of log | Aut 7|, for Galton—Watson trees (under fairly general con-
ditions) and labeled unrooted trees, as well as for Polya trees, both rooted and
unrooted. Note that normality of log | Aut 7,,| means that | Aut 7,| is asymp-
totically log-normal.

Recall from (1.9), that the logarithm of the size of the automorphism group
is an additive functional. This is central to the proofs in the article, but we
use different methods for Galton—Watson trees as compared to Polya trees.
However, fundamentally they both rely on the same idea of approximating the
additive functionals by simpler ones. In the first case, the underlying approx-
imation (hidden in the proof of Theorem 1.3.1) is done by ignoring too large
fringe subtrees, while for Pdlya trees, the approximation is done by ignoring
vertices with too many isomorphic branches.

We prove the following theorem on the automorphism group of Galton—
Watson trees.
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Theorem 2.2.1. Let T, be a conditioned Galton—Watson tree of size n with
offspring distribution &, where E¢€ =1, 0 < Varé < oo and E£° < oo. Then
there exist constants . and o> > 0, depending on T, such that

log| Aut7,| —
08 | ATal — 11 4, g, 42,
NG

The proof relies on an application of Theorem 1.3.1, but verifying the con-
ditions requires some technical work. It is the application of this theorem that
is the reason behind the condition on E £°, and the exponent is probably not
the best possible. However, the assumption is valid for combinatorially signif-
icant examples such as labeled unordered trees, ordered trees and d-ary trees.
In general, it appears difficult to obtain numerical estimates of the mean and
variance constants 4 and o2, but we show how to do it for Galton—Watson trees
with bounded degrees and labeled unordered trees. We also calculate concrete
estimates in some cases, see Table 2.1.

Because of the simple relationship between rooted and unrooted /abeled
trees that was mentioned in the introduction, we can extend the results to un-
rooted trees in this case. The same argument works for labeled trees with de-
gree restrictions.

Theorem 2.2.2. Let T, be a uniformly random unrooted labeled tree of size
n. Then, E(log| AutT,|) = pun +O(1) and Var(log | Aut T,|) = o?n+ O(1),
with = 0.0522901 . .. and o2 = 0.0394984 . . .. Furthermore, we have

log | Aut7,| — un
vn

We can also prove asymptotic log-normality for the size of the automor-
phism group of unlabeled unordered trees, both rooted and unrooted.

4 N(0, 02).

Theorem 2.2.3. Let P, be a uniformly random Pdlya tree of size n, rooted
or unrooted. Then, E(log|AutP,|) = un + O(1) and Var(log| AutP,|) =
o’n + O(1), with p = 0.1373423 . .. and 02 = 0.1967696 . . .. Furthermore,

Class of tree 7 o2
Labeled trees (rooted or unrooted) | 0.0522901 | 0.0394984
Full binary trees 0.0939359 | 0.0252103
Pruned binary trees 0.0145850 | 0.0084835
Polya trees (rooted or unrooted) | 0.1373423 | 0.1967696

Table 2.1. Numerical estimates of the mean and variance constants for some types of
trees.
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we have oz | Aut P
tPnl —
Og | AutPul = 1n d 1 42
vn

The tools used to prove the result for Galton—Watson trees do not apply here,
and we instead use a more direct approach in terms of generating functions,
where we define

P(z,t) = Z | Aut Pzl
pPep
However, notice that even if we, for each size |T'| = n, only consider the star
on n vertices we have
> (n—1)fam,

n

which is not analytic for any choice of t > 0. This is a big obstacle in applying
methods from analytic combinatorics. Recall, for example, that singularity
analysis requires that the generating function is analytic in a A-domain which
is defined as a region around 0. We can circumvent this problem by introducing
a cut-off that ignores highly symmetric vertices. This makes the analysis more
involved, but some technical calculations and the application of a known result
on the approximation of random variables gets the work done. Going from the
rooted to the unrooted case follows immediately from a very general result
in [34] on how unrooted unlabeled unordered trees can be approximated by
rooted ones.

2.3 Article III: Additive functionals of subcritical graphs

In this article we study subcritical graphs using the decorated tree approach.
In particular, we extend the definition of an additive functional to this setting
and prove results on functionals of random graphs using methods coming from
probability theory. While we primarily focus on the labeled case, we also prove
some results on unlabeled graphs along the way.

The main theorem is a central limit theorem for almost local additive func-
tionals of labeled subcritical graphs. This is an extension of the main theorem
from [31], valid for Galton—Watson trees, which was discussed in the intro-
duction.

Theorem 2.3.1. Let D,, be a conditioned decorated Galton—Watson tree of
size n with offspring distribution &, satisfying E€ = 1 and 0 < 02 := Var{ <
oo. Assume further that E &2t < oo for some integer o > 0. Consider a
functional F of finite decorated rooted trees with the property that

f(D) = O(deg(D)"),

where f is the toll function associated with the functional.
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Furthermore, assume that there exists a sequence (par) p>1 0f positive num-
bers with ppr — 0 as M — oo, such that
* for every integer M > 1,

E|7(DU0) —E (s D) < par, .1
forall N > M,
* there is a sequence of positive integers (M,)n>1 such that for large

enough n,
E|f(Dn) = f(DM)] < pu,-
[f‘an — n_1/2 (nmax{a71}pMn —|— MT2L) SatiSﬁeS

o0
. Qn
lim a, =0, and g — < 00,
n—oo 1 n
n—=

then F(D,)
n) — M1 d 2
T — N(0, 87),

where i = E f(D) and 0 < % < oo.

The proof combines the idea that the underlying tree can be seen as a Galton—
Watson tree with the methods of proof from [31] (see also [21] which inspired
that paper). It is a theorem with many possible applications, both in the study
of subcritical graphs and, since it is formulated for general decorated trees, in
other models that can be described as such. We give two applications to sub-
critical graphs in the paper. The first one concerns the number of occurrences
of a fixed 2-connected subgraph. This, for example, shows that the number of
triangles in a connected labeled subcritical graph, chosen randomly, is asymp-
totically normal.

Theorem 2.3.2. Fix a 2-connected graph H. Let C,, be a random connected
graph of size n_from some fixed labeled subcritical graph class and let X} be
the number of copies of H in C,,. Then

E X} = pgn+ o(v/n),
Var X = 62n + o(n),

for some constants jigr and o, Moreover; we have

XM —ppn q

The theorem is a special case of the results in [9], but the method of proof
is novel since the arguments in that paper relied on an intricate study of ana-
lytic properties of generating functions. Our other example is completely new,

31



as far as we know, and concerns the number of automorphisms of random la-
beled subcritical graphs. This means that they extend the results from Article
II where we obtained similar results for Galton—Watson trees.

Theorem 2.3.3. Let C,, be a random connected graph of size n from some fixed
labeled subcritical graph class. Then there exist constants y and o> > 0 such

that oz | AutC
t _
og| AutCul = pm d 1o 2
Jn

In both examples we show that the results are also valid for unrooted graphs
by using structural properties of labeled graphs. In the case of unlabeled ob-
jects, we instead study decorated sesqui-type trees and derive the following
result on the mean of additive functionals with finite support, meaning that the
toll function f only takes non-zero values for a finite set of objects.

Theorem 2.3.4. Let U be a set of unlabeled combinatorial objects associated
with a decorated sesqui-type tree with offspring distribution X = [, (| where
& and ( have some exponential moment and EE = 1. Let F' be an additive
functional of such objects that is finitely supported and assume that U, is a
randomly chosen object from U of size n. Then

E F(Uy,) = np + o(n).
for some constant fu.

The primary models we have in mind are those of Pdlya trees and subcritical
graphs and it, for example, applies to give an estimate of the expected number
of occurrences of a given tree 1" as a fringe subtree in a Polya tree. Just as for
labeled structures, our main contribution is a novel method to study this type
of question.
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3. Sammanfattning péd svenska - Summary in
Swedish

I denna avhandling studerar vi egenskaper hos vissa typer av slumptrdad och
slumpgrafer, d.v.s. trdd (eller grafer) som vi drar pa nadgot slumpartat sitt. |
praktiken innebér det att ett slumptrad ar ett rum av tréd tillsammans med ett
sannolikhetsmétt som anger sannolikheterna for olika utfall av ett slumpforsok
dér resultatet &r ett tridd frin méngden. De typer av trdd som studeras &r frimst
Galton—Watsontrdd och omérkta oordnade trad, ofta kallade Pdlyatrad. Boken
[7] kan agera som referens till de typer av slumptrdd som &terfinns i denna
avhandling.

Galton—Watsontrdd definieras genom en vaxtprocess dir vi borjar med en
nod som vi kallar for roten. Roten far ett antal avkommor enligt nadgon diskret
slumpvariabel £ vars virdemingd &r en delmingd av de icke-negativa heltalen
och innefattar talet 0 och &tminstone ett tal storre &n 1. Vi later sedan trédet
véxa fram genom att varje avkomma far ett slumpmaéssigt antal egna avkom-
mor enligt en oberoende kopia av . Tidiga studier av dessa trdd aterfinns
i [3] (se dven [16]) och [37]. Av sirskilt intresse dr de betingade Galton—
Watsontrdden, som ar betingade pa att trddet har storlek n. De betingade
Galton—Watsontraden kan, under ganska generella antagande, ses som ekvi-
valenta med simpelt genererade trdd [24]. De senare ér en kombinatoriskt
specificerad familj av trdd som definieras genom att deras genererande funk-
tion 7'(x) uppfyller en funktionalekvation av typen

T(z) =x®(z), (3.1)
ddr

O(x) = Z wyak
k=0

ar en genererande funktion forknippad med en foljd av vikter {wy}3° . For
Galton—Waltsontrad ska vikten w;. ses som sannolikheten for en nod att fa &
barn. Sannolikheten for ett dra ett givet simpelt genererat trdd 7" dr propor-
tionell mot dess vikt:

o w@  w(T)
Yser, w(S)  [z"]T(x)
Polyatrdd kan inte beskrivas av samma vaxtprocess som Galton—Watsontrad

(men se [27] for en koppling mellan dem) och faller déarfor inte under defini-
tionen. Daremot har de ménga liknande egenskaper som Galton—Watsontrad.

P(Tn =T)
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Polyatrdd kan beskrivas genom dess genererande funktion som uppfyller funk-
tionalekvationen

[e.e]

:Ek
P(x) = zexp (Z P (k )> . (3.2)

k=1

Vi anvéinder T for att ange en klass av Galton—Watsontrdd (alternativt sim-
pelt genererade trad) eller ett slumpmdissigt trdd taget fran denna klass. Vi
anvander T for att ange ett specifikt trdd eller en specifik realisation av slump-
tradet 7. Vi anviander P och P pa motsvarande sitt for Polyatrad.

Maénga kombinatoriska strukturer uppfyller ndgon rekursion som kan dver-
séttas till en funktionalekvation for dess genererande funktion. I grunden &r
funktionen symboliskt definierad, men i manga sammanhang kan man visa att
den &r analytisk i ndgon region av det komplexa talplanet. Da kan vi anvinda
analytiska metoder for att dra slutsatser om de asymptotiska egenskaperna hos
funktionens koefficienter C), som ju, i ett kombinatoriskt sammanhang, num-
rerar antalet objekt, t.ex. trdd, av storlek n. En vanligt forekommande metod
for att gora detta kallas for singularitetsanalys, vilket man kan ldsa mer om i
[13].

Ett av denna avhandlings teman kan anses vara si kallade additiva funk-
tionaler av rotade trad. En additiv funktional F'(7T') av ett trdd 7" 4r en egenskap
av tradet som kan beskrivas rekursivt genom formeln

F(T) = f(T)+ Y _ F(B).
B

Hir ar f(T") en annan funktion av tradet som kallas for kostnadsfunktionen och
summan tas Over alla grenar B fésta vid roten. Observera att alla egenskaper
for rotade trdd kan beskrivas pa denna form genom rétt val av f, men det dr inte
alltid som f kan beskrivas pa négot enkelt och anvindbart sétt. Ett exempel
pa en additiv funktional (med en enkel sluten formel for f) &r antalet 16v i
tradet. I detta fall &r f(7") = 1{T ar ett 16v} och vi kan utldsa rekursionen som:
antalet [0v i ett trid &r summan av [oven i varje deltrdd, sdvida inte tridet endast
bestar av roten i vilket fall roten ar det enda l6vet. Detta kan generaliseras till
forekomst av noder av godtycklig grad. Additiva funktionaler for slumptrad
har studerats flitigt. Nagra exempel pé artiklar som tagit upp d&mnet ar [11],
[12],[21], [31] och [36] for Galton—Watsontrdd samt [36] for Polyatrad.

Ifall additiva funktionaler ar ett av avhandlingens teman sa dr det andra
temat symmetriska egenskaper hos slumptrad och andra kombinatoriska struk-
turer. Egenskaper hos isomorfier och automorfigrupper for fylogenetiska trad
(en viss typ av simpelt genererade trad) har tidigare studerats i [4]. Stora de-
lar av denna avhandling syftar till att generalisera resultat fran den artikeln till
andra tridd och typer av kombinatoriska strukturer.
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3.1 Artikel I

I denna artikel studeras ett antal egenskaper forknippade med isomorfi-klasser
hos Galton—Watsontrdd, med framsta fokus pa sannolikheten att tva Galton—
Watsontrdd dr isomorfa. En grundldggande observation &r att dessa isomorfi-
klasser motsvarar Polyatrad. Detta giller eftersom en isomorfi bortser fran
egenskaper sa som ordning och mérkning, och Polyatrdden é&r, per definition,
oordnade och omaérkta trdd. P4 samma sétt har Galton—Watsontrdd av begran-
sad grad familjen av Polyatrdd med motsvarande begrinsning som isomorfi-
klasser. Denna observation innebdr att artikeln, pa ett djupare plan, avslojar
kopplingar mellan Galton—Watson- och Polyatrad.

Vért forsta resultat dr en fullstindig asymptotisk utveckling for sannolik-
heten att tva slumpmaissigt valda mérkta trdd dr isomorfa. Av extra intresse ar
det faktum att sannolikheten avtar exponentiellt.

Sats 3.1.1. Sannolikheten p,, att tva mdrkta rotade trdd dr isomorfa har fol-
jande asymptotiska utveckling

o
e
D~ Ang/Qc? <1 + Z n’;;) ,

k=1

dar A ~ 2.397678, ¢; =~ 0.354379 och ey, dr konstanter vars numeriska virde
kan uppskattas.

Resultatet utgar fran en funktionalekvation och anvénder sig av singular-
itetsanalys. Sannolikheten att tva simpelt genererade trdd &r isomorfa &r néra
forknippad med sannolikheten att ett tridd ligger i en given isomorfiklass, d.v.s.
den relativa vikten av alla trdd som ligger i den klassen. D4 isomorfiklasserna
motsvarar Polyatrdd, av vilka det finns exponentiellt manga, och da vikten
for en given klass av simpelt genererade trid véxer eller avtar exponentiellt
(mojligtvis med konstant 1 i det kritiska fallet), &r det knappast forvanande
att denna sannolikhet (for mérkta trdd) ocksa avtar exponentiellt. Av denna
anledning fir nésta resultat anses vara en overraskning.

Sats 3.1.2. Sannolikheten att tva ordnade rotade trdd dr isomorfa avtar subex-
ponentiellt.

Eftersom ordnade trdd dr en typ av Galton—Watsontridd, agerar detta som
motexempel till den annars, till synes, rimliga formodan att exponentiellt av-
tagande giller for alla Galton—Watsontrad. Beviset gir ut pa att hitta ett stort
antal icke-isomorfa trdd som alla har ungefar samma antal representationer
som ordnade trdd. Genom att fasta alla dessa trdd vid samma rot far vi ett nytt
trdd som har véldigt manga saddana representationer.
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Aven om vi inte kan pavisa exponentiellt avtagande i det generella fallet,
kan vi dstadkomma det under begriansningen att méngden av tillatna grader i
triden &r dndlig.

Sats 3.1.3. Sannolikheten g, att tvd Galton—Watsontrdid med grader i en dndlig
mdngd D dr isomorfa uppfyller

gn < BCZ,

ddr B och cy < 1 dr konstanter.

Beviset anvinder sig av andra metoder (induktion samt kénda strukturella
egenskaper hos betingade Galton—Watson trdd) dn de som vi anvédnde nir vi
studerade mérkta trdd och resultatet &r inte lika starkt da vi inte kan fa en full-
stindig asymptotisk utveckling. I artikeln visar vi dock hur vi kan erhalla sa-
dana utvecklingar for olika typer av binéra trad (se dven [4]).

Som en uppfoljning till Sats 3.1.1, kan vi fraga ifall tvé trdd som &r betingade
att vara isomorfa uppvisar en annan struktur &n vanliga mérkta trdd. Notera
hér att tva trdd som ar isomorfa nddvéndigtvis har samma antal noder av varje
given grad, t.ex. maste de ha samma antal 16v. Som ett led i att besvara denna
frdga kan vi bevisa foljande sats.

Sats 3.1.4. Ldt X,, vara en slumpvektor som riknar antalet noder av grad
d = (dy,dsa,...,dy) iett av trdden i ett par av isomorfa mdrkta rotade trdd.
Da har vi

EX, = pn+ O(1),
CovX, =Xn+ 0(1),

Jor nagon vektor p = (p1, p2, . . . , p) och ndgon matris 3 = (0 j)1<i j<k-
Vi har ocksd gemensam konvergens till en normalfordelning enligt

X, —EX,
S22 4 N0, :).
NLD

I kontexten av singularitetsanalys ar detta en naturlig utvidgning av Sats
3.1.1 och beviset anvinder sig av samma metoder. Med hjélp av denna sats
kan vi numeriskt uppskatta det asymptotiska antalet 16v i ena delen av ett par
av isomorfa trdd och finna att detta antal uppfor sig som pun + O(1), dér p ~
0.340252. Detta kan jimforas med antalet 16v 1 ett mérkt trdd dér vi istdllet har
p = e '~ 0.367879. Med andra ord medfor betingningen en annan struktur
for de mérkta triden.

Vi har redan papekat att resultaten i denna artikel sdger nagot om hur Galton—
Watsontrdd och Poélyatrad forhéller sig till varandra. En naturlig frdga om
denna koppling dr hur ménga (eller hur stor vikt av) Galton—Watsontrdd som
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hor till ett givet Polyatrdd. Detta &r sarskilt intressant nar Galton—Watsontridden
ar antingen maérkta eller ordnade eftersom fragan da rér hur ménga mérkningar
eller planéra inbdddningar ett Polyatrdd har. I en stokastisk kontext blir detta
antal en slumpvariabel och vi kan visa att den uppfyller en central gréansvérdes-
sats under olika antaganden.

Sats 3.1.5. Ldt P, vara ett slumpmdssigt omdrkt oordnat rotat trid av storlekn
med grader i ndagon dndlig mingd D och Tp vara en typ av Galton—Watsontrid
med samma gradbegrinsningar. Om vi dd ser Py, som isomorfiklasser hos Tp
galler att vikten W (Py,) har vintevdrde och varians

Ellog W (Py)] = un + O(1),
Varllog W (P,)] = o*n + O(1),
for ndgra konstanter 1, och o. Dessutom uppfyller den

IOgW(j/D%) —H A N0, 02).

Aterigen ir beviset baserat pa en funktionalekvation som kan studeras med
analytiska metoder. For mérkta trdd utan nagra begransningar av grader kan vi
visa f6ljande sats.

Sats 3.1.6. Ldt Py, vara ett slumpmdssigt omdrkt oordnat rotat trdd av storlek
n. Da gdller att trddets antal distinkta mdrkningar L(P,,) har vintevirde och
varians

|
EllogL(Py)] = nlogn — (n+ 1)n + % + O(1),
Var[logL(P,)] = o*n + O(1),
med numeriska konstanter p ~ 0.137342 och o ~ 0.196770. Vidare har vi

Notera sirskilt att vintevirdet dr av ordning n logn, en relativ ovanlighet

bland kombinatoriska grinsvérdessatser. Eftersom antalet mdjligt markningar
av ett trdd 7" &r % sa &r resultatet en direkt konsekvens av satsen om stor-

leken pa mérkta trdds automorfigrupper som finns i nésta artikel.

3.2 Artikel IT

Amnet for denna artikel dr symmetri hos slumptrid. Mer specifikt studeras
fordelningen for storleken hos automorfigruppen | Aut7'| hos bade Galton—
Watsontrdd och Polyatrdd. Grunden for studien dr foljande rekursion som

37



giller for alla rotade trdd T'

k
| AutT| = [ mi!| Aut 7™, (3.3)
i=1
dar 11,715, ..., T} ar deltrdden fasta vid roten, upp till isomorfi, med mq, mo,

..., my som antalet forekomster for respektive trad. Ifall vi tar logaritmen av
detta uttryck fér vi

k k

log| AutT| = "log(m:!) + > m;log| AutTi|. (3.4)
=1 =1

Detta ér en additiv funktional med Zi-“:l log(m;!) som kostnadsfunktion f(7).
I bade fallet for Galton—Watson- och for Polyatridd anvénder vi i grunden all-
méinna egenskaper hos additiva funktionaler och approximationsargument for
att na vart resultat, men i 6vrigt ar bevisen ganska annorlunda. For Galton—
Watsontrdd kan vi bevisa foljande sats.

Sats 3.2.1. Ldt T, vara ett betingat Galton—Watsontrdd av storlek n med av-
komma givet av slumpvariabeln &, dir E€ = 1,0 < Varé < oo och E€° <
00. Dd kan vi, beroende pa T, hitta konstanter 1, och o2 > 0sd att

log | Aut To,| —
og | AutTy| — pn N0, 02).
n

Beviset grundar sig pé en tillimpning av en central gransvirdessats i [31]
(som bygger vidare pa resultat i [21]), men for att verifiera att alla krav héller
krévs en del tekniskt arbete. Satsen vi applicerar bygger pa ett approximations-
argument dir vi uppskattar viardet pa kostnadsfunktionen genom att trunkera
den och bortse fran virdet pa deltrdd som &r for stora. Kravet pa E &5 ér en
teknisk rest fran satsen vi anvinder oss av och exponenten dr troligtvis inte
den bésta mojliga. Notera att kravet ar uppfyllt for kombinatoriskt intressanta
exempel s som maérkta och ordnade trad.

Dé Galton—Watsontrad &r rotade per definition dr det inte alltid lampligt att
tala om en orotad version av tradet, men i vissa fall, t.ex. for mérkta trad, finns
det en naturlig tolkning av vad det betyder. D4 varje mérkt rotat trdd av storlek
n motsvarar exakt n! méirkta orotade trid &r det rattframt att utvidga foregédende
sats till detta fall eftersom sannolikheterna inte paverkas nir vi gar mellan de
tvéd modellerna.

Sats 3.2.2. Ldt T, vara ett mdrkt orotat trdd av storlek n med likformig fordel-
ning. Dd gdller att

E(log| Aut7,|) = un+ O(1), och
Var(log| Aut 7,,|) = o?n + O(1)
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déir ;1 = 0.0522901 . .. och 0% = 0.0394984 . . .. Dessutom har vi att

log | Aut Tp| —
og|AWTul = 1m0 d, (o 52
n

Vi kan dven bevisa en central gransvérdessats for antalet automorfier hos
bade rotade och orotade Pélyatrad.

Sats 3.2.3. Lat P,, vara ett rotat eller orotat omdrkt och oordnat trad av storlek
n med likformig fordelning. Da gdller att

E(log| AutP,|) = un + O(1), och
Var(log | Aut P, |) = o°n + O(1)

dir = 0.1373423 ... och 0? = 0.1967696 . . .. Vidare har vi att

log | Aut Pp| —
08| AUPu| = pm d g 42
vn

Pa grund av skillnaden mellan Polyatrdd och Galton—Watsontrad kan vi inte
applicera metoderna frén [31] hér. Istéllet anvénder vi oss, for rotade trdd, av
singularitetsanalys och ett approximationsargument dir vi uppskattar virdet
pa kostnadsfunktionen genom att bortse fran noder med for ménga isomorfa
grenar. Resultatet for orotade trad &r sedan en direkt konsekvens av ett resultat
i [34] som forknippar egenskaper hos ett orotat Polyatrdd med egenskaper hos
ett rotat Polyatrdd som det innehaller.

3.3 Artikel III

Aven ifall slumpgrafer, i vid bemirkelse, kan ha ett mycket mer komplicerat
beteende dn slumptrédd sa finns det vissa typer av grafer som ér tillrdckligt lika
trdd for att vi ska kunna anvidnda metoder som fungerar vl i det senare fallet
for att studera grafer ocksd. Ett exempel pé detta ar s& kallade subkritiska
grafer ([2], [8], [15]) som definieras genom analytiska egenskaper hos deras
genererande funktioner. Dessa egenskaper paminner om de vi kan observera
hos trdd och det finns till och med flera sétt att beskriva subkritiska grafer i
termer av en tradstruktur.

Vi definierar ett block som en 2-sammanhéngande komponent i en graf.
En grafklass G ar block-stabil ifall den har egenskapen att en graf G tillhor
klassen om och endast om den dven innehaller samtliga block i G. Vi kréver
ocksa att den innehéller grafen Ks som endast bestar av en kant. Det r mojligt
att definiera block-stabila grafklasser i bade det mérkta och det omérkta fallet.
Definitionerna dr snarlika, sa vi véljer att fokusera pa den markta versionen for
att det dr nagot enklare. Sdg darfor att G ar en klass av markta grafer. Vi later
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C*® vara méngden av alla sammanhéngande och rotade grafer i G och 14t B vara
alla block i grafklassen. Vi later dven G(z), C*(z) och B(z) vara motsvarande
exponentiella genererande funktioner. Alla block-stabila grafklasser uppfyller
da foljande ekvationssystem:

G(2) = exp(C(2)),
C*(2) = zexp(B'(C*(2))).

Vi kan tolka detta som att en block-stabil grafklass har en tradstruktur dér
noderna bestér av block och kanterna utgdrs av de noder som ligger i tva block
och pa sa sitt sammanbinder dem.

En subkritisk graf ar en speciell typ av block-stabil graf vars genererande
funktioner uppfyller vissa egenskaper utdver ovanstiende ekvationssystem.
Lat pp vara konvergensradien hos B'(z) och 1at po vara konvergensradien
hos C*(z). En grafklass ar subkritisk ifall

C*(pc) < pB-

Négra exempel pé subkritiska grafer dr blockgrafer, kaktusgrafer och serie-
parallella grafer. En grafklass som dr block-stabil men inte subkritisk dr den
for planéra grafer.

Ett annat sétt att beskriva subkritiska grafer som en tradstruktur &r i termer
av dekorerade trdd. Ett dekorerat trad ar ett rotat trdd ddr vi associerar nagot
objekt fran en kombinatorisk klass C' till varje nod. Mer specifikt s& delar vi,
for varje nod v, upp dess avkommor i1 delméngder och ger varje delméngd,
tillsammans med v, strukturen av nagot objekt fran C'. Vi kan, till exempel,
se blockgrafer pa detta sétt genom att dela upp varje nods avkomma i block
och sedan ldgga till alla mdjliga kanter mellan noderna i varje block (se Figur
1.6). Tillvigagangssattet for att beskriva subkritiska grafer beskrivs i [28] och
[35]. Det omérkta fallet diskuteras i [33] dér graferna istillet kan beskrivas som
dekorerade sesqui-trdd sa som de definieras i [22]. Denna typ av triad beskrivas
med hjilp av en forgreningsprocess med tva typer av noder som vi kallar for
L och S. Den forsta typen, L, far ett antal avkommor av typ L enligt ndgon
slumpvariabel € och ett antal avkommor av typ .S enligt ndgon slumpvariabel (.
Aven om ¢ och ¢ kan bero pé varandra antar vi att avkommorna frin olika noder
ar oberoende. Noder av typ S ér infertila och far ingen avkomma. Kopplingen
till omérkta strukturer fas genom att se tradet bestdende endast av noder av
typ L som fix-punkterna for ndgon automorfi av objektet. 1 bada fallen kan
vi anvénda triadstrukturen for att utvidga definitionen av additiva funktionaler
av rotade tréd till block-stabila grafer. Detta later oss utoka generella resultat
frén [31] som ror additiva funktionaler av slumptrad till méarkta subkritiska
slumpgrafer.

Sats 3.3.1. Ldt D,, vara ett dekorerat Galton—Watsontrdd betingat pd att ha
storlek n med avkommefordelning &. Anta att € uppfyller EE = 1 och 0 <
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02 := Varé < oo samt att E €291 < oo for ndgot heltal o« > 0. Lit F vara
en funktional av dekorerade trdd som uppfyller att

f(D) = O(deg(D)"),

ddir f dr funktionalens kostnadsfunktion.
Anta ocksa att vi kan hitta ndgon sekvens (par)ar>1 av positiva tal som
uppfyller att ppr — 0 as M — oo och att,
* vi, for varje heltal M > 1, har

E|f(DO) B (F(O™)D)| < par, (3.5)

sd ldnge N > M,
* det finns ndgon sekvens (My,)n>1 av positiva heltal sd att vi, for tillrdck-
ligt stora n, har

E|f(Dn) — f(DY)| < par,.-
Om ay, = n~ V2 (pmax{olly 4 M2) uppfyller
. > Qnp,
nll}rréoan =0, and ;n < 00,

sd har vi att
F(D,) —
(D) — 1 d, g, 52,
N4

dir u=E f(D) och 0 < 5% < 0.

Vi tillampar satsen for att ge nagra exempel. Ett av dem ror antalet forekom-
ster av ndgon given 2-sammanhédngande graf H i en slumpmaéssigt utvald méarkt
subkritisk graf.

Sats 3.3.2. Fixera ndgon 2-sammanhdngande graf H. Ldt C,, vara en slump-
mdssigt vald sammanhdngande graf av storlek n frdan ndgon fixerad mdrkt
subkritisk grafklass och lit X vara antalet forekomster av H som en delgraf
av Cy,. Da giller

EX, = pan+o(Vn),
Var X = 62n + o(n),

for ndgra konstanter pg och O'%I. Dessutom har vi att

XH —ppgn g
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Satsen dr ett specialfall av resultaten fran [9] och vart bidrag ar att anvénda
en ny typ av metoder for att tackla denna typ av problem. I den ndmnda ar-
tikeln anvéndes istéllet invecklade resonemang baserade pa analytiska egen-
skaper hos genererande funktioner. Nésta resultat &r, oss veterligen, helt nytt
och utokar resultaten om automorfier hos Galton—Watsontrad fran Artikel 11
till subkritiska grafer.

Sats 3.3.3. LdtC,, vara en slumpmdissigt vald sammanhdngande graf av storlek
n fran ndgon fixerad mdrkt subkritisk grafklass. Da kan vi hitta konstanter p

och 0% > 0sd att
log | AutC,| —
og|AUtCul = im 4\ 42y
Vn

I bada de ndimnda exemplen visar vi hur vi kan utvidga resultaten till att ticka
fallet med orotade grafer trots att Sats 3.3.1 ror rotade strukturer. I det omérkta
har vi inte lika starka resultat men vi bevisar foljande sats om véntevéardet av
funktionaler som har dndligt stod, d.v.s. vars kostnadsfunktion f endast antar
nollskilda vérden for ett dndligt antal trad.

Sats 3.3.4. LdtU vara en mdngd av omdrkta kombinatoriskt objekt forknippad
med ndgot dekorerat sesqui-trdd som har avkommefordelning X = [, (] ddr &
och ¢ har nagot exponentiellt moment ochE ¢ = 1. Ldt F vara en additiv funk-
tional av sadana objekt som har dndligt stod och ldt Uy, vara ett slumpmdissigt
objekt fran U av storlek n. Dd har vi att

EF(Tn) = pn +o(n)
for ndgon konstant pu.

I forsta hand ténker vi oss att de kombinatoriska objekten ar Polyatrad eller
subkritiska grafer och satsen kan tillimpas for att uppskatta det forvantade an-
talet forekomster av ett trdd 1" pa randen i ett Polyatrad. Precis som for méarkta
grafer ovan dr vart frimsta bidrag att tillimpa probabilistiska metoder till ett
problem som tidigare fridmst har studerats med hjilp av analytiska metoder.
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