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Complexity, a fundamental concept in physics, encompasses phenomena spanning atomic to cos-
mic scales. The natural emergence of complexity can be explained by self-organized criticality. In
this work, two complexity measures in magnetic systems are explored. The multiscale structural
complexity (MSC) and spin temperature both capture complexity but are fundamentally different
in nature and hence behave differently when subject to various temperature profiles. The MSC
is extended to incorporate time correlations and compared to the time-averaged static MSC for
examining spin glasses and bcc Fe at different temperatures. The spin glass transition temperature
is determined with an accuracy of 1 K using the time-extended MSC, outperforming similar esti-
mates based on the heat capacity in terms of accuracy, computational cost, and efficiency. Future
work includes the optimization of coarse-graining scales in spin glasses, the investigation of transient
magnetization dynamics, and the influence and loss of information of averaging magnetic unit cells
before computing complexities.

I. INTRODUCTION

The concept of complexity is a ubiquitous feature in
physics, appearing in a diverse range of phenomena from
the smallest atomic scales to the largest structures in the
universe [1, 2]. Complexity arises from the interactions
between the components of a system, leading to the emer-
gence of novel properties that are not readily apparent
from the individual components alone. One insightful
way to think about this complexity is through the con-
cept of self-organized criticality (SOC) [3, 4]. SOC refers
to a state in which the observed complexity emerges in a
robust manner, unaffected by fine-tuned details or wide
changes in variable parameters within the system. The
term “self-organized criticality” captures the idea that
critical behavior emerges naturally without the need for
precise adjustments. It offers a framework to comprehend
how complex systems autonomously reach a state of bal-
ance, exhibiting scale-invariant behavior [5]. By encom-
passing the dynamics of self-organization and criticality,
SOC provides insights into the underlying mechanisms of
complexity, revealing the intrinsic interdependencies that
shape the behavior of complex systems.

The analysis of the multiscale structural complexity
(MSC) is another powerful approach for studying com-
plex systems, as it considers the system at multiple scales
of organization to gain a comprehensive understanding of
its behaviour. The MSC has been extensively analyzed
in the study of complex magnetic systems through spin
dynamics [6], offering a promising approach for investi-
gating their rich behaviour. Such complex systems often
exhibit phase transitions with unknown order parameters
[7], making it challenging to understand the underlying
physics, however, examining the MSC of the system can
help identify relevant correlation lengths and provide in-
sights into the phase transition dynamics.

In this work, the MSC and spin temperature as mea-
sures of complexity in magnetic systems are studied
through spin dynamics simulations, focusing on bcc Fe.
Furthermore, the MSC is extended to include time corre-
lations by treating time as another dimension for coarse-

graining and subsequently included in the overlap when
computing the complexity. The extended MSC is then
compared to the time-averaged static MSC for both spin
glasses and bcc Fe for a large range of temperatures to
verify its validity. Lastly, spin glass systems are analyzed
to gain a deeper understanding of the underlying dynam-
ics of the system, which exhibits complex and disordered
magnetic behaviour. While spin glasses are highly frus-
trated systems, and appear to be random, locally, there
is some long-range order in time. The extended MSC
capitalizes on their long-range temporal order, whence
spin glass transition temperatures are determined. These
temperatures are then compared to estimates originating
from the heat capacity.

II. THEORY

Coarse-graining is a widely used approach in physics
to simplify complex systems by reducing their degrees of
freedom [8]. It involves merging small-scale details into
a unified entity, resulting in a model that is more con-
venient and computationally efficient to handle. Coarse-
graining also plays a crucial role in the definition of com-
plexity, as it allows for easier comparison of structures
at different scales. Definitions and theory regarding the
complexity are based on and inspired by [6].
At a scale k, the smallest entity/pixel that can be re-

solved is denoted by sijl(k), which in terms of atomistic
spin dynamics represents the magnetic unit cell. Each
index of sijl(k) then is one of three spin components.
Rescaling a coarse-grained entity admits a straightfor-
ward way to compute its overlap with different scales.
To put this into perspective, assume a 2D magnetic

system can be stored in a 2D matrix, where for the small-
est scale k = 0, the entire system is represented without
any loss of information. Note that the extension to 3D
is trivial. At a different, arbitrary scale k, assume the
system is represented by a matrix of size Lk,x by Lk,y,
which can be further coarse-grained into a matrix using
blocks of size Λx by Λy. The overlap at consecutive scales
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is then given by
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Here, the step indicated with
∗
= only holds when

coarse-graining is done by averaging, which to a cer-
tain extent represents the “mean-field picture”. Other
schemes for coarse-graining can be used, such as a Gaus-
sian kernel, however, this loses the simplicity of the over-
lap between the two objects at consecutive scales. Us-
ing the overlap at different scales, the complexity for N
renormalization steps, i.e. considering N different scales,
can be defined as
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Again, the step indicated with
∗
= only holds when

coarse-graining is done by averaging, and the step indi-

cated with
∗∗
= is the normalization step. This significantly

simplifies the final expression, as it implies overlaps at dif-
ferent scales will not have to be computed. The complex-
ity in the above expression need not be normalized, which
does not pose any problems as relative values provide a
lot more information than absolute values. However, the
complexity has been normalized to allow for comparison
between an extension of the complexity which includes
time correlations, later on. As a rule of thumb, a com-
plexity of 1 implies a maximally complex state, whereas
a complexity of 0 represents a minimally complex state,
where the absolute definition of “complex” is relative,
and depends on the system that is being studied.

A. Spin temperature and MSC as measures of
complexity

Temperature is a different, well-known measure of
complexity that is often linked to entropy. Entropy is a
representation of the amount of order present in a system.
As the temperature rises, so does the entropy, indicating

that systems at high temperatures are characterized by
disorder.
While the concept of temperature for moving ensem-

bles of particles is well-known and closely connected to
the kinetic energy of the particles, the temperature of
a spin ensemble is not as well established. In the field
of atomistic spin dynamics, the concept of temperature
is specifically captured through the spin temperature,
which connects temperature to the magnetic moments,
Si, and effective magnetic fields acting on individual
atoms, Hi. The main result of [9] is an expression for
the spin temperature, which is presented below

T =
µs

2γsℏkB
=

〈∑
i |Si ×Hi|2

〉
2kB ⟨

∑
i Si ·Hi⟩

=

〈∑
i |Si(t)×Hi(t)|2

〉
t

2kB ⟨
∑

i Si(t) ·Hi(t)⟩t
.

(3)

Spin temperature and the MSC are both measures of
order and complexity in magnetic systems, but each of
them captures different elements. Spin temperature is
a measure of the effective temperature of the magnetic
moments of individual atoms. It relates to the distribu-
tion of magnetic moments and the strength of the effec-
tive magnetic field that each atom experiences and can
impact the behaviour of the system in terms of magne-
tization and susceptibility. In contrast, the MSC cap-
tures the complexity of the magnetic system’s structure
at various length scales. This includes features such as
the presence of domains, domain walls, and other struc-
tural features that impact the magnetic properties of the
system [10].
It is therefore interesting to consider how the MSC

compares to the spin temperature in magnetic systems
for different temperature profiles: an adiabatic increase
of the temperature, a rapid increase of the temperature,
or at constant temperatures. Would both measures
exhibit a similar response, or would the fundamental
differences between the measures manifest themselves?

B. Extending the complexity with time
correlations

Although complexity is typically treated as a static
quantity, it is intriguing to explore its dynamic be-
haviour, particularly in the context of spin dynamics.
There are, however, multiple possibilities of how to
add time dependence to the complexity. The most
straightforward approach is to study its time evolution,
which has already been extensively analyzed in [6].
While this approach yields intriguing results for tran-
sient magnetic systems, it falls short in capturing the
long-time correlation/memory exhibited by glassy and
frustrated systems [11–13]. Specifically, in spin glasses,
there is a tendency for spins to remain in a similar
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configuration over time, which is intimately related to
the slow dynamics observed in these systems.

To do this, the static complexity has to be extended
to include time correlations. While both these ideas
attempt to describe the underlying dynamics, they are
fundamentally different and hence one should not be
expected to reduce into the other in a certain limit
or yield similar results. In more detail, the former
computes the complexity of a system at each snapshot in
time, while the latter computes the complexity between
two different time-averaged systems, thereby preserving
its multiscale nature, however, now also in time, instead
of just space.

Extending the complexity to include time correlations
can be achieved as straightforwardly as treating time as
an additional dimension to coarse-grain. By adding an
extra time scale κ and additional sizes Tκ and ΛT used
for temporal coarse-graining, the spatial overlap can be
extended to a spatiotemporal overlap
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(4)

where the inner product is extended canonically
to the time dimension. The introduction of κ is not
necessary, as the temporal coarse-graining could be done
at the same scale as the spatial coarse-graining, which
essentially yields a 4D spatial complexity (3D in the
case of a 2D system). One could argue that this yields
a functionally different form than is shown in equation
4, and though this might be the case, it restricts the
flexibility too much. The freedom of being able to
coarse-grain at different temporal- and spatial scales
also opens up for studying more correlation lengths of
systems.

The extension of time correlations to the complexity
is a bit more intricate and relies on expanding Ck in a
way that is consistent with going back to the finest scale
in time, κ → 0. Consistent here implies a functional
form that corresponds to equation 2, not that Cκ,k −→
Ck. It is possible to enforce that constraint, however, the
resulting complexity will then lose its temporal multiscale
nature. As such, the temporal scale is added onto Ck by
expanding each overlap O in equation 2 in κ in a similar

way as it appears there, i.e.

Ck −→ Cκ,k =⇒ Ok+1,k −→ O(κ+1,k+1);(κ,k)

− 1

2

(
O(κ,k+1);(κ,k) +O(κ+1,k+1);(κ+1,k)

)
,

(5)
and likewise for the remaining overlaps. Simplifying

by coarse-graining in the mean-field picture, and nor-
malizing the final expression, yields the spatiotemporal
complexity

C =

NT−1∑
κ=0

N−1∑
k=0

Cκ,k

=

NT−1∑
κ=0

N−1∑
k=0

∣∣O(κ+1,k+1);(κ+1,k+1) −O(κ,k+1);(κ,k+1)

+O(κ,k);(κ,k) −O(κ+1,k);(κ+1,k)

∣∣
(6)

where NT is the number of temporal renormalization
steps and does not have to equal N .
Cκ,k is studied for κ → 0 to check for consistency be-

tween both the non-normalized complexities

lim
κ→0

Cκ,k
!
⇝ Ck

=
1

4
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)
−

(
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(7)

With the “identification”

1

2

(
O(1,k+1);(1,k+1) −O(0,k+1);(0,k+1)

)
⇝ Ok+1,k+1,

equation 7 reduces to the correct form, i.e.

lim
κ→0

Cκ,k ⇝ Ck =
1

2

∣∣Ok+1,k+1 −Ok,k

∣∣. (8)

Note that the left-hand side on the identification above
follows from C0 in equation 2, as it is the contribution to
the complexity on the smallest scale, k = 0.
Equations 4 and 6 make up the main result of this work,
and extend the static MSC as proposed in [6].

III. RESULTS

Spin dynamics simulations for bcc Fe and spin glasses
have been done using the UppASD software package
[14, 15]. The simulation boxes are 32 by 32 by 32 unit
cells for every simulation. The bcc Fe simulations all con-
tain 2 atoms per magnetic unit cell, except for the adia-
batic pulse, which has one iron atom per magnetic unit
cell. Simulation temperatures range from far below the
Curie temperature to slightly above the Curie tempera-
ture to be able to capture the effect of the ferromagnetic
to paramagnetic phase transition.
The spin glass systems studied in this work have been

simulated according to the Edwards-Anderson model
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[16], for which the magnetic Hamiltonian resembles the
nearest-neighbour Ising model

H = −
∑
⟨ij⟩

JijSiSj . (9)

Here, the exchange parameters Jij between lattice sites
i and j have been randomly sampled from a Gaussian
distribution, with the width determining the amount of
frustration in the spin glass. The magnetic unit cell in
the simulations contains one atom. Edwards-Anderson
theory predicts a phase transition from the spin glass
phase to a paramagnetic phase at a critical temperature
[17], which depends on the level of frustration of the sys-
tem and hence on the various Jij . A stronger coupling
yields stronger frustration between spins, allowing it to
compete longer with thermal fluctuations, and thus in-
creasing the critical temperature.

To map each lattice topology to a square or cubic sys-
tem, each magnetic unit cell has been averaged. For
systems that exhibit a more complicated ordering vec-
tor, a staggered average should be taken. While it can
be argued that the individual magnetic moments repre-
sent the smallest entity that can be resolved, analyzing
and computing the complexity at this level would have
made the task significantly more difficult and tedious.
Moreover, averaging the magnetic unit cell is in line with
coarse-graining being the general theme for the MSC,
and is hence justifiable. Still, averaging the magnetic
unit cell comes at the cost of losing information, which
for the complexity implies that ferromagnetic and anti-
ferromagnetic systems are equally complex, which is not
entirely true. Whether information is lost for other mag-
netic nanostructures, such as skyrmions, depends mostly
on the size of the magnetic unit cell. If the magnetic unit
cell is significantly larger than the nanostructure, aver-
aging is more inclined to result in a loss of information,
while the converse holds for magnetic unit cells smaller
than the nanostructure. While the staggered averaging
case has been verified for the case of antiferromagnetic
NiO, technical issues prevent the results from contribut-
ing to this analysis.

A. Spatial complexity for bcc Fe

For bcc Fe, simulations at constant temperatures yield
complexities whose functional form are in good agree-
ment with their respective spin temperatures, as seen in
Figures 1 and 2, which, moreover, validates the MSC as
a measure of complexity. Interestingly, there is a signif-
icant difference in the behaviour of the complexities of
the adiabatic temperature pulse, indicated by “pulsed”
in the graphs below, and the instantaneous shift in simu-
lation temperature, indicated by “shifted” in the graphs.
While both complexities are maximal early on, indicat-
ing the presence of the paramagnetic phase, the decrease
of the complexity happens at vastly different rates for
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 T=700K, Shifted
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T=0K

FIG. 1. Complexity for bcc Fe for different temperature pro-
files. The damping parameter for the simulations is set at
0.3, and spatial complexities are calculated using Λx = Λy =
Λz = 2, with N = 3 renormalization steps.

both processes. For the pulsed temperature profile, the
complexity freezes and only slightly decreases for the re-
mainder of the simulation, while the complexity instantly
starts to decrease for the shifted temperature profile. It
appears as if the complexity thermalizes for adiabatic in-
creases in the temperature.
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500
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T=700K

T=700K, Shifted

T=700K, Pulsed

FIG. 2. Spin temperature for bcc Fe for different temperature
profiles. The spin temperature for T = 0K has been omitted
for brevity.

To get a better perspective on what is happening, it is
informative to look at the internal energy and the mag-
netization of both non-constant temperature profiles in
Fig 3. The magnetization for both processes vanishes
nearly instantly, indicating the arrival of the paramag-
netic phase. Upon relaxation of the temperature, the ma-
jor difference lies in the internal energies, which reveals
the formation of local magnetic domains for the shifted
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process, but not for the process with adiabatic cooling.
This implies that, in a way, the MSC prefers magnetic
configurations in which local domains are formed. The
fact that the MSC prefers local domains can be well un-
derstood from its multiscale nature, through which areas
that do not differ locally do not contribute to the com-
plexity and is hence not that surprising. Still, the com-
plexity seems to descend in a similar way as the internal
energy, even for the adiabatic process, which captures
the fundamental difference between the MSC and the
spin temperature as measures of complexity. As such,
the MSC can also be used as an abstract measure of rel-
ative energy between arbitrary objects, such as images.
More practically, the MSC can, for instance, be used to
crudely estimate relative internal energies between vari-
ous materials, at a relatively lower computational cost.
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1.5

2.0
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FIG. 3. Internal energy and magnetization for bcc Fe for
pulsed (solid) and shifted (dashed) temperature profiles.

The correspondence between MSC and spin tempera-
ture can most likely further be improved by relating the
spin temperature to the entropy through the heat capac-
ity. Then, with entropy being more intimately related
to complexity than spin temperature, the disagreements
between MSC and spin temperature should be reduced.
Similar investigations have also been done for strongly
and weakly damped cases, yielding identical results.

B. Time-extended complexities

The main idea of extending the complexity with time
correlations is to be able to check for order there where
this is not possible by visual inspection, such as is the case
for spin glasses. While they look visibly uncorrelated by
eye, there still seem to be, at least locally, correlations in
time. Aside from spin glasses, bcc Fe has been simulated
at similar temperatures to benchmark the time-extended
complexity, as proposed in equation 6. A collection of
time-extended and time-averaged complexities for both

systems is presented in Fig 4. The same plot with a
focus on the low temperatures is presented in Fig 5.

T (K)

0 500 1000

�

0.0

0.5

1.0

�̃ Fe

�̃ SG

�̄ Fe

�̄ SG

FIG. 4. Temporal complexities for bcc Fe (indicated by Fe)
and spin glasses (indicated by SG). Time-extended complexi-
ties are given by the inverted triangles, whereas time-averaged
spatial complexities are given by regular triangles. Time-
extended complexities are calculated using Λx = Λy = Λz =
ΛT = 2, with N = 3 and NT = 6 spatial and temporal renor-
malization steps, respectively, and time-averaged spatial com-
plexities are calculated using Λx = Λy = Λz = 2, with N = 3
spatial renormalization steps. Simulations are done with a
damping coefficient of 0.3, and the Jij for the spin glass are
sampled from a Gaussian with a spread of 0.05.

For the benchmarked case of bcc Fe, it is immediately
evident that both the time-extended and time-averaged
complexities yield similar results. After all, this system is
highly correlated in space. The inclusion of time correla-
tion to the complexity should only slightly increase it, as
is the case for the lower temperatures. For temperatures
higher than the Curie temperature, this is no longer to
be expected, as is observed.
The inclusion of time correlations plays a far larger

part in the spin glass system. Here, the time-averaged
complexity is maximal for all temperatures, indicating
no existence of spatial correlations for spin glasses, i.e.,
they appear to be completely random at all times, even
at 0 K. When time correlations are included, however,
the complexity exhibits far more structure, being mini-
mally complex at 0 K, while gradually increasing when
the temperature increases. In turn, this implies that, at
least locally, spin glasses have a preferred configuration
that they do not want to deviate too far from.
The low and high-temperature limits of the time-

extended complexities for both systems agree with the
physical intuition that at low temperatures there could
be some kind of order and that at very high temperatures
nothing can exhibit order. The notion that the time-
extended complexity is biased for low temperatures, as
the dynamics are so slow, is readily nullified, as the frus-
tration in spin glasses yields complex dynamics, which is
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FIG. 5. Closer inspection of the temporal complexities for
low temperatures.

still captured.

Having verified the existence of temporal order in the
visibly most unordered objects, the next logical step is
to exploit the time-extended complexity to investigate
whether it is capable of capturing phase transitions that,
too, are hard to capture by visual inspection. The most
notable example is that of the spin glass to paramagnetic
phase transition of the Edwards-Anderson model.

In Fig 6, the heat capacity reveals anomalous be-
haviour in the 50-65 K range, indicating the spin glass
to paramagnetic phase transition. While a cusp in the
heat capacity, and likewise, the susceptibility, is a good
indicator of the transition temperature, getting a good
enough resolution for these is often computationally ex-
pensive and hence not that desirable [18].

Instead, by computing the time-extended complexity
over a similar range of temperatures, a computation-
ally cheaper, faster, and higher resolution estimate of the
transition temperature can be obtained, as seen in Fig 7.
The complexity increases at a similar rate until there is a
marginal jump between 56 and 57 K. From this tempera-
ture on, the nature of the system is completely different.
One could argue that the stochastic nature of the spin
glass introduces some randomness in the complexity as
well. While this is not entirely untrue, the presence of
the phase transition around 56 K can be justified by tak-
ing a closer look at the relative difference, and hence the
derivative, of the complexity.

The derivative of the complexity seems to have a down-
ward trend up to 55 K, after which there is a surge until
57 K, indicating the sudden relative difference in com-
plexities as a result of the phase transition. After 57 K
the downward trend seems to persist, with the decline
of the derivative indicating a similar magnetic nature of
the system. There were attempts to increase the reso-
lution of the complexity between 56 and 57 K, however,
the bistable magnetic nature in that range introduced

T (K)
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v
 (
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.u

.)

0.0066

0.0068

0.0070

0.0072

FIG. 6. Heat capacity capturing the spin glass to paramag-
netic phase transition. A damping coefficient of 1 has been
used to stimulate faster dynamics, and the Jij for the spin
glass are sampled from a Gaussian with a spread of 1 to en-
sure more frustration within the system.

T (K)
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�
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0.80

0.85

0.90

FIG. 7. Time-extended complexity capturing the spin glass to
paramagnetic phase transition. Time-extended complexities
are calculated using Λx = Λy = Λz = ΛT = 2, with N =
3 and NT = 6 spatial and temporal renormalization steps,
respectively.

too much randomness in the complexity for it to yield
sensible results.

IV. SUMMARY AND CONCLUSION

The MSC and spin temperature for bcc Fe have been
compared as measures of complexity. At constant tem-
peratures, both measures are in good agreement with
each other. However, there is a significant difference be-
tween both measures as a response to adiabatic and in-
stantaneous changes in temperature. The MSC, with its



7

T (K)

45 50 55 60 65

d
�

d
T

0.004

0.006

0.008

0.010

0.012

FIG. 8. Derivative of the time-extended complexity.

multiscale nature, prefers configurations that locally look
alike, such as the formation of local magnetic domains. It
turns out that the MSC can be used to crudely estimate
relative energies between various abstract objects of the
same kind, which, when investigated further, could prove
to be useful when looking for new low-energy materials.

Furthermore, the spatial MSC has been extended to in-
clude time correlations to be able to define a complexity
for structures that appear random, such as spin glasses.
It is shown for bcc Fe that the time-extended complex-
ity behaves in a similar manner as the time-averaged
spatial complexity. For spin glasses, time-averaged spa-
tial complexities are maximal for all temperatures, while
the time-extended complexity is minimal at 0 K, and

increases for increasing temperature, as is physically ex-
pected. Using this newly introduced time-extended com-
plexity, the spin glass transition temperature is deter-
mined with an accuracy of up to 1 K. Comparing this to
estimates using the heat capacity, not only is the com-
plexity analysis far more accurate, but it is also compu-
tationally cheaper and faster.
To improve the accuracy of the determination of the

spin glass transition temperature, one can experiment
with various coarse-graining scales, in both time and
space, until satisfactory characteristic lengths are found
that lead to improvements. One other possible improve-
ment could be to only consider Cκ≥0,k>0, i.e. omit the
contribution from the finest spatial contribution to the
complexity, similar to what is done in [6]. It has been
attempted in vain, suggesting that significantly larger
systems need to be simulated to eliminate the issue of
locality. Furthermore, it might be interesting to see how
the time-extended complexity responds to transient mag-
netization dynamics, such as for instance the excitation
of magnons. One issue that needs to be further inves-
tigated is the influence of averaging magnetic unit cells
before computing complexities. Averaging magnetic unit
cells leads to the disappearance of exotic nanostructures
and consequently the complex physics they entail.
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