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Abstract—Recent successes of massively overparameterized
models have inspired a new line of work investigating the
underlying conditions that enable overparameterized models
to generalize well. This paper considers a framework where
the possibly overparametrized model includes fake features, i.e.,
features that are present in the model but not in the data.
We present a non-asymptotic high-probability bound on the
generalization error of the ridge regression problem under
the model misspecification of having fake features. Our high-
probability results provide insights into the interplay between
the implicit regularization provided by the fake features and the
explicit regularization provided by the ridge parameter. Numerical
results illustrate the trade-off between the number of fake features
and how the optimal ridge parameter may heavily depend on the
number of fake features.

Index Terms—Linear systems, inverse problems, interpolation,
least-squares methods, robust linear regression

I. INTRODUCTION

Conventional wisdom in statistical learning suggests that
the number of training samples should exceed the number of
model parameters in order to generalize well to data unseen
during training. However, it has recently been highlighted
that the generalization error initially decreases with the model
size in the underparametrized setting, and then again in the
overparametrized setting, hence the phenomenon of double
descent has been proposed [1], [2].

Double-descent behaviour can be caused by missing features,
i.e., features present in the data but not in the model [2], [3].
Recently, surprising effects of additional irrelevant features in
the model, referred to as fake features, i.e., features present
in the model but not in the data, have been demonstrated [4]–
[7]. In particular, inclusion of fake features has been used to
improve the estimation performance [4], [5]. In this paper, we
contribute to this line of work by providing high probability
results in the finite regime for the generalization error associated
with the ridge regression problem and reveal insights into the
trade-offs between the implicit regularization provided by the
fake features and the explicit ridge regularization.

Observed for a wide range of models [1], the double-descent
phenomenon in linear regression has been studied for the
finite-dimensional case with Gaussian, subgaussian and random
features [2], [8]–[11] and in a Bayesian estimation setting
[5], as well as in the asymptotic high-dimensional setting [3].
Extensions have been made to the investigation of optimal ridge
parameter values [6], [12], and to the study of fake features
[4]–[6]. Trade-offs between explicit regularization and implicit
regularization provided by different problem aspects have
been investigated, e.g., implicit regularization by asymptotic

overparameterization [6] and the equivalence of training noise
and Tikhonov regularization in [13].

Model misspecification often lead to double-descent curves
[2], [3], [5]. Robust methods under model misspecification
have been focused in various works, such as covariance matrix
uncertainties in linear minimum mean-square error estimation
[14], [15], and robust estimation with missing features [16].

Contributions: In this article, we contribute to the line
of work with fake features under ridge-regression. Our main
contribution, Theorem 1, presents a high-probability bound
for the generalization error of the finite-dimensional ridge
regression problem with fake features. This is in contrast to
earlier work which do not study regularization [2], [8] or
fake features [17], study the asymptotic regime [3], [6], or
provide results in terms of expectations over the regressor
distribution [5]. Our result in Theorem 1 quantifies the trade-
off between the fake features and the regularization parameter,
and provides insights into the mechanism behind this trade-
off through high-probability bounds on the eigenvalues. Our
focus on the i.i.d. Gaussian case allows us to provide clear
expressions. Our numerical results quantify how the implicit
regularization provided by the fake features may compensate
for a small ridge parameter in certain scenarios.

II. PROBLEM STATEMENT

A. Data generation:
The data comes from the following linear underlying system,

y = Ãx̃+ v = ASxS +ACxC + v, (1)

where y = [y1, · · · , yn]T ∈Rn×1 is the vector of out-
puts/observations, x̃∈Rp̃×1 is the unknowns of interest and
v = [v1, · · · , vn]∈Rn×1 is the vector of noise, with vi ∼
N (0, σ2

v), ∀i, σv ≥ 0. The feature matrix Ã∈Rn×p̃ is
composed of the matrices AS ∈Rn×pS and AC ∈Rn×pC , as

Ã = [AS ,AC ], (2)

with p̃ = pS + pC . The matrices AS and AC consist
of identically and independently distributed (i.i.d.) standard
Gaussian entries ∼ N (0, 1), which are uncorrelated with
the noise v. The vector of unknowns x̃ is composed of the
components xS ∈RpS×1 and xC ∈RpC×1, such that

x̃ = [xT
S ,x

T
C ]

T. (3)

B. Misspecified model:

While the data is generated by the underlying system in (1),
the estimation is performed based on the following misspecified



model,
y = Āx̄+ v = AFxF +ASxS + v, (4)

where Ā∈Rn×p̄ is composed by

Ā = [AF ,AS ] (5)

with p̄ = pF + pS . The matrix AF ∈Rn×pF has random
i.i.d. standard Gaussian entries, statistically independent of
AS and AC . The vector x̄ is correspondingly composed as
x̄ = [xT

F ,x
T
S ]∈Rp̄×1, where xF ∈RpF×1.

We refer to the features in AF , AS and AC , as follows:
• The features in AF are included in the misspecified model

in (4), but are irrelevant to the output variable y, i.e., the
data in (1), hence we refer to AF as fake features.

• The features AS are present both in the data generated
by (1) and the misspecified model in (4), hence we refer
to them as included underlying features.

• The features in AC , which are relevant to the data in y,
are missing from the misspecified model in (4). Hence
we refer to the features AC as missing features.

We employ the notation

A = [AF ,AS ,AC ]∈Rn×p (6)

to refer to the full set of features, and correspondingly for the
full set of unknowns,

x = [xT
F ,x

T
S ,x

T
C ]

T ∈Rp×1, (7)

where p = pF + pS + pC .
With the misspecified model in (4), we estimate xF and xS

and we obtain the prediction of y as

ŷ = AF x̂F +ASx̂S = Ā ˆ̄x∈Rn×1. (8)

Recall that x̄ = [xT
F ,x

T
S ]. We obtain the estimate ˆ̄x by

solving the following problem,

ˆ̄x = argmin
ˆ̄x

∥y − (AF x̂F +ASx̂S)∥2 + λ∥ ˆ̄x∥2 (9)

= argmin
ˆ̄x

∥∥y − Ā ˆ̄x
∥∥2 + λ∥ ˆ̄x∥2, (10)

where λ ≥ 0 is the regularization parameter. Here, (9) with
λ > 0 corresponds to the ridge regression problem whose
solution is given by

ˆ̄x =
(
ĀTĀ+ λIp

)−1
ĀTy = ĀT

(
ĀĀT + λIn

)−1
y. (11)

If λ = 0, we consider the minimum ℓ2-norm solution of (9),

ˆ̄x = Ā+y, (12)

where (·)+ denotes the Moore-Penrose pseudoinverse. The
estimate obtained by solving (9) can be decomposed as

ˆ̄x =
[
x̂T
F x̂T

S

]T
. (13)

Using ˆ̄x, we obtain the estimate for x = [xT
F ,x

T
S ,x

T
C ]

T as
follows,

x̂ =

[
ˆ̄x
x̂C

]
=

x̂F

x̂S

x̂C

 =

x̂F

x̂S

0

 , (14)

where the estimate for the missing features is set to zero, i.e.,
x̂C=0, asAC does not appear in the misspecified model (4).

C. Generalization Error:

Suppose that we have obtained an estimate x̂ as in
(14). A new unseen sample (y∗,a∗) comes where a∗ =
[aT

F∗,a
T
S∗,a

T
C∗]

T. Hence,

y∗ = aT
S∗xS + aT

C∗xC + v∗ ∈R1×1, (15)

where aT
F∗ ∈R1×pF , aT

S∗ ∈R1×pS , and aT
C∗ ∈R1×pC are i.i.d.

with the rows of AF , AS and AC respectively, and v∗ ∈R1×1

is i.i.d. with the noise samples in v. The corresponding
prediction using x̂ is

ŷ∗ = aT
F∗x̂F + aT

S∗x̂S . (16)

The generalization error is given by

Jy = E
y∗,a∗

[
(y∗ − ŷ∗)

2
]

(17)

= E
y∗,a∗

[
(aT

S∗xS + aT
C∗xC + v∗ − aT

F∗x̂F − aT
S∗x̂S)

2
]

(18)

= E
y∗,a∗


[aT

F∗,a
T
S∗,a

T
C∗]

 0
xS

xC

−
x̂F

x̂S

0

+v∗

2
 (19)

=

∥∥∥∥∥∥
 0
xS

xC

−

x̂F

x̂S

0

∥∥∥∥∥∥
2

+ σ2
v (20)

We note that the generalization error consists of the respective
errors in the components of x that correspond to the fake
features AF , the included underlying features AS and the
missing features AC .

Remark 1. (Interpolation with fake features) Recall that
Ā = [AF ,AS ]∈Rn×p̄, and that p̄ = pF + pS , hence the
estimate ˆ̄x = Ā+y in (12) is created using the fake features in
AF ∈Rn×pF and included underlying features AS ∈Rn×pS .
If n < p̄, then ĀĀT is full rank with probability one (since
entries of Ā are standard Gaussian i.i.d.), and the estimate
ŷ ∈Rn×1 of the data y is

ŷ = AF x̂F +ASx̂S = Ā ˆ̄x = ĀĀ+y = y, (21)

hence the training data is interpolated for n < p̄, even when
there are fake features in the misspecified model. Furthermore,
we note that even if the misspecified model consists purely
of fake features, i.e., if pS = 0, and n < pF , then we still
have ŷ = y. Hence, we still obtain interpolation without using
any of the underlying features AS and AC in the estimation
process. We refer to the point where n = p̄ as the interpolation
threshold.

III. GENERALIZATION ERROR BOUND

In this section, we give our main result of the paper, which
is a high-probability bound on the generalization error Jy in
the finite-dimensional regime for the ridge regression problem
with λ > 0. Note that here we analyze the generalization error



Jy in high probability with respect to training data whereas
Jy itself is an average over test data.

Theorem 1. Let the regularization parameter be nonzero, i.e.,
λ > 0, and t1, t2 ≥ 0, rmax = max(n, p̄), rmin = min(n, p̄),
and

fg =
(
√
n+

√
p̄+ t2)

2

((
√
rmax −

√
rmin − t2)2+ + λ)2

, (22)

where (·)+ = max(·, 0), (·)2+ = ((·)+)2 and

f̄g =


λ2

((
√
n−

√
p̄− t2)2+ + λ)2

, if n ≥ p̄, (23a)

1, if n < p̄, (23b)

then the following holds for the generalization error in (20),

P
(
Jy < ∥xS∥2f̄g

+
(
∥xC∥2 + σ2

v

)
fg
(
rmin + 2

√
rmint1 + 2t1

)
+
(
∥xC∥2 + σ2

v

) )
> 1− e−t1 − 2e−t22/2.

(24)

Proof: See Appendix A.

Note that if t2 ≥ √
rmax −

√
rmin, then the denominators in

(22) and (23a) reduces to λ2.

In Theorem 1, both the upper bound on Jy and the probability
that the upper bound holds depend on t1 and t2. Hence, by
varying t1 and t2, one obtains a series of upper bounds and
associated probabilities.

From Theorem 1, we observe the following:

1) In order to avoid a very high value in the generalization
error at the interpolation threshold n = p̄ (Remark 1), the
ridge parameter λ needs to be large enough. Otherwise, the
probability parameter t2 cannot be large enough to guarantee
the bound in (24) holds without making the bound very large
due to the denominators being too small in (22) and (23a).

2) In addition to the explicit ridge regularization, the fake
features in AF have a regularizing effect on the error bound.
Suppose that n ≈ pS and λ is very small, hence the problem
without fake features is close to the interpolation threshold at
n = pS , and the bound in (24) is very large. If there are enough
fake features, then the actual problem dimensions will be far
away from the threshold n ≈ p̄, hence the bound will take on
smaller values. Nevertheless, if the regularization parameter λ
is large enough, then the bound takes on small values regardless
of the presence of fake features.

Remark 2. Theorem 1 quantifies the trade-off between the
number of fake features and the ridge parameter using a
high-probability bound. In contrast to the works that study
the regression problem without regularization [2], [8] or
regularization in the asymptotic high-dimensional regime [3],
[6], in terms of expectation over the regressor distribution
[5], here we provide high-probability bounds that consider the
presence of both fake features and regularization.
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Fig. 1: The empirical average of the generalization error Jy
versus the ridge parameter λ.

IV. NUMERICAL RESULTS

A. Details of the Numerical Simulations

In the following simulations we compute empirical averages
for the generalization error. We now describe how we obtain
these averages for a given set of problem dimensions n, pF ,
pS and pC , the fixed power ratio coefficient rS , and the noise
level σ2

v , and total power P of the underlying unknowns.
We generate the underlying unknowns xS and xC as

xS =
√
rS

P
pS

1∈RpS×1, xC =
√

(1− rS)
P
pC

1∈RpC×1,

where 1 denotes a vector of ones with appropriate dimen-
sions. For the test data, we have ntest = 20000 samples.
We generate M = 100 realizations of the training feature
matrices AF , AS , AC , as well as corresponding test fea-
ture matrices AF,test ∈Rntest×pF , AS,test ∈Rntest×pS and
AC,test ∈Rntest×pC . The feature matrices are all i.i.d. standard
Gaussian matrices. For each of these M sets we generate M
noise vectors v ∈Rn×1 and vtest ∈Rntest×1, with standard
Gaussian entries, scaled with σv . We generate the corresponding
training and test data as y = ASxS +ACxC + v, ytest =
AS,testxS+AC,testxC+vtest. We then compute ˆ̄x as the solu-
tion to (9), i.e., ˆ̄x = ĀT(ĀĀT + λIn)

+y. which corresponds
to the minimum-norm solution for λ = 0. The predictions of the
test data is computed as ŷtest = AF,testx̂F +AS,testx̂S , and
the corresponding error instance as Jy = ∥ytest− ŷtest∥2−σ2

v ,
which is then averaged over the M sets of noise vectors, and
then as well over the M sets of feature matrices. We have
n = 200, and the number of included and missing features
is pS = pC = 100, σv = 10, the signal power in x̃ is
∥x̃∥2 = 200, and ratio of the power in the included underlying
unknowns xS is ∥xS∥2

∥x̃∥2 = rS = 0.5.

B. Trade-offs between the regularization parameter λ and the
number of fake features

We investigate the effect that ridge regularization has on
the problem under the presence of the fake features in AF by
plotting the average generalization error Jy in Figure 1 and 2,
obtained via simulation of the problem in (12). In Figure 1,
we plot the empirical average generalization error versus the
ridge parameter λ, for varying number of fake features pF . In
Figure 2 we plot the error versus pF , for varying values of λ.
The shaded areas in Figure 2 indicate the standard deviations.

These figures support the following conclusions: i) It is
possible to decrease the error by increasing the number of fake
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Fig. 2: The empirical average of the generalization error Jy
(solid lines) +/− one standard deviation (shaded areas) versus
the number of fake features pF .

features. ii) The best choice of λ depends on the number of
fake features in the model. The effect of fake features can be
interpreted as the fake features providing implicit regularization
to the problem; and that the regularization provided by fake
features can be used to compensate for low levels of λ, i.e.,
low levels of explicit regularization, for some scenarios.

For i), see Figure 2 for small values of λ, i.e., λ/n∈{0, 10}:
Here the lowest error over all pF is achieved by increasing pF
to pF > 103, rather than having pF small. Hence, having a
large number of fake features pF can compensate for having a
small ridge parameter λ by providing implicit regularization
to the problem. For ii), the plot in Figure 1 illustrates that the
best choices of λ, i.e., the locations of the local minima of
the respective curves, increase as the number of fake features
pF is increased, as well the values of these minima. Hence, if
the explicit regularization parameter λ is large enough, then
the problem without fake features has enough regularization,
and the smallest possible number of fake features pF gives the
lowest error. These observations illustrate that a large number
of fake features may compensate for having too little explicit
regularization, but if there is enough explicit regularization,
then a higher number of fake features may increase the error.

As shown in Theorem 1, λ should be large enough in
order to bound the generalization error Jy around the in-
terpolation threshold with high probability. We observe this
effect in Figure 2, where the large enough values of λ,
i.e., λ/n∈{102, 103}, dampen the peak in error around the
interpolation threshold, that is otherwise seen for the smaller
values of λ. Furthermore, we note that if λ = 0, then the
standard deviation is extremely large around the interpolation
threshold of pF = 100, and if λ increases, then the standard
deviation decreases. In general, higher values of λ decrease the
standard deviation, i.e., the variation around the mean value.
Similarly, increasing pF decreases the variance, e.g., compare
λ/n = 0 curve for pF ≈ 0 and ≈ 103. This again suggests
that pF can have a regularizing effect, similar to the ridge
parameter λ.

V. CONCLUSIONS

We provide a non-asymptotic high-probability bound for
the generalization error of the ridge regression solution when
an arbitrary number of fake features are present. This result

reveals analytical insights on the interplay between the implicit
regularization provided by the fake features and the explicit
regularization provided by the ridge regularization.

We have considered linear models with isotropic Gaussian
features. Extensions into non-linear models with more general
feature covariance structures and other regularization frame-
works are considered important research directions.

APPENDIX

A. Proof of Theorem 1

With ˆ̄x = W̄y, we denote the estimator as
W̄ = ĀT(ĀĀT + λIn)

−1. (25)
We denote the full singular value decomposition of Ā by

Ā = USV T, (26)
where U ∈Rn×n and V ∈Rp̄×p̄ are orthogonal matrices, and
the diagonal matrix S ∈Rn×p̄ contains the singular values si
of Ā, i = 1, . . . , min(n, p̄). We let si = 0 if i > min(n, p̄).

From (20), we have

Jy =

∥∥∥∥[ 0
xS

]
−
[
x̂F

x̂S

]∥∥∥∥2 + ∥xC∥2 + σ2
v (27)

=

∥∥∥∥[ 0
xS

]
−W̄ (ASxS +ACxC + v)

∥∥∥∥2+∥xC∥2+σ2
v (28)

=

∥∥∥∥(Ip̄ − W̄ Ā
) [ 0

xS

]
− W̄z

∥∥∥∥2 + ω2
z . (29)

Here we introduced the vector z = ACxC +vT ∈Rn×1, with
the entries [z1, · · · , zn] which are i.i.d. random variables with
N (0, ω2

z), and ω2
z = ∥xC∥2 + σ2

v .
Using the triangle inequality (for two vectors v, w, ∥v −

w∥2 ≤ 2∥v∥2 + 2∥w∥2), as well as the submultiplicativity
of the ℓ2-norm, we have Jy ≤ 2

∥∥Ip̄ − W̄ Ā
∥∥2 ∥xS∥2 +

2
∥∥W̄z

∥∥2 + ω2
z . We continue by plugging in (25) and (26),

Jy ≤ 2
∥∥Ip̄ − ST(SST+λIn)

−1S
∥∥2 ∥xS∥2

+ 2
∥∥ST(SST+λIn)

−1V Tz
∥∥2+ω2

z

(30)

∼ 2
∥∥Ip̄ − ST(SST+λIn)

−1S
∥∥2 ∥xS∥2

+ 2
∥∥ST(SST+λIn)

−1z
∥∥2+ω2

z

(31)

where we used the unitary invariance of the norm, and V Tz ∼
z due to the rotational invariance of the distribution of z.

We continue by utilizing the diagonal structure of S,

Jy ≤ 2
∥∥∥Ip̄ − diag

(
s2i

s2i+λ

)∥∥∥2 ∥xS∥2

+ 2

∥∥∥∥[ s1
s21+λ

z1, · · · ,
srmin

s2rmin
+λzrmin

]T∥∥∥∥2+ω2
z

(32)

= 2
∥∥∥diag

(
λ2

(s2i+λ)2

)∥∥∥ ∥xS∥2 + 2

rmin∑
i=1

gi z
2
i + ω2

z (33)

where i = 1, . . . , p̄ in the first term and si = 0 if i > rmin ≜
min(n, p̄), and where we have introduced the coefficients

gi =
s2i

(s2i+λ)2
, i = 1, . . . , rmin. (34)

We now focus on the second term of (33). The following
corollary can be derived from [18, Lemma 1]:



Corollary 1. Let zi, i = 1, . . . , r, be i.i.d. with
zi ∼ N (0, ω2

z), and let g = [g1, · · · , gr]T ∈Rr×1,
with gi > 0, ∀i, and t > 0. Consider the event
E =

{∑r
i=1 giz

2
i < ω2

z

(∑r
i=1 gi + 2∥g∥

√
t+ 2∥g∥∞t

)}
,

where ∥g∥∞ = supi=1, ..., r gi. Then, P (E) ≥ 1− e−t.

With t1 > 0 and gi and zi as in (33), we denote the event

E1=

{
rmin∑
i=1

giz
2
i<ω2

z

(
rmin∑
i=1

gi+2∥g∥
√
t1 + 2∥g∥∞t1

)}
, (35)

where g = [g1, · · · , grmin ]
T ∈Rrmin×1, and from Corollary 1,

we have that
P (E1) > 1− e−t1 . (36)

We note that the variables gi in (34) are random over the
singular values si of Ā∈Rn×p̄, and we continue by upper
bound these gi with a high-probability bound based on the
distribution of si. We begin by noting that for each gi,

gi ≤ s2max

(s2min+λ)2
, i = 1, . . . , rmin. (37)

We denote the event E2a to bound the singular values as
E2a=

{√
rmax−

√
rmin−t2≤smin≤smax≤

√
n+

√
p̄+t2

}
, (38)

where smin and smax denotes the smallest and the largest
singular values of Ā, respectively, and rmax = max(n, p̄), and
rmin = min(n, p̄), as defined previously. Using [19, eqn. (2.3)],
we have that for any t2 ≥ 0,

P (E2a) ≥ 1− 2e−t22/2. (39)
We will use this probability bound later in the proof to find
the desired probability bound on Jy .

We now define fg by plugging in the lower and upper bounds
of (38) into the bound in (37),

fg = (
√
n+

√
p̄+t2)

2

((
√
rmax−

√
rmin−t2)2+λ)2 . (40)

We now define the event E2 using (37) and (40),
E2 = {gi ≤ fg} , (41)

where E2a ⇒ E2. We combining the events E1 in (35) and
E2 in (41), to obtain the event E3 as

E3 =

{
rmin∑
i=1

giz
2
i < ω2

zfg
(
rmin + 2

√
rmint1 + 2t1

)}
, (42)

where E1 ∩E2 ⇒ E3. We now continue with the leading term
of (33), which is bounded as

∥∥∥diag
(

λ2

(s2i+λ)2

)∥∥∥ ≤ λ2

(s2min+λ)2
.

where i = 1, . . . , p̄. We recall that if i > min(n, p̄) then si =
0. Hence if n < p̄, we define E4 as follows

E4 =
{∥∥∥diag

(
λ2

(s2i+λ)2

)∥∥∥ = 1
}
. (43)

If instead n ≥ p̄, then we define

E4=
{∥∥∥diag

(
λ2

(s2i+λ)2

)∥∥∥≤ λ2

((
√
n−

√
p̄−t2)2+λ)2

}
(44)

and note that E2a ⇒ E4. We combine (43), (44) and (42)
with the bound on Jy in (33) to obtain E5 =

{
Jy <

∥xS∥2f̄g +
(
∥xC∥2 + σ2

v

) (
fg
(
rmin+2

√
rmint1+2t1

)
+1
)}

.

with t1, t2 ≥ 0, fg as in (40), and where

f̄g =

{
λ2

((
√
n−

√
p̄−t2)2+λ)2

if n ≥ p̄, (45a)

1 if n < p̄. (45b)

We note that i) E1 is independent from E2 and E4, ii)
E2a ⇒ E2 and E2a ⇒ E4, hence E2a ⇒ E2 ∩ E4, and if we
denote E24 = E2 ∩ E4, then by (39) we can write

P(E24) ≥ P(E2a) ≥ 1− 2e−t22/2, P(Ec
24) ≤ 2e−t22/2. (46)

By (36) we have that P(Ec
1) ≤ e−t1 . Furthermore, we have

P(E5) ≥ P(E3 ∩ E4) ≥ P(E1 ∩ E2 ∩ E4) (47)
= P(E1 ∩ E24) = 1− P(Ec

1 ∪ Ec
24) (48)

≥ 1− P(Ec
1)− P(Ec

24) ≥ 1− e−t1 − 2e−t22/2, (49)
where we have used the union bound to obtain P(Ec

1 ∪Ec
24) ≤

P(Ec
1)+P(Ec

24) ≤ e−t1 +2e−t22/2. This concludes the proof.
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