
Expert Systems With Applications 237 (2024) 121443

A
0
(

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Data management of scientific applications in a reinforcement
learning-based hierarchical storage system✩

Tianru Zhang a,∗, Ankit Gupta a, María Andreína Francisco Rodríguez a,b, Ola Spjuth b,
Andreas Hellander a, Salman Toor a

a Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden
b Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden

A R T I C L E I N F O

Dataset link: https://github.com/JSFRi/MSD-R
LHSS.git

Keywords:
Data management
Scientific application
Hierarchical storage system
Reinforcement learning
Large scientific datasets

A B S T R A C T

In many areas of data-driven science, large datasets are generated where the individual data objects are
images, matrices, or otherwise have a clear structure. However, these objects can be information-sparse, and
a challenge is to efficiently find and work with the most interesting data as early as possible in an analysis
pipeline. We have recently proposed a new model for big data management where the internal structure and
information of the data are associated with each data object (as opposed to simple metadata). There is then
an opportunity for comprehensive data management solutions to account for data-specific internal structure
as well as access patterns. In this article, we explore this idea together with our recently proposed hierarchical
storage management framework that uses reinforcement learning (RL) for autonomous and dynamic data
placement in different tiers in a storage hierarchy. Our case-study is based on four scientific datasets: Protein
translocation microscopy images, Airfoil angle of attack meshes, 1000 Genomes sequences, and Phenotypic
screening images. The presented results highlight that our framework is optimal and can quickly adapt to
new data access requirements. It overall reduces the data processing time, and the proposed autonomous data
placement is superior compared to any static or semi-static data placement policies.
1. Introduction

Recent advancements in the field of large-scale data management
range from efficient interconnected storage devices to smart algo-
rithms for efficient management at scale (Ikegwu, Nweke, Anikwe,
Alo, & Okonkwo, 2022; Oussous, Benjelloun, Ait Lahcen, & Belfkih,
2018). These advancements have significantly enhanced storage ca-
pacity, management, and high-availability of large datasets, forming
the basis of the big data revolution. Even so, the continuous gen-
eration of new datasets brings new requirements that need further
research and development. These new requirements not only bring
conventional challenges to a much larger scale but also add new chal-
lenges related to recently developed solutions. Conventional challenges
include efficiency, scalability, and high throughput. New emerging
challenges include data management based on different storage types

✩ This document is the results of the research project funded by the Swedish Foundation for Strategic Research.
The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility

Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author at: Room POL 106281 hus 10, Lägerhyddsvägen 1, 751 05 Uppsala, Sweden.
E-mail addresses: tianru.zhang@it.uu.se (T. Zhang), ankit.gupta@it.uu.se (A. Gupta), maria.andreina.francisco@farmbio.uu.se (M.A.F. Rodríguez),

ola.spjuth@farmbio.uu.se (O. Spjuth), andreas.hellander@it.uu.se (A. Hellander), salman.toor@it.uu.se (S. Toor).
URL: https://www.it.uu.se/katalog/tiazh991 (T. Zhang).

(volume-based or object-based solutions), pay-as-you-go models of-
fered by service providers, and solutions that are compliant with new
data privacy and security regulations. It is evident that these multi-
fold challenges require careful thinking and expertise from different
disciplines.

Efforts to address these challenges include horizontal solutions,
where different storage solutions are tightly or loosely connected with
each other and offer transparent access to the available data. On the
other side, hierarchical solutions are also available where different
frameworks with varying capabilities manage datasets, known as ver-
tical solutions. Both approaches are valid, however, static placement
of datasets is a current limitation with both horizontal and vertical
solutions.

The concept of hierarchical storage is the overarching approach
of the herein presented solutions. The main idea is to connect differ-
ent independent storage solutions and move the data between them
vailable online 14 September 2023
957-4174/© 2023 Uppsala University. Published by Elsevier Ltd.
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.eswa.2023.121443
Received 21 March 2023; Received in revised form 1 September 2023; Accepted 1
This is an open access article under the CC BY license

September 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:tianru.zhang@it.uu.se
mailto:ankit.gupta@it.uu.se
mailto:maria.andreina.francisco@farmbio.uu.se
mailto:ola.spjuth@farmbio.uu.se
mailto:andreas.hellander@it.uu.se
mailto:salman.toor@it.uu.se
https://www.it.uu.se/katalog/tiazh991
https://doi.org/10.1016/j.eswa.2023.121443
https://doi.org/10.1016/j.eswa.2023.121443
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
according to criteria designed to meet a set of requirements. The hier-
archies based on different underlying storage solutions ensure rational
allocation of resources and therefore solve the problem of inefficiency
due to imbalanced resource usage in traditional storage solutions.
However, the actual realization of the concept is a non-trivial task. In
one of our recent articles (Zhang, Hellander, & Toor, 2022), we have
comprehensively described the underlying challenges related to storage
hierarchies, and presented a solution based on reinforcement learning
(RL). We have also built a simulation and a fully functional cloud-based
framework for general purpose datasets. However, scientific datasets
usually hold unique characteristics that requires further attention to
better manage and analyze the datasets. This article is a dedicated
effort to highlight the challenges related to scientific datasets and
how a RL-based hierarchical storage solution can better address those
challenges.

Different datasets have different characteristics that play important
roles in large-scale data management. These characteristics include to-
tal size, individual object size, access patterns, regulatory requirements,
etc. Scientific datasets are unique as the individual objects can be
information-spare, such as in the case of automated microscopy. The
information-sparsity plays an important role in the efficient data analy-
sis and the sparsity varies with the kind of analysis under consideration.
Faster access to the most relevant data would significantly improve the
efficiency of analysis. For example, HASTE project (Blamey et al., 2021)
is a unique effort to address challenges related to scientific datasets. The
HASTE project takes a hierarchical approach to acquisition, analysis,
and interpretation of image data. In this article, we focus on high-
lighting the unique characteristics of the scientific datasets, capitalize
the underlying structure to efficiently build the storage hierarchies,
and reduce the time and cost associated with the analysis pipelines.
We have called those special characteristics the interestingness values,
which can be a single value, a vector or a matrix that highlights
the importance or unique characteristics of an individual object in a
dataset.

Approaches based on both supervised and unsupervised learning
have shown promising results to achieve efficient management of large
datasets (Xiao et al., 2018). Our proposed framework based on stor-
age hierarchies uses the reinforcement learning (RL) method for au-
tonomous data placement in different tiers in the hierarchies. Rein-
forcement learning is an established branch of artificial intelligence
where agents learn from the dynamics of the environment and adapt
according to emerging needs. We have used RL agents to learn both
about varying data access patterns and from the internal properties of
the datasets. The framework helps in efficient data placement with min-
imal resource utilization as well as overall reducing the application’s
execution time.

In this article, our focus is to study the framework’s capabilities to
efficiently and autonomously manage scientific datasets and improve
the analysis time by providing faster access to the datasets. Our results
clearly illustrate that once the data is available in the system, the frame-
work efficiently organizes the active/required subset of the data to
have faster access while keeping the inactive data on the slower or less
expensive tiers in the hierarchy. The framework achieves this behavior
autonomously and also adapts accordingly to new emerging data access
requirements. This makes it uniquely suitable for exploratory scientific
analyses.

The remainder of the article is organized as follows. Section 2
presents the related works. Section 3 details storage hierarchies, mi-
gration policies and underlying mathematical foundations. To illustrate
the utility of the proposed framework, Section 5 highlights four distinct
scientific datasets and describes their characteristics and challenges
of managing them efficiently. In Section 6 we conduct experiments
based on the described datasets using six different policies. Finally, in
Section 7 we conclude the work and comment on future directions.
2

2. Related work

One of the early ideas to address challenges related to data man-
agement in hierarchical storage is using cache replacement policies
(Acharya, Alonso, Franklin, & Zdonik, 1996). Cache replacement poli-
cies are optimization algorithms targeting at managing the cache of
information stored on the computer to achieve the best performance
within a given limited memory space. These policies include simple ran-
dom placement (that places data randomly). There were also Recency-
based policies like Least Recently Used replacement (LRU-K) (O’Neil,
O’Neil, & Weikum, 1993), which replaces the least recently used data
by new data that are more important. Improved Recency-based policies
such as Low Inter-reference Recency Set (LIRS) (Jiang & Zhang, 2002)
were introduced later. Frequency-based policies were another group of
policies that based on frequency, for example Least Frequently Used
replacement (LFU) (Lee et al., 2001a). LFU replaces the least recently
used data by new data that are more important. Hybrid policies that
combine the benefits of LRU and LFU were also been explored. Ex-
amples include Least Frequent Recently Used replacement (LFRU) (Lee
et al., 2001b), Adaptive Replacement Cache (ARC) (Megiddo & Modha,
2003), Multi-Queue replacement (MQ) (Zhou, Philbin, & Li, 2001).
Data management policy for hierarchical storage system can be defined
by adapting from these cache replacement policies. It is determined by
combining the replacement policies with the hierarchy ranks informa-
tion, and formed by considering the faster tiers as caches, and replacing
old files in faster tier by new files according to the replacement poli-
cies (Brubeck & Rowe, 1996; Krish, Wadhwa, Iqbal, Rafique, & Butt,
2016; Sienknecht, Friedrich, Martinka, & Friedenbach, 1994).

Apart from using the cache replacement algorithms, there are other
efforts bringing up data placement policies using evolutionary op-
timization methods. These policies include Discrete Particle Swarm
Optimization with Genetic Algorithm operators (GA-DPSO) (Lin et al.,
2019). The authors introduced the discrete solution DPSO based on
the evolutionary computation technique Particle Swarm Optimization
(PSO), and included a preprocessing method to optimize the structure
of workflows to effectively compress the number of datasets and im-
prove the execution efficiency of GA-DPSO. Another similar approach
is Discrete Particle Swarm Optimization algorithm with Differential
Evolution (DE-DPSO-DPS/DPA) (Du et al., 2020). Differential evolu-
tion (Storn & Price, 1995) is used instead of a genetic algorithm,
motivated by differential evolution being demonstrated to be a more
efficient algorithm in numerical multi-objective optimization (Tusar &
Filipic, 2007).

Another research direction for large-scale data management fo-
cuses on the internal structure of the datasets. These methods in-
clude approaches such as (Yuan, Yang, Liu, & Chen, 2010), where
they introduced a data placement strategy based on K-means and
Bond Energy Algorithm (BEA) clustering that was able to reduce the
number of data movements. Another method based on K-means was
provided in Wang, Zhang, Dong, and Luo (2014). In addition, they
also considered the data size and dependency relationships between
datasets and tasks. Recent approach named LDM (Lineage-Aware Data
Management) (Mishra & Somani, 2020) took into consideration the
lineage property, i.e. in which the current writes are future reads. With
trace-driven experiments.

Alongside hierarchical data management policies, efforts focusing
on horizontal management of scientific data have also contributed
significantly. In large-scale scientific projects such as Large Hadron
Collider (LHC) (LHC, 2008) and Square Kilometre Array (SKA) (SKA,
2019), storage and computing resources are usually heterogeneous and
distributed at various geographical locations belonging to different ad-
ministrative domains and organizations. Such projects generate massive
datasets and require complex workflows for multi-step analyses. To
address these challenges, several frameworks have been introduced,
such as the eXtreme DataCloud (XDC) project (Cesini et al., 2020).

The project aimed at developing scalable technologies for federating

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
Fig. 1. Example of a three-tiers Hierarchical Storage System. Higher tiers have faster
response time and higher cost. Whereas lower tiers are slower, larger in capacity, and
less expensive in comparison with the higher tiers.

storage resources. The presented framework manages data coming from
a range of scientific disciplines including: life science, biodiversity,
clinical Research, astrophysics, high energy physics and photon science.
Another example is Rucio by Barisits et al. (2019), a software frame-
work that provides functionalities to organize, manage, and access data
at scale. Their presented results specifically focus on the management
of scientific datasets.

While all of the above-mentioned efforts achieved good performance
in their settings, it is important to jointly consider the efficiency, self-
adaptability, and customizability. For example, some methods work
well under one request pattern, but as soon as the request pattern
changes they have difficulty in adapting to the new pattern. Other
methods might be able to adapt quickly, but with a high cost in data
transfers between storage tiers. In the following sections, we introduce
our reinforcement learning based hierarchical storage management
framework. We also test its performance with real-world scientific
datasets and corresponding analysis pipelines. Meanwhile, we have
also compared proposed RL-based policy with commonly known rel-
evant policies including random placement, LRU replacement, LFU
replacement, K-means policy, and a prefixed minimal/maximal feature
policy.

3. Methods

3.1. Storage hierarchies

Hierarchical Storage System (HSS) (Wilkes, Golding, Staelin, & Sul-
livan, 1996), is also called as multi-tier storage system. HSS solutions
connect multiple storage tiers in a hierarchical structure. Each tier in a
HSS is an allocated storage medium based on a software framework, for
instance cache memories, hard disks, object storage, etc. The mediums
are placed in the hierarchical structure according to their respective
features. The list of features generally includes size, speed, efficiency,
cost, security, and resilience. This list may further include custom
features specific to the underlying mediums’ components and hardware
in use. The aim of a HSS architecture is to manage the combination of
different mediums in a systematic and coherent manner.

Fig. 1 shows an example of a three-tiers HSS. The hierarchy is
defined by the access speed and storage capacity. Tiers in high rank
have fast read/write (R/W) speed, but are expensive and consequently
small in size. Whereas lower tiers are less expensive and significantly
larger in size, but are slow in terms of input/output (I/O). This is mainly
due to the internal architecture of the frameworks and the underlying
hardware used to build the solutions (e.g. Solid State Drives (SSDs),
Hard Disk Drives (HDDs) or Tape Drives) . A higher rank tier (fast tier)
is used to store important and frequently requested data. Less important
3

Fig. 2. Temperature changing of a file with 100 random requests during 1000
iterations.

or less frequently accessed data are stored in slower tiers. To reveal
the full benefits of the hierarchical structure, a HSS should be able to
automatically move data between fast and slow storage tiers. There-
fore, autonomous, online, and efficient data placement strategies to
optimally utilize the available resources in different tiers are essential.

3.2. Data migration policy

In HSS, a systematic way to decide which file should be stored in
which tier is crucial. For example, if a file is being accessed frequently,
then it should be stored in a fast tier to reduce the response time.
Frequently accessed files are called hot files, in contrast, files that are
rarely accessed are labeled as cold files. The access frequency of a file
is called hotness-level and it is measured by the file temperature, which
takes values between 0 and 1. Where 0 is the hotness-level for coldest
files and 1 for hottest files.

The changing mechanism of the file temperature is important and
needs to be defined precisely, since it reflects the access frequency and
priority of files. In order to present the temperature in a mathematical
way, we defined the rules of file temperature changing by two part,
increasing and decreasing. The detailed expressions are as follow:

• 𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 ∶ File temperature will increase when
there are more access requests to this file. We describe this pro-
cess using an exponential formula: 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 1−0.5∕𝑒𝑥𝑝(0.2 ∗
𝑛𝑢𝑚_𝑟𝑒𝑞), where 𝑛𝑢𝑚_𝑟𝑒𝑞 is the total number of requests to the file.

• 𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 ∶ When a file has not been requested for
a period, the temperature of this file should drop because the
importance and priority of this file has become lower. Therefore,
we define the temperature decreasing rule to be: After 5 iterations
without requests, file temperature will decrease 0.05, until it become
0.0 (the lowest temperature). As long as new request come to a file,
its temperature will start increasing, following the temperature
increasing rule above.

With this mechanism, we define the file temperatures changing dynam-
ics. Fig. 2 shows an example a temperature changing process of a file
with 100 random requests in 1000 iterations.

As the file properties (which in general include hotness-level, size,
type, and use-case dependent properties) change, files will be moved
between tiers. For instance, if one file is currently stored in slow tier
but has recently been requested frequently, it becomes a hot file and
should be moved to faster tier. On the contrary, for file in fast tier but
has not been requested for some time, then this file will be counted as
a cold file and moved to a slow tier in order to free up space for hot
files. These file movements are in general called migrations.

The process of file migrations consumes a significant amount of
compute and network resources. Thus a policy that can control these
file migrations in an efficient way is important. Previous work on well-
defined policies include Least Recently Used Replacement (LRU) (O’Neil
et al., 1993), Least Frequently Used Replacement (LFU) (Lee et al.,
2001a) and Size-Temperature Replacement (STR) (Zhang et al., 2022),
and so on. However, these policies are mostly static and require strict
initial assumptions. However, data placement under changing access
patterns is highly dynamic, and it is increasingly challenging with
the growing amount of data in the system. To address the need for

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
Fig. 3. A three-tier HSS with RL-based policy, and general processes in the system.

autonomous data migration between tiers and efficient utilization of
available resources, we have designed and developed an online data
migration policy that adapts according to the incoming file access
pattern, migrates data between tiers and consumes minimal system
resources. The following subsection presents the mathematical model
used to architect the online data migration policy.

3.3. Reinforcement learning based policy

Recently, we have developed a hierarchical storage management
framework using reinforcement learning (HSM-RL) (Zhang et al., 2022).
The framework contains reinforcement learning (RL) agents served for
each tier, and a data migration policy based on the tier information
variables and the RL agents. In comparison to the previous study,
the unique contributions of this article are highlighted at the end
of Section 1. Fig. 3 shows a summarized structure of the HSM-RL
framework. Step 1⃝, 2⃝, 3⃝ briefly describe how the system deals with
file requests, how the files are migrated between each tier, and how
the RL agents update themselves according to the requests and new
file distributions.

More in detail, the RL agents output data migration actions based
on the cost value function and the state variables. Once a file 𝐹
is requested, if it is currently not placed in the fast tier, then the
framework will use a policy to decide whether this file should be
upgraded to the faster tier or not. The RL-based policy is: file 𝐹 now
in tier 𝑖 will be upgraded to tier 𝑖 + 1 if

𝑣𝑖𝑢𝑝 ⋅ 𝑡
𝑖
𝑢𝑝 + 𝑣𝑖+1𝑢𝑝 ⋅ 𝑡𝑖+1𝑢𝑝 < 𝑣𝑖𝑛𝑜𝑡 ⋅ 𝑡

𝑖
𝑛𝑜𝑡 + 𝑣𝑖+1𝑛𝑜𝑡 ⋅ 𝑡

𝑖+1
𝑛𝑜𝑡 (1)

where 𝑣𝑢𝑝 is the cost value function of tier 𝑖∕𝑖+1 after file 𝐹 is upgraded,
and 𝑣𝑛𝑜𝑡 is before upgrade. 𝑡𝑢𝑝 is the average temperature of all files in
tier if file 𝐹 is upgraded, and 𝑡𝑛𝑜𝑡 is the same variable before upgrade.
As if the upper tier 𝑖+1 does not have enough space for upgrading file
𝐹 , files in tier 𝑖+1 with the lowest temperature will be downgraded to
leave enough space for file 𝐹 .

In Eq. (1), the cost value function 𝑣 is fundamentally the state-
value function 𝑣𝜋 (𝑠) of Markov Decision Processes (MDPs), which is
the general aim of RL to solve. It is a function of the state 𝑠 and
represents the expected return starting from state 𝑠 to the next state
𝑠′ following policy 𝜋. For MDPs with finite discrete states, this state-
value can be represented by the expectation matrix of the transition
matrix. However, for MDPs with continuous states, it is impossible
to form a matrix for infinite states. To solve the problem, functional
approximation is commonly used (Sanghi, 2021).

In our method, we use a Fuzzy Rule Based (FRB) function for the
approximation. FRB function is a mapping from an input 𝑠 ∈ R𝑘 to an
output 𝑦 ∈ R in the form of a weighted average of the outputs 𝑝𝑖 of
all the fuzzy rules: Rule 𝑖: IF 𝑠1 ⊂ 𝐴𝑖

1, 𝑠2 ⊂ 𝐴𝑖
2,… , 𝑠𝑘 ⊂ 𝐴𝑖

𝑘 THEN 𝑝𝑖,
where 𝐴𝑖 ,… , 𝐴𝑖 are fuzzy categories, which the input 𝑠 ,… , 𝑠 may
4

1 𝑘 1 𝑘
belong to. The output 𝑦 is then a weighted average of 𝑝𝑖, and defines
the approximation of value function 𝑣̂:

𝑦 =
∑𝑁

𝑖=1 𝑝
𝑖𝑤𝑖(𝑠)

∑𝑁
𝑖=1 𝑤𝑖(𝑠)

= 𝑣̂(𝑠) (2)

where 𝑝𝑖 is the output parameter of rule 𝑖, 𝑁 is the number of rules,
𝑤𝑖(𝑥) is the weight of rule 𝑖 computing by 𝑤𝑖(𝑥) =

∏𝑘
𝑗=1 𝜇𝐴𝑖

𝑗
(𝑥𝑗), and

𝜇𝐴𝑖
𝑗
(𝑥𝑗) is the membership function measures how much does an input

𝑥𝑗 belong to a category 𝐴𝑖
𝑗 . Two fuzzy categories {𝑆𝑚𝑎𝑙𝑙, 𝐿𝑎𝑟𝑔𝑒} are

used here, and 𝜇𝐿𝑎𝑟𝑔𝑒(𝑥𝑗) = 1∕(1 + 𝑎𝑗𝑒
−𝑏𝑗𝑥𝑗), 𝜇𝑆𝑚𝑎𝑙𝑙(𝑥𝑗) = 1 − 𝜇𝐿𝑎𝑟𝑔𝑒(𝑥𝑗),

where 𝑎𝑗 , 𝑏𝑗 are the hyperparameters.
For the state 𝑠, it is important to use state variables that can strongly

present all the properties of the dataset and the access patterns. More
precisely, given unique characteristics in scientific datasets such as
interestingness value, state variables 𝑠_ requires special definition. In
Section 6, we will further show details of the usage of different state
variables for different datasets.

The above paragraphs described the design of the migration policy
based on RL agents and its value functions. However, since storage
systems always receive new requests, the file distributions in each
tier are not static. For the RL agents, this indicates a change of the
environment, thus it is necessary for RL agents to update themselves in
order to maintain the effectiveness of the migration policy. To update
the RL agents, it is equivalent to update the cost value function 𝑣(𝑠).
We uses a widely-used and well-proved way of updating state-value
function, the TD(𝜆) algorithm. The updating process can be expressed
by the following formula:

𝑣̂(𝑠) = 𝑣̂(𝑠) + 𝛼(𝑅𝑛 + 𝛾𝑣̂(𝑠𝑛+1) − 𝑣̂(𝑠𝑛))𝐸𝑛(𝑠),

𝑅𝑛 =
1
𝑋𝑛

𝑋𝑛
∑

𝑖=1
𝑟𝑖𝑒

−(𝑡𝑛,𝑖−𝑡𝑛), 𝐸𝑛(𝑠) = 𝜆𝛾𝐸𝑛−1(𝑠) + 1(𝑠 = 𝑠𝑛)
(3)

where 𝑣̂(𝑠) is the approximation of 𝑣(𝑠), 𝛼 is the learning rate, 𝑅𝑛 is the
rewards at state 𝑠𝑛, 𝑋𝑛 is the total number of requests in state 𝑠𝑛, 𝑟𝑖 is
the response time of each request, 𝑡𝑛,𝑖 is the arrival time of request 𝑖, and
𝑡𝑛 is the time arrived at state 𝑠𝑛, 𝛾 is the discounting factor, and 𝐸𝑛 is the
eligibility trace, which is initialized to 0 and updated by the formula
above and 𝜆 is the trace-decay parameter of TD(𝜆). The convergence
of (3) is given by the convergence of TD(𝜆) algorithm, which has been
proved in Dayan (1992).

This section established the theoretical basis of our HSM-RL frame-
work, previous experiments (Zhang et al., 2022) also showed the feasi-
bility of the framework in data management of general datasets. How-
ever, as mentioned above, previous experiments only demonstrated the
efficiency of the framework in single and general dataset. Therefore, in
the following sections we will present experiments on specific scientific
datasets, together with multiple datasets in one system. Accordingly
modified setups are also introduced in order to verify the effectiveness
and the adjustability of HSM-RL in scientific datasets.

4. Focused research questions

In our previous study, we demonstrated through both simulations
and real-world experiments that hierarchical storage solutions are crit-
ical for developing next-generation, efficient, and cost-effective data
management frameworks (Zhang et al., 2022). The key to enabling
such frameworks is to implement a smart data placement policy. We
proposed an RL-based policy and compared it with several other data
placement policies. Our results showed that the RL-based policy re-
quired significantly fewer transfers between tiers than contemporary
policies, as presented in the left part of Fig. 4. However, we also
noted that while our proposed RL-based policy outperformed other
policies in terms of the number of transfers required, other policies
eventually achieve similar file distributions with significantly more
work, as shown in the right part of Fig. 4.

This raises an essential question:

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
Fig. 4. Left: Number of transfers and estimated system response time under each policy, in cloud based experiment. Right: File temperature distribution on the cloud distributed
system with dynamic dataset.
Source: Figure from (Zhang et al., 2022).
• How effective is the proposed policy in terms of application
response time, given that application response time is highly
dependent on file distribution?

Moreover, it is crucial to understand:

• How will the proposed RL-based policy perform when there is
a varying number of state-space variables in the framework for
highly challenging access patterns? Particularly in scientific ap-
plications.

• Finally, how will the framework manage file distributions when
using multiple datasets from different use cases?

These questions require extensive framework evaluation and are
the focus of this article. We conducted six different experiments using
four different datasets to highlight the usefulness of hierarchical storage
for a range of challenging applications. The following sections provide
detailed information about the datasets and experiment settings. Our
findings indicate that the RL-based data migration policy in a hierarchi-
cal storage management solution offers a better or comparable response
time compared to contemporary policies. The RL-based policy’s adap-
tive behavior towards unseen access patterns makes it superior to its
counterparts.

5. Scientific datasets

This study focuses on scientific datasets. Scientific datasets tend to
be big datasets where large experiments require Petascale or Exascale
storage solutions (Elworth et al., 2020; Scaife, 2020). An individual
object in a scientific dataset tend to be larger than in conventional
datasets and it also often has a defined structure. Examples include
images of varying sizes (one megabyte to several hundred megabytes),
matrices based on integers, floats or double precision numbers, or very
long text files consisting of DNA sequences. Previously, efforts like
ROOT (Antcheva et al., 2011), HDF5 (Soumagne et al., 2022) and sim-
ilar file formats have been used to exploit the underlying structure to
improve the overall application’s performance. These successful efforts
clearly highlight that scientific datasets need special attention and the
performance of the scientific applications can be significantly improved
by exploiting the underlying structure in the datasets. Another major
difference from conventional datasets is the access pattern. In scientific
datasets, on many occasions, a specific part of the data is required
to perform a specific analysis. If the subset of the data is available
on fast storage, the analysis can be finished much faster. However,
identifying the required subset in advance, with manual placement on
faster storage requires significant effort. Also, this same effort will be
required every time there is a change in the analysis. The proposed
hierarchical storage framework presents a unique data management
5

solution that addresses the above-mentioned challenges at scale. It uses
the internal properties of the dataset as well as the incoming request
pattern to autonomously place data in storage hierarchies. To the best
of our knowledge, so far, the internal properties of the data have not
been used for the data placement strategy. In the following sections, we
describe the datasets used for our case-study, and detailed experimental
settings for each case.

5.1. Protein translocation dataset

The first dataset consists of fluorescence microscopy images from
the publicly available Broad Bioimage Benchmark Collection (BBBC)
(Ljosa, Sokolnicki, & Carpenter, 2012). The images contain varying
doses of two drugs in human U2OS cells that are grown in a 96-well
plate. The images showcase the translocation of protein tagged with
green fluorescent protein (GFP) from the cytoplasm to the nucleus
of the cells. As the drug dose increases, the GFP expressed in the
cytoplasm decreases and GFP expressed in the nuclei increases. The
quantification of the cells with GFP expression in the nuclei or cyto-
plasm with respect to the drug dosage is important in understanding
effects of the drug.

Here, SimSearch (Gupta, Sabirsh, Wählby, & Sintorn, 2022) is used
to generate the counts of the cells with three categories: ‘‘GFP in
cytoplasm’’, ‘‘GFP in nuclei’’, and ‘‘No GFP expression’’. SimSearch is
a deep learning based ROI (Region Of Interest) detection framework
for quickly annotating microscopy dataset. We increased the size of
the dataset to 1056 images by rotating, flipping, and transposing the
original images. The counts in different categories remains the same
with the operations mentioned above. The example images with the
annotated cells are shown in Fig. 5. In the experiments, we used the
counts of different categories as the interestingness value of the image.
The interestingness value is a measurement that defines the importance
of an individual object/image in the dataset.

In order to discover the effects of given drugs, analyses to inspect
images with high interestingness value are usually conducted. The idea
is to check the high GFP expression area, which can be represented by
high interestingness value. Therefore, an autonomous data management
policy will significantly increase the efficiency. In Section 6 we will
further discuss the experimental details.

5.2. Airfoil angle of attack dataset

In the field of aerodynamics, the design of an airfoil is crucial. It
helps determine important properties for example the lift and the drag
forces. These forces can be calculated by the velocity and pressure fields
of the air passing through the wing, which are described by the Navier–
Stokes equations. To solve the equations, researchers (Nazarov, 2011)
wrote a 2𝐷 Navier–Stokes solver based on the Finite Element Method.

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
Fig. 5. Display of the SimSearch results on the GFP translocation images. The centers
of the detected ROIs of the different classes are marked.

Fig. 6. Example of a Gmsh mesh around an airfoil.

However, another factor that affects the forces is the angle of attack
of the airfoil. To find the optimal angle of attack, one can use the solver
repeatedly with different geometries as input and for each of them
calculate the solutions and forces. These processes generate multiple
mesh files with different parameters such as angels, number of nodes,
and level of refinements. Fig. 6 shows an example of a mesh file
visualized by the software Gmsh (Geuzaine & Remacle).

In this dataset, 30 angles (0◦–30◦), 5 levels of refinements, and 20
nodes (100–300) were used to generate the mesh files. The results are
based on 3000 mesh files, with each mesh file sizes from 500 Kb to
170 Mb depending on different parameters. The total size of the dataset
is 128.5 Gb. This dataset is completely different from the previous image
dataset. It is based on varying sizes of different geometry files contain-
ing high-precision numerical values. In Section 6, we will present the
analysis pipeline and the proposed process to accelerate the execution
by providing faster access to the relevant geometry files.

5.3. 1000 Genomes dataset

The 1000 Genomes project (Consortium et al., 2015) is an in-
ternational research effort to establish a detailed catalog of human
genetic variation. The dataset of the phase 3 release contains the DNA
sequences of 23 pairs of human chromosomes of 3115 samples. Samples
are taken from 3115 individuals belonging to 27 populations in different
continents. Fig. 7 presents the geographical locations of the populations
and their different distributions of one DNA.
6

Fig. 7. Location distributions of the populations in the 1000 Genomes phrase 3 dataset
over continents, and their different MtDNA distributions (Rishishwar & Jordan, 2017).

In total, the 1000 Genomes dataset contains 3115 matrices, where
each matrix represents all the DNA sequences of an individual together
with its label information (e.g. sample name, sex, population, super-
population). The overall size of the dataset is 17Gb. Here it is important
to note that the nature of this dataset is different from the previously
presented datasets. Each matrix in the format of vcf file contains infor-
mation including chromosome number, genetic locus, genotype quality,
and etc. Given these large amounts of data, lots of analyses could be
investigated. In Section 6, we will present an analysis pipeline using
the dataset: population-wise comparison, and the dedicated efforts of
speeding up the analyzing process by using our method.

5.4. Phenotypic screening dataset

This dataset originates from a cell-based drug repurposing screen.
Cells were first infected by the virus and then exposed to a library
of existing drugs. After 24 hours exposure, cells were subjected to
multiplexed fluorescence staining using the Cell Painting protocol (Bray
et al., 2016) and imaged using automated high-content imaging. The
experiments were carried out in 384-well plates, and 9 sites were im-
aged in each well in 5 channels, producing approximate 15,000 images
per plate. An antibody was added to stain viral proteins allowing to
measure the rate of infection on a single-cell basis, according to our
previously developed method (Rietdijk et al., 2021).

The objective of the screen was to identify existing drugs that are
able to reverse the disease phenotype, so driving cells from infected
state to non-infected state. The entire screen consists of 32 plates,
resulting in approximate 500,000 images occupying 4 TB storage.
CellProfiler software (McQuin et al., 2018) was used to calculate image-
based features on single-cell basis, and median values per compound
were calculated. A principal component analysis (PCA) showed that
principal component one (PC1) could be used to distinguish between
infected and non-infected cells. Furthermore, the dataset also contains
mean antibody intensity as an important feature to indicate the level
of infection.

It is worth to be highlighted here that this dataset is not only a
multi-feature dataset with complex characteristics, but also contains
multiple experimental groups (i.e. data are generated in different pe-
riod and thus with different value scales). Meanwhile, two analyses on
this dataset with totally different file access patterns are considered
in this article. We will describe more details regarding the analyses
requests pattern and implementation of different policies in Section 6.2.

6. Experiments

In order to address the challenges related to data management, next-
generation frameworks need to be highly available and scalable. We
have proposed a hierarchical storage system with a dynamic policy

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.

H
s
p
a
o
a
p

t
t
u
f
t
t
h
p
p
i
i

d
m
a

6

6

m
d
a
f
i
1
i
H
p

s
c
g
h
o
m
a
s
T

using reinforcement learning. In this section we are presenting five ex-
periments using the proposed framework to manage scientific datasets.
We have used a real-world cloud environment to run our experiments.
The setup was deployed as a three-tier HSS using three volumes with
different sizes and I/O speed in the SNIC Science Cloud (SNIC, 2017;
Toor et al., 2017). The three tiers are structured as illustrated in Fig. 1,
with the read/write speed of the fast tier setup as 1000 Mb∕s, middle tier
500 Mb∕s, and slow tier 100 Mb∕s. The following sections showcase the

SM-RL policy’s impact in terms of system response time for different
cientific applications. The presented use cases highlight two major
oints. First, the diverse data request patterns in different scientific
pplications, and second, the effect of different data migration policies
n system response time. The experiments also highlight the self-
dapting behavior of the RL-based policy which makes the proposed
olicy better or comparable to the best-performing policy.

Another important feature of the RL-based framework is the ability
o re-distributing files to proper tiers after files being dropped down
o slow tier in the purpose of reducing cost when data is not in
se. In case there are not many requests related to some files, the
ramework decreases the temperature of those files and pushes them
o the slowest tier to save resources. Thus the overall cost of hosting
he dataset will be less compared to keeping the data in faster storage
ierarchies. This cost-reducing feature is also incorporated into other
olicies through supplementary mechanisms. However, when com-
ared to those policies, RL-based policy offers a significant advantage
n efficiently redistributing files to appropriate tiers, leveraging the
nherent memory capabilities of the RL agent.

Also, we would like to highlight that all the codes related to the
eployment of the HSS based on cloud, the implementation of the data
anagement policies, and the conduction of experiments are publicly

vailable on the Github repository.

.1. System performance based on different policies

.1.1. Protein translocation dataset
We first explored the data management and processing require-

ents of the Protein Translocation dataset. The dataset has three
ifferent categories, and the analysis of category 1 usually requests im-
ges with high interestingness value. The analysis is about cell counting
or high-quality images with interestingness value > 80. In this exper-
ment, the analysis process ran for 1000 iterations. For each iteration,
8×18 = 324 qualified images were selected. To serve these requests for
mages, we have used various storage strategies including our proposed
SM-RL framework. We have monitored the response time of different
olicies during the entire 1000 iterations to verify their capabilities.

As described in Section 5.1, the Protein Translocation dataset con-
ists of 1056 images of the same sizes. This brings an interesting
hallenge for the proposed framework to setup the state variables. In
eneral, datasets consist of different file sizes. In previous settings, we
ave used file size as a state variable. This challenge highlights the need
f giving extra attention to scientific datasets. However, the above-
entioned two features, the interestingness value and request pattern

re the available data-centric information. Hence, we used them to
etup the state variables 𝑠 of the HSM-RL framework for the Protein
ranslocation dataset use case:

• 𝑠1 ∶ average temperature of all files in the tier, where file
temperature takes value in [0, 1] and stands for the request fre-
quency of the file. Frequently requests to files will increase their
temperature, while the temperature of files being untouched for
a long time will decrease.

• 𝑠2 ∶ average weighted temperature in the tier, where the weight is
defined by the interestingness value. 𝑠2 is calculated by the average
among the values of (interestingness value × temperature) of all
7

files in the tier.
• 𝑠3 ∶ the interestingness index, computed by the sum of the
interestingness index of files being requested in the tier. The inter-
esting index of a file is 100∕𝑒3⋅|𝑖𝑛𝑡𝑟|, where |𝑖𝑛𝑡𝑟| is the normalized
value of the interestingness value of the file.

Here, it is important to note that the data-centric information is
not dependent on the processing pipeline. It allows domain-specific
knowledge to better manage the dataset independent of the computa-
tional requirements. With the newly defined state variables, we offer
the hierarchical storage system with RL-based migration policy. To
test and verify the performance and efficiency of the RL-based system,
we launched the storage system with initial parameters and run the
experiment based on 1000 iterations. In each iteration, 324 image
requests were sent to the storage system. Since the read/write speed of
each tier was different, the overall system response time varied based
on the file distribution. Therefore, we monitor the system response time
to measure the performance of the RL-based policy.

Apart from RL-based policy, we have implemented five other poli-
cies as well. In general, the most basic solution for file distribution is
random placement. This policy randomly places files among available
spaces, it is intuitively inefficient (therefore considered as a baseline
policy). A more common and efficient policy is Least Recently Used
(LRU) replacement (O’Neil et al., 1993) policy. LRU records the access
history and downgrades files that are least recently used to lower tier,
and replaces them with more recently used files. A similar approach
is Least Frequently Used (LFU) replacement (Lee et al., 2001a) policy.
Instead of replacing the least recently used files, LFU replaces the least
frequently used files. Given the special feature of Protein Translocation
dataset, the interestingness value, we formed a prefixed policy based on
the interestingness feature as well. This policy places images with higher
interestingness value to upper tiers, hence we called this policy Maximal
interestingness policy.

All the above-mentioned policies are static policies. To make a fair
comparison, we have also implemented a machine learning-based dy-
namic hierarchical data management approach, the K-means policy. In
each iteration, it determines the data distribution among tiers according
to the result of K-means clustering over all files. More in detail, by
having the accumulated number of requests (i.e. the total number of
how many times this file has been requested) and the interestingness
value of each file, the K-means algorithm is able to partition the files
in a given number of clusters (in our implementation 𝑘 = 50). Files are
then placed in different tiers according to their cluster and accumulated
number of requests in descending order. Files belonging to the cluster
whose center has the highest accumulated number of requests are
placed in the fast tier, followed by the second highest and so on until
the fast tier gets full. The rest of the files are placed in a similar way
into the middle and last/slow tier.

Based on the above-mentioned data placement policies, we have
compared their performance in this experiment with the response time
as the standard measure. We have monitored the system response
time in each iteration under each policy. The results are shown in
Fig. 8. Among all the tested policies, random placement performed the
worst with an average response time 12, 554 ms (to avoid the effect of
randomness we selected the best result over 5 random placements). It
has the longest response time in each iteration, which indicated that the
file distribution under this policy was not optimal. LRU and LFU worked
better, achieved average responses of 9056 ms and 9061 ms. Both of
them traced the requests history, so they benefited from the previous
request pattern and were able to distribute files more optimally. Unlike
LRU/LFU, Maximal interestingness policy is based on the interestingness
value instead of request patterns. It performed better than the previ-
ous policies (8906 ms on average). The analysis processes specifically
focused on high interestingness value images. However, if the request
patterns change in the analysis, the interestingness value might not be
the index of importance anymore. In this case, to keep the optimal

system response, a new policy is needed to be defined and the file

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
Fig. 8. System response time based on each iteration using Protein Translocation
dataset. We have used RL-based policy, Random placement, LRU replacement, LFU
replacement, K-means policy, and Maximal interestingness policy. Additional remark:
Random placement subfigure has a different 𝑦-axis scale due to a significantly higher
average response time.

distribution needs to be rearranged manually. The K-means policy uses
the information of both interestingness value and the number of requests,
together with the optimal clustering ability of K-means algorithm. It
hence outperformed the other static policies (8810 ms on average).
However, K-means algorithm is highly sensitive to the selection of
k value and initial cluster center, thus usually requires large efforts
in tuning. Meanwhile, it is weak for situations when there are many
outliers in the feature distribution or non-convex scenarios.

The RL-based policy performed with a system response time 8681 ms
on average. The average response time is superior to the best-perfor-
ming policy, the K-means policy. Here it is important to note that the
RL-based policy achieved this response time without the need of any
initial assumptions on the access pattern. This is the first experiment
that shows the ability of RL-based policy to offer a comparable system
response time to the best-performing policy.

Apart from the system response time, we have also argued in
Section 6 that the RL-based method holds another important advantage
in fast re-distributing files. This feature is demonstrated in Fig. 9, where
the file distributions among each tier during the experiment period are
shown. The first part of Fig. 9 (timestep 0–1000) presents the occupancy
of each tier when the 1000 iterations analysis started, and how RL-
policy managed to fill faster tiers with the most important files. The
second part (timestep 1000–1010) shows how the temperature decreas-
ing mechanism (introduced in Section 3.2) worked in cooling down files
that were not frequently used anymore and dropping them down to the
slow tier to reduce cost. The final part (timestep 1101) illustrates the
efficient re-distributing ability of RL-policy when repeating the same
experiment again.

6.1.2. Airfoil mesh dataset
The second dataset we used to run the computations is the Airfoil

angle of attack. As we introduced in the section , there are 3000 meshes
files with different parameters (angels, nodes, etc.). The purpose of
analyzing this dataset is to find the best angle of attack on airfoils. In
8

Fig. 9. File distributions in each tier during the experiments on Protein Translocation
dataset, in terms of the space occupancy rate of each tier. Iteration 0 was when
everything was at rest, iteration 1 analysis started. At iteration 1001 analysis completed,
1010 again at rest and finally 1101 when the experiment started again.

order to achieve this, we use the Navier–Stokes solver with 5 degrees of
angles in each round (i.e. 0◦–4◦ in the first round, 5◦–9◦ in the second,
and so on). Within each round, we calculate the solutions by using the
solver with 10 different sets of parameters for 10 iterations to get the
required convergence results. This overall requires a request pattern of
600 rounds (iterations), with 500 requests to mesh files in each iteration.

Similar to the experiment on the Protein Translocation dataset, we
used 5 other policies to compare with our RL-based policy. The 5
other policies include Random Placement, LRU, LFU, K-means policy
and Maximal feature policy. While the first three policies are exactly
the same as the previous ones, the K-means policy and the Maximal
feature policy are different. For the K-means policy, the clustering is
based on the accumulated number of requests and the file size, which
is an important feature instead of interestingness value. Maximal inter-
estingness policy also changed to Maximal temperature policy, where
file temperature is a feature valued between 0 and 1, proportional
to 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑓 𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 , given by the temperature changing mechanism we
introduced in Section 3. This Maximal temperature policy places files
with higher temperatures into the upper tiers.

Regarding the RL-based policy, since the internal characteristic of
this dataset is the varying file size, we designed the RL-based policy
with state variables 𝑠 in the following way:

• 𝑠1 ∶ average temperature of all files in the tier.
• 𝑠2 ∶ average size-weighted temperature in the tier (the average of

size×temperature of files in the tier).
• 𝑠3 ∶ current queuing time for arriving requests in the tier. A high

value implies a large latency in this tier.

The policies mentioned above were used in managing the dataset
during the 600 iterations. Same as the last use case, we evaluated their
performance in terms of system response time per iteration. Fig. 10
illustrates that once again the RL-based policy offers a comparable
response time to the best available policy. From the figure it can be seen
that the shape of the system response time varies with different policies.
This is due to the changing requests pattern and the various file sizes
in the dataset, and different factors that each policy is based on. LRU
and LFU showed different shapes because of their differences in using
recency or frequency. While K-means policy had a very similar shape
with LFU, mainly because the K-means clustering was also partly based
on the frequency. Regarding the RL-based policy, with the combination
of all the features (frequency, temperature, file size and etc.), it showed
an integrated shape of all the other policies (the first 100 iterations
are similar to the K-mean or LFU and the rest are closer to LRU and
Maximal temperature). In this experiment, the best-performing policy
out of the first five is the Maximal temperature policy and once again
the results of the RL-based policy are comparable to the best one. Thus
this experiment also clearly shows that rather than fine-tuning a policy
for a special use case, it is better to use the RL-based policy to get the
best response time.

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
Fig. 10. System response time using the Airfoil mesh dataset. We have used RL-based
policy, Random placement, LRU replacement, LFU replacement, K-means policy, and
Maximal temperature policy.

Fig. 11. File access pattern of the population-wise comparison experiment on the 1000
Genomes dataset. On the 𝑦 axis is the number of files being requested in each iteration.

6.1.3. 1000 Genomes dataset
The 1000 Genomes project produces an extensive catalog of human

genetic variation. The aim of this experiment was to compare specific
DNA sequences between samples from different populations. More in
detail, in each iteration, samples from one population and another pop-
ulation were selected to investigate their differences. This required a
request pattern of 650 iterations, with a number of files being requested
in each iteration varying from 177 to 369 depending on the number of
samples in each population. More precisely, Fig. 11 shows the access
pattern in terms of the number of files being accessed in each iteration.

With this requests pattern, once again we applied the six policies to
manage the dataset and monitored the response time to evaluate their
performance. Same as in previous experiments, Random placement,
LRU, LFU were implemented in the exact same way. While for the
K-means policy, we used the population code and the accumulated
number of requests as the features for clustering, since population
diversity is a unique characteristic of this dataset. For the RL-based
policy, in the experiment we have used 2 state variables:

• 𝑠1 ∶ average temperature of all files in the tier.
• 𝑠2 ∶ entropy of the population distribution in the tier. For in-

stance, if there are 26 samples of the population ‘Iberian’, 41
samples of ‘Finnish’, and 33 samples of ‘British’ in the tier, then
𝑠 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦([26, 41, 33]) = 1.081.
9

2

Fig. 12. System response time using 1000 Genomes dataset. The experiments include
RL-based policy, Random placement, LRU replacement, LFU replacement, K-means
policy, and Minimal entropy policy.

We also used the entropy of population distribution to define a Maxi-
mal/minimal feature policy, the Minimal entropy policy. As long as one
file is requested, the Minimal entropy policy will decide whether this
file should be upgraded to the upper tier or not based on the entropy
of the upper tier. The file will be upgraded if the file upgrading will de-
crease the entropy, otherwise not. Take the same example of a fast tier
containing 26 ‘Iberian’, 41 ‘Finnish’, and 33 ‘British’. If a new file from
other tiers belonging to another population (e.g. ‘Japanese’) is being re-
quested, then the entropy after upgrading this file is
𝑒𝑛𝑡𝑟𝑜𝑝𝑦([25, 41, 33, 1]) = 1.124 > 1.081, and according to the Minimal
entropy policy, this file will not be upgraded to the fast tier. On the
other hand, if the file belonged to ‘Finnish’, then the entropy after
upgrading this file is 𝑒𝑛𝑡𝑟𝑜𝑝𝑦([25, 42, 33]) = 1.076 < 1.081, and this file
will be upgraded to the fast tier.

Fig. 12 presents the system response time of each iteration in the
population-wise comparison of the 1000 Genomes dataset. Unlike the
previous experiments, LRU and LFU performed differently. LRU gained
huge benefits from considering the repeating request patterns, and
thus had an average response time of 15, 150 ms. On the other hand,
LFU replacement (21, 581 ms in terms of the average response) and
K-means policy (21, 078 ms) performed worse because of their tight
coupling with the frequency/accumulated number of requests. The
Minimal entropy policy only uses the population feature but not the
repeating pattern, thus it did not work as outstanding as in previous
experiments, with the average response time being 20, 129 ms. In this
experiment, the best-performing policy is the LRU replacement policy,
and once again RL-based policy performed comparably (15, 006 ms in
terms of the average response) to the best-performing policy. Here
it is important to note that in this experiment we have used 2 state
variables. This experiment also validates our claim that RL-based policy
can quickly adapt according to any access pattern and performs better
or comparable to a hand-picked policy.

6.2. Scalable management of multi-feature datasets

In addition to the three datasets mentioned above, we have also
conducted experiments on the Phenotypic screening dataset, which is

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
a more complex use case. As introduced in Section 5.4, the high-content
imaging screen consists approximately of 500,000 images in 32 plates,
with 15,000 images in each plate. In the following experiments, we
used the data from one plate after preprocessing to filter out damaged
or polluted images. We have used 11,222 images, in total 97.5 GB
dataset, with each image size 8.9 MB. The 11,222 images belonged to
two experiments, with 5176 in experiment A and 6046 in experiment
B. Images in Experiment A were collected as the first part, and were
labeled as group A. While images in Experiment B (group B) were gen-
erated from the same microscopy but with different settings. We further
described the detailed implementations of these two experiments in the
following subsections.

6.2.1. Single dataset experiment
The initial experiment was a first-phase screening of non-infected

cells. As introduced in Section 5.4, mean antibody intensity is a feature
that can indicate the level of infection. Therefore, data for the first
experiment were selected from images that have a low intensity in
group A. The analysis runs for 100 iterations, with 500 images being
screened in each iteration.

Again we used six policies (RL-based policy, Random placement,
LRU, LFU, Maximal policy, and K-means policy) to manage the file
distribution, and tested them in the 100 iterations to verify their effec-
tiveness. However, since there is no feature as the interestingness value
in the previous dataset, the RL-based policy and the maximal policy for
this dataset need different settings. Alternatively, there are two features
in the Phenotypic screening dataset that can play the same role as
the interestingness value in the Protein Translocation dataset. The mean
antibody intensity and the principal component 1 (pc1) are significant
features to indicate the importance of images. Hence, we defined the
states variable of RL-based policy to be:

• 𝑠1 ∶ average temperature of all files in the tier.
• 𝑠2 ∶ average weighted temperature in the tier (intensity × tem-

perature).
• 𝑠3 ∶ importance index, computed by the sum of pc1 of files being

requested in the tier.

In addition to the RL-based policy, the Maximal feature policy was also
modified to the Minimal intensity policy. This policy places images
with lower intensity into upper tiers. The K-means policy clustered data
based on the accumulated number of requests, the antibody intensity,
and the pc1 value. Random placement, LRU, and LFU were kept the
same as in previous experiments.

Fig. 13 presents the response time of the system using each of the six
policies. With respect to the response time, RL-based policy achieved
an average of 17, 924 ms, which is better than the best-performing
policy, the Minimal intensity policy (18, 062 ms in average). Close
to the Minimal intensity policy, K-means policy achieved an average
of 18, 096 ms. As for the LRU/LFU replacement, the average system
response time of LFU is 18, 099 ms, lower than the LRU with an average
19, 431 ms. The reason why LFU performed better than LRU is the ability
to learn and continue from the previous requests patterns. Once again
this experiment showcases the ability of the RL-based policy to quickly
adapt according to the incoming request pattern and offer the best
possible response time.

6.2.2. Multi-datasets experiment
The previous experiment was a first-phase analysis that only in-

volved images from group A. As new data in group B was added, we
increase the storage system capacity and setup the second round of
analysis. In this experiment, we trained a CNN (Convolution Neural
Network) model to classify images that were able to reveal effective
drugs. The training process went on for 200 epochs, i.e. 200 iterations
of requests were sent to collect images as input training data. The model
was trained to identify high-quality images with a large number of
healthy cells, thus images with low-intensity values were most often
10
Fig. 13. System response time in the first phrase screening of Phenotypic screening
dataset using RL-based policy, Random placement, LRU replacement, LFU replacement,
K-means policy, and Minimal intensity policy. Additional remark: Random placement
subfigure has a different 𝑦-axis scale due to a significantly higher average response
time.

Fig. 14. Number of files being requested per iteration in the model training process
involving group A and group B of the Phenotypic screening dataset.

chosen as the input. However, the significance thresholds of intensity
were different between group A and group B. Therefore, we selected
images with intensity < 0.009 in the first iteration, then reduced the in-
tensity limitation 0.00002 per iteration until it reached the significance
threshold of group B 0.0083. These reductions ended in 35 iterations,
from the 36th iteration, we randomly selected 300 images from images
in group A and B with intensity lower than the significance threshold.

According to the data selection routine described above, we even-
tually formed a requests pattern with 1529, 1497, 1455, 1420, . . . ,
300, 300, . . . , 300 images in each iteration. These numbers of files
being requested are also visualized in Fig. 14. Same as in previous
experiments, we used six policies to manage the file distribution and
recorded the system response times to evaluate these policies. The first
5 policies were exactly the same as the single group experiment, but the
RL-based policy had some differences. Since the intensity value and the
PC1 value of images in group A and B are at different scales, one group
of RL agents cannot manage two groups of data because each agent
can only have one pair of hyperparameters for one dataset. Therefore,
we added 3 more RL agents in the system to manage data from group
B. They worked together with the original 3 RL agents to determine
the data migration policy. More in detail, for the formula (1), if the
involved file 𝐹 is in group A, then the system will use the cost function
from RL agents for group A as 𝑣. Else if the involved file is in group

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
Fig. 15. System response time for the CNN model training using group A and group
B dataset. We have used RL-based policy, Random placement, LRU replacement,
LFU replacement, K-means policy, and Minimal intensity policy. Additional remark:
Random placement subfigure has a different 𝑦-axis scale due to a significantly higher
average response time.

B, then 𝑣 will be the cost function from RL agents for group B. Here it
is important to note that the agents only run as back-end processes in
the framework, the front-end services are exactly the same as previous
experiments.

Fig. 15 illustrates the system response time of all the 200 iterations
in the model training process. The left part of the figure is the response
time in the first 35 iterations, where the number of files being requested
decreases in every iteration. Therefore, every policy showed a decreas-
ing response time. In this phase (first 35 iterations) the four policies
LFU, LRU k-means and Minimal intercity have a mean response time of
11
Table 1
File distributions of Group A and B in Phenotypic screening dataset under the RL-based
policy during 200 iterations.

Iter. Tier1 Tier2 Tier3
Group Group Group

A B A B A B

0 22.5% 26.3% 0.0% 0.0% 0.0% 0.0%
1 17.6% 26.3% 96.1% 3.9% 99.6% 0.4%
2 17.6% 26.3% 97.0% 3.0% 97.8% 2.2%
35 18.1% 24.7% 77.2% 22.8% 54.7% 45.3%
36 18.1% 24.7% 24.7% 75.3% 14.8% 85.2%
200 18.1% 24.7% 32.0% 68.0% 14.8% 85.2%

around 40 seconds whereas the RL-based policy is at 37 seconds. Again
RL-based policy due to its self-adapting behavior performs better than
the rest of the policies.

The right part of Fig. 15 shows the system response time in the
36th–200th iterations, where the number of files being requested was
constantly 300. It reflects the ability of each policy to adapt to new
request patterns. In this phase, the best average response time is from
the K-means policy, and once again RL-based policy outperforms the
K-means policy with its adaptive behavior.

In addition, Table 1 presents the file distributions in each tier during
the 200 iterations using RL-based policy. Initially, all the files are on the
slowest tier (Tier1). The percentages in the table represent the space
used by the datasets. In the first 35 iterations, the system received more
requests of files in group A than in group B, thus in the fastest tiers
(Tier2 and Tier 3) there were more files of group A. From iteration
36 to 200, files being requested were mainly in group B, thus group B
files started to migrate to faster tiers. This corresponds to the system
response time shown in Fig. 15, and supports the efficiency and self-
adjustability of the RL-based framework more intuitively. Furthermore,
it also demonstrates the scalability and availability of RL-based policy
in terms of managing multiple datasets in a single storage system.

7. Conclusion and future direction

In this paper, we have presented an RL-based hierarchical storage
management (HSM-RL) framework together with the usage of internal
features of the datasets. The aim is to offer better response time to
the analysis pipelines. This study has a special focus on scientific
datasets. We have presented four scientific datasets and associated
six experiments. Together with the proposed RL policy, we have also
evaluated other policies including Random placement, Least Recently
Used replacement, Least Frequently Used replacement, K-means based
policy, and prefixed minimal/maximal feature policies.

More specifically, our experiments illustrate that the RL-based pol-
icy with its unique self-adapting capability can perform effectively in
challenging use cases. The results also describe the response time of the
other potential policies that perform differently in different scenarios.
The RL-based policy always gives better or comparable mean response
time to contemporary policies. We have also presented the results of
the RL-based policy using a different number of state variables (in the
case of 1000 Genomes Dataset). Our findings clearly showcase that the
RL-based data migration policy is the optimal way forward to design
next-generation hierarchical storage solutions.

In the future, we will further evaluate the framework with more
complex scenarios and also investigate the parameter tuning of the
framework.

CRediT authorship contribution statement

Tianru Zhang: Conceptualization, Methodology, Software, Formal
analysis, Visualization, Writing. Ankit Gupta: Resources, Visualization,
Data curation, Writing – original draft. María Andreína Francisco Ro-
dríguez: Resources, Visualization. Ola Spjuth: Writing – original draft,

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.

A

Project administration, Funding acquisition. Andreas Hellander: Writ-
ing – review & editing, Supervision, Funding acquisition. Salman Toor:
Conceptualization, Writing – review & editing, Supervision, Project
administration.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Tianru Zhang reports financial support was provided by Uppsala
University.

Data and code availability

All codes related to the deployment based on cloud, the imple-
mentation of the data management policies, and the conduction of
experiments are publicly available on the Github repository. https:
//github.com/JSFRi/MSD-RLHSS.git Some datasets are not publicly
available, but in case of needed they can be requested from the authors.

Acknowledgments

This research is supported by the Swedish Foundation for Strate-
gic Research (SSF), project HASTE, under Grant No. BD15-0008. We
would also like to acknowledge Swedish National Infrastructure for
Computing (SNIC) for providing cloud resources, project number SNIC
2022/22-835, and support from eSSENCE, a Swedish strategic collabo-
rative research program in e-science.

References

Acharya, S., Alonso, R., Franklin, M., & Zdonik, S. (1996). Broadcast disks: Data
management for asymmetric communication environments. In T. Imielinski, &
H. F. Korth (Eds.), Mobile computing (pp. 331–361). Boston, MA: Springer US,
http://dx.doi.org/10.1007/978-0-585-29603-6_12.

ntcheva, I., Ballintijn, M., Bellenot, B., Biskup, M., Brun, R., Buncic, N., et al. (2011).
ROOT — A C++ framework for petabyte data storage, statistical analysis and
visualization. Computer Physics Communications, 182(6), 1384–1385. http://dx.doi.
org/10.1016/j.cpc.2011.02.008.

Barisits, M., Beermann, T., Berghaus, F., Bockelman, B., Bogado, J., Cameron, D., et al.
(2019). Rucio: Scientific data management. Computing and Software for Big Science,
3(1), 1–19. http://dx.doi.org/10.1007/s41781-019-0026-3.

Blamey, B., Toor, S., Dahlö, M., Wieslander, H., Harrison, P. J., Sintorn, I.-M., et al.
(2021). Rapid development of cloud-native intelligent data pipelines for scientific
data streams using the HASTE Toolkit. GigaScience, 10(3), http://dx.doi.org/10.
1093/gigascience/giab018.

Bray, M.-A., Singh, S., Han, H., Davis, C. T., Borgeson, B., Hartland, C., et al. (2016).
Cell painting, a high-content image-based assay for morphological profiling using
multiplexed fluorescent dyes. Nature protocols, 11(9), 1757–1774. http://dx.doi.org/
10.1038/nprot.2016.105.

Brubeck, D., & Rowe, L. (1996). Hierarchical storage management in a distributed VOD
system. IEEE MultiMedia, 3(3), 37–47. http://dx.doi.org/10.1109/93.556538.

Cesini, D., Donvito, G., Costantini, A., Aguilar Gomez, F., Duma, d. C., Fuhrmann, P., et
al. (2020). The extreme-DataCloud project solutions for data management services
in distributed e-infrastructures. EPJ Web of Conferences.

Consortium, . G. P., et al. (2015). A global reference for human genetic variation.
Nature, 526(7571), 68. http://dx.doi.org/10.1038/nature15393.

Dayan, P. (1992). The convergence of TD(𝜆) for general 𝜆. In R. S. Sutton (Ed.),
Reinforcement learning (pp. 117–138). Boston, MA: Springer US, http://dx.doi.org/
10.1007/978-1-4615-3618-5_7.

Du, X., Tang, S., Lu, Z., Wet, J., Gai, K., & Hung, P. C. (2020). A novel data
placement strategy for data-sharing scientific workflows in heterogeneous edge-
cloud computing environments. In 2020 IEEE international conference on web services
(pp. 498–507). http://dx.doi.org/10.1109/ICWS49710.2020.00073.

Elworth, R. A. L., Wang, Q., Kota, P. K., Barberan, C. J., Coleman, B., Balaji, A.,
et al. (2020). To Petabytes and beyond: Recent advances in probabilistic and
signal processing algorithms and their application to metagenomics. Nucleic Acids
Research, 48(10), 5217–5234. http://dx.doi.org/10.1093/nar/gkaa265.

Geuzaine, C., & Remacle, J.-F. Gmsh: A 3-D finite element mesh generator with built-
in pre- and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11), 1309–1331. http://dx.doi.org/10.1002/nme.2579.
12
Gupta, A., Sabirsh, A., Wählby, C., & Sintorn, I.-M. (2022). SimSearch: A human-in-
the-loop learning framework for fast detection of regions of interest in microscopy
images. IEEE Journal of Biomedical and Health Informatics, 1. http://dx.doi.org/10.
1109/JBHI.2022.3177602.

Ikegwu, A. C., Nweke, H. F., Anikwe, C. V., Alo, U. R., & Okonkwo, O. R. (2022). Big
data analytics for data-driven industry: a review of data sources, tools, challenges,
solutions, and research directions. Cluster Computing, 1–45. http://dx.doi.org/10.
1007/s10586-022-03568-5.

Jiang, S., & Zhang, X. (2002). LIRS: An efficient low inter-reference recency set replacement
policy to improve buffer cache performance. New York, NY, USA: Association for
Computing Machinery.

Krish, K. R., Wadhwa, B., Iqbal, M. S., Rafique, M. M., & Butt, A. R. (2016). On
efficient hierarchical storage for big data processing. In 2016 16th IEEE/ACM
international symposium on cluster, cloud and grid computing (pp. 403–408). http:
//dx.doi.org/10.1109/CCGrid.2016.61.

Lee, D., Choi, J., Kim, J.-H., Noh, S., Min, S. L., Cho, Y., et al. (2001a). LRFU: A
spectrum of policies that subsumes the least recently used and least frequently
used policies. IEEE Transactions on Computers, 50(12), 1352–1361. http://dx.doi.
org/10.1109/TC.2001.970573.

Lee, D., Choi, J., Kim, J. H., Noh, S. H., Min, S. L., Cho, Y., et al. (2001b). LRFU:
A spectrum of policies that subsumes the least recently used and least frequently
used policies, 50 (12). [ISSN: 0018-9340].

LHC (2008). Large hadron collider, https://home.cern/science/accelerators/large-
hadron-collider.

Lin, B., Zhu, F., Zhang, J., Chen, J., Chen, X., Xiong, N. N., et al. (2019). A time-
driven data placement strategy for a scientific workflow combining edge computing
and cloud computing. IEEE Transactions on Industrial Informatics, 15(7), 4254–4265.
http://dx.doi.org/10.1109/TII.2019.2905659.

Ljosa, V., Sokolnicki, K. L., & Carpenter, A. E. (2012). Annotated high-throughput
microscopy image sets for validation. Nature Methods, 9(7), 637. http://dx.doi.org/
10.1038/nmeth.2083.

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., Karhohs, K. W.,
et al. (2018). CellProfiler 3.0: Next-generation image processing for biology. PLoS
Biology, 16(7), Article e2005970. http://dx.doi.org/10.1371/journal.pbio.2005970.

Megiddo, N., & Modha, D. S. (2003). ARC: A self-tuning, low overhead replacement
cache. In 2nd USENIX conference on file and storage technologies.

Mishra, P., & Somani, A. K. (2020). LDM: Lineage-aware data management in multi-
tier storage systems. In K. Arai, & R. Bhatia (Eds.), Advances in information and
communication (pp. 683–707). Cham: Springer International Publishing, http://dx.
doi.org/10.1007/978-3-030-12388-8_48.

Nazarov, M. (2011). Trita-CSC-A, Adaptive algorithms and high order stabilization for
finite element computation of turbulent compressible flow (Ph.D. thesis), (2011:13),
(p. xii, 54). KTH Royal Institute of Technology, KTH, Numerical Analysis, NA, QC
20110627.

O’Neil, E. J., O’Neil, P. E., & Weikum, G. (1993). The LRU-K page replacement
algorithm for database disk buffering. New York, NY, USA: Association for Computing
Machinery.

Oussous, A., Benjelloun, F.-Z., Ait Lahcen, A., & Belfkih, S. (2018). Big data technolo-
gies: A survey. Journal of King Saud University - Computer and Information Sciences,
30(4), 431–448. http://dx.doi.org/10.1016/j.jksuci.2017.06.001.

Rietdijk, J., Tampere, M., Pettke, A., Georgiev, P., Lapins, M., Warpman-Berglund, U.,
et al. (2021). A phenomics approach for antiviral drug discovery. BMC Biology,
19(1), 1–15. http://dx.doi.org/10.1186/s12915-021-01086-1.

Rishishwar, L., & Jordan, I. K. (2017). Implications of human evolution and admixture
for mitochondrial replacement therapy. BMC Genomics, 18(1), 1–11. http://dx.doi.
org/10.1186/s12864-017-3539-3.

Sanghi, N. (2021). Function approximation. In Deep reinforcement learning with python:
with pytorch, tensorflow and OpenAI Gym (pp. 123–154). Berkeley, CA: A Press,
http://dx.doi.org/10.1007/978-1-4842-6809-4_5.

Scaife, A. (2020). Big telescope, big data: Towards exascale with the square kilometre
array. Philosophical Transactions of the Royal Society, Series A, 378(2166), Article
20190060. http://dx.doi.org/10.1098/rsta.2019.0060.

Sienknecht, T. F., Friedrich, R. J., Martinka, J. J., & Friedenbach, P. M. (1994).
The implications of distributed data in a commercial environment on the design
of hierarchical storage management. Performance Evaluation, 20(1), 3–25. http:
//dx.doi.org/10.1016/0166-5316(94)90003-5, Performance ’93.

SKA (2019). Square kilometre array, https://www.skatelescope.org/the-ska-project/.
SNIC (2017). Swedish National Infrastructure for Computing, https://www.snic.se.
Soumagne, J., Henderson, J., Chaarawi, M., Fortner, N., Breitenfeld, S., Lu, S., et

al. (2022). Accelerating HDF5 I/O for exascale using DAOS. IEEE Transactions on
Parallel and Distributed Systems, 33(4), 903–914. http://dx.doi.org/10.1109/TPDS.
2021.3097884.

Storn, R., & Price, K. (1995). Differential evolution: A simple and efficient adap-
tive scheme for global optimization over continuous spaces. Journal of Global
Optimization, 23.

Toor, S., Lindberg, M., Falman, I., Vallin, A., Mohill, O., Freyhult, P., et al. (2017). SNIC
science cloud (SSC): A national-scale cloud infrastructure for Swedish academia. In
2017 IEEE 13th international conference on e-science (pp. 219–227). http://dx.doi.
org/10.1109/eScience.2017.35.

https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
https://github.com/JSFRi/MSD-RLHSS.git
http://dx.doi.org/10.1007/978-0-585-29603-6_12
http://dx.doi.org/10.1016/j.cpc.2011.02.008
http://dx.doi.org/10.1016/j.cpc.2011.02.008
http://dx.doi.org/10.1016/j.cpc.2011.02.008
http://dx.doi.org/10.1007/s41781-019-0026-3
http://dx.doi.org/10.1093/gigascience/giab018
http://dx.doi.org/10.1093/gigascience/giab018
http://dx.doi.org/10.1093/gigascience/giab018
http://dx.doi.org/10.1038/nprot.2016.105
http://dx.doi.org/10.1038/nprot.2016.105
http://dx.doi.org/10.1038/nprot.2016.105
http://dx.doi.org/10.1109/93.556538
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb7
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1007/978-1-4615-3618-5_7
http://dx.doi.org/10.1007/978-1-4615-3618-5_7
http://dx.doi.org/10.1007/978-1-4615-3618-5_7
http://dx.doi.org/10.1109/ICWS49710.2020.00073
http://dx.doi.org/10.1093/nar/gkaa265
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1109/JBHI.2022.3177602
http://dx.doi.org/10.1109/JBHI.2022.3177602
http://dx.doi.org/10.1109/JBHI.2022.3177602
http://dx.doi.org/10.1007/s10586-022-03568-5
http://dx.doi.org/10.1007/s10586-022-03568-5
http://dx.doi.org/10.1007/s10586-022-03568-5
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb15
http://dx.doi.org/10.1109/CCGrid.2016.61
http://dx.doi.org/10.1109/CCGrid.2016.61
http://dx.doi.org/10.1109/CCGrid.2016.61
http://dx.doi.org/10.1109/TC.2001.970573
http://dx.doi.org/10.1109/TC.2001.970573
http://dx.doi.org/10.1109/TC.2001.970573
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb18
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb18
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb18
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb18
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb18
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
http://dx.doi.org/10.1109/TII.2019.2905659
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1038/nmeth.2083
http://dx.doi.org/10.1371/journal.pbio.2005970
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb23
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb23
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb23
http://dx.doi.org/10.1007/978-3-030-12388-8_48
http://dx.doi.org/10.1007/978-3-030-12388-8_48
http://dx.doi.org/10.1007/978-3-030-12388-8_48
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb25
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb26
http://dx.doi.org/10.1016/j.jksuci.2017.06.001
http://dx.doi.org/10.1186/s12915-021-01086-1
http://dx.doi.org/10.1186/s12864-017-3539-3
http://dx.doi.org/10.1186/s12864-017-3539-3
http://dx.doi.org/10.1186/s12864-017-3539-3
http://dx.doi.org/10.1007/978-1-4842-6809-4_5
http://dx.doi.org/10.1098/rsta.2019.0060
http://dx.doi.org/10.1016/0166-5316(94)90003-5
http://dx.doi.org/10.1016/0166-5316(94)90003-5
http://dx.doi.org/10.1016/0166-5316(94)90003-5
https://www.skatelescope.org/the-ska-project/
https://www.snic.se
http://dx.doi.org/10.1109/TPDS.2021.3097884
http://dx.doi.org/10.1109/TPDS.2021.3097884
http://dx.doi.org/10.1109/TPDS.2021.3097884
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb36
http://dx.doi.org/10.1109/eScience.2017.35
http://dx.doi.org/10.1109/eScience.2017.35
http://dx.doi.org/10.1109/eScience.2017.35

Expert Systems With Applications 237 (2024) 121443T. Zhang et al.
Tusar, T., & Filipic, B. (2007). Differential evolution versus genetic algorithms in
multiobjective optimization, 4403. (pp. 257–271). ISBN: 978-3-540-70927-5, http:
//dx.doi.org/10.1007/978-3-540-70928-2_22.

Wang, M., Zhang, J., Dong, F., & Luo, J. (2014). Data placement and task scheduling
optimization for data intensive scientific workflow in multiple data centers envi-
ronment. In 2014 second international conference on advanced cloud and big data (pp.
77–84). http://dx.doi.org/10.1109/CBD.2014.19.

Wilkes, J., Golding, R., Staelin, C., & Sullivan, T. (1996). The HP autoraid hierarchical
storage system, 14 (1). [ISSN: 0734-2071].
13
Xiao, J., Xiong, Z., Wu, S., Yi, Y., Jin, H., & Hu, K. (2018). Disk failure prediction in
data centers via online learning. New York, NY, USA: Association for Computing
Machinery.

Yuan, D., Yang, Y., Liu, X., & Chen, J. (2010). A data placement strategy in scientific
cloud workflows. Future Generation Computer Systems, 26(8), 1200–1214. http:
//dx.doi.org/10.1016/j.future.2010.02.004.

Zhang, T., Hellander, A., & Toor, S. (2022). Efficient hierarchical storage management
empowered by reinforcement learning. IEEE Transactions on Knowledge and Data
Engineering, http://dx.doi.org/10.1109/TKDE.2022.3176753.

Zhou, Y., Philbin, J., & Li, K. (2001). The multi-queue replacement algorithm for
second level buffer caches. In Proceedings of the general track: 2001 USENIX annual
technical conference (pp. 91–104). USA: USENIX Association, http://dx.doi.org/10.
5555/647055.715773.

http://dx.doi.org/10.1007/978-3-540-70928-2_22
http://dx.doi.org/10.1007/978-3-540-70928-2_22
http://dx.doi.org/10.1007/978-3-540-70928-2_22
http://dx.doi.org/10.1109/CBD.2014.19
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb41
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb41
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb41
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb41
http://refhub.elsevier.com/S0957-4174(23)01945-0/sb41
http://dx.doi.org/10.1016/j.future.2010.02.004
http://dx.doi.org/10.1016/j.future.2010.02.004
http://dx.doi.org/10.1016/j.future.2010.02.004
http://dx.doi.org/10.1109/TKDE.2022.3176753
http://dx.doi.org/10.5555/647055.715773
http://dx.doi.org/10.5555/647055.715773
http://dx.doi.org/10.5555/647055.715773

	Data management of scientific applications in a reinforcement learning-based hierarchical storage system
	Introduction
	Related Work
	Methods
	Storage Hierarchies
	Data migration policy
	Reinforcement Learning based policy

	Focused Research Questions
	Scientific Datasets
	Protein Translocation dataset
	Airfoil angle of attack dataset
	1000 Genomes dataset
	Phenotypic screening dataset

	Experiments
	System Performance based on different policies
	Protein Translocation Dataset
	Airfoil Mesh Dataset
	1000 Genomes Dataset

	Scalable management of multi-feature datasets
	Single Dataset Experiment
	Multi-Datasets Experiment

	Conclusion and Future Direction
	CRediT authorship contribution statement
	Declaration of competing interest
	Data and code availability
	Acknowledgments
	References

