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Machine learning models are typically configured by minimizing the training error over a given
training dataset. On the other hand, the main objective is to obtain models that can generalize,
i.e., perform well on data unseen during training. A fundamental challenge is that a low training
error does not guarantee a low generalization error. While the classical wisdom from statistical
learning theory states that models which perfectly fit the training data are unlikely to generalize,
recent empirical results show that massively overparameterized models can defy this notion,
leading to double-descent curves. This thesis investigates this phenomenon and characterizes
the generalization performance of linear models across various scenarios.

The first part of this thesis focuses on characterizing the generalization performance as a
function of the level of model mismatch between the patterns in the data and the assumed model.
Model mismatch is undesirable but often present in practice. We reveal the trade-offs between
the number of samples, the number of features, and the possibly incorrect statistical assumptions
on the assumed model. We show that fake features, i.e., features present in the model but not
in the data, can significantly improve the generalization performance even though they are not
correlated with the features in the underlying system.

The second part of this thesis focuses on generalization under distributed learning. We focus
on the scenario where the model parameters are distributed over a network of learners. We
consider two settings: the single-task setting, where the network learns a single task, and the
continual learning setting, where the network learns multiple tasks sequentially. The obtained
results show that for a wide family of feature probability distributions, the generalization
performance heavily depends on how the model parameters are partitioned over the network.
In particular, if the number of parameters per learner and the number of training samples are
close, then the generalization error may be extremely large compared to other data partitioning
schemes. For continual learning, our results quantify how the most favorable network structure
for the generalization performance depends on the task similarities as well as the number of
tasks.
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Sammanfattning

Mainniskor har ldnge anvént sig av maskiner for att underlitta utféranden av
slitsamma, repetitiva och monotona uppgifter. Uppfinningar sdsom tryck-
pressen, spinnmaskinen och mjolkmaskinen &r exempel pa tidiga 16sningar
som haft stor betydelse pa var samhillsutveckling. Datoriseringen under 1900-
talets andra halft har lett till elektroniska 16sningar for post, bokforing, ordbe-
handling, databaser och styrteknik. Men vissa uppgifter dr sa komplicerade
eller resurskrdavande att de inte kan programmeras for hand, och hir kommer
maskininldrning in i bilden.

Maskininldrning handlar om metoder som anvénder data for att trina datorer
sé att de kan sitta upp regler som de sedan kan anvénda for att fatta beslut eller
att gora prognoser, utan att ha programmerats med forutbestimda regler for hur
uppgiften i fraga skall 16sas. Inom maskininlarning talas det ofta om modeller:
matematiska funktioner med justerbara parametrar. Modellen trédnas genom att
dess parametrar justeras sa att uppgiften utfors sa bra som mojligt givet en up-
pséttning exempel, kallade triningsdata. Nar modellen har trdnats s& kan den
anvindas till att utfora uppgiften pa ny data, som den inte har sett under trén-
ingsfasen. Begreppet generalisering beskriver modellens formaga att utfora
den aktuella uppgiften pa nya data. Att modellen kan generalisera vil ar hu-
vudmaélet med maskininlédrning. Vidare anvénder vi begreppet trdningsfel som
ett prestandamatt baserat pa trdningsdatan och begreppet generaliseringsfel for
hur vdl modellen presterar pa nya data, dér ett litet fel betyder bra prestanda.

En central utmaning inom maskininldrning &r att ett litet trdningsfel inte
nddvindigtvis medfor ett litet generaliseringsfel. Traditionella riktlinjer rek-
ommenderar till och med att modeller utan, eller med véldigt litet, traningsfel
bor undvikas da de ir dveranpassade till triningsdatan. A andra sidan si har
empiriska studier nyligen visat att modeller med ett stort antal parametrar, flera
génger storre én antalet triningsdata, kan uppné smé generaliseringfel trots att
de inte har nagot traningsfel. 1 och med dessa diskrepanser mellan tréning
och generalisering, samt mellan klassisk teori och nya empiriska resultat, s
ar mycket forskning inriktad pa att karaktérisera generaliseringsfelet for olika
maskininldrningsmodeller.

Denna avhandling behandlar karaktiriseringen av generaliseringsfelet fran
tvd olika problemaspekter: generaliseringsfelet under modelleringsfel och
generaliseringsfelet i distribuerad maskininlarning.

Modelleringsfel syftar hir pa avvikelser mellan maskininldrningsmodellens
strukur och de mdnster som finns i datan. Modelleringsfel dr vanligt i praktiken
och négot man helst vill undvika da det kan forsdimra modellens prestanda. 1



den hér avhandlingen presenterar vi ett ramverk under vilket vi studerar ef-
fekterna av modelleringsfel pa generaliseringsfelet systematiskt. Vi fokuserar
pa linjéra modeller, alltsd modeller vars berdknade uppskattningar ar linjara
funktioner av modellparametrarna. Linjdra modeller &r véldigt anvéindbara
i sig och leder ofta till en ldttolkad matematisk analys, jimfort med olinjéra
modeller. Véara resultat beskriver generaliseringsfelet som funktion av antalet
trdningsdata och antalet justerbara parametrar. Vi drar slutsatsen att generalis-
eringsfelet kan minska om modelleringsfelet 6kar. Detta verkar 6verraskande,
men Vi visar att den hir effekten av modelleringsfel liknar den effekt man far
av vedertagna verktyg som anvinds for att minska generaliseringsfelet.

Avhandlingens andra del undersoker generaliseringsfelet inom distribuerad
maskininldrning. Distribuerad maskininlérning syftar till metoder dar mask-
ininldrning utfors av ett nitverk av datorer eller berdkningsnoder. Anvindnin-
gen av distribuerad maskininldrning ar fordelaktig av flera skél, till exempel,
i situationer dir modellens traning kriver omfattande berdkningsresurser. |
sddana fall kan distribuerad maskininldrning anvinda berdkningskraften fran
flera noder for att minska belastningen per nod. I andra fall kan data vara
av kénslig natur, vilket innebér att data inte far delas over nitverket av séker-
hetsskél. D4 kan distribuerad maskininldrning anvindas for att trina en modell
som drar nytta av all tillgédnglig data i ndtverket, utan dela sjdlva datan mel-
lan noderna. Det finns ett stort intresse for sddana metoder, men studier om
distribuerad inldrning tenderar att fokusera mer pa hur traningsfelet utvecklas
mellan olika kommunikationsrundor, snarare an att karaktirisera generaliser-
ingsfelet. 1 denna avhandling studerar vi en etablerad metod f6r distribuerad
inldrning vid namn CoCoA och karaktiriserar dess generaliseringsfel. Vara
resultat visar att fordelningen, eller partitioneringen, av trdningsdata mellan
noderna i nétverket har en betydande inverkan pé generaliseringsfelet. Mer
specifikt sa visar vi att man bor undvika att antalet parametrar som hanfor sig
till varje nod &r néra antalet tillgdngliga traningsdata. Detta dr nodvéandigt for
att forhindra att individuella noder 6veranpassar sin lokala modell till tranings-
datan, vilket skulle leda till stora generaliseringsfel.
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Notation

The following examples illustrate the notation used in the thesis.

a scalar

a vector

A matrix

aceA element a belongs to set A

ag A element a does not belong to set .A

R set of real numbers

R™*P set of real n by p matrices

R"¥1 set of real n-dimensional column vectors

R1xP set of real p-dimensional row vectors

[a, b] set of real numbers on the closed interval from a € R to
beR

AT transpose of a matrix A

AT Moore-Penrose pseudoinverse of a matrix A

z estimate of a scalar parameter x

T estimate of a vector of parameters «

x* ground-truth value of a vector of parameters «

lall, p-norm of a vectora, p > 1, peR

|All, matrix norm of a matrix A, induced by the vector p-norm

z~P P is the probability density function of «

h:A— B function from set A to set 5

E[] expectation operator

N(p, K)  Gaussian distribution with mean g and covariance K



Abbreviations

i.i.d. Independent and identically distributed
LMMSE Linear Minimum Mean Squared Error

MSE Mean Squared Error



1. Introduction

Machine learning refers to processes where data-driven methods are used to
train computers to identify patterns, make predictions, or take decisions with
limited human intervention. This can be done by formulating a model, repre-
sented by a mathematical function, and training it. Training refers to finding a
model configuration which minimizes the training error. This is typically done
by using optimization methods. The training error is a performance measure
evaluated on a given set of training data, which consists of examples of data,
that is assumed to have some pattern in it. While the training is performed by
finding a model which returns a low training error, a core objective in machine
learning is for the trained model to generalize. Generalization here refers to the
ability to perform well on new and unseen examples of data, which were not
included in the training data, but has the same kind of pattern as the examples
in the training data.

Supervised learning is a branch of machine learning where the model is
trained to output a corresponding desired value when presented with an exam-
ple of input data. The model is trained on pairs of input data and corresponding
desired output data. If the training is successful, then the model can correctly
produce, or predict, the output when presented with a new example of input
data. For example, consider the problem of training a model to distinguish be-
tween photographs of cats and dogs. After a training dataset of input-output
pairs has been collected, i.e., a set of photos and the corresponding labels, “cat”
or “dog”, the model is trained on these examples. The trained model is said
to generalize well if it, when presented with new photos of cats or dogs which
it did not see during training, is able to accurately label each new photo with
either “cat” or “dog”.

Characterizing the generalization properties for various models and algo-
rithms is an active research topic. In particular, there is a line of research
which focuses on models which are able to generalize well while interpolating
the training data. In these situations, the number of adjustable parameters is so
large that the model, with appropriately adjusted parameters, can explain all
the training data perfectly, obtaining zero training error. That such models can
generalize well is surprising with respect to guidelines from statistical learning
textbooks, which suggest that models with zero training error typically gener-
alize poorly. The “double-descent” phenomenon has recently been proposed as
a qualitative description of the good generalization properties of large models
with zero training error, suggesting that the generalization error may decrease
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twice as the number of model parameters increase: once before and once af-
ter the point of interpolation. Empirical observations of double-descent curves
have been made for a wide range of models across various scenarios.

Double-descent curves are often observed under some type of model mis-
match. Model mismatch here refers to deviations between the patterns that
the model can represent and the actual patterns in the data. To avoid model
mismatch is desirable within many learning applications, and considerable ef-
forts have been put into developing methods and theory for this purpose. For
example, the large field of system identification has been devoted to the prob-
lem of building accurate mathematical models, including aspects of selecting
the model structure and estimation of the model parameters. Despite such ef-
forts, it 1s difficult to eliminate all sources of model mismatch. Hence, model
mismatch has been studied in a range of applications, such as in positioning,
channel estimation and radar applications, as well as in reinforcement learning
problems. A part of this thesis studies the setting where a mismatched model
is used for estimation, and in particular how the generalization performance of
this model is affected by the degree of model mismatch.

Another area of machine learning in which the generalization performance
needs further investigation is that of distributed learning. Distributed learn-
ing is a machine learning paradigm in which the machine learning task is dis-
tributed over a networked system, such that the computational load is shared
among several nodes, as compared to one single node performing the task
alone. Despite the vast interest in distributed learning algorithms, most studies
focus on convergence performance on the training data rather than the gen-
eralization error. This thesis considers distributed learning both in a setting
with one single task as well as in a continual learning setting, where multiple
tasks arrive sequentially. By characterizing the generalization error for a dis-
tributed learning algorithm in both these settings, this thesis gives insights and
provides guidelines for distributed learning which cannot be obtained when
solely considering the training performance.

1.1 Summary of Papers

Below, a summary of the papers included in the thesis is provided. The first
author has been the primary writer of the papers in this thesis, and has derived
the analytical results and implemented the numerical verifications and experi-
ments. The co-authors have contributed to the papers by sharing their feedback
for the manuscripts, as well as their ideas and professional expertise. The pa-
pers have been significantly improved by the joint efforts of all the co-authors.

We now present a few key concepts used throughout the summaries below.
A set of training data is denoted by {(v;, a;)}!" ;, where y; €R denotes the
scalar valued output data, and a; € RP*! denotes the vector valued input data.
Learning can be performed directly on the input vectors a;’s, but also on some
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(typically nonlinear) vector valued transformation ¢(a;) € R%*! on them. We
refer to the vectors, a;’s, or the vector valued transformations ¢(a;) as fea-
ture vectors, depending on the context. In the context of regression analysis,
a;’s (or ¢p(a;), if applicable) are referred to as feature vectors and vectors of
regressors interchangeably.

Paper I
M. Hellkvist and A. Ozcelikkale, “Model mismatch trade-offs in LMMSE es-
timation,” in 29th European Signal Processing Conference (EUSIPCO), 2021,
pp. 2045-2049.

The paper studies the linear estimation problem with a mismatched model in
a Bayesian estimation setting. Here, a subset of the features of the underlying
system is missing in the assumed model. Explicit notions of model mismatch
is generally overlooked in studies on the generalization error. The presented
problem formulation addresses this gap by considering a systematic notion of
model mismatch with missing features. This paper considers standard Gaus-
sian features. The main result is a closed form expression of the generaliza-
tion error in this model mismatch setting. Additionally, conditions are pre-
sented under which the generalization error is either monotonically decreasing
or monotonically increasing as a function of the number of missing features.
Furthermore, the results show that the generalization error does not depend on
the structure of the unknowns’ covariance matrix, but only on the signal power
of the included and the missing components of the unknowns, respectively.

Paper 11
M. Hellkvist, A. Ozgelikkale, and A. Ahlén, “Estimation under model misspec-
ification with fake features,” IEEE Transactions on Signal Processing, vol. 71,
pp. 47-60, 2023.

The paper studies the linear estimation problem with a mismatched model
in a Bayesian estimation setting, extending the problem formulation of Paper I
to account for fake features. As in Paper I, the assumed model is missing
features from the underlying system, but now also has a set of fake features
included in the model. These fake features are unrelated to the features of the
underlying system. The proposed framework enables a systematic study of
the effects of model mismatch in terms of fake and missing features on the
generalization error. With standard Gaussian features, the paper characterizes
the generalization error, and its respective components related to the sets of
included, missing, and fake features. The results reveal that the generalization
error can be decreased by the inclusion of fake features in the assumed model,
even though they are not related to the underlying system.
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Paper II1

M. Hellkvist, A. Ozcelikkale, and A. Ahlén, “Regularization trade-offs with
fake features,” Accepted to the 31st European Signal Processing Conference
(EUSIPCO), 2023.

The paper investigates the implicit regularization due to the inclusion of
fake features in the assumed model. In particular, the paper studies the lin-
ear estimation problem with ridge regularization when the assumed model has
fake and missing features. The main result is a high-probability bound for the
generalization error of the ridge regression solution under standard Gaussian
features. The results reveal insights to the interplay between the implicit reg-
ularization provided by the fake features and the explicit ridge regularization
provided by the ridge parameter. In particular, consider an unregularized sce-
nario where a model without fake features has high generalization error due
to being close the interpolation threshold. Our results show that one may im-
prove the generalization performance of this model by adding fake features to
the model, since fake features can move it away from the interpolation thresh-
old; hence, provide implicit regularization. Adding explicit regularization to
the formulation with a suitable ridge parameter can also decrease the gener-
alization error. Our results illustrate the trade-off between these two types of
regularization mechanisms. Furthermore, these results quantify how the opti-
mal ridge parameter may depend on the number of fake features.

Paper IV

M. Hellkvist, A. Ozgelikkale, and A. Ahlén, “Generalization error for linear
regression under distributed learning,” in IEEE 21st International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC), 2020,
pp. 1-5.

The paper studies the distributed learning problem with a linear model and
standard Gaussian features, where the model unknowns are distributed over the
network. The paper considers the distributed optimization framework CoCoA.
The results quantify the effects of the partitioning of the model on the gener-
alization error. In particular, partitioning schemes which set the number of
unknowns in any node close to the number of available training data samples
must be avoided, otherwise the generalization error will be extremely large.
The main result analytically characterizes the expected generalization error af-
ter one round of communication, i.e., one iteration of the algorithm. The paper
provides simulations which illustrate that the main take-aways regarding gen-
eralization error and partitioning are valid after convergence as well.
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Paper V

M. Hellkvist, A. Ozgelikkale, and A. Ahlén, “Linear regression with dis-
tributed learning: A generalization error perspective,” IEEE Transactions on
Signal Processing, vol. 69, pp. 5479-5495, 2021.

The paper studies the distributed learning of a linear model using CoCoA,
where the model unknowns are distributed over the network. This paper ex-
tends the scope of the generalization error study in Paper IV from the standard
Gaussian distribution to correlated Gaussian distributions and sub-gaussian
distributions. Under this wide range of feature distributions, the paper presents
high-probability bounds which quantify how the generalization error is af-
fected by the problem dimensions and the partitioning over the network. These
results show how the spectral properties of the local covariance matrices affect
the bounds. This is in contrast to the centralized setting, as the local covari-
ance matrices are submatrices of the full covariance matrix, which would be
the relevant matrix in the centralized setting. This paper also shows that for
massively overparameterized models, the algorithm converges in the first iter-
ation, further motivating the relevance of the one-step setting of Paper [V. The
paper presents numerical simulations on both synthetic and real-world data
which illustrate the analytical results.

Paper VI
M. Hellkvist, A. Ozgelikkale, and A. Ahlén, “Continual learning with dis-
tributed optimization: Does CoCoA forget?”” Conference submission, 2022.
This paper considers distributed continual learning with CoCoA, i.e., the
learning of multiple, possibly related, tasks in a sequential fashion over a net-
work of nodes. This paper focuses on the setting with linear regression tasks
where there is a solution which solves all the tasks simultaneously. The results
consist of closed form expressions of the algorithm’s solution in the overpa-
rameterized setting, as well as numerical simulations of the generalization er-
ror, the training error, and the convergence, under different conditions on task
repetition and similarity. The numerical simulations illustrate that continual
learning can be performed, but also that there are potential pitfalls. For in-
stance, if the total number of samples of all tasks combined matches the number
of unknowns, then the solution may diverge, leading to significant performance
degradation on previously seen tasks.

Paper VII
M. Hellkvist, A. Ozcelikkale, and A. Ahlén, “Distributed continual learning
with CoCoA,” Journal submission, 2023.

This paper considers distributed continual learning with CoCoA on a se-
quence of linear regression tasks with standard Gaussian features. The main
result is an exact analytical characterization of the generalization error. In par-
ticular, the paper presents an expression of the generalization error as a func-
tion of the number of samples per task, the number of tasks, the number of
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features per node, the number of nodes, and the similarity between tasks. The
main result does not assume any constraints on the relation between the respec-
tive optimal solutions of the tasks, hence the presented expression is general
in terms of task similarity. This paper quantifies how the generalization per-
formance depends on the network structure and how similar the tasks are. For
instance, the results show that the most favorable number of nodes in the net-
work, in terms of the generalization performance, may significantly depend on
the number of tasks and the task similarity. The paper also observes that the
generalization error is large if there are nodes where the number of parame-
ters is close to the number of samples per task. This finding aligns with the
observations made in the single-task setting of Paper V. The paper provides
numerical verification of the theoretical analysis, and also illustrates how well
CoCoA can perform continual learning on a real-world dataset.

1.2 Outline of Thesis

We categorize the papers in this thesis into two groups: those related to model
mismatch, and those related to distributed learning. The remainder of this the-
sis is organized as follows. Chapter 2 first describes the problem of model
mismatch and how it relates to the generalization error and the double-descent
phenomenon, and then summarizes the contributions of Paper I — III. Chap-
ter 3 first provides an introduction to distributed learning and summarizes the
contributions of Paper IV and V. Then, Chapter 3 presents a description of
the problem of continual learning, and summarizes the contributions of Pa-
per VI and VII. Finally, Chapter 4 concludes the thesis and discusses possible
directions of future work.
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2. Model Mismatch

Supervised learning is a regime of machine learning, where the goal is to find a
relationship between input and output data. After a relationship is found, then
it may be used to make predictions or decisions when new data comes. There is
a wide range of applications of supervised learning problems, including image
and speech recognition, email spam detection and recommendation engines.
Supervised learning is performed by choosing a model and then training it
based on a set of training data. Here, the training data consists of pairs of
input-output data. The training process consists of tuning the model such that
when it is presented with examples of inputs from the training data, then it
should predict the corresponding output value. If the training is successful,
then the model can be used to correctly predict the output values for input data
unseen during training. This is known as the model’s ability to generalize,
and it depends on several factors, such as the richness of the set of training
data in relation to the data that the model may encounter after training, and the
learning capacity of the model in relation to the complexity of the task at hand.

A model is represented by a mathematical function which maps from the
input data to the corresponding output data. This function exists in some space
of possible functions, i.e., the hypothesis space. Thus, the hypothesis space
determines the set of potential model candidates which may be considered dur-
ing training. The hypothesis space, also often called the model set, is chosen
by the user, and may be based on the user’s prior knowledge or beliefs about
the input-output relationship. In this thesis, we consider parametric models,
i.e., models represented by a set of adjustable parameters. Here, training the
model corresponds to determining the values of the model parameters that are
most suitable for the problem at hand, where the suitability is evaluated based
on some performance criterion chosen by the user. This is typically done by
formulating an optimization problem with the performance criterion as the ob-
jective function and the model parameters as the optimization variables, and
applying an optimization algorithm.

The user’s prior knowledge or beliefs about the input-output relationship
on which the model construction is based, can be termed as assumptions. In
this thesis and the included papers, we use the term assumed model to refer to
the model structure which is a result of the assumptions made. Ideally, these
assumptions are formulated such that the trained model should be able to ac-
count for the patterns in the data to be encountered after deployment, which
is crucial to the performance of the trained model. In particular, a larger and
richer set of training data, together with an appropriately applied optimization
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algorithm, will only improve the trained model’s generalization performance
up to a point determined by the learning capacity of the assumed model.

This thesis investigates the effects that the model assumptions have on the
generalization performance. In particular, the potential quality of the assumed
model is put into perspective of an underlying system. We consider scenar-
ios where the input-output pairs come from an underlying system, where the
output values are the result of feeding this underlying system with the input
data. We focus on the setting where both the assumed model and the under-
lying system are linear in their parameters. We further assume that there is a
model mismatch, in that the assumed model does not match the underlying sys-
tem, even though both the assumed model and the underlying system are linear
models. We henceforth refer to the degree of mismatch between the assumed
model and the underlying system as model mismatch.

Model mismatch frequently occurs in practice and can take a multitude of
different forms. For example, model mismatch can arise from a relevant vari-
able left out of the model, an irrelevant variable included in the model, incor-
rect assumptions on the data statistics, or assuming the wrong family of models,
i.e., the hypothesis space does not include the model structure of the underlying
system. If one assumes that there is a model mismatch, it is natural to ask what
the consequences will be. The papers included in this thesis systematically
investigate the effects of model mismatch on the generalization error by for-
mulating a framework around fake and missing features. The presented results
characterize the generalization error under model mismatch, and quantify fun-
damental connections between the two. These results capture what is known
as the double-descent phenomenon, a characteristic of the generalization error
curve which we provide an introduction to in Section 2.1. In particular, model
mismatch can induce a double-descent behaviour of the generalization error.

Application scenarios in which model mismatch has been studied specifi-
cally, include positioning problems [8], channel estimation [9] and radar appli-
cations [10]. Reinforcement learning is sometimes performed in an approxi-
mation of the true environment, which can be considered as a model mismatch
problem [11]. As model mismatch may be difficult to avoid, robust meth-
ods have been proposed for a range of algorithms and settings. For example,
the constrained minimum mean squared error estimator [12], the maximum a-
posteriori estimator [13], and the generalized difference regret criterion [14],
deal with potential model mismatch due to uncertainties in the assumed co-
variance matrices. In another line of work, the linear regression problem with
uncertain regressors due to perturbations, was studied [15, 16]. Furthermore,
robustness against missing features, i.e., relevant regressor variables which are
not included in the assumed model, was investigated in [17]. Another line of
work that considers model mismatch problems is compressive sensing [18],
where the signal of interest is often assumed to be sparse with respect to the
dictionary used for the signal recovery. Such problems with overcomplete
dictionaries may be viewed as a model mismatch-problem as the model con-
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tains more features than “necessary”. The compressive sensing literature ac-
knowledges the potential problems arising from model misspecification, and
has studied the sensitivity and performance bounds based on mismatched basis
functions of the dictionaries used [19-21].

The studies in this thesis focus on linear regression models, which are
useful in a range of applications within signal processing, statistics and ma-
chine learning. Although it has been well studied since its introduction in
the early 19"century [22], minimum-norm interpolating solutions have re-
cently received increased attention in the context of the double-descent phe-
nomenon [23-28]. This thesis contributes to this line of work under a model
mismatch framework.

2.1 Generalization Error and Double-Descent
2.1.1 Overview

Supervised learning is a regime of machine learning, where pairs of input
and output data are used to train a model. Consider pairs of training data
(a1,y1), ..., (@n,yn), where a; € R¥*1 denotes the vectors of input data and
y; € R denotes the scalar output data. Using this set of training data, a predic-
tive model (or function) denoted by h : R¥*! — R is trained. The ultimate
goal is to use h(-) to predict the output y corresponding to a new input example
a, which was not seen during training. For a pair of data (a, y), we refer to
the prediction of y using the model h(-) by § = h(a). If h(-) is a parametric
model determined by a vector of parameters « € RP*!, then this is emphasized
by explicitly writing h(a; ).

By hypothesis, the model A(-) is usually constrained to exist within some
family of functions 7, which is often called the model set. Typically, H is
formulated by choosing a model architecture such as, for example, linear re-
gression, logistic regression or neural networks. A risk function R(h) € R is
formulated as a measure of “goodness” of the model. The best possible model
is then considered to be the model h € H that has the minimum risk. The risk
R(h) is defined as the expected loss of h(+), i.e., R(h) = Ep [¢ (h(a), y)] €R,
where the loss ¢ (h(a), y) measures the model’s prediction quality, i.e., the
quality of the prediction § = h(a) with respect to the desired output y. It is
a typical underlying assumption that the input-output pairs are related through
an unknown joint probability distribution P(a,y), and that the training data
(a;,y;) are examples drawn from this distribution. Hence, the expectation
in R(h) is taken with respect to P(a,y). Two examples of the loss function
are the squared loss ¢ (9, y) = (¢ — y)2 for regression, and the zero-one loss
€(9, y) = Ty, for classification, for example.

As the input-output relation, i.e., the joint probability P(a,y), is gener-
ally unknown, the risk R(h) cannot be evaluated. Instead, an approximation
of the risk is computed based on the available training data, i.e., Remp(h) =
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%Z?zl ¢(h(a;), y;), which is referred to as the empirical risk in order to
emphasize that it is an empirical approximation of the risk. A supervised
learning algorithm is then formulated based on minimizing the empirical risk,
miny, ¢ ¢ Remp(h). Thus, the empirical risk corresponds to the training error,
as it is the error being optimized over during the training of the model. On the
other hand, the true risk corresponds to the generalization error, as it measures
the quality of the model’s prediction on data unseen during training.

There is a fundamental discrepancy between achieving low generalization
error and minimizing the training error, i.e., between the true risk and the em-
pirical risk. In particular, a low or even near zero training error does not guar-
antee a low generalization error. This discrepancy poses a critical and central
challenge in supervised machine learning. This section continues with discus-
sions of this discrepancy, and in particular how the relationship between the
training and the generalization error depends on the model assumptions.

The learning capacity of the possible models in 7 is central to the general-
ization performance of the model after training. For example, if i (+) is a linear
regression model with p adjustable parameters, such as h(a;x) = aTx with
a € RP*1 € RP*1, then p is a measure of the learning capacity of a(-). The
bias-variance tradeoff from classical statistical learning theory suggests that
the capacity should not be too small or too large [29, Section 2.9]. This trade-
off is illustrated in the first half of Figure 2.1. If the capacity is too small, then
the model performs poorly, having both a large training error and a large gen-
eralization error. The model is then said to be “underfitting” the training data.
If the capacity is too large, although still within this first half of the figure,
then the model obtains a very small training error but a large generalization
error. The model is then said to be “overfitting” the training data. The name of
the bias-variance tradeoff refers to how the generalization error can be decom-
posed into terms of bias and variance, respectively. The bias tends to decrease
as the learning capacity increases, while the variance tends to increase as the
learning capacity increases, hence the tradeoff.

As the learning capacity increases, the training error tends to decrease, and
can eventually reach zero, i.e., §; = y;, ¢ = 1, ..., n, see the training error
curve (dashed yellow) in Figure 2.1. If the training error is zero, the model
is said to interpolate the training data. The lowest level of learning capac-
ity for which the model can interpolate the training data is referred to as the
interpolation threshold. High values of generalization error at the interpola-
tion threshold is typically a result of noise in the data being captured by the
model, rather than actual patterns in the data. Between the points of zero fit
and interpolation, the bias-variance tradeoff suggests that the generalization er-
ror follows a U-shaped curve, see the first half of the generalization error curve
(solid blue) in Figure 2.1, indicating that there is a sweet-spot in the capacity
for which the generalization error is minimized. Hence, a general take-away
from the bias-variance tradeoff is that models with zero training error general-
ize poorly [29].
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Figure 2.1. Conceptual illustration of the double-descent phenomenon.

However, recent empirical works have shown that highly overparameter-
ized deep neural networks can generalize well while having zero or near zero
training error [30], suggesting that the generalization error may descend if the
capacity is increased beyond the point of interpolation. The double-descent
curve is proposed in [31] as a “reconciliation” between the U-shaped curve
from classical theory and the low generalization error observed for these highly
overparameterized models. Double-descent curves have been observed for
a multitude of models, including random forests and fully connected neural
networks [31], as well as convolutional neural networks [32]. Utilizing that
double-descent can be observed for linear regression, both for Gaussian and
for random feature models, the work in [24] sparked a line of work which
studies the phenomenon using linear models.

A conceptual illustration of the double-descent curve is provided in Fig-
ure 2.1. The generalization error first descends and then ascends according
to the U-shaped curve of the bias-variance tradeoff, and then, when the learn-
ing capacity goes beyond the interpolation threshold, the generalization error
decreases again, showing the double-descent behaviour.

2.1.2 Example: Polynomial Regression

This section provides an example which illustrates the double-descent phe-
nomenon for a polynomial regression model.

The model is trained on a set of training data { (y;, a;) }_;, consisting of n =
15 training samples where the inputs a € R is drawn uniformly on a € [-1, 1],
and the outputs are generated as y = 2a + cos(25a) € R. This underlying
input-output relationship between a and y is assumed to be unknown when the
assumed model is created in the below.
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Figure 2.2. The polynomial regression models’ training and generalization error ver-
sus the model size p.
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Figure 2.3. Polynomial regression models (solid lines) of different degrees p, trained
on the training data (dots) from a sinusoidal model (dashed line).
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The polynomial regression model with Legendre polynomials is defined as
ha;®) = Y58 xjpj(a), wherew = [z --- xp]" € RP*!is the vector of
model parameters to train, and ¢;(a) € R denotes the Legendre polynomial of
degree j — 1 evaluated at a. Using the squared loss as the risk, the empirical
risk minimization problem is

n

. . 1
Jmin | Remp (h(-; x)) = min ; (h(ai;z) —y:)*  (@2.1)
1 )
= — ||Ax — 2.2
Jmin |l Az —yll;, (2.2)
wherey = [y1 ... yn|" €R™!is the vector of training output samples,
and A € R™*P is the feature matrix constructed as

p1(ar) ... pplar)
A= : . (2.3)

e1(an) ... pplan)

A solution to this problem is given by £ = ATy, where A" denotes the
Moore-Penrose pseudoinverse of A.

In Figure 2.2, the generalization error and the training error are plotted ver-
sus the number of parameters p in the polynomial regression model A(-). The
training error here is the empirical risk Remp (A (- ; )) evaluated on the training
dataset with n = 15 samples, and the generalization error is evaluated as the
average squared loss on the range a € [—1, 1] uniformly sampled with 0.001
increments.

Figure 2.2 illustrates that the training error decreases as the model size p
increases. At p = n = 15, the training error comes very close to zero, less
than 10~ '8, perfectly fitting the training data. Thus, the model for p = n is at
the interpolation threshold. The figure illustrates that models for p > n also
interpolate the training data. The generalization error follows the U-shaped
curve of the bias-variance tradeoff for p = 1,...,15, and reaches its peak
at the interpolation threshold p = n = 15. This peak is consistent with the
notion of overfitting in the classic bias-variance tradeoff: that models which
interpolate the training data are unable to generalize. However, if the model
size p is increased further, then the generalization error decreases, even though
the model still interpolates the training data. Hence, this figure illustrates the
double-descent phenomenon: As the learning capacity increases beyond the
interpolation threshold, the generalization error may decrease to the same level
as that of models close to the “sweet-spot” of the classical U-shaped curve.

Figure 2.3 provides an additional illustration by plotting the output predic-
tions from three separate models of sizes p = 5, p = 15 and p = 30. Here,
the output predictions § = h(a;x) are plotted along the y-axis, versus the
values of a on the x-axis. The training data samples are marked as dots in
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the figure. The outputs of the sinusoidal system used to generate the data, i.c.,
y = 2a+cos(25a), is plotted as a dashed curve. How close each of the models’
curves is to the training data represents the training error, and their closeness to
that of the sinusoidal system represents the generalization error. Hence, Fig-
ure 2.3 illustrates the training and generalization error for three levels of model
learning capacity, here measured by p.

The small model with p = 5 is relatively close to the true system curve,
while it does not exactly fit the training samples. Hence, this model has non-
zero training error and small generalization error. This model is close to the
sweet-spot on the classical U-shaped curve, see Figure 2.2 for p = 5.

The medium size model with p = 15 exactly fits all of the training data sam-
ples, achieving zero training error. This model is precisely at the interpolation
threshold of p = n = 15. This model’s curve is generally very far from the
sinusoidal system’s curve, going outside the range of the plot for several values
of a, which corresponds to a very poor generalization performance. The curve
for this model illustrates the generalization error at the interpolation threshold,
see Figure 2.2 for p = 15.

The large model with p = 30 retains the interpolation property, as it ex-
actly fits the training data. Overall, it is much closer to the sinusoidal system’s
curve, having good generalization performance on the same level as the model
with p = 5 parameters. Hence, this model’s curve illustrates that the general-
ization error can go down as the model size increases beyond the interpolation
threshold, see Figure 2.2 for p = 30.

2.1.3 Discussions

Double-descent curves have recently gained attention after empirical studies
have observed that large-scale deep learning models [33] can generalize well
even while achieving zero or near-zero training error [30,32,34]. The double-
descent generalization error curve was proposed in [31] as a way to combine
these recent observations with the classical wisdom of the bias-variance trade-
off [29]. Double-descent behaviour has since been observed empirically for
a range of models, as in [31], where it was empirically observed for a ran-
dom Fourier features model, a neural network and a random forest model.
Analytical studies on double-descent have devoted much attention to linear
models [23-26,35-40]. Investigating the generalization error and the double-
descent phenomenon using linear models typically provides more tractable
and rigorous mathematical analysis than non-linear counterparts. Linear mod-
els with Gaussian features facilitate one of the more straight-forward settings
to analyze, and tractable closed form expressions of the generalization error
have been presented [24]. Subgaussian feature distributions extend some of
the properties of Gaussian distributions, hence they are attractive to study, and
generalization error bounds have been presented [23,26]. The generalization
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error is also studied under linear models (in the parameters) with nonlinear fea-
ture mappings, such as Fourier series [23,24], random Fourier features [38,40]
and nonlinear activation functions [25,36], often with the motivation that they
facilitate a closer representation of nonlinear neural networks than Gaussian
features.

Additional peaks and descents in the generalization error curve have been
observed and investigated. The generalization error peak of the double-descent
curve typically occurs when then number of samples is close to the number of
features, but in [41], it is shown that when the input is transformed with a
nonlinear feature mapping, then a peak can also occur when the number of
samples is close to the input dimension. Block-correlated features can also
induce generalization error peaks, as shown in [35]. Thus, the generalization
error curves are heavily affected by the distribution of the features, and it has
even been shown that the generalization error can be increased or decreased
‘by design’ if one can choose the distribution of an additional feature added to
the problem [42].

In addition to the above lines of work focusing on characterizing the gener-
alization error curve, another line of work focuses in particular on quantifying
necessary conditions for which benign overfitting can occur, i.e., good gener-
alization performance achieved at the same time as interpolation of the training
data. In [26], it is shown that that the possibility of benign overfitting in linear
regression depends on the eigenvalue decay of the feature covariance matrix.

Regularization can be used to avoid overfitting in order to improve the gen-
eralization performance [29], hence regularization affects the generalization
error curve and the possibilities of achieving benign overfitting. Studies on
double-descent and regularization has shown that the generalization error peak
at the interpolation threshold can be dampened and mitigated by using explicit
regularization [35]. Also implicit regularization, i.e., regularization not ex-
plicitly formulated in the optimization problem, affects the double-descent be-
haviour and the performance in the overparameterized regime, such as pro-
vided by weak features [43], asymptotic overparameterization [44], least-
squares ensembles [45], and the kernel shape in kernel regression [46].

2.1.4 Model Mismatch and Double-Descent

It is clear that the model mismatch, i.e., the mismatch between the assumed
model in relation to the underlying system, affects the achievable generaliza-
tion error. Hence, the generalization error curve is often studied under model
mismatch, and double-descent has been observed and studied under model
mismatch types such as suboptimal ridge regularization [35, 44], inclusion of
asymptotically weak features [43], and missing features [24,25,47].

By formulating a systematic framework for model mismatch, based around
differences between the sets of features in the underlying system and those
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included in the assumed model, this thesis contributes to the above line of
work by studying how the generalization error curve and the double-descent
behaviour are affected by model mismatch. Note that, rather than trying to
correct the model, this thesis investigates the effects of using the mismatched
model for estimation. The contributions are summarized in Section 2.2.

2.2 Contributions

In Paper I and II, one of the main contributions is the presented problem for-
mulation, which is discussed in detail in Section 2.2.1. This formulation intro-
duces a systematic notion of model mismatch to the statistical learning problem
with fake and missing features as well as general covariance matrices for the
unknowns’ priors. In particular, Paper I considers the setting with missing
features, and without fake features, while Paper Il considers both missing fea-
tures and fake features. Paper 111 is based on the framework with both fake and
missing features, but considers deterministic priors. Section 2.2.2 provides an
overview of the contributions of Paper I — III.

2.2.1 Mismatch in Linear Models

We consider data that is generated from the following linear system,
y=AZ+v=Agxs+ Aczc + v, 2.4)

where y € R™*! is the vector of observations, g € R?s*! and 2 € RPc*! are
the unknowns of interest, and v € R™*! is the vector of noise. The observations
are generated from the features in Ag € R"*Ps and Ac € R"*P¢. These two
matrices together are referred to as the matrix A, which is constructed as

A=[As Ac] eR™P, (2.5)

where p = pgs + pc denotes the total number of unknowns which generate
the vector of observations. The unknowns in g and ¢ are arranged in the
following corresponding fashion,

& = ["’S] c RPXL, (2.6)
Tc

In an ordinary linear regression setting, the training data would typically
consist of the observations in y together with A= [AS Ac] , such that the
unknowns xg and x¢ could be estimated. However, we instead consider a
setting where a matrix Ap € R"*P¥ of fake features is included in the training
data together with the features in Ag, and the feature matrix Ac is missing
from the training data. The fake features in A are unrelated to the observa-
tions y and the other features in the underlying system. Hence, we consider a
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setting where the assumed model used for estimation is formulated based on
the assumption that A and Ag should be included, and that corresponding
unknowns xr € RPF*! and xg should be estimated, thus the assumed model
is written as

y=Ax + 0= Apxp+ Agxs + v, 2.7)
where the matrix A € R”*P and the stacked vector & € RP*! are constructed
as

A=[Ar Ag], z= [ws] (2.8)

such that p = pr + ps. The matrix A with fake features, included in the
training data, is assumed to be uncorrelated with the data of the underlying
system, i.e., ¥y, Ag, Ac and v, as well as the unknowns xg and xc. We
denote the noise vector in the assumed model by © € R"*!, to distinguish it
from the noise v in the underlying system. The noise in the assumed model is
assumed to be zero-mean and its covariance matrix is denoted by Ky e RV

To summarize, there are three distinct types of features in the problem, A g,
Ag and A, which we refer to as

» Fake features: The features in A g are irrelevant to the vector of obser-
vations y, but included in the misspecified model, hence we referto Ap
as fake features.

* Included underlying features: The features in Ag are relevant to the
observations y and they are included in the training data, hence Ag is
referred to as included underlying features.

* Missing features: The features in Ao are relevant to the observations y,
but not included in the training data, hence they are referred to as missing
features.

The training data thus consists of (y, Ap, Ag), and the training consists of
creating estimates & € RP7*! and &g € RPs*! of the unknowns «r and xg
in the assumed model (2.7).

In order to evaluate the generalization properties of the resulting estimates,
we consider test data which are independent and identically distributed (i.i.d.)
with the samples of training data. In particular, we consider an observation
generated as the training data, i.e.,

y=alxs+alxc+v, (2.9

and the corresponding predicted output, computed using the assumed model,
1.e.,
Y= a.lr;:IA:F + ag:ﬁs. (2.10)
Here, ar € RP7*! ag € RPs*! and ac € RPC*! are feature vectors i.i.d. with
the rows of Ap, Ag, Ac, respectively, and the noise v € R is i.i.d. with the
entries of the noise vector v.
Papers I — III are based on the problem formulation described here. The
presented results characterize the generalization error in terms of the prediction
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error y — ¢, as well as the respective errors related to the different unknown
vectors, i.e., g — &g, xc — ¢ and £ — £ . We discuss the contributions
of these papers in more detail in Section 2.2.2.

2.2.2 Generalization Error under Model Mismatch

Paper I and 11
Paper I and II study the problem described in Section 2.2.1 under the Bayesian
setting of linear minimum mean squared error (LMMSE) estimation.

We consider a vector of observations y € R"*! generated from the noisy
underlying system in (2.4), i.e., y = Agxgs + Acxc + v. The unknowns
of the underlying system, g and ¢, and the noise vector v are zero-mean
random vectors with covariance matrices K, € RPs*Ps K, € RP¢*Pc and
K, € R™*" respectively.

The training dataset consists of the vector y, the features Ag from the un-
derlying system and a set of fake features Ap. The features Ao are miss-
ing. The assumed model is formulated as in (2.7), ie., y = Az + v =
Apxp + Agxs + U, where A = [AF Ag] and T = [az} xg]T There
is a stochastic prior on the vector of unknowns & as well as on the noise v.
In particular, the vector of unknowns & and the noise vector v are assumed to
be uncorrelated and zero-mean, and their assumed covariance matrices are de-
noted as Kz = Ez[ZZT] € RP*?, and Ky = Eu[057] € R™", respectively.
The hat-notation K on the covariance matrices is here used to emphasize that
these covariance matrices are assumptions made for the model. Note that these
assumed covariance matrices are not necessarily equal to the covariance ma-
trices in the underlying system (2.4), e.g., we may have K5 # Kj;.

Paper I and II consider linear estimation of &, i.e., the estimate = of & is
a linear function of the vector of observations y, and can be written in the
following form

x =Wy, (2.11)
where the matrix W € RP*X" is referred to as the estimator. The LMMSE es-
timator is the linear estimator which minimizes the mean squared error in the
unknowns of the assumed model, and is given by

W o=arg min By |z -~ Wyl (2.12)
Note that the expectation is taken with respect to the assumed prior distribu-
tions on & and the assumed model of y in (2.7). With the assumed model and
priors, the LMMSE estimator is given by

W = Kz K, ', (2.13)
and the corresponding estimates by
A Tp b
z = [ms] = Ky K, 'y. (2.14)
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The assumed covariance matrix K'y = E,[yyT] e R™*" and the cross-

covariance matrix K. #y = Ez 4 [ZyT] € RP*" are given by the assumed model
and the priors on & and v, i.e.,

K:iy =Esz5 [2(AZ +0)T] = Kz AT, (2.15)

Ky =Ez; [(Az +0)(Az +0)T] = AK; AT + K. (2.16)

In Paper I, the misspecified model only contains the included underlying
features Ag, hence the features Ao are missing. Thus, the model mismatch
considered in Paper I is only due to missing features, as fake features are not
considered there. Paper Il considers fake and missing features together. Thus,
Paper I offers a more focused analysis on the effect of missing features, while
Paper Il treats fake features and missing features together.

Paper I and II analytically characterize the generalization error for their re-
spective settings. The results give analytical expressions of the generalization
error as a function of the problem dimensions, i.e., number of samples n and
the respective numbers of included, missing, and fake features, pg, po and
pr. While the power levels tr(K ) and tr(K,,) affect the generalization
error, our results show that under isotropic Gaussian features, the respective
structures of the covariance matrices K, and K, do not. The expressions
capture the double-descent phenomenon, which here occurs if the number of
features in the misspecified model p = pg + pr, i.e., the combined number of
included underlying features pg and fake features pr, is close to the number
of samples in the training data, i.e., if p ~ n, or equivalently, if A € R™*? is
approximately square. To gain insights into this, consider the following sce-
nario. If the noise level in the assumed model is low, e.g., Ky = 621, with
62 small, then the large peak in generalization error at p &~ n occurs because
there is a high probability that there are singular values of A which are close
to zero, but not exactly zero. Due to these small nonzero singular values, low
noise level assumption, and the inversion of the matrix K. y» the generalization
error becomes large. Nonetheless, a sufficiently large noise level assumption
explicitly regularizes the problem, which dampens or even removes the peak
in generalization error.

The results in Paper II show that the model mismatch induced by the pres-
ence of the fake features in the assumed model can decrease the error, improv-
ing the estimation performance, even though the fake features are uncorrelated
with the true features. The results suggest that the performance improvement
may be a result of the fake features providing implicit regularization to the
problem, rather than additional explanatory power.

Paper 111
The problem formulation in Paper III considers a deterministic prior on the
unknowns. The estimates £ and &g are found by minimizing the ridge-
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regularized least-squares cost function,

min_ |y — g2+ 7| 2.17)
\g=Azx
= min |ly - Apir — Agas|}+ A@el}+ Aasl3. @18)
FyLs
The solution is given by
5o |2 2 (ATA + )\I—)*l ATy (2.19)
Tg P ’ ’

where A > 0 is the ridge regularization parameter. We recall that A is con-
structed as A = [A F AS} , where A denotes the fake features. This paper
further investigates the implicit regularization provided by fake features, and
the trade-offs between this implicit regularization and the explicit ridge reg-
ularization provided by A. The main result of Paper III is a high-probability
bound on the generalization error. The bound is guaranteed to hold if the ridge
parameter is large enough with respect to the difference between the number
of included and fake features pg + pr and the number of samples n.

This result gives insight into the trade-off between the ridge parameter and
the fake features, which was observed in Paper II. In particular, if the model
without fake features is close to the interpolation threshold, then the general-
ization error will be large if the ridge parameter A is too small. Similarly as in
(2.14), the matrix inversion in (2.19) with small nonzero singular values of A
and small A, causes the peak in generalization error at p = pg + pr ~ n. On
the other hand, if a large number of fake features is added, so that the model
is sufficiently far away from p ~ n, then the peak in generalization error is
avoided regardless of the ridge parameter value A\. Hence, the performance
improvement due to the presence of fake features in the assumed model can be
interpreted as an implicit regularization effect.
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3. Distributed Learning

Machine learning problems can be distributed over a network of computational
nodes, such that the computational load is lower per node, compared to the load
experienced by a single node performing the task alone. Such machine learning
algorithms fall into the paradigm of distributed learning algorithms. By shar-
ing the computational load over the network, the distributed learning frame-
work is suitable for large-scale machine learning tasks, while it also facilitates
emerging needs of data privacy and security [48,49]. The increasing demand
of large-scale machine learning solutions [50—52] for applications such as edge
computing [53, 54], has lead to rapid development of the distributed learning
field.

A range of terms are used to distinguish what setting within distributed
learning is considered. The following terms categorize different settings based
on network topology [55]: centralized networks, where one central machine
orchestrates the learning and aggregation of the computations performed in
the network; decentralized networks, where intermediate aggregation is per-
formed; fully distributed networks, where nodes are fully independent and ag-
gregation is performed directly between the nodes. The term federated learn-
ing was introduced to put emphasis on distributed learning methods for cen-
tralized systems with mobile and edge device applications [56,57]. Distributed
learning methods may also be categorized depending on if the samples of data
are being distributed, e.g., as in [58], or if parts of the model are being dis-
tributed among the learners, e.g., as in [59, 60].

Distributed learning has been studied from a wide range of perspectives,
such as privacy protection [49], constraints which vary over time [61], adap-
tive clustering of nodes [62], and communication efficiency [63—65]. Other
than these problem aspects, literature on distributed learning typically focuses
on convergence guarantees of the training error, while there is a lack of the-
oretical characterizations of the generalization error. Nonetheless, we note
that distributed learning on minimum mean squared error estimation frame-
works have more specifically studied the generalization error. For example,
distributed Kalman filters [59, 66] distributed least-mean squares algorithms
[58,67], affine projection algorithms [68], and distributed linear discriminant
analysis [69]. In this line of work it is typically the training data samples that
are distributed over the network, rather than parts of the model. In contrast, our
work in Paper [IV-VII studies the generalization error in the setting with dis-
tributed model parameters. This setting can be interpreted as the local models
being misspecified with respect to the full model, i.e., there is a model mis-
match. The presented results thus reveal how the network structure, which is
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directly connected to the local models’ degrees of mismatch, affects the gen-
eralization error.

We consider the distributed optimization algorithm CoCoA [70], which we
describe in Section 3.1. This setting falls under the category of centralized
networks, as the algorithm relies on global aggregates of the estimates sent by
the nodes to a central node. CoCoA is a development from its predecessor in
CoCoA-v1 [71] and has been further generalized to CoCoA™ in [72] and CoLa
in [73]. CoCoA has been an impactful distributed optimization framework,
and has been accredited as a component in the 46-fold improvement of the
training time of logistic regression performed by IBM and NVIDIA [74].

3.1 The CoCoA Framework

This section provides an introduction to the distributed optimization frame-
work CoCoA [70]. CoCoA is a general distributed optimization framework
for minimization problems which can be mapped to the following form
min_f(A&) +g (&), (3.1)
& €Rpx1
where & € RP*! is a parameter vector, A € R™*? is a data matrix. Note that
CoCoA can also be run on the dual form of this problem, as described in [70],
along with the primal form as included here in (3.1). In this thesis, CoCoA is
applied to the ridge regression problem,

. 1 ~ 112 A ~ 112
—||ly— A = 3.2
_min 2y~ A2+ 2 o). (2)
i.e., (3.1) with
. 1 12
f(A#) =y - A%, (33)
. A
g(@) =5 3. 34
where y = [y1,-,yn]T €R™! is the vector of outputs, A =
[@1,...,a,]T € R"*P is the matrix of regressors, and A > 0 is the regulariza-
tion parameter. Hence, the training dataset consists of the n input-output pairs
(yi, @;) ERxRPX! i =1 ..., n. We continue this section by describing our

implementation of CoCoA for solving (3.2), which is given in Algorithm 1 and
visually represented in Figure 3.1.

CoCoA operates in a distributed and iterative fashion over a network of
learners. The problem of producing an estimate & € RP¥! is distributed over
the network such that each node governs an exclusive subset of the entries of
the unknowns of interest &, denoted by & € RP* 1 and the corresponding
columns of the regressor matrix A € RP*! denoted by Ay, € R™Pr. Here,
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Algorithm 1: CoCoA implementation for solving the regression prob-

lem in equation (3.2).

1 Input: Training data (y, A), with the feature matrix partitioned as

A=Ay, ..., Al Initialize with (%),
Compute v[(,%) corresponding to initialization of &(©):
0) _ - 5 (0) 4 _
vm = QOKA[k]w[k], k= 1, ceey K.
for:=1,...,T.do
(i 1—1
4| 00 =% 55 oY

5 | forke{l,2,..., K}do

(]

w

9 Output: (7%

NONS + »
° Ay = <",A[Tk]A[kl + )\ka) (A[Tk] (y—o®) -
- (4) _ ~(1—1) _ A o(3)
’ By =+ PAZY
() _ 50) 4 (i)

(o N

Amy 2 Bl 5~

Node K (K]

quv lr) = /

Figure 3.1. Visual representation of distributed learning with CoCoA.
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the subscript [k], & = 1, ..., K, denotes the subset of column indices gov-
erned in node k, where K denotes the number of nodes. The number of
columns, and hence the number of features, in node k is denoted by py, where
Zszl pr = p. Without loss of generality, we assume that the columns corre-
sponding to the K partitions come sequentially from the columns of A, i.e.,

A

A=[Ay - Apglandd = [&]) - @f| . With this partitioning,
we can write

Az =[Ay - A | | =D Apdu. (3.5)

TIK]

In CoCoA, the nodes iteratively produce estimates for their respective un-
known components Z;. The iteration number is denoted as (i), i =
1, ..., T¢, and the corresponding estimates as :%Eg The nodes collaborate by

creating local estimates of the output vector y, denoted by v[(;}) € R™*1 which
are collected by a central node which computes and broadcasts the average of

them,
L= ) 1
—(i) _ % nx
o\ = % g lvw ceR™". (3.6)

The update that node & makes to its estimate in iteration (i) is denoted by

Aa:fg, and is computed by solving the following minimization problem

1 ) A\ T ;
o L) e (=) NG
min — f ('v )+vvm f(v ) A[k]AacW
A%L 3.7)

/
301 3@

where the coefficient % is related to the smoothness of f(-), and the term

(%)

k]

o’

27
trols the importance of this penalization.

To use CoCoA for solving the ridge regression problem in (3.2), i.e., using
f(+) and g(-) from (3.3) and (3.4), corresponds to the following substitutions

D)
A A@EIQ H2 penalizes large changes in v;,;, where the coefficient o’ con-

in (3.7),
, 1 12
@\ L, _ =0
f (v ) > ’y o] (3.8)
Vo [ (80) =00 —y, (3.9)
(i-1) L)) _ A 4= @) ||2
g ( 0l Aa:[k]) =2 |lati ) + aaly| (3.10)
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Thus, we have

2 (gl T NG
+ (’U() - y) A[k]A-’L'[k]

1 A
min —— Hy —®
2

L) 2K
Aw[k]

(3.11)
2 A
22
where we have set 7 = 1 as f(A®) is 1-smooth here, see [70, Def. 3]. This
is a convex problem in Aﬁz%, and is solved by taking the partial derivative,

setting it to zero and simplifying, obtaining

(i—1) NOIIE
T +Am[k} )

)

2

(1) _ (i . (i)
(o' AJyAu + L, ) Aaf) = AT, (y - o) - Az, (3.12)
We solve this set of linear equations by using the Moore-Penrose pseudoin-
verse, denoted by ()T, obtaining

Al = (o' Al Ay + /\ka>+ (A, (y-29) - af)) . @13

Note that we use the pseudoinverse here, rather than the standard matrix in-
verse, as we allow the regularization coefficient to be set to zero, i.e., A = 0,

for which the existence of the matrix inverse is not guaranteed.
The node then updates its local estimate i:[(g
v[(,z]) of the output y,

of ;) and its local estimate

iy = af )+ Az, (3.14)
v[(g =@ 4 @KA[k]Aa%E,a, (3.15)

where the coefficient ¢ € (0, 1] controls how the updates from each node are

combined. In particular, p = 1 corresponds to addition of the nodes’ solutions,
(%)
o7 K]
collected by the central node, which calculates the aggregate &1 using (3.6).
We have thus described one iteration of CoCoA. As the latest aggregate o1
is communicated to the nodes, the algorithm is iterated by the nodes repeating

the steps in (3.13)—(3.15) based on the latest aggregate.

and p = % corresponds to averaging. The local estimate vectors v;,; are then

3.2 Contributions

In Paper IV — VII, we have studied the distributed learning problem using the
CoCoA optimization framework. Paper IV and V consider the standard re-
gression problem where the model is trained on one set of training data, which
is referred to as a single task. We describe our contributions to the single-task
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setting in Section 3.2.1. In contrast, Paper VI and VII study the continual learn-
ing problem with distributed learning. Here, multiple regression problems, i.e.,
multiple tasks, are to be solved sequentially. We provide an overview of con-
tinual learning in Section 3.2.2 together with a summary of our contributions
to the continual learning problem in the distributed learning setting.

3.2.1 Distributed Learning with a Single Task

Contributions

Paper IV and V together reveal that the generalization error in the distributed
learning setting can heavily depend on how the data is partitioned over the
network. In Paper IV, we study the distributed linear regression problem with
isotropic Gaussian regressors. This paper gives closed form expressions of the
generalization error after the first iteration of CoCoA. This result together with
numerical simulations, shows how the double-descent phenomenon affects the
distributed learning setting, showing itself as a peak in the generalization error
for certain partitioning schemes. In particular, for a fixed model size, the gen-
eralization error peak, related to the double-descent in the centralized setting,
occurs as a function of the data partitioning over the network. Such a peak in
the error occurs when there is at least one node with the number of unknowns
close to the number of samples in the training data. Paper V extends the scope
of the regressor distributions to correlated Gaussian distributions, as well as
sub-gaussian distributions. The main results in this paper are formulated as
high-probability bounds on the generalization error. Paper V also shows that
for massively overparameterized models partitioned such that the number of
parameters in each node is larger than the number of training data samples, the
algorithm converges in the first iteration. This further motivates the relevance
of the one-step setting of Paper V. The results of Paper IV and V together
describe how the generalization error varies with the problem and network di-
mensions, such as the number of samples, the number of unknowns per node
and the number of nodes.

3.2.2 Distributed Continual Learning

Overview

Paper VI and VII focus on performing continual learning using distributed
learning. Continual learning is a paradigm of machine learning in which learn-
ing from a sequence of data is considered. Each distinct set of data in the se-
quence corresponds to a task, i.e., a machine learning problem. The aim of
continual learning is to train models such that can learn to perform new tasks
while they keep performing well on all the previously seen tasks, i.e., not for-
getting what was learnt previously.
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A task can be represented by any type of learning problem, and has been
considered in a range of applications, such as wireless system design [75] and
image and gesture classification [76]. Due to variations between tasks in a
sequence, the continual learning problem is related to the field of adaptive fil-
tering [77], where the model continuously undergoes adaptation to a changing
environment through iterative optimization methods.

A key performance metric in continual learning is that of forgetting, which
measures the model’s performance degradation on previous tasks as it trains
on new tasks in the sequence. If a model abruptly loses the information learnt
about a previous task, while training on a new task, it is said to exhibit catas-
trophic forgetting [ 78], which is a fundamental problem to overcome in order
to achieve continual learning [79].

Continual learning has gained increasing attention in recent years [80]. Al-
though continual learning has been mainly studied in the centralized learning
setting, a limited number of studies on continual learning in distributed learn-
ing settings have recently been presented [81, 82]. This thesis contributes to
the line of work on continual learning in distributed settings by investigating
the possibility of using the distributed optimization framework CoCoA for the
continual learning problem.

Contributions

The continual learning setting in this thesis considers tasks which correspond
to linear regression problems, where each task has individual sets of training
data, consisting of pairs of input and output data. In this setting, the sequence
of regression problems should be solved using a common set of model param-
eters. During training, only the training data from one regression problem is
available at a time, and the training is performed sequentially over the linear
regression problems, i.e., the tasks.

We now summarize the continual learning setting we consider together with
the distributed optimization framework of CoCoA. Weuset =1, ..., T, to
denote the indices of the tasks that come in the sequence. For each task, we
are given a set of training data denoted by (y;, A;). Here, A, e R™*P is a
features matrix with i.i.d. standard Gaussian entries, and y; € R™*1 ig the
corresponding vector of observations generated by the following noisy linear
underlying system

Yt = Ay + 21, (3.16)

where x; € R? *1 is the vector of unknowns for task ¢, and z;, € R™*! is an
unknown noise vector uncorrelated with the features, where the entries of z;
are i.i.d. with zero mean and their variance denoted by o7. The noise level may
vary between between tasks. The matrices A;, ¢t =1, ..., T are statistically
independent, and so are the noise vectors z;,t =1, ..., T.

Each task corresponds to finding an estimate & € RP*! which can generalize
for new samples from the underlying system in (3.16), i.e., Yt new ~ a{ new L
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Figure 3.2. Distributed continual learning with CoCoA.

where Y new and a; new denotes a new sample from task ¢, unseen during train-
ing. For task ¢, we solve this problem by using CoCoA to minimize the
squared loss for the training data of task ¢, i.e., || A& — ytHg The estimate
& is updated as the task sequence progresses, and we denote that version of
& after training on task ¢ by &; € RP*!. We use the notation Ay [ € R™MXPx
and & 1) € RP=*1 to denote the partitions of task ¢’s feature matrix and the
corresponding parameter estimates during the training of task ¢, where &k =
1, ..., K, denotes the indices of the K nodes in the network. Because CoCoA

is an iterative algorithm, we write :ﬁgi) € RP*! to denote the estimate in the i

CoCoA iteration of training on task ¢, where ¢ = 1, ..., T.. The final esti-
mate for task ¢, i.e., :&§T°), is used as initialization for the training on task ¢ + 1.
The resulting algorithm is illustrated in Figure 3.2. The generalization error is

measured over the whole sequence of tasks, and for any estimate &, it is given
by
1 X 1 X
- * 12
T |: a’tnew ytnew ] = TZHZE—%HE—FO’?. (317)
t=1

Yt new 7at new

Our analysis focuses on the expectation of the generalization error, over the
distribution of training data.

Paper VI focuses on the setting where ; = «*,t =1, ..., T, i.e., that the
unknowns of the underlying systems are the same for all tasks, and the tasks are
noise-free, i.e., oy = 0 for all £. Under these assumptions, Paper VI shows that
CoCoA can perform continual learning and achieve reasonable performance,
even in the case where the tasks only come once in the sequence. The effect
of the number of samples per task and the number of tasks are investigated
numerically. This paper also investigates the data fit under repeating sequences
of tasks. The results reveal that extreme performance degradation can occur
depending on the total number of samples in the task sequence, in relation to
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the number of unknowns. In particular, we observe that even though the total
number of samples Zthl n; increases with the number of tasks 7', a larger T’
can actually make the performance much worse than for a small 7'.

Paper VII considers the more general setting where all } may be distinct
vectors, and with o; > 0. The main result of Paper VIl is a closed form ana-
lytical expression of the generalization error under isotropic Gaussian features
and noise. The expression holds for the overparameterized setting where the
number of unknowns each node governs is larger than the number of samples
in the tasks, i.e., pp > ny for all nodes k£ and tasks ¢. For other cases where
pr > ng does not hold, the expression is valid for CoCoA with T, = 1, i.e., if
CoCoA is run for one iteration per task. The presented expression is given as a
function of the number of samples per task, the number of tasks, the number of
unknowns/features per node, the number of nodes, and the similarity between
tasks.

In addition to showing that continual learning can be performed using the
distributed learning algorithm CoCoA, the results of Paper VI and VII reveal
that the network structure may affect the generalization error in a significantly
different way than what is reported for single-task learning scenarios. In par-
ticular, for a fixed model size, the most favorable network structure in terms of
generalization properties depends on the task similarities as well as the number
of tasks.
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4. Outlook

4.1 Conclusions

In this thesis, we have discussed the works of a series of papers which have
investigated the generalization error performance of linear models. We have
categorized these papers into two groups, the conclusions of which we discuss
below.

In the first group of papers, we proposed a systematic approach to the study
of the generalization error by considering linear regression with fake and miss-
ing features. We have presented closed form expressions for the generalization
error and its decompositions into the respective components corresponding to
the included, missing, and fake features, for the unregularized solution. These
expressions are practically computable functions of the number of features and
the number of samples. The results show that the inclusion of fake features in
the model can decrease the generalization error, compared to when there are
no fake features in the model. In particular, the error component related to
the included underlying features, i.e., the features that are present both in the
model and the underlying system, can be smaller when there is a large number
of fake features, rather than none. We noted that this performance improve-
ment could be interpreted as implicit regularization provided by the presence
of the fake features. To study this effect, we considered our model mismatch
framework with fake and missing features in the ridge regression setting, for
which we have provided high-probability bounds on the generalization error.
Our results show that a performance improvement as a result of an increased
number of features does not necessarily imply that these features contain ex-
planatory power: the improvement may be a result of the regularizing effect
of the fake features.

The second group of papers considers linear regression in a distributed learn-
ing setting. We first considered the setting with one single task, i.e., where the
model parameters are estimated using one single set of training data. This
setting was then extended to that of continual learning, where sets of training
data corresponding to different tasks are presented to the model in a sequential
fashion.

In the distributed learning setting, we have characterized the generalization
error as a function of how the data is partitioned over the network. Here, the
number of features governed per node is a central parameter to our analysis.
The setting where each node is overparameterized has been of particular in-
terest here, as it corresponds to the learning of a large-scale model. Under

42



isotropic Gaussian features and overparameterized nodes, we have presented
closed form expressions for the generalization error, which are valid after the
distributed algorithm’s convergence, for both the continual learning setting and
the single-task setting. In the single-task setting, in addition to the standard
Gaussian feature distribution, we have considered correlated Gaussian distri-
butions and sub-gaussian distributions. We have presented high-probability
bounds on the generalization error for these settings. The expressions for the
continual learning setting show how the generalization error varies with the
task similarities, as well as the problem dimensions of the individual tasks. In
particular, the most favorable network size depends on the level of task simi-
larity as well as the number of tasks.

Our findings have highlighted a relationship between the training and gen-
eralization error in distributed learning that is generally overlooked. In partic-
ular, the partitioning of data over the network can dramatically increase the gap
between the training and the generalization error, compared to when the same
problem is solved by one single node. Our results have provided guidelines on
how to partition the model over the network in order to avoid potential pitfalls.
In particular, the results show that one should avoid partitioning the data such
that the number of features in any node is close to the number of samples of
the task. The local subproblem of a node which violates this rule will be close
to the interpolation threshold, which amplifies the gap between training and
generalization error, by the same mechanisms which give the double-descent
curve its distinctive peak at the interpolation threshold. We have discussed
that regularization may decrease the error gap in such scenarios. However, the
regularization should be chosen carefully as the convergence may be slow if
the regularization is too weak.

4.2 Future Work

The recent successes of massively overparameterized deep neural networks
defy the conventional wisdom of statistical learning textbooks. Answering the
question of what makes these models generalize well is an important line of
work as it could lead to more reliable model design. Despite recent efforts,
the generalization properties of neural networks are not well-understood, and
the low generalization error of large nonlinear models needs further analytical
investigation. This thesis has focused on linear models, which have received
significant attention in the literature on overparameterized models. A natural
extension of our work to nonlinear scenarios is the investigation of the set-
ting where the data and/or the assumed model contains nonlinear input-output
relationships which are not present in the other one.

This thesis has focused on the setting where all nodes have perfect commu-
nication channels and use the same local solution strategies with perfect accu-
racy. On the other hand, heterogeneous networks, where nodes have different
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communication qualities and different non-perfect local solvers, are often en-
countered in practice. Hence, it is natural to ask what can happen if we have
noise or dropouts in the communication, so that the central node cannot receive
updates from the nodes reliably, or what if the computational resources at the
nodes are limited, such that the local updates are suboptimal. These practical
aspects are expected to affect the solution and the associated generalization
error. Hence, extending our analysis to include these aspects of distributed
learning is a natural line of future work.

In order to make algorithms adaptive to time-varying real-world environ-
ments, developing methods of continual learning is considered an important
step forward within the field of machine learning and artificial intelligence.
Continual learning draws inspiration from how humans and animals are able
to perform an increasing number of tasks over time. In distributed learning,
the nodes learn from each other via communication over the network. This
may be compared to how humans learn from interacting and communicating
with others. Additionally, continual learning applications may also benefit
from inherent advantages offered by distributed learning frameworks, such as
computational scalability and privacy protection. Hence, the potential of us-
ing distributed learning in achieving continual learning poses a natural line of
research, which has been explored in this thesis.

We have studied the distributed continual learning setting where the nodes
collaborate to solve the same task, and where that task changes over time.
Studying the setting where the nodes are to perform continual learning on a
local sequence of tasks, where the tasks are related to the tasks of other nodes,
is of interest.

Data privacy is important in various applications, such as scenarios where
the nodes represent user devices or healthcare institutions, as the data may not
be allowed to be shared across the network. Here, the communicated updates
over the network must keep the local data private, while still enabling the nodes
to learn a common goal together. While we have focused on the trade-offs of
the distribution of the data over the network, focusing on the aspects of privacy
protection of distributed continual learning is another practically relevant line
of research.
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