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Abstract

Simultaneous Localization And Mapping (SLAM) is an important topic within the field of robotics
aiming to localize an agent in a unknown or partially known environment while simultaneously
mapping the environment. The ability to perform robust SLAM is especially important in
hazardous environments such as natural disasters, firefighting and space exploration where
human exploration may be too dangerous or impractical. In recent years, neuromorphic
cameras have been made commercially available. This new type of sensor does not output
conventional frames but instead an asynchronous signal of events at a microsecond resolution
and is capable of capturing details in complex lightning scenarios where a standard camera
would be either under- or overexposed, making neuromorphic cameras a promising solution in
situations where standard cameras struggle. This thesis explores a set of different approaches
to virtual frames, a frame-based representation of events, in the context of SLAM.
UltimateSLAM, a project fusing events, gray scale and IMU data, is investigated using virtual
frames of fixed and varying frame rate both with and without motion compensation. The
resulting trajectories are compared to the trajectories produced when using gray scale frames
and the number of detected and tracked features are compared. We also use a traditional visual
SLAM project, ORB-SLAM, to investigate the Gaussian weighted virtual frames and gray scale
frames reconstructed from the event stream using a recurrent network model. While virtual
frames can be used for SLAM, the event camera is not a plug and play sensor and requires a
good choice of parameters when constructing virtual frames, relying on pre-existing knowledge
of the scene.
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Popularvetenskaplig Sammanfattning

SLAM (Simultaneous Localization And Mapping) ar ett centralt &mne inom
robotik som &dmnar att lokalisera en agent i en okand eller delvis okand
miljo samtidigt som denna kartliggs. Formagan att kunna utféora SLAM
ar av sarskild vikt i farliga miljoer exempelvis vid naturkatastrofer, brand-
bekampning och utomjordiska aktiviteter dar mansklig utforskning kan vara
for farligt eller opraktiskt. De senaste aren har eventkameror blivit kommer-
siellt tillgangliga. Denna nya typ av sensor har inte bilder som signal utan
istallet en asynkron strom av events i mikrosekundsupplosning och kan fanga
detaljer trots svara ljusforhallanden dér traditionella kameror skulle vara
over- eller underexponerade. Detta gor eventkameran till en lovande kan-
didat dar den traditionella kameran presterar daligt. Detta examensarbete
utforskar olika metoder for att skapa virtuella bilder for SLAM. UltimateS-
LAM, ett projekt som forenar events, graskalig bilddata och IMU-data, un-
dersoks déar virtuella bilder med fixerad och varierande bildfrekvens samt med
och utan rorelsekompensering anvéinds. De estimerade banorna jamfors med
motsvarande banor nér graskalig bilddata har anvénts och antalet upptackta
och malféljda landmarken jamfors. Vi anvéander ocksa ORB-SLAM, ett pro-
jekt for traditionell visuell bilddata, for att undersoka virtuella bilder med
en Gaussisk viktfunktion och graskaliga bilder som estimerats av en RNN-
modell. Trots att virtuella bilder kan anvandas for SLAM sa ar eventkameran
inte plug-and-play och kréaver vl valda parametrar for att skapa bra virtuella
bilder som lutar sig pa kunskap om miljon i fortid.
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1 Introduction

1.1 Event cameras

Recently, Dynamic Vision Sensors (DVS), commonly known as event cam-
eras, have been made commercially available. An event camera is composed
by an array of event pixels which operate independently from each other. An
event pixel fires an event when the intensity change exceeds a threshold and
contains information about when and where the event occurred in the form
of a timestamp, its pixel position and a polarity, a binary entity indicating
whether the intensity increased or decreased. Thus the output signal is not a
constant frequency sequence of images as is the case with a standard camera
but an asynchronous, spiking signal of individual events. The challenge to
accurately represent visual event data in the context of visual odometry (VO)
is something that recently have begun to gain some attention [1][2][3][4].

Event cameras typically operate at a high dynamic range (HDR) around 140
dB compared to the dynamic range of standard cameras at around 60 dB
[5]. This enables event cameras to capture a wider range of lighting scenarios
where a standard camera would be either over- or under exposed in different
regions of the scene. The temporal resolution of an event camera is in the
order of microseconds, making it possible to capture high speed scenarios
such as bullet impacts and complex maneuvers of drones with no motion
blur [6]. Because of its neuromorphic design, only the excited event pixels
are drawing power, leading to a low power requirement. As a reference, the
DAVIS346 has a power requirement in the range of 10 to 170 mW [5]. This is
however very dependent of the scene and motion. Ideally, if the camera and
scene remain static, no events will fire and the power consumption becomes
very low. Because of these reasons, event cameras seem to be a promising
sensor for robotic applications where computational hardware and energy
storage are often limited. In the context of VO, it may fill some of the
gaps where traditional visual sensors struggle, particularly during high speed
motion and difficult illumination conditions.
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1.2 Feature Detection and Tracking

The field of image feature detection includes a wide range of features or
interest points. Ideally, an image feature is a distinguishing element within
an image and is invariant to changes in scale, rotation and illumination so
that features detected in one image can be reacquired another. This is used
in image registration, facial recognition and 3D reconstruction to name some
applications. In general, features can be any distinguishing element such as
lines and points or more semantic features such as furniture and handwritten
text. A commonly used feature in computer vision are corners. Corners are
easy to model and are relatively computationally cheap to detect, compared
to many other choices of features. Some commonly used corner detector
algorithms are:

e FAST
e ORB
e SIFT
e SURF

Harris Corner

FAST (Features from Accelerated Segment Test) is a method for corner de-
tection primarily characterized by its speed, making it suitable for real-time
applications, for example, VO. A basic implementation of FAST is for a pixel
coordinate p with and intensity I, choose a threshold ¢ and check the inten-
sity of the 16 test pixels S forming a rasterized circle around p. If a set of
N contiguous pixels in S have an intensity higher than I, + ¢ or lower than
I, —t, p is considered as a corner. Non-maximum suppression is commonly
used to score features within a local region, discarding lower scoring features
and retaining only the best performing features. The scoring strategy itself
is dependent on the choice of feature. In the case of FAST corners, the cost
function could be the sum of absolute differences of the intensities of p and
test pixels.
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Features can be complemented with a descriptor acting as a ”fingerprint”
of a local neighbourhood around the feature. More formally, a descriptor
is a vector in a high-dimensional space which ideally is unique for the local
image space around a feature. If the descriptors are robust under changes in
rotation, scale and illuminance, the descriptor vector should remain in a local
neighbourhood within the descriptor space. By comparing descriptors from
features found in other images, features can be matched and subsequently
tracked. This can also be an important step in determining whether two
images are taken from the same perspective if a similar set of descriptors are
discovered. Feature tracking can also be done using methods for calculating
optical flow. Tomasi built upon the Lucas-Kanade method for calculating
dense optical flow (every pixel) by instead restricting the optical flow problem
to a sparse set of good features to track. This method is known as the
KLT-feature tracker and is a popular method for tracking features between
consecutive frames due to its fast performance and is commonly used for
feature tracking.
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1.3 Visual SLAM

The ability for an agent to locate itself within an unknown environment
enables many useful technologies such as autonomous driving, augmented
reality and exploration of hazardous environments. Sometimes, a reliable
external positioning system is not available such as in buildings and during
extraterrestrial exploration. To overcome these scenarios, the agent has to
rely on on-board sensors to perform odometry and map the environment.
This is commonly referred to as Simultaneous Localization And Mapping
(SLAM) which is a central problem in robotics. SLAM has been solved using
several sensor configurations involving both active sensors such as light detec-
tion and ranging (LiDAR), sonic navigation and ranging (sonar) and RGB-D
cameras and passive sensors such as inertial measurement units (IMU) and
traditional RGB- and gray scale cameras. Visual SLAM (VSLAM) and VO
are generally categorized as direct and indirect. Direct methods rely directly
on pixel intensity values and compares a sequence of frames by a photometric
error. This approach enables the use of all pixels within the frame but may
become expensive to compute. Indirect visual VSLAM and VO methods op-
erate by having a preprocessing stage or front-end where points of interest are
identified. Commonly, these are features that are simple to describe mathe-
matically such as corners or lines but other more semantic approaches exists
[7]. Regardless of the choice of features, a sparse representation of the visual
data is used to estimate the motion and the location of features. Information
about the features, such as position and vector representations of features
can be stored and used to facilitate the tracking of these features. Since a
monocular setup can only measure a 2D representation of the scene in each
individual frame, the third dimension is provided by triangulating the tracked
features to relate their relative depth to the sensor and the positional change
of the sensor frame to frame. In indirect methods, this often culminates in a
optimization problem of minimizing the error between predicted feature point
coordinates, given a camera model, and the observed pixel points. This error
is called reprojection error and the process of minimizing the reprojection er-
ror with respect to a change in pose enables a VSLAM /VO system to track
a trajectory over consecutive frames. Each individual estimate is imperfect
and introduces some level of uncertainty to the estimated global trajectory.
Without a strategy to counter the buildup of errors, the estimated trajectory
will drift from the ground truth. One strategy to contain the accumulation of
errors is by performing loop closure. The principle behind this is detecting a
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previously visited location, joining the trajectory estimates at that location
and adjusting the intermediary trajectory points accordingly. The design of
this back-end stage of the algorithm varies between implementations.

1.3.1 Brief History of Visual SLAM

In the early 2000s, Visual SLAM started gaining real attention. Davidson
et. al. presented MonoSLAM [8] in 2007. MonoSLAM formulates the SLAM
problem as an Extended Kalman Filter (EKF) framework where the camera
trajectory and map are represented as the state vector, and the EKF' is used
to iteratively update the state estimates based on incoming frames. An issue
with this and similar approaches is that as the trajectory and feature map
grows, so does the computational requirement. Klein and Murray proposed
PTAM [9] in 2007, which set a new standard in SLAM/VO by parallelizing
the mapping and tracking and moving away from Bayesian filtering, adopting
keyframe-based bundle adjustment instead. The performance of PTAM was
limited in the size of the environment it was operating within. As the fields
of robotics and computer vision matured, solutions for large scale SLAM
became feasible. Engel et. al. published LSD-SLAM in 2015, a direct SLAM
system aligning a semi-dense set of pixels of highest intensity gradient and is
equipped with loop closure. As tools within the fields of computer vision and
optimization became more easily implementable, larger and more complex
systems started appearing.

1.3.2 ORB-SLAM

One particularly prominent VSLAM system is ORB-SLAM, utilizing ORB-
features which are designed to be robust under orientation and scale changes
while being computationally efficient to compute. ORB-SLAM utilizes a
binary bag of words that is used to categorize the feature descriptors into a
smaller subset which serves to increase the robustness of feature matching and
in extension, location recognition. ORB-SLAM is equipped with procedures
for both local and global (loop closure) trajectory refinement by employing
bundle adjustment, an optimization technique that simultaneously refines a
set of estimated trajectory points and observed features in 3D-space. The
first version of ORB-SLAM operated using a monocular camera setup but
has been further developed, both by the initial authors and other outside
parties, to include other setups.
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1.3.3 UltimateSLAM

Researchers at the University of Ziirich recognized the potential of event cam-
eras and published the paper behind UltimateSLAM [1], an indirect SLAM
system fusing gray scale frames, inertial measurements and virtual frames
sourced from event cameras, which are discussed in more detail in Section
2.2. The system is equipped with a motion compensation method which re-
lies on an IMU to mitigate accumulation blur that may arise during complex
motion. In principle, this aims to project events onto a virtual image plane
perpendicular to the event trajectories. FAST corners are used on both gray
scale and virtual frames and tracked through KLT tracking. The system
does not employ an explicit loop closure procedure but does refine the local
trajectory periodically.

1.4 Research Questions

Based on the benefits the event camera may offer and the progress made
in the field of VSLAM, it is interesting to investigate the practical usage of
event cameras in a SLAM context given methods readily available today.

1. What gains in accuracy can we expect in scenarios with difficult light-
ning conditions and rapid motion when using event cameras in place of
standard cameras?

2. Can existing VSLAM methods, such as ORB-SLAM, be used to per-
form SLAM using images created artificially from the asynchronous
signal of an event camera?
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2 Method

2.1 Calibrating an Event Camera

This section describes one method to calibrate an event camera. Some event
cameras, such as DAVIS346, are equipped with a gray scale sensor array
while others, such as DVXplorer, are not. In order to utilize frame based
calibration tools, such as Kalibr [10], we need a method of sourcing frames
from events. This was done using e2calib [11], an open source project, which
utilize a pre-trained neural network model called E2VID [6] for events-to-
image reconstruction and is compatible with The Robot Operating System
(ROS), an open source framework for robotic applications. ROS was used to
record all data into rosbags, a file format used for logging ROS messages.

We recorded two sequences which lasted about one minute each. The first se-
quence, cam_calib.bag, contains only events which was collected by record-
ing a grid of Apriltags, a less information dense variant of QR codes, while
being careful to cover the entire image with the target and doing slow and
controlled motions. The second sequence, imu_cam_calib.bag, recorded
both events and IMU readings and used more rapid motion than the first se-
quence in order to properly excite the IMU. In theory, one sequence may be
enough for both intrinsic and extrinsic calibration but recording one for find-
ing the optical parameters and one to find the extrinsic relationship between
the image sensor and the integrated IMU is generally a good idea. This is
because a good optical parameter calibration require the target to cover the
entire sensor without loosing track while a good IMU-to-camera calibration
requires faster motion to properly excite the IMU. The event streams in both
datasets needed to be reconstructed to their corresponding image sequences.

Using Kalibr, the intrinsic calibration of the camera could then be performed
on the reconstructed image sequence within cam_recon.bag. The same
events-to-image procedure was performed on the second sequence containing
events and IMU readings, merging the reconstructed image sequence with
the corresponding IMU readings in imu_cam_merged.bag. A third and
final recording, imu_noise.bag, consisted of five hours of IMU noise data
recorded at 800 Hz. This was used to model noise density and random walk
of accelerometer and gyroscope through Allan variance analysis. Finally we
could model the transformation between camera and IMU, optical properties

10



Uppsala University

and IMU noise and biases. The calibration workflow, illustrated in figure 1,
results in a calibration file containing calibrated optical parameters, camera-
IMU transformations and IMU drift and noise parameters.

Intrinsic IMU Calibration Intrinsic Camera Calibration Extrinsic Calibration
(Stationary) (events only) (events + IMU)
imu_noise.bag cam_calib.bag imu_cam_calib.bag
fdvs/imu /dvs/events ldvs/events
— fdvs/imu
I
¥ ¥ Jv e2calib
; Events To Frames Events To Frames
Nl?nz?r;iasnce Reconstruction Reconstruction
a (E2VID) (E2VID)
L4 v
Frames To Rosbag Frames To Rosbag
v v
cam_recon.bag imu_cam_recon.bag
/dvs/image_reconstructed /dvs/image_reconstructed
»| Merge Rosbags
. 4 kalibr
Camera Intrinsic ¥
Calibration imu_cam_merged.bag
/dvs/image_reconstructed
cam_camchain.yaml
fdws/imu
—imu.yamt * IMU/Camera J
aprilgrid.yami »|Camchain Calibration AL =

LJ
imu_cam_camchain.yaml

Figure 1: Flowchart describing the calibration procedure using events
streams and an IMU-readings.

11
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2.2 Virtual Frames

With standard cameras, a sequence of images is readily available and we may
apply techniques withing the field of computer vision immediately. With
event cameras, we need a scheme to to construct the corresponding sequence
of images. There are multiple approaches to this problem. Using a fixed num-
ber of events per frame should hypothetically, given a homogeneously tex-
tured environment and low-noise conditions, self-compensate for blur during
translatory motion. This would be performed by accumulating a set number
of events per frame (EPF) events into each virtual frame. This will mitigate
translatory blur artifacts but introduces problems of its own. The frequency
of virtual frames will be varying with the event rate, producing high volumes
of virtual frames during fast motions and low volumes when relative scene
is close to static illustrated in figure 2. This is unsuitable for a VSLAM
implementation for several reasons. One reason is that most SLAM imple-
mentations rely on fixed frequency sensors. Another important reason to this
is that even if frames can be produced at a high frame rate during high speed
motion, the requirement posed onto the computational hardware may render
the setup infeasible.

Wy | Wy W, | Wws |

A
A
A

*
"
.

+ L] L] .+...+. L] .+

v

Figure 2: Event accumulation using a fixed number of events. The accu-
mulation windows W; differ in both length are generated at a varying frame
rate. EPF =4

A second method would be to split the event stream into regular spatio-
temporal slices and project these onto the image plane. Doing this would
yield a sequence of virtual frames at a fixed frequency. However, if the
motion, or the scene’s texture level is varying, some virtual frames would
contain a significantly higher number of events and appear either blurred or
not contain enough detail to perform any meaningful analysis. One approach
to mitigate this is by combining the first and second approaches, projecting a
fixed number of events onto the image plane but doing so in regular intervals,
illustrated in Figure 3.

12
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Figure 3: Event accumulation using both fixed frame rate and a fixed EPF.
The accumulation windows W; are evenly distributed. Overlap of event may

occur when the event rate is low and events may be skipped when event rate
is high. EPF =4

This approach is still not without its issues in the sense that it still assumes
a relatively similar level of texture of the scene throughout the motion. A
low EPF may be suitable for simple environments, such as indoors while
not offering enough detail in outside environments where the texture level
is generally larger. Similarly, a high EPF may be suitable for scenes with a
high level of texture but will introduce unnecessary blur should the camera
transition into a simpler environment.

13
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2.3 UltimateSLAM
2.3.1 Dataset

The dataset used for UltimateSLAM was comprised of six sequences from The
Event Camera Dataset [12] containing one minute of gray scale images, events
and IMU-readings recorded using a DAVIS240. All sequences are divided into
two sections. The first part of a sequence uses slow and controlled motion
while the second part uses rapid, shake-like motion. The sequences capture,
with varying levels of texture, both normal and HDR environments.

] Sequence \ Description ‘
boxes_6dof | A collection of boxes with varying level of texture.
dynamic_6dof | Office environment with a person walking around.
hdr_boxes 6DOF motion with limited illumination.
hdr_poster 6DOF motion with limited illumination.
poster_6dof A poster with varying level of texture.
shapes_6dof Low level of texture scene with simple shapes.

Table 1: Short descriptions of sequences used from The Event Camera
Dataset.

2.3.2 Experiments with Different Virtual Frame Schemes

Five different cases are explored with a base case being only gray scale frames.
The four virtual frame schemes that are used are constant frame rate with
motion compensation (CC), constant frame rate without motion compen-
sation (CNC) where the frame rate is the same as the frame rate of the
corresponding gray scale sequence of 24 Hz. The other two cases are varying
frame rate with motion compensation (VC) and varying frame rate without
motion compensation (VNC), producing virtual frames when enough events
are collected, illustrated in Figure 2. In all experiments, a FAST threshold
of 50 was used for corner acquisition. The KLT tracker was configured using
2 pyramid levels and a patch size of 24x24 pixels. For virtual frame accumu-
lation, boxes_6dof used 25,000 EPF, hdr_boxes, hdr_poster and poster_6dof
used 20,000 EPF, dynamic_6dof used 15,000 EPF and shapes_6dof used 4000
EPF. The choices of EPF are primarily based on the level of texture of the
scene. For example, a higher EPF is suitable in scenes with a high level of
texture while a lower EPF is chosen when the scene is simple.

14
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2.3.3 Evaluation

The goal is to investigate the quantity and quality of features and the quality
of trajectories in 3D-space. Because it is not unreasonable that the features
found through each sensor are different in both quantity and quality, we want
to minimize the effect of the back-end responsible for refining the trajectory
when new frames are produced. To do this, a short, five second segment,
is examined for both the slow and rapid motion sections in each sequence.
To perform a fair comparison between different sequences, we run UltimateS-
LAM five times on each sequence. Each individual run produces an estimated
trajectory and feature logs on a frame to frame basis. The quality of each
run is measured by finding the mean position error (MPE) and normalizing
with respect to the length of the run to get a mean position percentage error
(MPPE) so we have a quantity invariant to the varying lengths of trajec-
tories between different sequences. Since the ground truth is sampled at a
higher frequency than the estimations are made, the ground truth is linearly
interpolated to match each estimate in time. Let p}, and pi, be the ground
truth and estimated position at frame index ¢ of N frames. To determine
the length of the trajectory, we aggregate the non-interpolated ground truth
translations pgt.

Ngt
L=>"|lp}—pi'll,
j=1
A
MPE = N
MPE

MPPE =

Rotation is omitted as an IMU, providing translational and angular accel-
eration, is used and the system always have a sense of rotational direction
due to gravity. The IMU can not be disconnected as it is involved in virtual
frame motion compensation. Features are logged during the use of gray scale
frames and each virtual frame method. Features are categorized whether a
feature has been successfully tracked across a set number of frames or not.
For each sequence, out of the five runs collected, the median run based on
the MPPE is chosen as the sequence’s representative run.

15
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UltimateSLAM trajectory estimates use the first frame as a point of refer-
ence while ground truth is provided in another. Therefore, the estimated
and ground truth trajectories must first be aligned. The rotational part of
the trajectory is expressed through quaternions. A quaternion is a four ele-
ment complex quantity commonly used when expressing rotation in 3D-space.
The main advantage of using quaternions is that gimbal lock is avoided at
the singularities where using euclidean angles have singularities. Taking the
Hamilton product of two quaternions corresponds to first rotating by the
first quaternion followed by a rotation by the second. The conjugate of a
quaternion corresponds to a inverse rotation. As an example, rotating by q
and then taking the Hamilton product of g and g* results in no rotation. Let
R be the rotation matrix describing the rotation from unity quaternion, p°
be the position, and q° be the rotation of the first trajectory entry. Ground
truth and estimated trajectories are aligned by:

7 _ i .0
paligned - R(p p )
. Hamilton

Crignea = LA+ i+ Ck+d,=q  x  (¢°)

16
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2.4 ORB-SLAM

The UZH-FPV Drone Racing Dataset [13] was recorded using a quadcopter
equipped with a DAVIS346 event camera. Sequences vary from outdoors to
indoor drone racing tracks and is characterized by high speed and aggressive
maneuvers. The dataset contains gray scale frames, events and IMU-readings
among other sensory data not used. The virtual frames are constructed as
described in Section 2.2 at a constant frame rate matching the DAVIS346
gray scale sensor at around 24 Hz. To combat rotational blur, we apply a
Gaussian map function to map timestamps to pixel intensity values in the
virtual frames. Consider a slice of events with corresponding normalized
timestamps ¢;(u, v) in an interval [0, 1] for events at pixel coordinate (u,v).
We can control the attenuation of events further from the middle of the slice
by adjusting k£ to get more well defined lines in the virtual frames.

I(u,v) = o k(ti(u,0)—0.5)2

Since the timestamps are normalized between 0, 1 the events with timestamps
close to 0.5 should have a high intensity value while the latest and oldest
events are discarded. Intuitively this is best explained using a rotating line.
The image region close to the center of rotation the image may have very few
events generated while events produced further will cover a larger section of
the image. The strategy is to prioritize the events happening in the middle
of the spatio-temporal slice which lay on a straight line on the image plane.
Attenuating the early and later events aims to mitigate the accumulation
blur due to the varying level of event density during rotation.

2.4.1 Reconstructed Gray Scale Images

E2VID allows us to reconstruct a gray scale image sequence from events
with the goal of keeping some of the benefits an event camera holds over
a standard camera, primarily the event camera’s high dynamic range and
temporal resolution. We reconstructed gray scale frame sequences at the
same frequency of 24 Hz that the gray scale sensor was operating at. We
also used the same number of events for the reconstructed gray scale frames
that was used for the virtual frames.

17
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3 Results
3.1 UltimateSLAM

] Sequence \ FO \ CC \ CNC \ VC \ VNC ‘
boxes_6dof | 2.63 | 2.07 | 165.17 | 17.30 | 17.03
dynamic_6dof | 2.65 | 1.41 | 1.89 | 8.63 | 9.39
hdr_boxes 3.64 | 1.20 | 1.24 | 12.01 | 13.08
hdr_poster | 1.64 | 3.21 | 3.31 8.36 | 7.59
poster_6dof | 1.03 | 1.38 1.60 | 10.55 | 10.44
shapes 6dof | 1.76 | 6.69 | 5.82 8.56 | 7.91

Table 2: Percentage errors during slow sections of sequences using gray scale
frames only (FO), constant frame rate with motion compensation (CC), con-
stant frame rate without motion compensation (CNC), varying frame rate
with motion compensation (VC) and varying frame rate without motion com-
pensation (VNC).

| Sequence | FO | CC |CNC | VC [ VNC |
boxes_6dof 2.68 | 1.22 | 2.80 | 7.01 | 6.78
dynamic_6dof | 2.03 | 1.27 | 247 | 6.67 | 6.61
hdr_boxes 293 | 2.65 | 2.81 | 10.71 | 11.57
hdr_poster 1.38 | 1.24 | 1.27 | 11.30 | 11.20
poster_6dof | 3.46 | 2.16 | 1.42 | 5.51 | 5.31
shapes_6dof | 1.91 | 3.74 | 3.58 | 5.98 | 6.41

Table 3: Percentage errors during rapid sections of sequences using gray
scale frames only (FO), constant frame rate with motion compensation (CC),
constant frame rate without motion compensation (CNC), varying frame
rate with motion compensation (VC) and varying frame rate without motion
compensation (VNC).

18
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Operating on gray scale data produced a more consistent error when the
motion was slow and outperformed the virtual frame schemes in half of the
sequences as shown in Table 2. In these sequences, using only event data
resulted in a significantly higher positional error. Virtual frames using con-
stant rate and motion compensation performed with a positional error of
nearly half of the corresponding error in two of the sequences. Fixed frame
rate without motion compensation resulted in the lowest positional error dur-
ing the sequence hdr_poster but is comparable with the gray scale positional
error. In contrast, during rapid motion, virtual frames using constant rate
and motion compensation outperformed all other attempts in four out of
six sequences. Using gray scale data resulted in a lower positional error in
shapes_6dof shown in Table 3.

Looking at the number of tracked features, shown in Appendix B, both com-
pensated and uncompensated virtual frames maintained the most consistency
between slow and rapid motion when the frame rate was adaptive. Disre-
garding these, gray scale frames tend to allow for more consistently tracked
features than the constant frame rate virtual frames. The number of tracked
features was similar between gray scale frames and constant frame rate vir-
tual frames in the HDR sequences during slow motion. In all cases, the total
number of features identified using virtual frames was higher than the num-
ber of features using gray scale images using this particular FAST-threshold.
Reacquiring these in following frames was done more consistently using gray
scale frames as out of the total features, a larger portion was persistent com-
pared to the experiments using virtual frames.
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3.2 Virtual and Reconstucted Gray Scale Frames

Using gray scale images ORB-SLAM successfully maintained track during
the entire flight sequence. Because the dataset only contain monocular vi-
sual data and we do not rely on any other sensors or known visual targets,
the scale of the trajectory is ambiguous. Figure 4 shows gray scale, re-
constructed frames from E2VID and virtual frames using the accumulation
scheme discussed in Section 2.2. from different part of the flight sequence.
The degrading behaviour of the reconstructed gray scale images can be seen
when the event rate is low, visualized in the second column of Figure 4. In
the corresponding virtual frame, the effect of having a fixed events-per-frame
is apparent as the only event generating source is a person walking away from
the camera and taking up a very limited part of the image. This leads to
an accumulation blur and this happen whenever the level of texture changes,
albeit this is an extreme example. The high dynamic range of the event cam-
era seem to have been caught in both the reconstructed and virtual frames.
The open door and windows exposing the outside, brighter environment is
saturated in the gray scale images while the window scaffolding and terrain
silhouette can be seen in the reconstructed and virtual frames. The virtual
frames suffers from hyperactive pixels that fire events on and off at a mi-
crosecond resolution and significant noise around event generating regions
where the intensity gradient is high. Since the same data is used for image
reconstruction, these issues affect the quality of reconstructed frames also.
In the case of virtual frames, the use of a Gaussian weight function did mit-
igate the accumulation blur to some extent shown in Appendix A. Using a
Gaussian intensity map instead of not applying any weighting seem to result
in less impact on the quality of the virtual frame when varying the EPF. In
the extreme case of large EPF or rapid motions, unrealistic artifacts could
arise when two different event-generating regions cross the same section of
the virtual frame.
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Figure 4: Gray scale, reconstructed and virtual frames from an indoor drone
flight sequence.

3.2.1 ORB-SLAM - Virtual Frames

Attempts when feeding ORB-SLAM with virtual frames sourced from events
using the method described in section 2.2 did not result in any meaningful
trajectory data. We could not maintain a feature track throughout the flight
sequence.

3.2.2 ORB-SLAM - Reconstructed Gray Scale Images

Using reconstructed gray scale images, ORB-SLAM was able to track during
limited segments of the sequence but lost track during the flight sequence
several times, resetting the map and trajectory.
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4 Discussions

4.1 UltimateSLAM

During rapid scenarios, using virtual frames outperformed gray scale frames
in all scenarios but one, being shapes_6dof. This is a scene with a low level
of texture which, combined with the noisy characteristic of the event cam-
era, proves to be a challenge as the scene’s intensity gradient is flat almost
everywhere, lowering the average rate at which events are generated. During
slow scenarios, it is difficult to say that the event camera leads to better per-
formance over the gray scale camera or vice versa and should be dependent
on the specific scene in which the sensor resides within. Unintuitively, it is
also difficult to point out a clear winner of the sequences containing HDR-
environments when, in the case of gray scale frames, only a limited part of
the FOV is detailed.

Settings for virtual frames, feature detection and tracking, among many other
system settings can be varied and it is fully possible that the set used in these
experiments was not optimal. Another source of error may be suboptimal
calibration. Since the IMU is used for motion compensation for the virtual
frames, any errors in extrinsic calibration parameters will result in erroneous
motion compensation attempts which can artificially blur some depths in the
scene or in the worst case, blur the image to the point of being unusable if ill-
calibrated. Since the motion compensation method used in UltimateSLAM
is optimal at the scenes’ median depths, tracking may also be difficult where
the depths deviates greatly. Because of these reasons, it may be possible
to achieve more accurate results with a different configuration of UltimateS-
LAM.

4.2 ORB-SLAM

Repurposing existing VSLAM methods on event sourced visual data was
more difficult than anticipated and can probably be explained by a myriad
of factors. The first and foremost being the noisy nature of the sensor. A
vertical line may captured by a traditional camera is captured in its entirety
and rasterized onto the sensor array while in the case of an event camera, an
intensity change need to cross a threshold or to produce an event at any in-
dividual pixel. If the scene contains intensity gradients close to reaching this
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threshold, the resulting virtual frame can be very noisy from frame to frame
and a corner may not appear the same in following frames, compromising the
tracking. This is especially apparent around the door in the virtual frames
from the drone flight sequence in the Appendix A. There exists other sources
of noise such as thermal noise and hyperactive pixels however the latter can
be calibrated and compensated for to some extent.

The gray scale sensor also has the advantage of capturing the entire FOV
while the event camera captures the highest gradient changes. This produces
a significantly more sparse representation of the scene and tends to restrict
the amount of visual features that can be located and combined with the
noisy nature of virtual frames, the tracking of individual features is more dif-
ficult compared to when using a gray scale sensor. This does not necessarily
mean that an event camera is unsuited for traditional VSLAM systems. The
indirect method of identifying and tracking corners might not be the best ap-
proach for event-based VSLAM. Direct methods may be a better approach,
solving the pose change by minimizing the photometric error instead. This
also has the advantage of utilizing the entire visual data instead of creating a
sparse feature representation. Direct methods employed on gray scale image
sequences has previously been made real-time performing by only operating
on the highest gradients of the image. Since this is given for free in virtual
frames, it may be a more appropriate choice. This has been performed in
EDS [14], a project fusing gray scale and event data which delivers promising
results.

It is possible that ORB-SLAM may operate on event-sourced image se-
quences. When we tested the sequence of reconstructed gray scale images
using E2VID on the event stream from the UHZ-FPV dataset, ORB-SLAM
operated as intended during limited sections of the flight sequence. ORB-
SLAM was used in a similar way in the article behind EDS. However, while
many advantages can be gained, such as HDR and temporal control during
event accumulation, it is not feasibly performed in real-time as the recon-
struction of a sequence took the better part of an hour to complete.
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5 Conclusions

The first aim of this thesis was to investigate the usage of frame sequences
sourced from event data. The image sequences tested were virtual frames
using a Gaussian temporal map and reconstructed gray scale frames using
the network model E2VID. The second aim was to evaluate the positional ac-
curacy of an event-based SLAM algorithm using four different accumulators
using fixed and varying frame rates with or without motion compensation.

The event camera is not a plug-and-play visual sensor and will probably
require methods tailored specifically for event-based SLAM to fully utilize
the potential the sensor offers. The attempts to use ORB-SLAM on images
sourced from events did not yield meaningful trajectories and probably re-
quires further processing to work robustly. ORB-SLAM could operate in
short segments on reconstructed images by E2VID and further processing
may provide more desireable results. Doing this in real-time and still have
computational resources left, specifically time, to perform the other stages
involved in many SLAM systems remain a challenge on limited hardware.

The potential the event camera offers in terms of temporal resolution was
observed in experiments using UltimateSLAM where all but one experiments
resulted in a lower positional error using virtual frames during rapid motion
rather than using gray scale frames. The experiment where using gray scale
images resulted in a lower positional error than virtual frames was during the
sequence shapes_6dof. This is most likely primarily due to the particularly
low level of texture during this sequence. During slow motion scenarios, the
usage of gray scale and virtual frames both resulted in a similar level of
positional error. Unexpectedly, no apparent difference was recorded during
slow segments in HDR-scenarios. It is possible that both calibration and
system parameters could be improved further. Using virtual frames requires
some level of knowledge of the scene beforehand in order to avoid over- or
under-accumulation of events.

Direct approaches for VSLAM systems operating on virtual frames may be a
more appropriate approach for event cameras. Because events are generated
at pixels where the intensity changes rapidly, the information of where the
intensity gradient is large is already known.
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5.1 Future Work

A Spiking Neural Network (SNN) is a type of neuromorphic artificial neural
network that aim to mimic the behavior of biological neurons by either trans-
mitting fully or not at all determined by a threshold, similar to how biological
neurons interact. Unlike traditional artificial neural networks, SNNs operate
on a more event-driven basis, with information encoded in the timing and
frequency of input signals. Viale et al. [15] successfully demonstrated car
detection using an event camera and a Loihi chip, a neuromorphic chip, using
310 mW. Kim [2] also discussed the potential of neuromorphic processors as
a front-end stage in a SLAM system and the difficulty of efficient event-based
SLAM on traditional von Neumann computing architecture.

Therefore, it would be interesting to investigate the use of neuromorphic pro-
cessing to associate depths to a virtual image based on the spatio-temporal
information the events contain. This could produce a semi-dense depth map
and effectively make the event camera into a pseudo 3D-sensor and would
be appropriate for direct methods of VO/VSLAM. On traditional compu-
tational hardware, it is unlikely that this can feasibly run in real time on
offline computational hardware but with the coming of neuromorphic pro-
cessing units, this may be a viable method to gain depth data in real time and
save a significant portion of the costs involved in traditional depth estimation
techniques. To the best of this thesis’s author’s knowledge, only one paper
presents a method to produce semi-dense depth estimation in real-time using
event cameras [16]. This is accomplished by utilizing an electronically con-
trolled liquid lens and a spiking neural network to quickly sweep the depth
of focus in the scene. The events produced during the sweep is fed into a
spiking neural neural network to produce semi-dense depth maps at the re-
ported rate of 100 hz using 200 mW of power for lens control, camera and
computation. Hopefully, neuromorphic hardware will see more attention in
the coming years and be further studied in the context of event cameras and
visual odometry.
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A Virtual Frames With and Without Weight-

ing
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Figure 5: Virtual frames during an indoor flight sequence using a linear
intensity map. Rows are sorted with respect to increasing EPF.
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Figure 6: Virtual frames during an indoor flight sequence using a Gaussian
intensity map. Rows are sorted with respect to increasing EPF.
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B Tracked and Detected of Features

This section contains statistics of detected and tracked features during both
slow and rapid motion across all used sequences. The figures show mean, min
and max (gray) and standard deviation (black) during a five second flight
sequence using a set of five different frame sequences. The frame sequences
are composed by standard gray scale frames (FO) and four different virtual
frame sequences. The virtual frame schemes are fixed frame rate with motion
compensation (CC), fixed frame rate without motion compensation (CNC),
varying frame rate with motion compensation (VC) and varying frame rate
without motion compensation (VNC). This holds for all figures.
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Figure 7: Feature statistics during the sequence boxes_6dof.
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Figure 8: Feature statistics during the sequence dynamic_6dof.
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Figure 9: Feature statistics during the sequence hdr_boxes.
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Figure 10: Feature statistics during the sequence hdr_poster.
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Figure 11: Feature statistics during the sequence poster_6dof.
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Figure 12: Feature statistics during the sequence shapes_6dof.
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