Number needed to vaccinate for COVID-19 booster doses: a valuable metric to inform vaccination strategies

Shuo Feng,∗ b E. Lin, b and Benjamin J. Cowling a,d

a Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
b Department of Surgical Sciences, Faculty of Medicine, Uppsala University, Sweden

∗ WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
d Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China

Three and a half years after it first emerged, SARS-CoV-2 continues to cause infections, hospitalizations and deaths globally. SARS-CoV-2 vaccines are the most effective tool for reducing disease burden in the ongoing post-pandemic phase. In the context of waning immunity after primary vaccination series and the emergence of new variants, the importance of booster doses in maintaining a higher level of individual and population immunity against severe disease cannot be over-emphasised.1 Countries have adopted varying policies for booster doses, considering factors such as prioritisation of populations, dosing regimens, and timing.

Among the first booster vaccines administered, mRNA vaccines—notably BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)—have been most widely administered in middle- and high-income countries. Currently, the United States Centers for Disease Control and Prevention recommends that individuals aged 6 months and older receive at least one dose of a bivalent mRNA COVID-19 vaccine.2 In addition, individuals ≥65 years of age have the option to receive a second bivalent mRNA vaccine dose. Such policies underscore the important role of booster vaccinations. However, the average severity of infections has been declining over time. This is because vaccinated individuals have long-term reductions in the risk of severe disease even if vaccines only provide transient protection against infection,3 and immunity following natural infections might also protect some individuals from severe disease when reinfected even if a booster vaccination is not received. In this context of increasing levels of population immunity against severe disease, the optimal strategy and target group for booster doses remains to be elucidated.

Adams et al. carried out a retrospective cohort study to evaluate the performance of a third dose vaccine during the Omicron BA.1 predominant period between December 2021 and February 2022, focusing on immunocompetent adults in four U.S. states.3 They estimated the Number Needed to Vaccinate (NNV) to describe the potential impact of a booster dose. The NNV is an estimate of the average number of people that should be vaccinated in order to prevent one disease event, for example if the specified outcome is hospitalisations an NNV of 100 means that on average 100 people should be vaccinated to prevent one hospitalisation due to SARS-CoV-2. Adams et al. analysed data from over a million patient records, with 37.2% of these individuals having received a third dose, while the others received only two doses. The median estimated NNV for a booster dose was 205 to prevent one hospitalisation, and was 156 to prevent one emergency department visit. The authors conducted subgroup analyses by various characteristics such as age groups, underlying conditions, and study sites. The findings showed that the NNV varied substantially by clinical setting, population characteristics and sites, ranging approximately from 40 for older individuals to 600 for younger individuals, to prevent one hospitalization or emergency department visit. The estimated NNV to prevent one hospitalization was much lower for high-risk individuals, including those at least 65 years of age or with at least one underlying medical condition, supporting booster strategies that prioritise these high-risk groups. Importantly, variations in the NNV to prevent hospitalisation were observed across three study periods, with values ranging from 46 to 110 among individuals aged 65 years or older. This highlights the role of timely assessment and continuous monitoring of NNV to guide vaccination strategy, because the NNV is not likely to remain constant.

The results reported by Adams et al. support the use of booster doses in late 2021 and early 2022. However, they may not be able to inform booster dose policies in the evolving landscape of SARS-CoV-2 Omicron subvariants. Values of the NNV may have increased, reducing the cost-effectiveness of booster doses in lower-risk individuals. Given that SARS-CoV-2 infections continue to cause hospitalizations in older individuals4 and given that booster doses protect against hospitalization with the latest Omicron subvariants,5,6 it

DOI of original article: https://doi.org/10.1016/j.lana.2023.100530
*Corresponding author. Oxford Vaccine Group, Department of Paediatrics, University of Oxford, CCVTM, Churchill Road, Churchill Hospital, Oxford, OX3 7LE, UK.
E-mail address: shuo.feng@paediatrics.ox.ac.uk (S. Feng).
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
is likely that booster doses will continue to be recommended for high-risk individuals. Updated data from studies like the one by Adams et al. would be valuable to indicate whether booster doses continue to provide a cost-effective strategy for the prevention of COVID-19 in younger and lower-risk individuals.

Contributors
SF was responsible for the conceptualisation and wrote original draft. All authors contributed to “writing—review & editing”, and approved the final version of the manuscript.

Declaration of interests
SF contributed to COVID-19 vaccine intellectual property licensed by Oxford University Innovation to AstraZeneca. BJC received consulting fees from AstraZeneca, Fosun Pharma, GlaxoSmithKline, Haleon, Moderna, Pfizer, Roche, and Sanofi Pasteur.

Acknowledgements
Funding statement: No funding was received for this work.

References