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1 Introduction

The pure spinor formalism for the superstring [1] has been shown to be tremendously useful
for efficient computation of scattering amplitudes involving bosonic and fermionic string
states at tree- and loop-level [2—6]. Its respective field-theory limit, namely the 10D pure
spinor superparticle [7], has also been proved to be convenient for studying and computing
10D super-Yang-Mills interactions, as well as for analyzing the high-energy behavior of the
theory through the use of simple arguments based on zero mode counting and pure spinor
algebraic properties [8, 9].

Soon after the discovery of his new superstring formalism, Berkovits introduced the
pure spinor versions of the 11D superparticle and supermembrane in [10]. In this work,



it was remarkably shown how the full field content of the Batalin-Vilkovisky description
of linearized 11D supergravity can elegantly be described by the 11D pure spinor BRST
cohomology. Although this fact gives the pure spinor formalism a privileged place as the
appropriate framework for a consistent covariant quantization scheme in 11D, no explicit
scattering amplitude computation has been carried out to date. This is mainly due to the
lack of understanding of the building blocks needed for evaluating pure spinor correlators,
including vertex operators of lower ghost numbers and 11D pure spinor identities.

Over the past few years, this 11D pure spinor program has been revived, and some
significant progress has been made. For instance, one of the authors recently introduced the
ghost number one and two pure spinor vertex operators, and developed a new prescription
for computing tree-level 11D pure spinor correlators [11-13]. Likewise, some technical
subtleties were found when trying to use a standard descent equation and define a ghost
number zero vertex operator [14], a fundamental piece for the calculation of four- and
higher-point interactions in 11D supergravity. These results provide the toolbox needed for
calculating three-particle scattering processes from pure spinor superspace expressions, and
demand a revision or more careful analysis of the ghost number zero vertex operator.

In this paper we start the study of both issues mentioned above. As in 10D, the explicit
computation of 11D pure spinor correlators requires the exact knowledge of the superspace
expansions of all the superfields defining the 11D pure spinor vertex operators, namely
the linearized 11D supergravity superfields. For this purpose, we find the complete set of
equations of motion of linearized 11D supergravity in superspace, from the linearization
of the 11D supergeometry and the four form field-strength of 11D supergravity. The
use of Harnad-Shnider-like gauges [15] on the lowest-dimensional components of the 11D
superfields will be shown to give rise to a solvable system of recursive relations yielding
every coeflicient of the superspace expansions of all the linearized 11D superfields. The
originality of our method relies on its feasibility and effectiveness within the pure spinor
worldline framework. Indeed, our approach is pretty much exclusive and convenient for
studying the specific forms of the 11D superfields involved in the construction of pure spinor
vertex operators in 11D. This is in contrast to the general analysis carried out in [16], where
superfields not directly relevant to the pure spinor formalism are studied. In this sense, the
results of the first part of our paper will have a transcendent and direct significance for the
development of the pure spinor program in 11D.

The second part of our paper discusses the construction of a covariant vertex operator
for 11D supergravity. This idea is strongly inspired by the relationship found between the
vertex operators of the 10D ABC [17] and Brink-Schwarz [18] superparticles in light-cone
gauge [19]. The 11D light-cone gauge vertex operators were introduced by Green, Gutperle
and Kwon in [20]. In order to reproduce these vertices from a covariant expression, we
will first define the 11D analogue of the 10D ABC superparticle, and show it contains
the same physical degrees of freedom as the standard 11D superparticle [20]. Next, we
construct a covariant vertex operator by making exclusive use of supersymmetric quantities,
as well as the linearized 11D superfields. The superspace expansions found in the first
part of this work will allow us to show that this covariant operator exactly reproduces the
Green-Gutperle-Kwon vertices in light-cone gauge.



The paper is organized as follows. In section 2 we review the pure spinor formulation
of the 11D superparticle, and discuss how the 11D supergravity physical states emerge
from the cohomology of the pure spinor BRST charge. Section 3 motivates the definition
of the linearized 11D superfields relevant to the definition of pure spinor vertex operators,
and constructs the full set of equations of motion and gauge transformations satisfied by
these. In section 4, we systematically solve the system of recursive relations found from
the previous set of equations when superfields are subject to Harnad-Shnider-like gauges,
and show they are self-consistent. Section 5 introduces the 11D ABC superparticle, and
presents an 11D covariant vertex operator made out of supersymmetric worldline fields and
the linearized 11D superfields, which is shown to reduce to the Green-Gutperle-Kwon vertex
operators in light-cone gauge. Section 6 closes with discussions and future perspectives.
We collect our conventions for gamma matrices in appendix A, and briefly review the 10D
ABC superparticle vertex operator and its relation to the light-cone gauge Brink-Schwarz
operators in appendix B. In appendix C we compare our equations of motion and superfields
to the ones in [16].

2 11D pure spinor superparticle

The 11D pure spinor superparticle action is defined by [10, 21]
1
S = /dT {Paafxa + Pa0r0% + wa0r A — 5P? . (2.1)

We use letters from the beginning of the Greek/Latin alphabet to denote spinor/vector
SO(1,10) indices. The variables (P,, p,) are the conjugate momenta associated to the usual
11D superspace coordinates (X%, 0%). The bosonic spinor \* satisfies the 11D pure spinor
constraint, i.e. (Ay*\) = 0, and thus its respective conjugate momentum wy, is only defined
up to the gauge transformation dw, = (7*A)a04, for any vector o,. Due to their wrong
statistics, (A%, wg) will be referred to as ghost variables, and assigned to carry ghost charges
1 and -1, respectively. The 11D gamma matrices will be represented by (v%)q3, (y*)8,
and they satisfy the Clifford algebra: (v%)as(7°)% + (7%)as (%)% = 2762, We will raise
and lower spinor indices by using the antisymmetric charge conjugation matrix C,g and
its inverse C*?, which obey the relation C,zC?® = 69, so that (y2)* = C*CP?(y)4 for
example (see appendix A for more details).

As is well-known, the space of physical states is defined by the cohomology of the BRST
operator Q = A%d,, where d, = py — %(vaﬁ)aPa is the familiar primary constraint of the
superparticle [20]. Such a cohomology can be shown to be non-trivial up to ghost number 7,
describing the 11D supergravity states in its Batalin-Vilkovisky formulation. More explicitly,
the ghost number 0, 1, 2 and 3 sectors respectively accommodate the gauge symmetry ghost-
for-ghost-for-ghost; the gauge symmetry ghost-for-ghost; the supersymmetry, diffeomorphism
and gauge symmetry ghosts; and the 11D supergravity physical fields. The higher ghost
number sectors form a mirror of the fields described above, and correspond to the 11D
supergravity antifields. One can easily see this by analyzing the ghost number three sector,



UB) = \a)8 >\5Aa55. The BRST-closedness condition implies that
QY =0 — Do Agse) = (V") (apAase) (2.2)
and the BRST-exactness restriction imposes that
O = QA — §Anps = Do gsy (2.3)

where A = AaAﬂAag, and A,g is a gauge parameter. These equations match the linearized
equations of motion of 11D supergravity in superspace [22], after making the identification
Anps = Caps, where Cyps is the linearized version of the lowest-dimensional component of
the 11D supergravity super three form. As we will see later on, in a particular gauge, one
can show that U®) has the #-expansion,

U == 200" 0)006) PP E)e — £ (3"10) 0 6) g 0)

F200"0)0"0)0n"0) (67%) — 109 0)(006) (3y46) (61720)
+0(6%), (2.4)

with cgpe, €qp, P2 being the three form, graviton and gravitino of 11D supergravity. Indeed,
they can be shown to satisfy the linearized equations of motion

8da[dcabc] =0, Oepe — 28&8(b60)a + 8bac(nad€ad) =0, (’Yabc)aﬁablpf =0, (25)
and gauge transformations

a

dCabe = 8[asbc} , Oeqp = a(atb) , o0vg = 8(1/{8 ) (26)

where sqp, tp and £° are arbitrary gauge parameters.

As shown in [14], it is also possible to describe the physical fields of linearized 11D
supergravity through a ghost number one vertex operator involving momentum variables.
Unlike the ghost number three operator, this alternative operator describes the 11D
supergravity three form gauge field through its field strength. Next, we review this
construction and extend the analysis elaborated in [14] to find a complete set of superspace
equations of motion giving rise to linearized 11D supergravity.

3 Linearized 11D supergravity equations of motion

Let us first set some notation. We will use capital letters from the beginning/middle of
the Latin alphabet to represent tangent/curved superspace indices, and lowercase letters
from the beginning (middle) of the Latin/Greek alphabet to denote tangent (curved) space
vector/spinor indices. The 11D supergeometry is then defined by the one form superfields EA
and Qg referred to as the vielbein and spin-connection, and the super-Bianchi identities

D14 = EPR?, DR,P =0, (3.1)



where T4 = DEA is the super-torsion, R4? = DO is the super-curvature, and D = EAV 4

is the super-covariant derivative. Its action on an arbitrary tensor Fa4,..4,, Bi...Bn g

Bi..B B:..B c Bi..B
DFay..Ay 0 =dFay Ay 0 Q4,7 FCas Ay T

— Fa,on, S B — (3.2)

where d is the ordinary exterior derivative. As is well-known, the following relations hold in
Lorentz superspace

g’ = 2(7")a” Qase (3.3)
Rapa” = (7)o" Rap.ca - (3.4)

3.1 Review of the ghost number one vertex operator

As discussed in [14], a simple way of defining a ghost number one vertex operator in
the BRST-cohomology, is via a linear perturbation of the BRST charge ) = A\“d,, by
Q — Q + UW. The nilpotency requirement of the deformed charge then automatically
implies that {Q,U (1)} = 0. This perturbation can readily be obtained from coupling the
pure spinor superparticle (2.1) to a curved background. When doing so, the BRST charge
can be shown to be defined as Q = \*E, M (Pr+Q Mg‘s)\ﬁ ws), where Py denotes the curved
space supermomentum. Therefore, U is given by

UD = X (Poho® + dghe” — Qg Nws) (3.5)
where hB = EAME](\})B = —ES)MEMB, (EAM, EMB) are the background values of the

vielbeins, and (ES)M, E](\})A) are their corresponding first order perturbations.

As a check, one can explicitly compute {Q, U (1)} = 0, to find the following relations

AN P, {Dahﬁa —ho? (ya)ﬂd} =0, (3.6)
AN ds [Dah55 - Qaﬂ =0, (3.7)
AN N wRap.6 = 0. (3.8)

As we will see below, these equations become identities after plugging the superspace
constraints of 11D supergravity.

3.2 Full set of equations of motion
Egs. (3.1) imply the familiar relations

[Va,VB}=-Tag"Ve — 2Qup,“Ve, (3.9)
Rapc” =2VuQpc” + Tas" Qrc” — Qo) Upyr” (3.10)

where [, } means graded commutator. The spectrum of 11D supergravity contains a three
form gauge field which can be promoted to the three form superfield F = ECEBEAF 5,



satisfying the gauge transformation 0F = dL, for any two form superfield L. Its field
strength takes the form G = dF', and it satisfies the Bianchi identity dG = 0. In order
to write down the full set of equations of motion of linearized 11D supergravity, one first
expresses the covariant derivative V4 = E4M 0y at linear order as

Va=Da—haPDg, (3.11)

where Dy = Ea™ 8. The dynamical constraints Tps® = (Y*)as, Gagab = (Yab)as, along
with the conventional constraints Tag5 = Toa® = T = Gapse = Gaaps = Gabea = 0 [22],
then imply the following set of equations of motion

2D(ahg)" = 20" () gy + 1" (1")ap = 0, (3.12)
2D, )" = 2Qap)° + (T)asha’ =0, (3.13)
aho” = Daha” = Taa” = Qua” =0, (3.14)
Oahe” = Daha® = 1’ (") pa + Qaa” = 0, (3.15)
Bl — Opha® — Typ® =0, (3.16)

Oahp® — Ophe — QQ[ab]C =0. (3.17)

Notice that egs. (3.12), (3.13) immediately imply egs. (3.6), (3.7), respectively. Using these
constraints, one can also show that (see [11] for a detailed discussion)

Riaps) + (V) (apTas) =0, (3.18)
Riapyp” +2(7)(8Tbja)” =0, (3.19)
R(aﬁ)’cd - 2D(a95)0d - (’Ya)ozﬁgacd =0, (3.20)

where T,5¢ is defined by the four form field strength G via

TaaB = (%dee)aﬁHbcdev (321)
and!
cde 1 cae 1 cae
(Ta"%)a’ = 22|00 (D)o + S (1a"")a” | (3.22)

Eq. (3.18) immediately shows the validity of eq. (3.8).
For later use, it will be convenient to rewrite R, in terms of Hgyp.q. This can readily
be done through the use of eq. (3.19). Explicitly,

Rapp® = (Rp“9) s Hyety » (3.23)
with
defg L[ ldce, fa) L defg
(Rbc )OC/B = 6 5b 50(7 )aﬁ + ﬁ('}/bc )aﬁ . (324)

'The tensors 7 and R defined in egs. (3.22) and (3.24), respectively, differ from those in [16] by factors
of -1 or i. See appendix C for a more detailed discussion on this point.



Likewise, eq. (3.17) is automatically satisfied by the relation
Qave = Iahe)e — Ojaliap + Ojchyq - (3.25)

The equations of motion associated to the components of the linearized version of the three
form superfield F' can directly be deduced from a four form superfield H defined from the

field strength G as [23]
Hapep = (_1)Q(P+N+M+C+B+A)+P(N+M+B+A)+N(M+A)E[DQECPEBNEA}MGMNPQ ’
(3.26)

which can equivalently be written as Hapcop = 4D[ACBCD}+6T[ABECECD}, where C'apc =
(—1)P(N+M+B+A)+N(M+A)E[CPEBNE’A}MFMNP, and T is the flat space torsion. The
letters in the exponents denote the degree of the index to which it is associated, so it takes
the value of 1 if the index is spinorial, and 0 if it is vectorial. The expansion of (3.26) then
yields

D(oCpse) +6(7*)(apCase) = 0, (3.27)

9aCaps — 3D(Caps) + 3(7")(asChas) = —3(Vab) (ahs)” > (3.28)
201,Chjap + 2D(aChyab + (79)apClab = 2(7p°)aphale — 2(Vab)s(ahs)’ » (3.29)
3014Cela — DaCabe = —3(Vap)asha” (3.30)

The equations of motion displayed in (3.12)—(3.17) are invariant under the gauge transfor-

mations
Sha® = Dal® + (7)agh” Sha” = Do AP + A° 005" = Dal\g®,
Sha = 0,A" + AP, Sha” = 04\, 000” = 00", (3.31)

where A%, AY, AP = i(y“b)aﬂl\ab are arbitrary gauge parameters. Similarly, the gauge
transformations acting on the components of the superfield C', which leave the equations of
motion listed in (3.27)—(3.30) invariant, take the form

50&56 = ( A,BE ( a) ozBAae) ’ (332)
2 1

50&(16 - 38 Aae + 3D( A €)a + g(’yb)cxeAba + (’Yab)ozeAba <333)

5Caba = ga[aAb]a + gDo&Aab - (7ab)aﬁA6 y (334)

5Cape = Oy - (3.35)

Next we use these transformations to conveniently fix the lowest-dimensional components
of the h-, ()- and C-superfields to specific values. This gauge fixing will allow us to find a
system of recursive relations, which will be systematically and explicitly solved to obtain
the full #-expansions of the linearized 11D superfields.

4 Superspace expansions of the h-, 2- and C-superfields

In this section, we will show the system of equations defined by the relations (3.12)—(3.17)
and (3.27)—(3.30) is closed, by explicitly solving it in the Harnad-Shnider-like gauges.



4.1 Harnad-Shnider-like gauges

As done in 10D [15], one can use the gauge transformations listed in (3.31)-(3.35) to impose
the so-called Harnad-Shnider-like gauges

0°hat =0,  0°Qaa” =0,  6°Canp =0. (4.1)

After contracting both sides of the C-field equations of motion (3.27)—(3.30) with 8%, and
introducing the D-operator D = 0“0,, this gauge choice implies

(D +3)Cgse + 30%(7")a(8Case) = 0, (4.2)
(D +2)Cuass — 20*(7*)a(5Chas) = 20 (Yab)a(shs)” » (4.3)
(D +1)Cpab + 0% (7)apClat = 20 (V") aphaje — 0" (Yab)ashs’ , (4.4)
DClape = 3(07/ap) shey” (4.5)

Analogously, after contracting both sides of the equations of motion (3.12)—(3.15) with 0%,
one gets for the h-fields

(D + D)hg® = hg’ (67%)s + ho"(07")5 = 0, (4.6)
1 C a
(D + 1)hg’ — 1(9717 )’ Qe + (07")gha’ =0, (4.7)
1
Dho® + 46%(7;%°%) .2 0, C.oge + 1(971’6)69&,)6 =0, (4.8)
Dha’ + (07%)5he” = 0, (4.9)

where we used egs. (3.3), (3.21) and (3.25). Likewise, egs. (3.19) and (3.20) together give
(14 D)Qsc" = (R ) g Hepgr — (07)5Q0c” = 0. (4.10)

The G-expansions of the superfields can now be obtained by recursively solving the equations
above. The first step is to input the zeroth order in @ for the fields Cype, he® and hg,

Cube = Cape + 0(9) , h,® = —\Ifg + 0(9) , hap = —€ap + 0(9) , (4.11)

then egs. (4.5) and (4.9) can be used to find the O(0) terms in Cyp. and hgy, respectively.
Similarly, eq. (4.9) gives the ™ term of h,® in terms of 67! terms in Cyy. and hyp,. From
these three fields the f-expansions of all other fields can be determined, as depicted in
figure 1. The interpretation of the figure is as follows: the 67! terms in Q.4 are determined
by 0" of Cupe and hgp. Then the newly determined Q.45 and h,® give the components
of he?. Similarly, the components of ho® and Clqp are obtained from ho?, hap, and Cape.
Finally, Coqp and ho® determine C,g,, which gives the superfield expansion of C,g,. We
will see this explicitly in the next section where we give the recursive equations and display
the superfield expansions.



Caab

Caps

Figure 1. Schematic representation of the equations of motion contracted with 8. Arrows
indicate f-expansion dependency, for example, the arrow pointing from Cyp. to Q44p indicates that
components of order ™ in the former contribute to components of order §7*1 in the latter.

4.2 Example expansions

Here we provide the superfield expansion of h,? and h,®, which will be important in the
next section where we provide a covariant vertex operator in 11D. In addition, we provide
the ghost number three vertex operator for the pure spinor superparticle up to §°. Starting
with (4.11) we can obtain the first order in 6 of the higher-dimensional component of the
C-field using eq. (4.5). For higher orders in 6, the D-operator just becomes a (non-zero)
multiplicative factor and so it can be inverted. Then (4.8), (4.9) and (4.5) can be solved,
giving the initial set of recursion relations

4 1
haﬁlen = _*HQ(%dee)aﬁachde’é)nfl - 7(97110)/89(160‘97171 ’ (4'12)
n in
1
3 4 3
Cabc’gn = ;0 (V[ab)aﬂhc] ‘977.—1 . (4'14)



The expansions of the remaining fields are then obtained from these initial three, using the

remaining equations of motion. In order of dependence, they are

Qacd | on —

h66|9n -

hﬁa|9n

Cpab|gn =

Caps| gn

Cpselgn

4
n+1
4(n+1)

1 1
> h5 _ eb @
n_'_l(fy)(s ﬁ‘@nfl n+1(7)ﬁ b|0n717
2

n+1 (97[60)5ha]c|9n—1 -

2
o 2(97b)(50¢5)ba|9n—1 +

n—+1
1

(G’Vbc)éﬂﬂbcbn—l - m(af}/a)ﬁha(&‘gn—1 ’

(encdefgl)ﬁaecfglbn—l (G'Ya)aQacdygn—l )

1 1
. (7%)5C, S
w10 8Ceablgn — o

0va) (51"

on—1>

2
n+ 2

3
m(ﬁa)(ﬂo&)a‘gnq .

(07ab) 515" gu s

(4.15)
(4.16)
(4.17)
(4.18)
(4.19)

(4.20)

We remind the reader that the tensors 7 and R can be found in egs. (3.22) and (3.24). To
simplify the expansions we replace 9, — kg, and introduce the Schoonschip notation, where

vectors contracted with a tensor appear as indices. For example, 7%kq — v*. Keeping terms

up to % in hgp, we find the superfield expansion

ho1a2 |90 = — Moz
ha2| ) = 4 (9722 0)

1
ha1a2 ‘92 =1 Z(e,yagblke)ealbl

_ 1(97-alblb2b3b4,ya29>hb1b2173b4
2

1
ha1a2|93 — _ ﬂ(evazblke)(eval \I/bl)

1
= 5 (07 (0" )

1
4+ ﬂ (Q,thblbz 9) (9,%71 \1;62 )kal

o 2(9Ta1kb1b2b3,ya29) (97171[32 \Iij)

L1102 |94 - _ ﬁ(Q’Yalblka)(97a2b2k0)€b1b2
1

192

1
a2b1ba b1bsk bobs 1.a1
+ 193 (0~ 0)(0~ 0)e””k

B 1(HTalkblbzbg,yage)(07b1b2b4k9)6b3b4
4

1
2
1

+ 7 (97'a1b1b2b3b4,}/b5 9) (97a2b5k9)hb1b2b3b4
96

L

96

+ i (9Tblb2b3b4b5’yb6 9) (9,}/@251 bs g)hb2b3b4b5 ka1
96

+0(6°),

(e,yagblkg)(e,yblbzke)ealbg

(97-(11 kblbgbg,yaz 6) (0Tb1b4b5b6b7’}/b2b3 9)hb4b5b6b7

+ (97-b1b2b3b4b5,ya1 9)(97a2b1k9)hb2b3b4b5

~10 -

(4.21)
(4.22)

(4.23)

(4.24)

(4.25)



and keeping terms up to 63 for h,® we have

ha?|90 = _¢3 (4.26)
a 1 a_a
ha1 ‘01 = +§(fyblk0) € 10
_ (97-a1b1b2b3b4)ahb1b253b4 (4.27)

a 1 afPna
ha1 ‘02 = _g(fyblke) (97 1\Ilb1)

1
= (007 )

1
+ g(,yblbge)a(e,yfn \I]bQ)kal

- 6(¢9Ta1kb1b2b3)a(9’)/blb2 \Ijbs) (4.28)
1
hailgs = =g (1O (O PFO) e
ARG
+ ) gy g e

1
+ ﬂ (,yb1k9)a(97~a1bgb3b4b5,yb1 g)hbgb3b4b5

1
+ ﬂ (,yblke)a(gTblbgbgbAng),ym Q)hb263b4b5

n i (1b2)0x (T trbsbsbsbo b2 g pbsbabsb fas

_ (97’&1kb1b2b3)a(97b1b2b4k0)6b3b4
_ 2(97—a1kb1 bobs )a (9Tb1b4b5b6b7’yb2b3 9)hb4b5b6b7 (4‘29)
+0(6Y).

In addition we present the f-expansion of the ghost number three vertex operator U®) =

ANA A1Cqp~, which describes the physical fields of 11D supergravity in the cohomology of
the pure spinor BRST charge [10]. Up to 6°, it takes the form

Caxalgs = —%(/\71”9)(/\7629)(/\*yblb39)eb2b3
— LORM) ) ) (4.30)
Conlgs = +5 (0"10) (0 260) (0 6) (6 07)

1
= £ (O (A0 (0) (0772 8") (4.31)
1
Caarlgs = +§(Mbl9)(Mmg)(Avblbsa)(evbgmke)ebgm
— S 00") (X 26) (3g156) (6 11k
11

192
11

BRTTL

()\,yln 9) ()\,ybz 9) ()\,ylnbg 9) (97'172174bsb6b7,yb3 9)h54b5b6b7

)\'}/bl 9) ()\,ybz 9) ()\,ybg 9) (97-61b4b5b6b77b2b39>hb4b5bgb7
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- 1*5136W’le)(mbzm(mblbmb@@ﬁe)(99>hb3b4b5”6

1 b1 b1b2 b3bbsbsb7bs babsby b5bgb7bs
+ 5575 XM (AR 0)(0~7"0)h

1
+ 207 ()"Ybl 9) ()\,sz 9) ()\RbSb4b5b6b7b8 9) (Q,Ybl babsby Q)hb5b6b7b8 (4_32)

+0(69).

The definitinos of the tensors 7 and R can be found in (3.22) and (3.24). In these expansions
we introduced the four-form field strength,

habed = 4a[acbcd] > (433)

which makes gauge invariance under cap. — Jjqwpo manifest. In the supplementary material
attached to this paper we include expansions of all the fields up to 6°, both as they
appear above and also after expanding the tensors 7, R, and all resulting gamma matrix
products.? These were obtained by implementing the recursion relations in FORM [25] and
manipulating the gamma matrix products using routines presented in [26].

5 A covariant vertex operator for 11D supergravity

This section introduces, for the first time, a covariant vertex operator for 11D supergravity
in ordinary superspace. To this end, we first construct the 11D analogue of the ABC
superparticle [17].

5.1 The 11D ABC superparticle

It is well-known that the 11D superparticle possesses first- and second-class constraints,
which cannot be easily separated out in a manifestly Lorentz covariant manner. As will
be shown below (see appendix B for the 10D analogue), one can overcome this difficulty
by writing an alternative fully first-order framework, subject to a specific set of first-class
constraints. The resulting theory, which we will refer to as the 11D ABC superparticle, will
then be shown to be physically equivalent to the original 11D superparticle [20].

The 11D ABC superparticle action will be defined as

S = / dr[P9; Xo + Padrb® + pA + EaBY + 1¥PC0g] (5.1)
where p, &, 1*? are the Lagrange multipliers associated to the constraints
A= PP, B = (r*d)*P,, Cap = djudpg (5.2)

and d,, is defined as in section 2. The only non-zero (anti)commutators describing the
constraint algebra are given by

(BB} = —(1)PPaA,  [CapnCod = ~4(y")gsPuCar . [B*.Cos] = 20354 (5.3)

2Since the 3-point function in 11D pure spinor superspace involves the superfields ®* = A*ho® and U®,
see [11, 23, 24], we provide the #-expansion of U® up to 6.
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where we are using barred and underlined letters to denote index antisymmetrization. In
order to show that the physical degrees of freedom of the model (5.1) match those of the
11D superparticle, we need to define the so-called light-cone gauge.

5.2 Light-cone gauge

We begin by defining the light-cone directions
1
X+ = —(X%+ x19), 5.4
\@( ) (5.4)
and transverse directions are denoted by i, j,l. We take gamma matrices to be represented by
oo 0 o i (00 = —iv2I4p 0 (5.5)
W \=ot,, 0 )7 B0 —ivRL, ) T 0 0)’ '
where o* are SO(9) Pauli matrices and A, A are SO(9) spinor indices. Although we use
dotted index notation as in 10D, in 11D these indices can be contracted using the charge

0 —1I;
C.z = AA ) 5.6
3 (IBB 0 ) (5.6)

conjugation matrix,

As usual, one can use the constraint A = P?P, to fix X', and to determine P,

PP
+_ ot - - _
XT=a"+7P", P = 9pr (5.7)
Moreover, one can use the constraint B to fix one of the SO(9) components of % and d,
- 7\« 1 ap— 1 7\
(770)a=0, (v = 5z[-(")*P” + (y'd)"R]. (5.8)

The remaining variables are then given by (X~, X? P+, P’ 64 pp). For convenience, in-

stead of (64, pp) we will use the pair of variables (d4,qp), where qo = pa + %(VGG)QP(I is

the supersymmetric charge. It is not hard to check that,

{da; dﬁ} = _('Ya)aﬁpa , {day QB} =0, {Qaa CIB} = ('Y%aﬁpa ) (5-9)
which implies that
{da,dp} = —daB, {da,qB} =0, {ga.98} =048, (5.10)

where we used the redefinition dy4 — \/v2iP*d4. In this manner, the constraint Cap
requires that d4 obeys the following gauge transformation,

ody :mABdB, (5.11)

where myp is a completely antisymmetric matrix. The constraint C,3 = 0 requires that
da = xya, where y is a fermionic constant, and y4 is a bosonic SO(9) spinor, and so
eq. (5.11) allows us to set da = (d1,0,...,0). Using that Cng is invariant under do, — —dq,
one can fix the eigenvalue of d2 = —1, and therefore the only dynamical variables are defined
by (X~, X%, P, P? qa). This is exactly the same number and type of variables describing
the light-cone gauge 11D superparticle [20]. Indeed, the Hilbert space is spanned by the
vector space realizing the g-algebra in (5.10), i.e. it is described by 2% = 256 states, the
number of the 11D supergravity physical states.
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5.3 Vertex operator

The covariant vertex operator will be made out of supersymmetric quantities, and the
linearized 11D supergravity superfields studied in previous sections. As in 10D, see ap-
pendix B for a short review, after adequately imposing the light-cone gauge conditions and
solving the C-constraint of (5.2), the covariant operator will be shown to coincide with the
Green-Gutperle-Kwon vertices from the 11D superparticle [20].

Concretely, we define the 11D covariant vertex operator as

V = P P’hyy, + P%ho%d, (5.12)

where hgyp, he® are the linearized superfields of section 3. This vertex is the 11D analogue
of the Siegel vertex operator for 10D super-Yang-Mills [17], see eq. B.2.

In addition to the constraints fixed for the world-line variables in the previous section,
we also need to gauge fix the physical fields. We take light-cone gauge fixing conditions

et =0, vt =0, cap” =0. (5.13)

We assume that the momentum carried by a physical state satisfies k™ = 0, and that k™~ is
non-infinite. This means that the k&’ components need to be complex, in order to maintain
the massless condition k2 = 0. Using residual gauge freedom and the conditions in (5.13)
we can further fix

ek’ =0, &' =0. (5.14)
For the three form cg. we have simply
Ciabki =0. (515)

Additional constraints can be imposed on the gravitino but for this section we only focus
on the bosonic sector, so we ignore it from now.

To proceed with the comparison to [20] we sectorize the vertex operator into parts
containing €~ ~, €7¢, €9, cij and c¢;;. Keeping only terms with €~ and inserting the
superfield expansions of the previous section into the vertex operator (5.12) we find that
all terms containing 6 vanish due to the light-cone gauge conditions and the fact that the
one-form ¢ and two-form v* are symmetric in their spinor indices. For example, we have

a 1 a
(0v°60) = 5 (07°71"0) = 0., (5.16)
and similarly
(077+0¢0) = 0. (5.17)

Due to this, the vertex operator for e~ becomes

V. =—-P"PTe . (5.18)
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For the €/~ components of the graviton, one also needs to make use of

as well as the substitution
1
0 = ——(v")* (g5 — d 5.20
(1) (43 — ), (520)
which are both valid in light-cone gauge. The vertex operator then becomes
; 1 1 4 .
_ Jd—p pt _ +ik +ik -
Ve =" PPT = (av™ Q)€ + g d)e
: 1 .
= PP — 16(q'y+lkq)e7’_ . (5.21)

The second equality comes about because the term with two d, vanishes due to the Cyp
constraint. In fact, any term with more than one d, will automatically vanish by using
Fierz identities and the Cyp constraint in (5.2). Next, the term containing two ¢, charges
can be mapped to SO(9) rotation generators introduced in [20]. Defining

G 1
2] +7,j
they obey the algebra
[RY, Ry) = 6,0, (5.23)

and in terms of these generators the final form of the vertex operator is,
V|, =é PPt —RFPTe. (5.24)

For the transverse components €;; we use the identities (5.16), (5.17), (5.19), as well as the
replacement for # variables in terms of ¢ and d with (5.20) to find the vertex operator

1 .
V| = —eij PP’ + 8((J’Y+’k q)ei; PP (P)~
! +aik +ajk +y-2 1 +ik +ik +1-2
L ai a ii P _ ? J i P . 5.25
+ 768( Y (g T ) e (PT) as (@) Y q)eij(PT) (5.25)

For SO(9) we have the Fierz identity

1 s 1
qaqB = q°0AB + 32(Uij)AB(qUUQ) 96(01]1)AB(qUZJZQ) (5.26)
It is not hard to show that this equation implies the identity
(g7 q) (g 7P kakpha = 5(avq) (a7 q) kb (5.27)

To show this, recall that v is a projector, and that the expressions above are proportional
to SO(9) spinor expressions, for example (¢y77!q)  (go¥'q). Plugging eq. (5.27) in (5.25)
then gives the result

1 : _
i = 128(61’7+’k 0)(qr*q)ei (PT) 72,

= —EijPin + 2Rik6ijpj — 2RikRjk6ij , (5.28)

N . A
Vv —€;; P'P7 + g(Q'Y+ZkQ)€ijP](P+)_1

which is in complete agreement with [20].
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For the three form vertex operators we work along similar lines and find

1 i _
Vie,- = %(Q’Yﬂ]lQ)Hijl ) (5.29)
% 1 ) 1 12131
o = i (P = 51 (av 50)) g (a7 2"g) (5.30)

Identifying R = 9—16(q7+ijlq), these components of the vertex operator become

174 _ Rileijli 7 (5.31)

Cij

9 L
VI, = Hipigis (P" — gR“k)RmS“ , (5.32)

Cijl

which is once again in agreement with [20].
The analysis for the fermionic states immediately follows from supersymmetry
arguments.

6 Discussions

In this work, we have found a compact and straightforward list of recursive relations, (4.12)—
(4.20), which determine the superspace expansions of all the superfields describing linearized
11D supergravity, and which are relevant to the pure spinor formalism. These results
possess a variety of applications including the computation of three-particle interactions with
manifest supersymmetry, the construction of a new pure spinor twistor transform describing
11D supergravity along the lines of [27-29], the superspace expansion of multiparticle
superfields relevant to perturbiner methods,? among others. We plan to explore these
directions further in the near future. In particular, the 3-point correlator has been found
in [24] from a field-theory perspective, and in [11] from a worldline approach. The component
amplitudes should then immediately follow from an appropriate projection procedure, and
the #-expansions presented in this paper. We plan to tackle this problem in the near
future, as well as to extend the state-of-the-art amplitude prescription, so that supergravity
interactions involving an arbitrary number of external bosonic and fermionic states could
directly be obtained from pure spinor superspace expressions.

Furthermore, we have introduced the so-called 11D ABC superparticle, and have shown
that the respective covariant vertex operator (5.12) reduces to the Green-Gutperle-Kwon
operators after imposing the light-cone gauge. This result also gives rise to several follow-up
ideas. For instance, although the 10D ABC superparticle is equivalent to the Brink-Schwarz
superparticle in light-cone gauge [31], its covariant quantization fails in describing 10D
super-Yang-Mills [32]. One possible way of fixing this issue is by introducing an extra
constraint, which defines the so-called first-ilk or ABCD superparticle. It is the BRST
quantization of this model which reproduces the right physical spectrum [33]. It would be
interesting to investigate if the same phenomenon occurs in 11D, as well as to explore the
possible modifications one needs to make to the 11D ABC superparticle here proposed, so
that the BRST treatment of the resulting model reproduces the physical degrees of freedom

3See [30] for the 10D analogue of this statement.
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of 11D supergravity. It is worthwhile mentioning that the infinite tower of ghosts in the
BRST-closed vertex operator of the 10D ABCD superparticle can effectively be described by
the pure spinor sector of the ghost number zero vertex operator in the pure spinor worldline
formalism [34, 35]. This means that the computation of the BRST-closed operator in the
11D ABCD superparticle will provide extremely important information about the structure
of the ghost sector in the pure spinor vertex operator of ghost number zero. We leave the
study of this issue and related topics for future work.
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A Gamma matrix conventions

A.1 10D gamma matrices

We define the 16 x 16 gamma matrices,

where the superscript 1" refers to transposition, and the ¢ matrices are defined by,

ct=rterter?, (A.4)
=191 er?, (A.5)
=19 er?, (A.6)
ct=rler?el, (A.7)
d=rerel, (A.8)
d=r’eier, (A.9)
o=@l 73, (A.10)
F=121®1. (A.11)

The 7 matrices are partly rescaled Pauli matrices,

a0y e (01
10 ~10
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A.2 11D gamma matrices

We abuse notation by referring to both the 11D and 10D gamma matrices with . In 11D
we make the initial definition of the 32 x 32 gamma matrices,

01
= A.13

i=0,...,9 ' 0
Y — . . A14
ﬁyaﬁ < 0 —Z"Y7‘> ( )

Next we redefine v <> 419 in order to have the light-cone directions defined as in eq. (5.4).
Additionally in order to have the block form for 4%, we rotate all gamma matrices by
v — R-~-RT where

1000
0001
= . Al
R 0010 (4.15)

0100

Finally in 11D we have a charge conjugation matrix,

ws_ [0 1
Cﬂ_<_1 0). (A.16)

Our conventions for products of gamma matrices keep expressions as similar as possible
to 10D gamma matrix products. So our definitions of forms are, for example, (7%°),” =
(Y1) 05 (7?18, At times we have to raise and lower spinor indices using the charge conjugation
matrix. We always raise or lower the right-most index in gamma matrix products, for

example
()7 = O (), = ~(70) (A17)

where in the last equality we used that the charge conjugation matrix is antisymmetric.
Spinor products are written such that, if present, the charge conjugation is contracted in to
the right-most spinor, so for instance

(MPN) = (APCN) (A.18)

with ordinary matrix multiplication inside the parenthesis.

B The Siegel vertex operator for 10D super-Yang-Mills

In search for an alternative manifestly supersymmetric description of superstring theory free
of the quantization problems presented by the Green-Schwarz superstring, Siegel proposed
a completely first-order formulation for the particle-limit of the latter [17]. The worldline
variables of this proposal consist of the coordinates (X™, %), and their respective conjugate
momenta (P™,p,), subject to the constraints

A=P"P,, B=("d)aPn, C™P = (dy™d), (B.1)
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where d,, is the familiar fermionic constraint of the Brink-Schwarz superparticle. Throughout
this appendix we will use letters from the middle/beginning of the Latin/Greek alphabet to
denote SO(1,9) vector/spinor indices. This new superparticle model was later shown to
correctly reproduce the massless states of the open superstring when quantized in light-cone
gauge [31]. The super-Yang-Mills vertex operator was thus found to be described by

V =P Ay + d W (B.2)

The objects A,,, W< in (B.2) are the familiar 10D super-Yang-Mills superfields associated
to the gluon and gluino states, respectively. They satisfy the superspace equations of motion

DaA,B + DBAa = (Vm)aﬁAm ; DaAm - 8mAa + ('YmW)a 5

1 mn
DaW’ = =2(v")a Fyn s DaFun = 2030 W) (B.3)

where A, is the lowest-dimensional component of the super-gauge connection, and Fj,,
is the field-strength superfield. After fixing the Harnad-Shnider gauge 6“A, = 0, these
equations provide a solvable system of recursive relations which yield the superspace
expansion coefficients of all the 10D super-Yang-Mills superfields, at all order in 6 [36, 37].

Next we study the vertex operator (B.2) in light-cone gauge, and show it matches the
light-cone gauge operators of the Brink-Schwarz superparticle.

B.1 Light-cone gauge

The light-cone gauge conditions on the worldline fields read

Xt =af+Pr, (B.4)
(Y70)a =0. (B.5)

Using the SO(8) splitting 6 = (0%,0%), where a, G are respectively SO(8) chiral and
antichiral spinor indices, one can write eq. (B.5) in the equivalent form % = 0. This is
easily seen to be the case in the basis where the gamma matrices are represented as in
appendix A.

The supersymmetric derivative and charge are denoted by d, and g, respectively, and
defined as

1

do = pa + §<7m0)apm , (BG)
L

oo = Pa — 5(7 e)apm . (B7)

Their forms in light-cone gauge are given by

_ - 1 . V2

dy = pa + i(UZ)daeaiDi dg = pa — 7‘9ap+ > (B'S)
1 . 2
Qo = Pa — i(az)aaeapi Qa = Pa + \Q[HaPJr? (BQ)
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where do = (dy,ds), Go = (¢a, @a) and we use i, j, k for SO(8) vector indices. Likewise, the
non-vanishing components of the C-constraint in the light-cone frame read

Ct =V2d,(6")%dy,,  CY* =2d,(c"F)d, . (B.10)

Moreover, the SO(8) spinor variables S of the light-cone gauge Brink-Schwarz superparticle,
are related to the supersymmetric charge via

a

50 = 2

Vvaps

As usual, we will assume kT — 0. In order for the component £~ to remain finite, one

(B.11)

must have k’k* — 0. This means that the momentum will be taken to be complex, and
be restricted to take real values again in our final formulae. The use of this configuration
and the gauge symmetry de,, = O, ), allows one to set €™ — 0. Similarly, the transversality
condition requires €'k’ — 0, and thus €~ is finite. Analogously, the equation of motion of
the gluino imposes that its SO(8) components are related to each other. All in all, one has

k,zkz Eiki 1 . . . )Zd
+ _ - _ + _ -_ % — = (5 .£a a_ A
k _07 k _2k+76 _07 € _k+a Xa = \/i(a)aaklf ) 5 _k+7 (B12)
where x® = (x%, x%) is the gluino field.

Let us now analyze the covariant vertex operator (B.2) in light-cone gauge. To this

end, we first list the f-expansions of the superfields A,,, W (see [36, 37]),

1 1
Am = em — (Xymb) — §(97m7pq0)qu + E(&ymyp%)@vaq@)

1
+ 253 O1mrs) (67790)" fq + O(6%), (B.13)
1 1 1
W2 = X = L (7"0)° fonn 5 (7 0) Ornx300) + 15 ("0 (9070
1
— 56 (10 (03:7710) OmDpxa8) + O(6%). (B.14)

It is not hard to see that AT = 0 in light-cone gauge. Therefore, the vertex operator (B.2)
can be written as

V=-PA" + P'A" + d,W* + d; W (B.15)

For simplicity, let us focus on the bosonic sector. The fermionic counterpart directly
follows from supersymmetry. Using egs. (B.13), (B.14), one finds that all the terms of the
expansions vanish except for those linear and quadratic in 6%. Explicitly,

V2

g o 1 .
V=-P"|le + 1 (90”9)1@@] + P'e" +d, [ - 2(0”0)“/@;63}
o 5 1 .
=—Pte + Pe — [(HUZJH)kiEjPJF - i(dalw)k’iej . (B.16)
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The relations (B.8), (B.9) define #* by the simple formula

a 1 a a
0 = s lat = ). (B.17)

After plugging (B.17) into (B.16), and using (B.10), one is left with

1

- i i 2 ij ij ij
V=—Pte + Ple — SPﬁ(qU Tq)kie; + 4PﬁJr(qa Td)kie; — NI (do" q)kie;
- i V2.
=—Pte + Pe — M’ﬁ(qa Tq)kie; . (B.18)
Finally, the use of eq. (B.11) allows one to conclude that
o1 iy
V=—Pte + Ple — Z(SO’”S)]QEJ' : (B.19)

which is exactly the gluon vertex operator in the light-cone gauge Brink-Schwarz worldline
framework.

C Comparison with literature

Here we compare our recursion relations with those in [16]. Starting from eq. (4.14) we can
multiply both sides by 4 and take the exterior derivative giving

P
Habcd‘gn - ;0 (’Y[ab)aﬁTcd]ﬂlgn—l ) (Cl)

where we used (3.16), 20,hy* — Opha® = Tgp® in the right-hand side. This agrees with the
first part of eq. (53) in ref. [16], after making the redefinitions Ty, — —T5p”, Hapap —
—i(Yab)ap- Taking an exterior derivative of (4.12) we now find

2 (0% cae 1 C
Tabﬁlgn = 59 (7—[(1 d f)aﬁab]Hcdef‘gnA - %(07 d)ﬁRabcdlgnfl 5 (C.Q)

where Rgpea = 20[,8cq to linearized level. Using the fact our 7 only differs by a sign
from that in [16], eq. (C.2) agrees with the second part of eq. (53) in [16], after redefining
Tw®* — —Tu%. Finally by taking two derivatives of (4.13) and (anti)symmetrizing to
construct a linearized Riemann tensor we find

2 e
Rabcd‘gn = _;(08[a|cd] f8|b]Tef)’9n—1 ) (C?))

where Sy = (%(ﬂeég] + %61[7655] - ’ydél[f&{])/Q, once again in agreement with [16] after
redefining the torsion, and realizing that our S differs from that in [16] by a factor of i.

Since the recursion relations for our C fields do not appear similar to those in [16],
we compare some components of the superfield expansions. We begin by recalling the
definition,

Cogy = (_1)N(P+Q)+P(Q+1)EQNE/BPE’YQFNPQ . (C.4)
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where the hatted fields are zeroth order in the fields, the F' field is linear in the perturbations,
and the indices in the exponent are 1 if the index is spinorial and zero otherwise.

At order 6% the graviton terms of the ghost-number three vertex operator U®) =
ANA A1Cyp are

7

NNAEIF, = 2 (0°0) (e (A 0) i, (C.5)
BN BN EG),, = — £ (00°0) ) O 0D (C.6)

where we used equation (95) of [16], ey,* = 0% + h%,. Use the definition (C.4) we have
to sum over all ways where the spinor and vector indices can appear, which gives three
identical contributions. Overall we find the coefficient of the graviton is —%, in agreement
with (4.30) up to a factor of i.
At O(6°) terms that contain the graviton in the superfields of [16] are
1

A 1
NN B Fi == (0°0) <(M"9) (A"0)6wsa— 5 (A7°0) (\7"0) (B abea))eos”

—<me><w><evbefe>wsef) , ©7)

omn

)\J)\BEél)m/\éE(gl)nF(S) = (A™0)(\y"0) (614 ((9’}’9hem9) (/\769)an11 _ 3%62()\766)me6

1
—M(e’)’ghee)(e’yne)\)wmgh) s (08)

i 1
ANNEDmEL ELYES), = 2 0am8) 00" 0)0070) (#mny— 501" ) -
(C.9)

Due to the sum over permutations of indices both (C.7) and (C.8) get a factor 3. Summing up
all of these terms we find exactly the same contribution as in (4.32). We have additionally
checked the three-form and gravitino at % and 6* respectively, and found they match
our results.
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