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1. Introduction

The origin and raison d’€tre of mathematics is describing the natural world, but
what makes mathematics so incredibly powerful — and beautiful — is in its tools
for generalization, for going beyond the already observed. This thesis has very
little to do with describing the natural world. Instead, it deals with theories that
may or may not be useful in future applications, within mathematics or other
sciences.

The subject of it is abstract algebra, and more precisely representation the-
ory. In abstract algebra we study algebraic structures and structure-preserving
functions, known as homomorphisms. This study is done in an abstract, ax-
iomatic way. An algebraic structure is a set of elements with some operations.
An everyday example is the integers: 0, 1, -1, 2, -2, and so on. On this set
there are the usual operations of addition and multiplication. These operations
have various properties. For example, the order of multiplication does not
matter for integers: a-b =b-a, and (ab)c = a(bc). These properties are called
commutativity and associativity, respectively. There is an element 1 which
is neutral with respect to the multiplication: a-1 = a. However, we cannot
“undo” multiplication, i.e. divide integers, without leaving our chosen set of
element: for example % is not an integer, so we cannot divide 1 by 2.

The integers is an example of a ring, which we define as a set with two
operations satisfying certain properties. A ring homomorphism is then a func-
tion between two rings such that all structure is preserved, i.e. f(1) =1,
fla+b) = f(a)+ f(b) and so on. Depending on the operations and prop-
erties axiomatised, there are many algebraic structures: semigroups, groups,
rings, fields, vector spaces, algebras... Such structure might arise in the natural
world, for example in a system of particles interacting with each other. They
may also arise within mathematics: the continuous functions on the real line
form an algebra together with the operations addition and composition. The
abstract approach allows us to study all structures of a certain kind at the same
time.

Linear algebra is devoted to a certain kind of algebraic structure and ho-
momorphisms: vector spaces and linear maps. These structures are not only
immensely useful throughout all areas of mathematics and its applications, but
also fairly well-understood. The idea of classical representation theory is to
use vector spaces and linear maps to represent another structure, for example
an algebra. Studying the representations of an algebra can still give a great
deal of information about the algebra itself, while it also allows us into the
safety of linear algebra. A representation of an algebra is, after changing point
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of view slightly, also known as a module over the algebra. Central to this the-
sis are bimodules over algebras. These are modules with two simultaneous
and compatible module structures, possibly over two different algebras.

One of the main goals when studying the representations of a fixed object —
for example, a certain algebra — is to classify the ”smallest” representations, or
indecomposable modules. As the name suggests, these cannot be divided into
several smaller modules. A special class of indecomposable modules are the
simple modules. These are the building blocks, or atoms, of the modules. The
classification is only up to isomorphism, meaning that we identify modules
which are essentially the same.

Categories take the abstraction one step further. They consist of objects, and
morphisms (or arrows) between the objects, together with identity morphisms
for each object, and a unitary associative composition of morphisms. Any
type of algebraic structure of our choice, together with its structure-preserving
homomorphism, form a category. For example, vector spaces (over a fixed
field) and linear maps form a category. Moreover, if A is an algebra, all
A-modules, together with A-module homomorphisms, form a category. The
structure-preserving functions between categories are known as functors. Cat-
egories and functors generalize many other concepts, such as algebras and
representations. As a language, categories can encode many different types of
mathematical objects, similar to how mathematics can encode many different
phenomena from other sciences. Another use of category theory is categori-
fication, meaning finding categorical equivalents to objects we wish to study.
This categorical equivalent will in general be more “difficult”, but on the other
hand have more structure to work with. It is from examples of categorifica-
tion, such as [4] and [11], that the interest of birepresentations of bicategories
stems.

2-categories generalizes categories by allowing two layers of structure: there
are objects, 1-morphisms between the objects, and 2-morphisms between the
I-morphisms. Illustrated by diagrams, the typical diagram in (1-)categories
respectively 2-categories are as below.

O—>0 VY 0

Most interesting cases are not strict 2-categories but bicateogries, a slightly
looser notion. For the most part of this thesis, the distinction between 2- and
bicategories is not important. In particular, when studying their representa-
tions, the theories are essentially the same by [14]. The theory of birepresen-
tations is fairly young — the systematic study was initiated by Mazorchuk and
Miemietz in [15]. Many of the first examples of bicategories whose birep-
resentatiosn are classified are so called fiab, satisfying a number of technical
conditions inherent in many of the “easiest” examples.
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This thesis consists of four papers. All of them are in some way concerned
with bicategories of bimodules, i.e. bicategories whose 1-morphisms are given
by bimodules over algebras. Two of them are devoted to the problem of classi-
fying birepresentations of a family of bicategories of bimodules. These bicat-
egories are not fiab — for example, unlike fiab bicategories, they have infinitely
many indecomposable 1-morphisms (up to isomorphism). The other two pa-
pers investigate the structure of different bicategories of bimodules. More
specifically, we study the tensor combinatorics of bimodules. The (balanced)
tensor product is a form of “multiplication” of bimodules, inputting two bi-
modules and outputting a new one. The questions we ask can be phrased as
follows. Starting with a fixed bimodule M, what other bimodules can we get
if we tensor M by another bimodule? Since the tensor product is not com-
mutative, we have to ask this question for when we tensor M from the left,
right, and both sides. Starting in the other end, we fix a certain bimodule —
the regular bimodule, which is the identity with respect to the tensor product.
The question is then: when can we tensor two bimodules and get the regular
bimodule?
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2. Preliminaries

2.1 Algebras and modules
2.1.1 Basics about algebras

Let k be a field. An associative unital k-algebra is a k-vector space A with a
multiplication A X A — A which is
* associative: (ab)c = a(bc) for a,b,c € A,
* bilinear: (a+ b)c = ac+ bc, (Aa)b = A(ab) and similar in the second
component, for a,b,c € A and A € k.
Moreover there should exist a multiplicative identity 1, i.e. an element 1 € A
suchthat 1-a=a=a-1foralla € A.

If the vector space A is finite-dimensional, then we say that the algebra is
finite-dimensional. We will only consider associative, unital, finite-dimensional
algebras, and simply refer to them as algebras. The following are examples of
algebras.

* The field k itself is a k-algebra, and any field extension K D k is as well.

* The set M,,(k) of n x n-matrices with entries from k is a k-algebra. More
generally, for any k-vector space V, the set of linear maps from V to
itself, Endy (V), is a k-algebra. The multiplication is given by composi-
tion.

* The set k[x] of polynomials in one variable and coefficients in k is a
k-algebra (of infinite dimension!).

* The dual numbers k[x]/(x?), i.e. (linear) polynomials with coefficients
in k, with the rule that x> = 0, is a k-algebra.

A subalgebra of an algebra A is a linear subspace B C A such that B is itself
an algebra under the restricted operations, and with the same unit as in A. For
example, the space T, (k) of upper-triangular n X n-matrices with entries from
k is a subalgebra of M, (k).

An ideal of an algebra A is a linear subspace which is closed under multi-
plication with A from both the left and right. A subspace closed only under
left (right) multiplication by A is called a left (right) ideal. An proper ideal /
of an algebra A is called maximal if whenever J is an ideal such that I C J,
then either J = or J = A. The radical of A, rad(A), is the intersection of all
maximal ideals. A is called local if it has a unique maximal left ideal.

Let A and B be k-algebras. A homomorphism of k-algebras is a k-linear
map ¢ : A — B such that

@(14)=1p and @(ab) = ¢(a)@(b)
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for all a,b € A. An isomorphism of k-algebras is a bijective algebra homomor-
phism, and two algebras are called isomorphic if there is an algebra isomor-
phism between them. Given a morphism of algebras ¢ : A — B, the kernel of
¢ is an ideal of A, and the image of ¢ is a subalgebra of B.

2.1.2 Representations and modules

Let A be a k-algebra and V a k-vector space. Then a representation of A on V
is an algebra homomorphism ¢ : A — Endg (V). Hence each element a € A is
represented by a linear map ¢(a):V — V.

A left A-module is a k-vector space M together with a k-bilinear action

o AXM—>M
such that, forallm € M and a,b € A,

lem=m;

(ab)em =ae(bem).

If M is a finite-dimensional vector space, then we say that M is a finite-
dimensional module. In this thesis we only consider finite-dimensional mod-
ules, unless otherwise stated.

The notions of a representation of A and a left A-module are two sides of
the same coin. If ¢ : A — Endi (V) is a representation of V, then V is a left
A-module with the action aev = @(a)(v). On the other hand, if M is a left
A-module, then the action of each a € A defines a linear map ae — : M — M.
Then ¢ : A — Endg (M) defined by ¢(a) = a e — is a representation of A.

Example. * If A is an algebra, then A is also an A-module with the action
given by multiplication from the left, i.e. aeb = ab for a,b € A.
* Modules over the field k are exactly k-vector spaces.
* The algebra M,,(k) has a natural module k”, where the action is given by
multiplication.
e The field k is a module over the dual numbers, with the action deter-
mined by xev =0 for all v € k.

Let A be an algebra. A homomorphism of A-modules is a linear map @ :
M — N between A-modules which intertwines the A-action, i.e. such that
@(aem) =ae@(m) for all m € M and a € A. Homomorphisms M — M are
called endomorphisms, and the set End4 (M) of endomorphism of an A-module
M forms an algebra — the endomorphism algebra.

A submodule of a left A-module M is a linear subspace N C M which is
closed under the action of A. We call a nonzero A-module M indecomposable
if whenever M ~ M & M, for some submodules M, M,, then either M| =0
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or M, = 0. A module is indecomposable if and only if its endomorphism
algebra is local. Moreover, M # 0 is called simple if it has no proper nontrivial
submodules. Any simple module is indecomposable, but the converse is not
true in general. A module which is a direct sum of simple modules is called
semisimple.

Let M be an A-module. Then its socle, soc(M), is the sum of all simple
submodules of M. Its radical, rad(M), is rad(A)M, and its top, top(M), is the
quotient M /rad(M). The top of a module is semisimple.

For an A-module M, let Sy = 0, and for j > 1, let §; be the submodule of
M such that S;/S;_1 =soc(M/S;_1). The Loewy length of M is the minimal j
such that S; = M, and the Loewy length of the algebra A, denoted £/(A), is the
Loewy length of the regular A-module A. Further, a composition series for M
is a sequence of submodules 0 =My C M C ... C M,_1 C M, = M such that
each subquotient M;/M;_; is simple. These simple subquotients are called the
composition factors, and are unique up to permutation.

Theorem (Jordan-Holder). Let A be an algebra and M an A-module. Assume
that M has two composition series

O=MyCM C...CM, 1CM,=M
0=NgCN, C...CN,_| CN; =M.

Then n = k, and there is some & € S,, such that Mj/M;_; ~ NG(j)/No_(j),l for
all j.

When studying representation theory of finite-dimensional algebras, one
is in general interested in classifying the indecomposable modules up to iso-
morphism. According to the following result, knowing the indecomposable
modules means that we know all modules.

Theorem (Krull-Schmidt). Let A be a finite-dimensional k-algebra. Then
any nongzero finite-dimensional A-module can be written as a direct sum of
indecomposable A-modules, and the summands are unique up to permutation
and isomorphism.

A natural question is now: how many indecomposable A-modules are there?
A measure of this is the notions of finite, tame and wild — translating to the
classification problem being “not too difficult”, “difficult but conceivable”,
and “probably impossible”. More rigorously, an algebra A is of finite rep-
resentation type if there are finitely many indecomposable A-modules. If A
is not of finite representation type, then is of infinite representation type. In
this case, A is of rame representation type if for each positive integer d, all
but finitely many indecomposable A-modules of dimension d belong to one
of finitely many 1-parameter families, and A is of wild representation type if
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for any finite-dimensional algebra B, the representation theory of B can be
embedded into that of A.

Theorem (Drozd’s trichotomy theorem [5]). Let k be an algebraically closed
field. Then any k-algebra is either of finite, tame, or wild representation type.

A very important class of modules over any algebra A are the projective
modules. An A-module P is projective if whenever the is a surjective A-module
morphism f : M — N and an A-module morphism g : P — N, then there is some
A-module morphism /4 : P — M such that g = foh.

P
.
ML N

Direct sums and direct summands of projective modules are again projective.
The canonical example of a projective A-module is the regular A-module. In-
deed, any indecomposable projective A-module is isomorphic to an indecom-
posable direct summand of the regular A-module. This means in particular
that there are, up to isomorphism, finitely many indecomposable projective
A-modules. The indecomposable projective modules also have simple tops.
Assume that Py, ..., P, are, up to isomorphism, all indecomposable projective
A-modules. Set S; = top(P;). Then Sj,...,S, are all simple A-modules up to
isomorphism. Assume that the regular A-module 4A ~ P; &...$H P, where the
P, are all indecomposable. Then A is called basic if the summands P,...,P,
are pairwise non-isomorphic. An algebra A is called a Nakayama algebra if
any indecomposable projective A-module has a unique composition series.

2.1.3 Bimodules and tensor algebras

We have defined left A-modules, but may as well define right A-modules using
an action e : M x A — M. Then there is nothing stopping us from having two
different actions from left and right on the same vector space. This leads us to
the concept of a bimodule.

Let A and B be k-algebras. An A-B-bimodule is a vector space M which is
simultaneously a left A-module and right B-module, such that for all m € M,
AcAandbeB, (aem)eb=ae(meb).

For example, A itself is an A-A-bimodule with left and right A-action given
by multiplication. This bimodule is called the regular bimodule.

Let A, B and C be algebras and 4Mp, 4N¢c and ¢Lp bimodules. Then the set
of left A-module morphisms Homy.(M, N) is a B-C-bimodule, with actions

(be@)(m)=¢@(meb) and (@ec)(m)=¢(m)ec.
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Similarly, the right B-module morphisms Hom.g(M, L) form a C-A-bimodule
with

(coep)(m)=cep(m) and (pea)(m)=@(aem).

If A and B are two algebras, then their tensor product A ® B is again an
algebra, with multiplication defined on simple tensors by

(a@b)-(d @b') = (ad") (bb').

If M is a left A-module, and N is a left B-module, then M @ N is a left A ® B-
module via

(ab)e(m@n)=(aem)® (ben)

We denote by A°P the opposite algebra of A, that is the algebra such that
A°P = A as vector spaces, but with reversed order of multiplication. If M is a
right A-module, it is a left A°P-module, and vice versa. Moreover, if M is an
A-B-bimodule, it is a left A @ B°P-module. If A is commutative, then A ~ A°P.
Since a left A-module is a vector space, it is a left k-module. The field is
commutative, so we may as well say it is a right k-module. Therefore a left
A-module can be viewed as an A-k-bimodule. Similarly a right A-module is a
k-A-bimodule.

An A-B-bimodule M is called projective if it is projective as a left A ® B°P-
module. There are also weaker notions of projectivity for bimodules: M is left
projective if it is projective as a left A-module, right projective if it is projective
as a right B-module, and left-right projective if it is both.

For a left A-module M and a right A-module N we define the (balanced)
tensor product N ®4 M as the quotient of N ®) M by the vector space spanned
by all elements of the form

na®@m—nQ am.

If M is an A-B-bimodule, and N is an B-C-bimodule, then M ®p N is an A-C-
bimodule. In particular, if M is a left A-module, and N is a right B-module,
then M ®y N is an A-B-bimodule. If additionally M and N are indecomposable,
then so is M ®y N. This type of indecomposable A-B-bimodule is called k-
split.

IfPy,..., P, are all indecomposable projective left A-modules, and Q1, ..., O
are the indecomposable projective right B-modules, then

PoQj, i=1,....m, j=1,....n

are all indecomposable projective A-B-bimodules. The simple top of £; ® Q;
is S; @k S, where S; = top(P;) and §; = top(Q;). Note that all indecomposable
projective A-B-bimodules are k-split, as are the simple bimodules.
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2.1.4 Quiver algebras

A special type of algebras, which are immensely useful and relatively easy
to work with, are quiver algebras. A quiver Q is a directed graph (allowing
multiple edges and loops). Hence it consists of a set Qg of nodes (vertices),
a set Q; of arrows, and two functions s,¢ : Q1 — Qg called source and target.
An element o € Q is an arrow from s(a) to 7(a).

If o and B are arrows such that #(¢) = s(f8), then we can concatenate and
form a path Ba. If y is such that () = s(7), then we can concatenate again
and form the path yB o, and so on. The length of a path is the number of
arrows in it.

Example. In the quiver

YB  is a path of length 3 from 1 to 2, understood as first ¢, then 3, then 7.

Given a quiver Q we can form the quiver algebra kQ. As vector space it
is spanned by all paths in Q, including a path &; of length zero at each node
i. The multiplication of paths is given by concatenation, so for paths ¢, ... 0

and B,...B1,

,Bn...Bl'OCm...OCl:
else.

{Bn...ﬁlam...al if () = s(B1)
0

The identity is }.;cp, &:-

Denote by R the ideal generated by all arrows of Q. Then an ideal I C kQ
is admissible if R™ C I C R* for some m > 2.

A representation of a quiver algebra kQ can be constructed as follows: to
each node i, assign a finite-dimensional vector space V;, and to each arrow
o :i— j, assign a linear map @q : V; — V;. For all nodes i, @, = idy,. For
a quiver with relations, or an algebra kQ/I for some admissible ideal 7, the
linear maps ¢, must satisfy the relations imposed by /.

Much of the structure of a quiver algebra can be immediately read off from
the quiver (with relations). Let A = kQ/I be a path algebra of a quiver Q mod-
ulo some admissible ideal /. Assume that the nodes of Q are Qp = {1,...,n}.
Then the projective A-modules are, up to isomorphism, A€y, ...,Ag,, where
Ag; is the submodule of the regular A-module spanned by all paths starting
at the node i. The projective Ag; and its simple top S; is referred to as the
projective and simple at the node i, respectively. A quiver algebra kQ/I is a
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Nakayama algebra if and only if Q is one of the following quivers.

1 no 1) /n\

] —s...——=n—1

The representation theory of any algebra can be recovered using that of a
basic algebra — we shall state this more formally soon. The following result
therefore reinforces the usefulness of quiver algebras.

Theorem. The algebrakQ/I is basic. If the field k is algebraically closed, any
basic k-algebra is isomorphic to kQ/I for some quiver Q and some admissible
ideal I C kQ.

Forming tensor algebras of quiver algebras is also straightforward. Given
two algebras A =kQ/I and B=kQ/ I, the tensor algebra A ® B is isomorphic
to k(Q® Q)/(IXT), where the quiver Q® Q is determined by

(Q®0)o = Qo x Qo
(0®0)1 =01 xQ0UQ x 0.

The ideal /X1 is generated by I x 00, Qo x I, and, for all & : i — j in Q and
o:k—1inQ

(ej@0)o(a®é)—(a®E)o(g®0).

This means that the tensor algebra inherits the relations from the tensor factors,
and that there are additional commutativity relations. For example, set

0: 122, 0: 14[3)247)37

I=0and 7= (yoB). Then Q® Q is the quiver

L p

all laz lm

1 Lop 23

where o; = @ ®&;, B; = £;® B and similarly for ;. The ideal /X[ is generated
by

Y10Bi, poPr, o —Proa, oy —po .

In other words, both horizontal paths of length 2 are zero, as in ]kQ / I, and the
squares commute. The latter is a general rule for tensor products of quiver
algebras.
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2.2 Categories and functors

A category ¢ consists of a class of objects {X,Y,...}, and for each pair of ob-
jects XY, a class of morphisms % (X,Y). For each object X there must exist
an identity morphism 1y, and there should be an associative, unitary compo-
sition of morphisms (for compositions that makes sense). The following are
examples of categories.
* Set consisting of sets and functions.
* k-vec consisting of finite-dimensional k-vector spaces and linear maps.
* Given algebras A and B, A-mod consisting of finite-dimensional left A-
modules and module homomorphisms, and A-mod-B consisting of finite
dimensional A-B-bimodules and bimodule homomorphisms.
A category ¢ is additive if all €' (X,Y) form abelian groups and composition
is additive. We also require the existence of a zero object and of direct sums.
% is k-linear if € (X,Y) is a finite-dimensional vector space for all X,Y, and
composition is k-bilinear. Examples of k-linear categories are k-vec and A-
mod. Another important example is the category %4, for some k-algebra A.
It has one object ©, and € (0, 0) = A, with composition of morphisms given
by multiplication within A. Indeed, for any object X in any k-linear category
% , the morphism space % (X, X) is an algebra. So, in a sense, an algebra is a
special case of a k-linear category.

If ¥ is a category such that for all objects X, Y, the homomorphisms ¢'(X,Y)
form a set (and not a proper class), then % is called locally small. If also the
objects of ¢ form a set, then % is called small. A k-linear category € is
finitary if it has finitely many objects, and each morphism space is a finite-
dimensional vector space.

A very important property of the category A-mod is the Krull-Schmidt the-
orem, i.e. that any nonzero object can be uniquely written as a direct sum of
indecomposable objects. Recall that a module is indecomposable if and only if
its endomorphism algebra is local. The following definition therefore captures
the property of the theorem: A k-linear category ¢ is Krull-Schmidt if any
nonzero object is isomorphic to a unique direct sum of finitely many objects,
such that each summand X and satisfies that the algebra ¢’ (X,X) is local.

A morphism f : X — X such that fo f = f is called idempotent. An idem-
potent f : X — X is split if there is an object Y, and morphisms g : X — Y and
h:Y — X, such that f =hogand goh =idy. A category is idempotent split
if all idempotents are split.

A category of the form A-mod-B, for algebras A and B, is a small, k-linear,
Krull-Schmidt, idempotent split category.

Given a category ¢, a subcategory 2 consists of a collection of objects
from ¢, and for every pair of objects X,Y in &, a collection Z(X,Y) of
morphisms from % (X,Y) which is closed under composition, and such that
idy € 2(X,X) for any object X in 2. Omitting the latter condition yields a
subsemicategory. A subcategory is full if 7(X,Y)=%(X,Y) forall X,Y in 2.
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If ¥ is k-linear, an ideal in % is a subsemicategory closed under composition
with 1-morphisms from %'.

Given categories ¢ and 2, a (covariant) functor F : € — 2 maps every

diagram X LYin%toa diagram F (X) 0, g (Y) in 2. Moreover, it should

respect composition and identity morphisms. If F : €’ — 2 is as above except

that it reverses morphism, i.e. maps any diagram X i> Y in ¥ to a diagram

F . . .
F(Y) 0, g (X) in 2, then F is a contravariant functor.

A functor between k-linear categories is called k-linear if it also respects
the k-linear structure.

Example. * Given a category %, there is the identity functoridy : € — €,
which is the identity on objects and morphisms.
* Let A, B and C be algebras and M an A-B-bimodule. Then there are the
so called tensor functors

M ®p — : B-mod-C — A-mod-C
—®4M : C-mod-A — C-mod-B.

Moreover, to M we can associate four Hom-functors, two of which are
covariant:

Homy.(M,—) : A-mod-C — B-mod-C
Hom. z(M,—) : C-mod-B — C-mod-A

and two of which are contravariant:

Homy.(—,M) : A-mod-C — C-mod-B
Hom. g(—,M) : C-mod-B — A-mod-C.

Let ¥ and Z be categories, and F and G functors 4 — Z. Then a natural
transformation N : F — G is a family of morphisms in & indexed by elements

in %, such that for each diagram X i> Y we have the following commutative
diagram in Z.

If each ny is an isomorphism in &, then 7 is called a natural isomorphism.
For any categories ¢, Z, there is the so called functor category Fun(¢, 2),

whose objects are functors ¥ — &, and morphisms are natural transforma-

tions. Given a functor F': ¢ — 2, the collection of identity morphisms 1 x)
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in & gives rise to a natural transformation idr, which is the identity morphism
on F in Fun(¥, 2).
Two categories € and & are equivalent if there are functors

such that there are natural isomorphisms Go F ~idy and F o G ~ idg.

If A and B are algebras such that A-mod is equivalent to B-mod, then A and
B are Morita equivalent. We are now able to state the aforementioned result
about the representation theory of basic algebras covering that of any algebra.

Theorem. Every algebra is Morita equivalent to a basic algebra.

Given categories and functors

(F,G) is an adjoint pair if there are isomorphism fx y : Z(F(X),Y) ~€ (X,G(Y))
for all objects X in € and Y in 2, natural in X and Y. Equivalently, (F,G)

is an adjoint pair if there exist natural transformations € : FG — idg and

1N :id¢y — GF such that the compositions

FEN PG 5 F G619 6FG % G

are the identity natural transformations on F' and G, respectively. Then € and
n are called counit and unit of adjunction, respectively.
For example, given algebras A and B and an A-B-bimodule M, the functors

M ®p — :B-mod — A-mod
Homy (M, —) :A-mod — B-mod

form an adjoint pair (M @5 —,Homy.(M,—)).

Given categories ¥ and .#, a representation of € on .4 is a functor
¢ —— A . If € is k-linear, we often consider k-linear representations
of %, i.e. such that the target category .#, and the functor 4 — .#, are
k-linear. A representation of an algebra A can be identified with a k-linear
functor ¥4 — k-vec, or a (k-linear) representation of 4 on k-vec.
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2.3 2-categories and 2-representations

2.3.1 2-categories and 2-functors

A 2-category ¥ has two categorical levels. It consists of a class of objects
{1i,],...}, and for each pair of objects i, j, a small morphism category € (i, j).
The objects F, G, ... of the categories €(1, j) are called I-morphisms, and the
morphisms «, f3,... are called 2-morphisms. In other words, 1-morphisms go
between objects, and 2-morphisms between 1-morphisms. We illustate it by
diagrams as below.

F
TS

1 4

G
The identity 1-morphism at i is denoted 1;, and the identity 2-morphism at
F by idr. Composition of 1-morphisms is required to be bifunctorial. There
are two types of composition of 2-morphisms: vertical composition o,,, within
the categories ¢(1, j), and horizontal composition oy, along 1-morphisms. In
the below diagram, o can be vertically composed with 8 and horizontally with

Y and O.

Bifunctoriality of the composition of 1-morphisms implies the following in-
terchange law:

(Sovy)on(Bova)=(8onpB)oy(yora).

The following are examples of 2-categories.

» Cat, whose objects are small categories, 1-morphisms are functors, and
2-morphisms are natural transformations of functors.

. Q[ﬁ, the 2-category of finitary k-linear 2-categories, whose objects are
categories equivalent to A-proj where A is a finite-dimensional k-algebra,
1-morphisms are additive k-linear functors, and 2-morphisms are natural
transformations of functors.

* SR, the 2-category of finitary k-linear abelian 2-categories, whose ob-
jects are categories equivalent to A — proj where A is a finite-dimensional
k-algebra, 1-morphisms are right exact additive k-linear functors, and 2-
morphisms are natural transformations of functors.

A 2-category % is k-linear if each morphism category €'(i, j) is a k-linear
category, and all compositions are k-bilinear.

An ideal .9 in a 2-category € is a family of ideals .# (i, j) in each €'(1, j)
which are closed (horizontal) composition with anything in %’.
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Given 2-categories ¢ and 7, a 2-functor ® : 6 — & sends any diagram

to a diagram

in such a way that is respects all identities and compositions.
Let ®,¥: € — & be 2-functors. A 2-natural transformation 1 : ® - ¥
consists of
» for each object i of ¢, a I-morphism 7; : ®(i) — ¥(i);
» for each 1-morphism F of %, a 2-morphism ng : (F) — ¥(F),
such that the following diagrams commute for all i, j, F, G, c.

2.3.2 2-representations

A 2-representation of a 2-category € is a 2-functor M : ¥ — Cat. Hence, ob-
jects are represented by categories, 1-morphisms by functors, and 2-morphisms
by natural transformations. For example, the axioms for a 2-category % yields
for each object i the principal 2-representation &; = € (i,—).

Assume that % is additive, k-linear and Krull-Schmidt, and that for each
object i the identity 1-morphism 1; is indecomposable. Then a finitary 2-
representation of ¢ is ak-linear 2-functor M : ¢’ — Py A finitary 2-representation
M : ¥ — Ry is called simple if it has no non-trivial ¢’-stable ideals. M is tran-
sitive if for any objects X € M(i) and Y € M(j), there is a I-morphisms F
in ¢ such that Y is a direct summand of M(F)(X). While simplicity implies
transitivity, we still use the terminology simple transitive 2-representation.

Two 2-representations M, N of a 2-category ¢ are equivalent if there is a
2-natural transformation 1 : M — N such that 1; is an equivalence for each
object i in %.

2.3.3 2-categories of bimodules

Let A be an algebra. Then A-mod is not small, but it is equivalent to some small
category 4. Then there is a 2-category with one object O, which we think of
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as A-mod (or %). The 1-morphisms are endofunctors of % isomorphic to ten-
soring with finite-dimensional A-A-bimodules. Composition of 1-morphisms
is composition of functors, which corresponds to the tensor product of bi-
modules. The 2-morphisms are natural transformations of functors, which
correspond to bimodule homomorphisms. We denote this 2-category by Z4.
Then Z4(©,Q) is equivalent to A-mod-A, and we call &, the 2-category of
A-A-bimodules.

2.3.4 Bicategories and birepresentations

A bicategory is a more relaxed version of a 2-representation, where we omit
the condition that morphism categories are small, and require composition of
I-morphisms to be associative and unital only up to natural isomorphisms. In
many cases, a bicategory can be “strictified” to a 2-category. For example,
the bicategory with one object and morphism category A-mod-A is not a 2-
category, but it is biequivalent to the 2-category of bimodules %4 as described
above. Importantly, for the representation theory it does not matter if we con-
sider bi- or 2-categories. However, categorical constructions may differ.

2.3.5 Cells in 2-categories

Let ¥ be an additive, Krull-Schmidt, idempotent split 2-category. The com-
binatorial structure of the 1-morphisms can be described in ways similar to
Green’s relations for semigroups [8]. Define the left preorder on the set of iso-
morphism classes of indecomposable 1-morphisms of € by F > G if there
is some 1-morphism H such that F is a direct summand of H o G. This is
indeed a preorder, and the induced equivalence relation is called left equiva-
lence and denoted ~. The equivalence classes are called left cells. Similarly,
define right preorder >g, right equivalence ~p, and right cells by compos-
ing from the right, and the two-sided preorder >;, two-sided equivalence ~,
and two-sided cells by composing from both the left and the right. These
notions were introduced in [15] and are of great importance for the study of
2-representations.

First of all, if € is a 2-category and M a simple transitive 2-representation
of €, then there is a unique maximal two-sided cell which is not annihilated by
M. This cell is called the apex of the 2-representation. Moreover, let . be a
left cell. Then there is an object i & in ¢ such that all 1-morphisms in . start
at i . The principal 2-representation %%; , has a subrepresentation given by
the additive closure of all 1-morphisms F > .Z. This subrepresentation has
a unique simple transitive quotient C & — the cell 2-representation associated
to 7.

One of the first classes of 2-categories whose 2-representations were stud-
ied consists of 2-categories of projective bimodules, that is, the full subcate-
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gories of the categories ¥4 whose indecomposable 1-morphisms are isomor-
phic to the indecomposable projective bimodules and the regular bimodule.
If A is self-inejctive, these 2-categories are fiat in the sense of Mazorchuk
and Miemietz — finitary, with a weak involution and certain adjunction 2-
morphisms. It was proven in [18] that any simple transitive 2-representation
of a 2-category of projective bimodules is equivalent to a cell 2-representation.

2.3.6 Rank and action matrices

In the special case of a 2-category with only one object, tools from linear
algebra become accessible when studying the representation theory.

Let € be a k-linear additive, Krull-Schmidt 2-category with one object O,
and M a finitary simple transitive 2-representation of ¢". Then M(Q) ~ B-proj
for some algebra B. The rank of M is the number of indecomposable objects in
the category M(Q), i.e. the number of indecomposable projective B-modules
up to isomorphism. Assume that M has rank r, and denote the indecomposable
projective B-modules by Pi,...,P.. Then, for each 1-morphism F and each
j=1,...,r,

M(F)(F)) ~ DR
i=1

for some non-negative integers a;;. The r x r-matrix [M (F)] = (a;;); ;_; is the
action matrix of M(F).

2.3.7 (Co)algebras and (co)modules in 2-categories

Algebras and their modules can be generalized further, and exist on the 1-
morphism level in 2-categories. In this setting, the notions can also be du-
alized, and so we can define coalgebras and their comodules. Let € be an
additive 2-category. An algebra 1-morphism in € is a 1-morphism A : i — i
together with 2-morphisms 17 : 1; — A and i : AA — A, such that the following
diagrams commute, identifying A with A1; and 1;A.

AAA A4 A qa Mg

uAi lu | lu _
ldA ldA
AA—E A A

In particular, take € to be the 2-category with one object ), and morphism cat-
egory €' (0, Q) = k-vec — the category of finite-dimensional k-vector spaces.
Then an algebra 1-morphism in % is exactly a finite-dimensional, associative,
unital k-algebra. Similarly, the concept of left (and right) modules can be
generalized to a categorical setting.
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If € is a 2-category and A an algebra 1-morphism in %, then a left A-
module is a 1-morphism M together with a 2-morphism A : AM — M such
that the following diagrams commute.

AAM Yo MM Am

I N

AM ——M M

Similarly we can define right A-modules.

If (M,A) and (M',1") are left A-modules, then an A-module morphism is
a 2-morphism f : M — M’ such that foA = A’ oAf. The A-modules and A-
module morphisms in ¢ form a category Mody (A), and similarly for right
modules.

Now, these definitions can be dualized by reversing all arrows. As usual in
the categorical language, this results in a co-structure.

A coalgebra 1-morphism in a 2-category % is a 1-morphism C : i — i
together with 2-morphisms A : C — CC and € : C — 1 such that the following
diagrams commute.

c—2.cc C

idc ide
A CA A
Ac

Ce

cc—5ccc c<Eocc-fElc

Given a coalgebra C, a left C-comodule is a 1-morphism M together with a
2-morphism 7 : M — CM such that the following diagrams commute.

M—"sCM M

cM-2ccm  cM-Mm

Similarly we define right comodules. Again dually to the above, we can define
(left or right) comodule morphisms, and get a category Comody (C) of (left or
right) C-comodules.
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3. Summary of papers

Throughout, k is a field. In papers I, IT and III we assume that k is algebraically
closed and has characteristic 0. For n > 2, we set Q,, to be the quiver

n

1 2 3 n—1

of extended Dynkin type A,,_1.
Moreover, Q1 denotes the quiver below.

10

3.1 Paper 1

Let A, be the path algebra of O, modulo the relations that the concatenation
of any two arrows is zero. The algebras A, are examples of radical square zero
Nakayama algebras.

For each fixed positive integer n we study the tensor combinatorics of A,,-
A,-bimodules in terms of the left-, right-, and two-sided relations in the sense
of [15]. The enveloping algebra A, ®y A, is a special biserial algebra of
tame representation type, which allows us to explicitly classify indecompos-
able bimodules using results from [2, 23]. Up to isomorphism, they are the
following.

* Projective-injective bimodules F; ;, where i, j € {1,...,n}.
¢ String bimodules Wl.ff), Sg‘kj), Nl.(‘];.) and Ml.(‘];.), where i,j € {1,...,n} and

ke {0,1,2,...}. W,S,N or M is the shape, i|j the initial vertex, and k
the number of valleys.

* Band bimodules B(m, j, 1) where m is a positive integer, j € {1,...,n}
and A € k*.

The k-split bimodules are the projective-injectives and the string bimodules
of shapes W, § and N with O valleys. By [17] the k-split bimodules will
constitute the maximal two-sided cell.

The regular bimodule is the band bimodule B(1, 1, 1), and it will necessarily
be contained in the minimal two-sided cell.

Our main result is an explicit description of left- right-, and two-sided cells.
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Theorem. The two-sided cells are the following.
J /k-split consisting of all k-split bimodules;
* _Zu, consisting of all Ml.(‘(;) ;
s for each k > 1, g consisting of all string bimodules with k valleys.

* Zbana consisting of all band bimodules.
The two-sided cells are linearly ordered as follows.

Fespiic >0 vy >0 1> F2>0 0o >0 Fvand-

Theorem. Within the two-sided cells, the one-sided cell structures are as fol-
lows.

* Within _Z 11, left cells are indexed by indecomposable right A,-modules,
and right cells by indecomposable left A,-modules.

» Within _Zy,, left cells consist of all bimodules with the same second
coordinate in the initial vertex. Right cells consist of all bimodules with
the same first coordinate in the initial vertex.

s Within 7, k > 1, left cells consist of all string bimodules of shape W
and S, or N and M, with the same second coordinate in the initial vertex.
Right cells consist of all string bimodules of shape W and N, or S and
M, with the same first coordinate in the initial vertex.

* The two-sided cell _Zpuna is also a left and right cell.

In particular, within all two-sided cells except the minimal one, the inter-
section of any left- and right cell contains exactly one element.

3.2 Paper 11

In Paper II we study the problem of classifying simple transitive birepresenta-
tions of the bicategory Zp of bimodules over the dual numbers D = k[x]/(x?).
Note that D ~ A from Paper 1. We do a case-by-case analysis depending on
the apex of the birepresentation. The main result is the following.

Theorem. (i) Any simple transitive birepresentation of Zp with apex Z_spiis
is equivalent to a cell birepresentation.

(ii) Any simple transitive birepresentation of 9p with apex %, for k > 1,
has rank 1 or 2.

(iii) If M is a simple transitive birepresentation of 9p with apex g which
has rank 2, then M is equivalent to the cell birepresentation correspond-
ing to the left cell {N®) MK} (or {w®) 5K} ),

(iv) There exists a simple transitive birepresentation of Yp with apex 7
which has rank 1.

28



The cell 7y, = {M (O)} is not the apex of any simple transitive birepresen-
tation. We conjecture the following.

Conjecture. For each k > 1 there is a unique simple transitive birepresenta-
tion of Yp with apex _#y which has rank 1.

Part (i) is an application of results about fiab bicategories from [18], and
for part (iv), we need only note that the cell birepresentation corresponding to
the cell Zy, is a rank 1-representation with apex J;.

The proof of part (ii) is obtained by analysing the action matrices. Fix a
simple transitive birepresentation M of Zp with apex _#; for some k. An
important tool is our explicit knowledge about the multiplication table of the
indecomposable 1-morphisms in _#Z, as the action matrices must satisfy the
same multiplication table. Moreover, setting F' = Wy & Sy & Ny, b M;, yields,
for the action matrix,

Since M is simple transitive, the action matrix [F| has strictly positive integer
entries. Using results from [22], we find a finite number of candidates for [F]
and do a case-by-case analysis of them. This is the result.

Proposition. Let M be a simple transitive birepresentation of Zp with apex
Fx for some k > 1. Then the action matrices of the indecomposable 1-
morphisms in ¢y are, up to renumbering of the indecomposable objects in
M(i), either all [1] or

== g o Mal=1sa=} ).

Further analysis of the rank 2-case also yields part (iii) of the main theorem.

Inspired by work on birepresentations of fiab bicateogries, we consider
some constructions that illuminate similarities and differences between these
and the birepresentations of Zp.

In fiab bicategories, each left cell .’ contains a distinguished 1-morphism
G, called the Duflo I-morphism. The Duflo morphism is used in the original
construction of cell birepresentations in [15]. This concept is generalized be-
yond the fiab case in [24], and there are examples of a Duflo 1-morphism for a
left cell .2 which is not an element of the cell. We propose yet another gener-
alization, and prove that the notions coincide in the fiab case. As a categorical
contruction, it can be dualized. We prove that each left cell within any of the
two-sided cells _#x, k > 1, contains either a generalized Duflo 1-morphism, or
the dual version, a generalized co-Duflo 1-morphism.

The Duflo 1-morphism in a fiab bicategory often has the structure of a coal-
gebra. It was proven in [13] that simple transitive birepresentations of fiab
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bicateories can be recovered using categories of right comodules over coalge-
bra 1-morphisms. In the bicategory %, we find that the generalized Duflo 1-
morphisms indeed are coalgebra-1-morphisms, and the generalized co-Duflo
1-morphisms are algebra-1-morphisms. However, we prove also that cate-
gories of (co)modules, over any (co)algebra 1-morphism, cannot give rise to
simple transitive birepresentations of Zp of rank 1 with apex _# for k > 2.

3.3 Paper I

Fix a positive integer n. We let 7, = Z,, be the bicategory of bimodules over
the algebra A, from Paper 1. In Paper III we study the problem of classifying
simple transitive birepresentations of Z,. The main result is the following
complete classification of simple transitive birepresentations of %, with finite
apex.

Theorem. Fix a positive integer k.
(i) Any simple transitive birepresentation of 9, with apex 7, is equiva-
lent to a cell birepresentation.
(ii) Any simple transitive birepresentation of %, with apex 7y has rank be-
tween n and 2n.
(iii) For each 0 < j < 2n there are exactly (;’) pairwise non-equivalent simple
transitive birepresentation of 9, with apex _#y which have rank n—+ j.

As in Paper 11, the first part of the main theorem is an application of results
for fiab bicategories. The proof of the statements about birepresentations with
apex _Z consist of two components - action matrices and localization.

For the action matrices, set F = @ye » U. Similar to Paper II, the action
matrix [F] is a positive integer matrix satisfying [F]? = 4n[F]. We do a block
decomposition

Fi Fin
[F] =
F, nl F nn
and prove that each diagonal block must be as in the case of the dual numbers
from Paper 11, i.e. for each i = 1,...,n we have either
2 2
et o e[ 3

The n diagonal blocks are pairwise independent, and choosing all diagonal
blocks uniquely determines all action matrices of elements from _¢;. This
proves that the rank of the representation is between n and 2n.
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Further analysis of the case when rank(M) = 2n yields that M(Q) ~ B-proj,
where B is the direct sum of n copies of the path algebra of the quiver 1 —— 2.
Each such algebra has two indecomposable projectives, and there is one nonzero
morphism between them. The smaller action matrices, corresponding to birep-
resentations of rank smaller than 2n, would necessarily have that some of these
summands were replaced by a copy of k. On a categorical level, this would re-
quire that the two projectives over each of those summands became identified
- i.e. that the morphism between them would be made invertible. We realize
that this would, within B-proj, be a case of localization. Indeed, the general
idea of localization is, loosely, to make some chosen elements invertible, and
to do this in a universal way. We use higher categorical constructions to define
the notion of localization of birepresentations, and prove the following.

Theorem. If M is a simple transitive birepresentation of a bicategory €, and
7 is a €-stable collection in M, then the localization M[.# '] is also a simple
transitive birepresentation of €.

This allows us to construct the lower-rank simple transitive birepresenta-
tions as localizations of the cell birepresentation of rank 2n. The universal
property of the localization assures the uniqueness of the constructed repre-
sentations.

3.4 Paper IV

In the classification results of Paper II and III, knowing the explicit cell struc-
ture from Paper 1 was a key. However, for most algebras, the category of
bimodules is of wild type, making results like those in Paper I unlikely to be
found. In Paper IV we take some first steps trying to compare the cell struc-
tures of the bimodules over different algebras. Denote by %.# the bicate-
gory of bimodules over finite-dimensional associative k-algebras. The objects
of this bicategory are finite-dimensional associative k-algebras. For algebras
A and B, the 1-morphisms from A to B are given by finite-dimensional B-A-
bimodules, and composition of 1-morphisms is tensor product of bimodules.
The 2-morphisms are bimodules morphisms.

In paper IV, we study the two-sided relations between the identity 1-morphisms
in the bicategory A.# . Explicitly, the identity 1-morphism on A is the reg-
ular A-A-bimodule 4A ®4 —, so A > B if there is an isomorphism of A-A-
bimodules

MRpN~ADX

for some A-B-bimodule M, B-A-bimodule N, and A-A-bimodule X.
J-equivalence in .4 generalizes Morita equivalence, and several other
equivalences of “Morita type”. Most general of these is so called separable
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equivalence, which is a J-equivalence induced by left-right projective bimod-
ules.

We study the structure of bimodules inducing J-relation, proving for exam-
ple that if 4A4 is a direct summand of 4M ®p Ny4, then the projective covers of
AM and Ny are generators. Moreover, we note that surjective algebra homo-
morphisms and separable extensions of algebras induce J-relation.

We also use certain constructions involving groups actions. Given a group
G acting on an algebra A via automorphisms, we define as in [20] the skew
group algebra A x G as the vector space, A * G = A ® kG with multiplication

(a®g)(b@h) =ag(b)® gh.

Further, denote by AY the subalgebra of A consisting of invariants under the
action of G.

Theorem. Let A be a k-algebra and G a finite group acting on A via auto-
morphisms. Assume that char(k) does not divide the order of G. Then the
following holds.

(i) A~; AxG.

(ii) If G is abelian, then A ~ A°.

In [19], Peacock proves results about separable equivalence of algebras,
some of which can be directly generalized to J-equivalence. Most important
are the following two results.

Theorem. If A and B are algebras such that A > B, then for any algebra C it
holds that AR C >; BRKC and C QA >5 C ® B.

Theorem. Let k be an algebraically closed field, and A and B algebras such
that A >; B.
(i) If B is of finite representation type, then so is A.
(ii) If B is of tame representation type, then A is of tame or finite representa-
tion type.

We provide a number of examples of J-related algebras.

©

For positive integers n,k, set A, to be the path algebra of the quiver Q,

modulo the relations that any path of length k is zero. In particular, Ag") ~

k[x]/(x"), and A is the algebra denoted by A, in papers I-III. Denote by
A, the path algebra of 1 — 2 — ... — n modulo the square of the radical.
Moreover, denote by ® the path algebra of the Kronecker quiver 1 :\; 2
and by A’ the path algebra of 1 — 2 <— 3. The following result summarizes
out main examples of J-related algebras.
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Theorem. Let k be an algebraically closed field, and n a positive integer such
that char(k) does not divide n. Then the following holds.
(i) Ay >y A3 >y ... > k[x]/(x) >, kx]/(23) >; k[x]/(x*) >, k[x]/ ().
(ii) For all k > 2, k[x]/(x) ~y A,
(iii) k[x]/(x*) >; © >; k[x,y]/(x?, x,y?).
(iv) Ay >; ©.

Many of the J-relations we prove are induced by left-right projective bi-
modules, and therefore examples of separable division in the sense of [19].
Left-right projective bimodules are not very well-studied studied in general.
We make a small contribution to the topic. This gives information about the
possibility of separable division between certain algebras.

Theorem. IfA is a directed algebra and B is a self-injective algebra, then any
left-right projective A-B-bimodule is projective.

Finally, we formulate a conjecture regarding the relation of the Loewy
lengths of J-related algebras.

Conjecture. Let A and B be algebras such that A >; B. Then (0(A) < ({(B).
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4. Summary in Swedish — Sammanfattning pa
svenska

4.1 Bakgrund

Inom abstrakt algebra studeras algebraiska strukturer och homomorfier mel-
lan dem. En algebraisk struktur bestar av en mingd element, och operationer
pé elementen med vissa bestimda egenskaper. Exempel pa algebraiska struk-
turer dr (halv)grupper, ringar, kroppar, vektorrum och algebror. En algebra dr
till exempel ett vektorrum som har en bilinjdr associativ multiplikation, och
dessutom ett element 1 som dr neutralt med avseende pa multiplikationen. En
homomorfi mellan tva strukturer av en viss typ dr en funktion som respek-
terar operationerna, det vill siga uppfyller f(a-b) = f(a)- f(b), f(1) =1
och dylikt. Algebraiska strukturer kan anvédndas for att beskriva fenomen
som observeras i naturen, till exempel partiklar som interagerar med varan-
dra. Genom att abstrakt beskriva partiklarnas interaktioner — som vi kallar
operationer — och reglerna de uppfyller kan vi forsta en viss typ av partikel-
system som en viss typ av algebraisk struktur. Vi kan da axiomatiskt studera
alla strukturer med dessa typer av operationer som uppfyller samma regler.

Representationsteori &r studier av objekt via representationer, eller mod-
uler. Tanken #r att anvinda mindre komplicerade objekt for att forsta mer
komplicerade objekt. En algebra kan representeras med hjélp av vektorrum
och linjdra avbildningar. Eftersom linjir algebra &r ett mycket vélutvecklat
omrade dr det en klar forenkling gentemot att studera algebror direkt. Sam-
tidigt kan representationerna ge mycket information om sjélva algebran. Cen-
tralt i denna avhandling dr bimoduler, vilket dr vektorrum med tva kompatibla
modulstrukturer 6ver tva algebror. Nir vi studerar representationsteori kan
malet vara att klassificera sa kallade odelbara moduler. Som namnet antyder
kan de inte delas upp i mindre moduler; vi kan illustrera alla moduler som
ett antal odelbara moduler som ligger bredvid varandra. En sérskild klass av
odelbara moduler dr de enkla modulerna. Dessa dr de minsta byggstenarna,
eller atomerna, bland modulerna.

Kategoriteori tar abstraktionen dnnu ett steg ldngre. En kategori bestar ko-
rtfattat av objekt, och morfier (pilar) mellan objekten som kan sammanséttas
enligt vissa regler. Funktioner mellan kategorier som bevarar strukturen kallas
for funktorer. Kategorier och funktorer generaliserar en rad matematiska kon-
cept, bland annat algebror och representationer av algebror. Kategoriteori kan
fungera som ett verktyg for att beskriva vitt skilda matematiska koncept pa
samma sprak — precis som samma typ av ekvation kan beskriva fenomen fran
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olika vetenskapsomraden, kan samma kategoriteoritiska konstruktion beskriva
olika matematiska fenomen. En annan intressant anvindning for kategorite-
ori dr kategorifiering, det vill séga att hitta en motsvarighet i kategorivérlden
till ett objekt vi vill studera. Kategorifieringen #r i regel “svarare”, men har
a andra sidan mer struktur att fa information fran. Det var fran sddana exem-
pel intresset for birepresentationer av bikategorier kom nir det forst borjade
studeras systematiskt av Mazorchuk och Miemietz i [15].

2-kategorier generaliserar kategorier genom att tillata tva nivaer av struk-
tur. De bestar av objekt, 1-morfier mellan objekten, och 2-morfier mellan 1-
morfierna. Nir vi anvdnder diagram for att illustrera strukturerna ir ett typsikt
diagram i en (1-)kategori respektive en 2-kategori som nedan.

O—>0 040
~—_—7
De flesta intressanta exempel dr inte 2-kategorier utan den mindre strikta vari-
anten bikategori. 1 manga fall kan en bikategori dock ”striktifieras” till en
2-kategori. For merparten av den hér avhandlingen, som behandlar represen-
tationer av 2- eller bikategorier, dr distinktionen mellan koncepten irrelevant.

Precis som i den klassiska representationsteorin dr idén med birepresenta-
tioner av bikategorier att studera ett objekt via andra, “enklare” objekt. I fallet
med bikategorier kan de enklare objekten vara en samling vilstuderade kate-
gorier, och passande funktorer mellan dessa kategorier. Enkla moduler kate-
gorifieras av enkla transitiva birepresentationer, vilka alltsa utgor de “minsta”
birepresentationerna.

En bikategori av bimoduler #r en bikategori vars 1-morfier dr bimoduler
over algebror, och sammanséttningen av 1-morfier dr tensorprodukt. Tensor-
produkten &r en sorts multiplikation av bimoduler. I tva av artiklarna — Artikel
I och Artikel IV — studerar vi den kombinatoriska strukturen av vissa bimod-
uler under tensorprodukt. Fragan vi stéller oss kan beskrivas som féljer: om vi
fixerar en bimodul M och tar dess tensorprodukt med andra bimoduler, vilka
bimoduler kan vi d& fa? Eftersom tensorprodukten inte dr kommutativ — ord-
ningen spelar roll — maste vi stdlla denna fraga nér vi tensorerar M fran vinster,
hoger, och bada sidor. Vi kan ocksa vinda pa fragan: vilka bimoduler kan vi
tensorera och fa M som resultat? Genom att beskriva tensorkombinatoriken
utifran den forsta fragan far vi den sa kallade cellstrukturen med vinster-,
hoger-, och tvasidiga celler. Cellstrukturen kan definieras for 1-morfier i mer
generella bikategorier och dr viktig ndr vi studerar birepresentationer. Varje
enkel transitiv birepresentation av en bikategori kan associeras till en unik
tvasidig cell, birepresentationens apex. Vidare ger varje vinstercell upphov
till en enkel transitiv birepresentation — en cellbirepresentation. I Artikel II
och III studerar vi klassifikationen av enkla transtiva birepresentationer av en
familj av bikategorier av bimoduler. Manga av de bikategorier vars represen-
tationsteori tidigare studerats har varit sa kallat fiab, vilket innebér att en rad
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tekniska villkor uppfylls. De bikategorier vi studerar hir &r inte fiab, varfor
de resultat om deras birepresentationer som presenteras hir utgor intressanta
tillskott till teorin.

4.2 Sammanfattning av avhandlingens resultat

k betecknar en kropp. I Artikel I, II och III antar vi att k dr algebraiskt sluten
och har karakteristik 0. I alla artiklarna forekommer viigalgebran over foljande
koger.

QI:IQ Op, n>2: n

1 2 3 n—1

I Artikel I undersoker vi tensorkombinatoriken av bimoduler 6ver algebror
fran en sirskild familj. Fixera n > 1 och lat A, vara vigalgebran 6ver Q,
modulo idealet som genereras av alla vigar av ldngd 2. D4 dr A, en Nakaya-
maalgebra med radikalkvadrat noll. Omslutningsalgebran A, ®y AyF ir en
sa kallad speciell biseriell algebra, sa dess vinstermoduler — alltsd bimoduler
over A, — kan klassificeras med hjdlp av resultat fran [2, 23]. De kan delas in
i tre grupper: projektiva-injektiva, strangbimoduler och bandbimoduler.

Artikelns huvudresultat &r en explicit beskrivining av tensorkombinatoriken
av de odelbara A,-A,-bimodulerna i termer av vinster-, hoger-, och tvasidiga
celler. De tvasidiga cellerna betecknas _Zpit, _Zpy> Fband Och 7 for k > 1.
De ir linjdrt ordnade med avseende pa den tvésidiga preordningen >:

Foplie >1 Iy >1 21 >5 F2>7 - >7 Poand-

Inom varje tvésidig cell utom _Zpanq giller dessutom att snittet mellan en
vénster- och en hogercell alltid innehéller exakt ett element.

I Artikel II studerar vi enkla transtiva birepresentationer av bikategorin av
bimoduler 6ver de duala talen D ~ A;. Beteckna med & bikategorin av bi-
moduler 6ver de duala talen. Fran Artikel I kédnner vi till cellstrukturen for
de odelbara D-D-bimodulerna, och gor en falluppdelning beroende pa vilken
tvasidig cell som &dr apex for representationen. Var huvudsats ger information
om enkla transitiva birepresentationer av & for alla mojliga dndliga apex. Om
apex dr den maximala cellen _Zp); dr varje enkel transitiv birepresentation ek-
vivalent med en cellbirepresentation. For varje annat val av dndligt apex giller
att en invariant kallad rang 4r 1 eller 2. Vidare géller for dessa val av apex att
en birepresentation av rang 2 dr ekvivalent med en cellbirepresentation. Vi
visar ocksa att det existerar en enkel transitiv birepresentation med rang 1 som
har apex _#1. Med stod i vara beridkningar formulerar vi en formodan om att
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det, for alla k£ > 1, existerar en unik enkel transitiv birepresentation av rang 1
med apex _Z.

I fallet med fiab bikategorier innehéller varje vénstercell en speciell 1-morfi,
cellens sA¥ kallade Duflo-1-morfi. Denna ir viktig for birepresentationste-
orin. Vi definierar en motsvarigeht i mer generella bikategorier, och bevisar
att var definition sammanfaller med den ursprungliga i fiabfallet. Vi visar
ocksa att vinsterceller i (relevanta delkvoter av) & innehéller en sddan gener-
aliserad Duflo-1-morfi, eller en dual version. For fiab bikategorier kan enkla
transitiva birepresentationer ocksa beskrivas som kategorier av hogerkomod-
uler dver koalgebra-1-morfier i bikategorin enligt [13]. Vi pavisar existensen
av bade koalgebra-1-morfier och algebra-1-morfier i &, men visar dven att
kategorier av (ko)moduler inte kan ge upphov till enkla transitiva birepresen-
tationer av & av rang 1.

I Artikel III bevisar vi formodan fran Artikel I, och generaliserar resultaten
i Artikel II till bikategorier av bimoduler 6ver A,, for godtyckligt n.

Lat &, beteckna bikategorin av A,-A,-bimoduler. Sirskilt dr da &; bikate-
gorin & fran Artikel II. Var huvudsats &r en fullstdndig klassifikation av enkla
transitiva birepresentationer av %, med dndligt apex.

Sats. Fixera heltal n,k > 1.
(i) Varje enkel transitiv birepresentation av 9, med apex Yy dir ekvivalent
med en cellbirepresentation.
(ii) Varje enkel transitiv birepresentation av 9, med apex 7y har rang mel-
lan n och 2n.
(iii) Forvarje O < j < n finns exakt ('JZ) enkla transitiva birepresentationer av
Dy, som har rang n+ j och apex _Zy.

En viktig komponent for beviset av satsen dr lokalisering av birepresenta-
tioner. Vi definierar detta som en birepresentationsteoretisk variant av klassisk
lokalisering i kategorier (eller ringar). Vi bevisar ocksa att lokalisering en
enkel transitiv birepresentation av en bikategori ger upphov till en ny birepre-
sentation, som ocksa den ir enkel transitiv.

Artikel IV — J-equivalence for associative algebras — behandlar en betydligt
storre bikategori dn de andra artiklarna, ndmligen bikategorin A.# av alla
bimoduler 6ver k-algebror, dir k dr nagon fixerad kropp. Objekten i ZB.# dr
k-algebror. 1-morfierna fran A till B dr B-A-bimoduler, sammansittningen &r
tensorprodukt, och 2-morfierna dr bimodulhomomorfier. Identitets-1-morfin
for ett objekt A dr den reguljara A-A-bimodulen 4A4, och vi studerar den tva-
sidiga relationen, alltsa J-relationen, mellan identitets-1-morfierna. Givet al-
gebror A och B sdger vi A >; B om det finns bimoduler 4Mp och gN, sa att A
ar en direkt summand av M ®g N som A-A-bimodul.

Vi bevisar ett antal resultat om konstruktioner som ger upphov till J-relation.
Bland annat surjektiva algebrahomomorfier, separabla algebrautvidgningar,
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skevgruppsalgebror och delalgebran av invarianter under en gruppverkan strud-
eras.

Vi generaliserar ocksa vissa resultat av Peacock gillande separabel divi-

sion, det vill sdga J-relation inducerad av hoger-vinster-projektiva bimoduler.
Dessa resultat ger att J-relation mellan tva algebror A och B bevaras om vi ska-
par tensoralgebrorna A ®y C och B®y C med nagon tredje algebra C. Dessutom
bevarar J-ekvivalens representationstyp.
Vi ger ocksa ett antal exempel pa J-relaterade algebror. Beteckna med A,(zk)
vigalgebran 6ver Q, modulo idealet som genereras av alla védgar av ldngd
k. Lat A, vara vidgalgebran av kogret 1 — 2 — ... — n modulo idealet som
genereras av alla vigar av langd 2. Slutligen, lat A} vara vigalgebran av kogret
1 — 2 < 3, och ® Kronoeckeralgebra. Vara viktigaste resultat sammanfattas
hdr.

Sats. Latk vara en algebraiskt sluten kropp av karakteristik 0.
(i) Ay >; A3 >5 ... > k[x]/(x2) >, klx] /(%) > k[x]/(x*) > k[x] /().
(ii) For alla n och alla k > 2, AW ~y k[x] / (x5).

(iii) k[x]/(x?) >; © > k[x]/(x?, xy,?).

(iv) A5 >; 0O.

Foljande pastaende tycks intuitivt troligt, och motségs in av nagot av vara
exempel eller resultat. Lat £¢ beteckna Loewyldngd.

Formodan. Om A >; B sa géiller ((A) < ¢{(B).
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