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Transmon probe for quantum characteristics of magnons in antiferromagnets
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The detection of magnons and their quantum properties, especially in antiferromagnetic (AFM) materials, is
a substantial step to realize many ambitious advances in the study of nanomagnetism and the development of
energy efficient quantum technologies. The recent development of hybrid systems based on superconducting
circuits provides the possibility to engineer quantum sensors that exploit different degrees of freedom. Here, we
examine the magnon-photon-transmon hybridization based on bipartite AFM materials, which gives rise to an
effective coupling between a transmon qubit and magnons in a bipartite AFM. We demonstrate how magnon
modes, their chiralities, and quantum properties, such as nonlocality and two-mode magnon entanglement in
bipartite AFMs, can be characterized through the Rabi frequency of the superconducting transmon qubit.
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I. INTRODUCTION

During the last decade, there have been considerable ad-
vancements in the use of magnons for storing, transmitting,
and processing information. This rapid progress has turned
the emerging research field of magnonics into a promising
candidate for innovating information processing technologies
[1]. The combination of magnonics with quantum informa-
tion processing provides a highly interdisciplinary physical
platform for the study of various quantum phenomena in
spintronics, quantum electrodynamics, and quantum informa-
tion science. Indeed, the quantum magnonics exhibits distinct
quantum properties, which can be utilized for multipurpose
quantum tasks [2–6].

Despite significant progress in quantum magnonics [2–25],
there are still many features and challenges that need to be
addressed in theory and in the laboratory. In particular, the
experimental verification of nonclassical magnon states and
quantum properties such as squeezed and entangled states
would pave the way for many possible research strategies.
The key point is interconnections between magnetic materials
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and electronic quantum systems. Superconducting qubits have
been successfully used to detect magnons in ferromagnetic
materials [7]. However, antiferromagnetic (AFM) materials
are more sustainable for quantum applications as they offer
lower magnetic susceptibility, faster dynamics, smaller de-
vice features, and lower energy consumption compared to
ferromagnetic materials [1]. Recently, we have theoretically
examined magnon-magnon entanglement and squeezing in
AFMs [21–23].

Here, we examine the possibility to combine the advan-
tageous features of transmon and AFM materials. To this
end, we demonstrate effective coupling between a super-
conducting transmon qubit and a bipartite AFM material.
We show how the polarized (chiral) magnons and bipartite
magnon-magnon entanglement in the AFM can be detected
through the measurement of Rabi frequency of the transmon
qubit. The proposed setup is suitable for the experimental
study of the quantum properties of magnons in a wide range
of crystalline and synthetic AFM materials, such as NiO
and MnO, MnF2 and FeF2, two-dimensional Ising systems
such as MnPSe3, YIG-based synthetic AFMs, and perovskite
manganites [13,26–33]. The present work differs from exist-
ing studies on ferromagnetic-based hybrid magnonic systems
[5–12]. This is because the hybrid magnonics discussed here
is based on magnons in AFM materials, which are conceptu-
ally distinct from magnons in ferromagnetic materials. Unlike
in ferromagnets, magnons in AFMs appear in twin pairs with
opposite chiralities [1,34–36]. Therefore, a polarized chiral
photon [37] is required to achieve the appropriate hybridiza-
tion, as demonstrated below. In addition, our research seeks
to characterize magnon chirality and magnon entanglement
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FIG. 1. Schematic illustration of magnon-photon-transmon hy-
bridization. A circularly polarized microwave cavity electromagnetic
field, which is described by the vector potential AR;k(r, t ), can
interact with magnons in an antiferromagnetic material and a su-
perconducting transmon qubit. The cavity walls are illustrated with
yellow segments in the left panel. An antiferromagnetic material
hosts two chiral magnons, which are shown with three-color balls
in the cubic lattice inside the cavity. Two magnons are degenerate in
the absence of magnetic field and a small external magnetic field B
in the z direction breaks this degeneracy (see, also, Fig. 2). While the
coupling between the magnon and cavity field is achieved through
magnetic-dipole interaction, an electric-dipole interaction describes
the coupling between the cavity field and transmon (right panel).

using superconducting qubits, which has not been explored in
prior works such as Refs. [5–12].

The outline of the paper is as follows. In Sec. II, we
describe magnon-photon-transmon hybridization and derive
the interacting Hamiltonian. In Sec. III, we discuss two-
mode magnon entanglement in AFM materials. In Sec. IV,
we obtain an effective magnon-transmon coupling and show
how this effective coupling mechanism allows one to ex-
perimentally study quantum characteristics of magnons in
antiferromagnetic materials. The paper ends with a conclusion
in Sec. V.

II. MAGNON-PHOTON-TRANSMON HYBRIDIZATION

In this section, we describe a photon-mediated coupling
mechanism between a superconducting transmon qubit and
polarized magnons in a bipartite AFM. We assume a hybrid
system composed of a single crystal or synthetic AFM, a
transmon-type superconducting qubit, and a microwave cav-
ity, as illustrated in Fig. 1. The system hosts four modes,
including two magnon modes in an AFM compound, a trans-
mon qubit, and a microwave cavity electromagnetic mode.
The dynamics of the hybridized magnon-photon-transmon
system can be described by the Hamiltonian

H = Hm + Hph + Hm-ph + Hq + Hph-q, (1)

where the term Hm describes the magnon subsystem, Hph

describes the microwave photon, Hm-ph describes the magnon-
photon interaction, Hq describes the transmon, and Hph-q

describes the photon-transmon interaction. They are described
in detail as follows.

FIG. 2. Magnon energy dispersions ωαk and ωβ−k in the first
Brillouin zone of a square lattice with lattice constant a = 1 for
an easy-axis AFM. As model parameters, we use |J| = 1 meV for
antiferromagnetic Heisenberg exchange, Kz = 0.01J for uniaxial
anisotropy, and S = 1/2. Two magnons are degenerate in the absence
of an external magnetic field μBB = 0 (left panel). A magnetic field
μBB = 1 meV in the z direction breaks the degeneracy (right panel).

Two-mode magnon system. Hm represents a two-mode
magnon Hamiltonian in a bipartite treatment of an AFM mate-
rial. Consider an AFM spin Hamiltonian Hs = ∑

i, j SiIi jS j +∑
i B · Si, where Si is the spin vector operator at lattice site

i, Ii j is the bilinear interaction tensor matrix between sites i
and j, and B is an external field. By applying the Holstein-
Primakoff transformation at low temperature followed by the
Fourier transformation to the AFM spin Hamiltonian, Hm can
be described in terms of a pair of interacting collective bosonic
modes in the lattice momentum k space as [21,22] (we assume
h̄ = 1 throughout the paper)

Hk
m = ωak a†

kak + ωb−k b†
−kb−k

+ gk
m-makb−k + (

gk
m-m

)∗
a†

kb†
−k. (2)

The a†
k (ak) and b†

−k (b−k) are bosonic creation (annihilation)
operators on the two sublattices A and B with opposite magne-
tizations in the bipartite AFM. Bosonic operators on opposite
sublattices commute and define a pair of interacting magnons
in the Kittel (a, b) modes. The Kittel modes can be hybridized
into the diagonal magnon modes (α, β ) through the SU(1,1)
Bogoliubov transformation,(

ak

b†
−k

)
=

(
uk vk

v∗
k u∗

k

)(
αk

β
†
−k

)
, (3)

where uk = cosh(rk ) and vk = sinh(rk )eiφk , with

rk = tanh−1

[
1 −

√
1 − |�k|2
|�k|

]
� 0,

φk = π − arg[�k], �k = 2gk
m-m

ωak + ωb−k

. (4)

In terms of the (α, β ) modes, the magnon Hamiltonian Hk
m

takes the diagonal form,

Hk
m = ωαkα

†
kαk + ωβ−kβ

†
−kβ−k. (5)

The bosonic diagonal modes labeled as α and β describe
right and left circularly polarized (chiral) magnons [1,34–
36]. As illustrated in Fig. 2, for an easy-axis AFM in
the absence of an external magnetic field [Hs = J

∑
i, j Si ·

S j + Kz
∑

i(Szi)2], the two magnon modes are degenerate,
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meaning ωαk = ωβ−k = ωk. However, introducing a magnetic
field in the z direction, denoted as Hs + B

∑
i Sz

i , breaks this
degeneracy, resulting in ωαk = ωk − B and ωβ−k = ωk + B
[21,22].

Microwave photon. For the second term of the hybrid
Hamiltonian in Eq. (1), we assume a right circularly polarized
microwave cavity electromagnetic field with the single cavity
mode frequency ωck [20,22,24,36]. This is described by the
vector potential

AR;k(r, t ) = A0
[
eRcke−i(k·r+ωck t ) + e∗

Rc†
kei(k·r+ωck t )

]
= eitωck c†

kck AR;k(r, 0)e−itωck c†
kck . (6)

The vector k is the propagation direction of the electromag-
netic wave, A0 is the amplitude of the vector potential, and
ck(c†

k ) is the annihilation (creation) operator of the right cir-
cularly polarized photon with unit vector eR = 1√

2
(1,−i, 0).

Both ωck and A0 can be tuned by changing the volume of the
cavity and the separation distance between the two conductor
plates in the cavity. Here, we focus on the lowest-energy cav-
ity mode and disregard contributions from the higher-energy
cavity modes. In the rotating frame, the photon contribution
to the full Hamiltonian in Eq. (1) is

Hk
ph = ωck c†

kck, (7)

for a given k.
Magnon-photon interaction. By turning on the electromag-

netic field, the magnon modes start to interact with the cavity
mode through the magnetic-dipole coupling. Explicitly, the
electromagnetic field induces a magnetic field Bph, which
interacts with the total spin S of the AFM material through
the Zeeman interaction term [20,22,24,36],

Hm-ph = −Bph · S. (8)

In the rotating frame, the photon-induced magnetic field is
given by Bph = ∇ × Ak(r, 0). Following the bosonization
procedure used to derive the Hamiltonian Hk

m, we obtain the
bosonized resonant magnon-photon interaction Hamiltonian,

Hk
m-ph = −gk

m-phc†
kαk + H.c. (9)

The off-resonant interaction (−gk
m-phckβ−k + H.c.) is ne-

glected due to energy conservation. Here, the magnon-photon
exchange coupling is

gk
m-ph = λk(uk + v∗

k ), (10)

with λk = A0k
√

S, and we choose to study the case when k =
(0, 0, k).

Transmon qubit. The third subsystem consists of a super-
conducting qubit described by the Hamiltonian [38]

Hq = 4ECn̂2 − EJ cos φ̂, (11)

where the first term corresponds to the kinetic energy contri-
bution from a capacitor and the second term is the potential
energy contribution by a Josephson junction. At a sufficiently
large EJ/EC , the superconducting system enters the transmon
qubit regime. Following the ladder operator approach, one
may represent the momentum n̂ and position φ̂ operators in

terms of bosonic annihilation (creation) operator η (η†) as

n̂ = i

(
EJ

32EC

)1/4

(η† − η),

φ̂ =
(

2EC

EJ

)1/4

(η† + η). (12)

By using the ladder representation, one can write the Hamil-
tonian in Eq. (11) in the form of the following anharmonic
oscillator Hamiltonian:

Hq ≈
[
ωq + ξ

2

]
η†η − ξ

2
(η†η)2. (13)

This follows from a Taylor expansion of the potential energy
term in Eq. (11) and a rotating wave approximation. Here,
ωq = √

8ECEJ − EC defines the Rabi transition frequency be-
tween the ground state |g〉 and the first excited state |e〉, and
ξ = EC is the anharmonicity. In the transmon regime, the
anharmonicity is negative and large enough that allows one
to focus on the two lowest-energy levels of the anharmonic
oscillator as a transmon qubit, the Hamiltonian of which can
be conveniently reduced to

Hq = ωqη
†η. (14)

Photon-transmon interaction. The large electric dipole of
the superconducting qubit, d̂ = dη† + d∗η, can strongly cou-
ple to the induced electric field of the microwave photon
through electric-dipole coupling [38],

Hph-q = −Eph · d̂, (15)

where Eph = dAk (r,t )
dt determines the photon-induced electric

field. If we assume d||eR, then, under the rotating wave ap-
proximation, the photon-qubit interaction is described by the
Hamiltonian

Hk
ph-q = −gk

ph-qη
†ck + H.c., (16)

where the photon-qubit exchange coupling is given by

gk
ph-q = −idωck exp[−ik · r], (17)

with d = |d| being the strength of the electric dipole of the
superconducting transmon qubit.

Having specified each term in the Hamiltonian of Eq. (1),
we conclude that the magnon-photon-transmon hybrid system
is explicitly described by the bosonized Hamiltonian

Hk = ωαkα
†
kαk + ωβ−kβ

†
−kβ−k + ωck c†

kck + ωqη
†η

− [
gk

m-phc†
kαk + gk

ph-qη
†ck + H.c.

]
, (18)

for a momentum k vector in the z direction, with the in-plane
parallel photon polarization vector eR and the superconducting
dipole d||eR.

It is important to note that only the hybridized magnon in
the α mode couples with the photon and transmon modes in
the Hamiltonian in Eq. (18). In other words, the β magnon
mode is effectively decoupled from the other modes in the
system. This is due to the fact that we use the right circularly
polarized microwave cavity electromagnetic field, which only
couples to the magnon with the same polarization, i.e., the α

mode. However, if we use a left circularly polarized cavity
field, it couples the β magnon mode with the photon and
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FIG. 3. Entanglement of magnon eigenstates corresponding to
pairs of magnon numbers (x, y) against the entanglement (squeezing)
parameter rk.

the transmon modes, and instead leaves the α magnon mode
decoupled from the rest of the system.

The hybrid quantum system described by Eq. (18) provides
a promising platform to observe and verify quantum effects in
quantum magnonics and exploit them for new quantum ap-
plications. Below we employ this hybrid platform to propose
an experimental setup for observing polarized twin magnon
modes as well as intrinsic two-mode magnon entanglement
in bipartite AFM materials via a transmon qubit. In the next
section, we briefly describe the basic concepts of two-mode
entanglement in AFMs.

III. MAGNON-MAGNON ENTANGLEMENT

Let us focus on the two-mode magnon Hamiltonian de-
scribed by Hk

m above. The coupling parameter gk
m-m in Eq. (2),

which is mainly given by the AFM coupling between the two
opposite sublattices A and B, introduces a strong squeezing
and entanglement between bosonic magnon modes in a way
that all the eigenstates of Hk

m become entangled in the Kittel
(a, b) modes [21,22]. Explicitly, the complete energy eigenba-
sis of the Hamiltonian Hk

m can be expressed in the following
form:

|ψxy(rk, φk )〉 = (α†
k )x(β†

−k )y|ψ00(rk, φk )〉, (19)

for positive integers x and y, and the two-mode squeezed
vacuum ground state,

|ψ00(rk, φk )〉 = 1

cosh rk

∞∑
n=0

einφk tanhn rk|n; ak〉|n; b−k〉,

(20)

given in the Kittel (a, b) magnon basis. Here, x and y represent
the number of magnons in the hybridized magnon modes αk
and β−k, respectively. Note that the hybridized magnon modes
(α, β ) are related to the Kittel magnon modes (a, b) through
Eq. (3).

Figure 3 illustrates the entropies of entanglement of the
energy eigenbasis in Eq. (19) for selected pairs of magnon
numbers (x, y) as functions of the squeezing parameter rk.
The squeezing parameter rk, which is given in Eq. (4) by
the ratio of the magnon-magnon coupling gk

m-m to the average
single magnon energies in the Kittel modes, is actually the

FIG. 4. Vacuum quantum fluctuations of conjugate position, Xk,
and momentum, Pk, quadratures as functions of the parameters rk and
φk. The maximum quantum squeezing (stretching) effect is associ-
ated with maximum quantum magnon entanglement in the two-mode
vacuum ground state shown in Fig. 3. The same effect is observed for
all magnon eigenstates associated with any pair of magnon numbers
(x, y).

only parameter that determines the entropies of entanglement
of the complete energy eigenbasis. This follows from the fact
that the states in Eq. (19) are determined by (rk, φk ) and φk
contributes only to the phase factors of the coefficients in the
Schmidt decompositions of these states.

Quantum fluctuations (variances) of total position, Xk =
X (A)

k +X (B)
k√

2
, and total momentum, Pk = P(A)

k +P(B)
k√

2
, quadrature

observables (see the Appendix for explicit expressions of
quadratures for each sublattices) in the two-mode vacuum
ground state are plotted in Fig. 4 as functions of the param-
eters rk and φk. Comparing to Fig. 3, it is evident that in
the case of the two-mode vacuum ground state, the highest
degree of quantum magnon entanglement corresponds to the
strongest quantum squeezing (or stretching) effect [39,40]. A
similar pattern can be observed for all of the other magnon
eigenstates associated with a given pair of magnon numbers
(x, y).

We remind the reader that the entropy of entanglement for
a bipartite state |ψ〉 ∈ HA ⊗ HB is given by

E [|ψ〉] = −
∑

n

|χn|2 log2 |χn|2, (21)

with χn’s being the Schmidt coefficients in |ψ〉 =∑
n χn|in; A〉| jn; B〉, where |in; A〉 and | jn; B〉 are orthonormal

states in subsystem A and subsystem B, respectively [41].
For the energy eigenstates in Eq. (19), we obtain the fol-

lowing normalized Schmidt decompositions:

|ψxy(rk, φk )〉

=
{∑∞

n=0 p(x,y)
n;k |n + δ; ak〉|n; b−k〉, x � y∑∞

n=0 p(x,y)
n;k |n; ak〉|n + δ; b−k〉, x � y,

(22)

where δ = |x − y|. Here, the Schmidt coefficients are given by

p(x,y)
n;k = 1√

x!y!

(
1

u∗
k

)δ( 1

u∗
kvk

)m

f (m,δ)
n;k pn;k, (23)

for m = min{x, y}, with

pn;k = einφk

cosh rk
tanhn rk, (24)
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and f (m,δ)
n;k that satisfies the following recursive relations:

f (m,δ>0)
n;k = |uk|2

√
n + δ f (m,δ−1)

n;k

− |vk|2
√

n + 1 f (m,δ−1)
n+1;k ,

f (m>0,0)
n;k = n|uk|4 f (m−1,0)

n−1;k − (2n + 1)|ukvk|2 f (m−1,0)
n;k

+ (n + 1)|vk|4 f (m−1,0)
n+1;k , (25)

with f (0,0)
n;k = 1 for each n. From Eqs. (23)–(25), it is clear that

the absolute value of the Schmidt coefficients |p(x,y)
n;k |, and thus

the entanglement entropies of all energy eigenbasis states in
the Kittel magnon modes (a, b), namely,

E [(α†
k )x(β†

−k )y|ψ00〉] = −
∞∑

n=0

∣∣p(x,y)
n;k

∣∣2
log2

∣∣p(x,y)
n;k

∣∣2
, (26)

are single variable functions of the squeezing parameter
rk. In other words, the squeezing parameter rk is the only
entanglement parameter that determines two-mode magnon
entanglement in the AFM system described by Hk

m.
In the following, we show how a superconducting trans-

mon qubit can be used to observe different magnons and the
squeezing/entanglement parameter rk. The latter allows us to
quantify quantum characteristics such as two-mode squeezing
and entanglement in AFM materials.

IV. SENSING MAGNONS AND THEIR QUANTUM
CHARACTERISTICS WITH TRANSMONS

A. Magnon-transmon effective coupling

The Hamiltonian in Eq. (18), which allows for magnon-
photon-transmon hybrid states, provides an effective photon-
mediated magnon-transmon coupling. To determine this
effective coupling rate, one may use the Schrieffer-Wolff uni-
tary transformation [42],

H ′
k = eWk Hke−Wk , (27)

to effectively decouple the photon mode from magnon and
transmon modes in the hybrid Hamiltonian up to first order.

Consider the following decomposition of the hybrid
Hamiltonian in Eq. (18):

Hk = Hk;0 + Vk,

Hk;0 = ωαkα
†
kαk + ωck c†

kck + ωqη
†η,

Vk = −gk
m-phc†

kαk − gk
ph-qη

†ck + H.c., (28)

where we neglect the magnon β mode as it is decoupled
from the rest of the Hamiltonian Hk. By using the Baker-
Campbell-Haussdorf formula, the transformation in Eq. (27)
can be expanded as

H ′
k = Hk;0 + Vk + [Wk, Hk;0] + [Wk,Vk]

+ 1
2 [Wk, [Wk, Hk;0]] + 1

2 [Wk, [Wk,Vk]] + · · · . (29)

This three-mode Schrieffer-Wolff Hamiltonian can be made
block diagonal, turning the system into a two-mode magnon-
transmon subsystem decoupled from a one-mode photon
subsystem, by choosing the generator Wk such that

Vk + [Wk, Hk;0] = 0. (30)

By substituting the solution of Eq. (30) into Eq. (29), one can
obtain the standard form of the Schrieffer-Wolff Hamiltonian,

H ′
k = Hk;0 + 1

2 [Wk,Vk] + O
(
V 3

k

)
, (31)

up to first order in the interaction term Vk.
Equation (30) always has a definite solution as the per-

turbative component Vk is off-diagonal in the eigenbasis of
Hk;0. By solving Eq. (30), we obtain the generator of the
Schrieffer-Wolff transformation,

Wk =
[

gk
m-ph

ωαk − ωck

c†
kαk − gk

ph-q

ωq − ωck

η†ck

]
− H.c., (32)

which leads to the following block-diagonal hybrid Hamilto-
nian:

H ′
k = Hk;0 + 1

2 [Wk,Vk]

= ω′
ck

c†
kck + ω′

αk
α

†
kαk + ω′

qη
†η

+ gk
m-qη

†αk + (
gk

m-q

)∗
α

†
kη, (33)

where

ω′
ck

= ωck −
∣∣gk

m-ph

∣∣2

ωαk − ωck

−
∣∣gk

ph-q

∣∣2

ωq − ωck

,

ω′
αk

= ωαk +
∣∣gk

m-ph

∣∣2

ωαk − ωck

,

ω′
q = ωq +

∣∣gk
ph-q

∣∣2

ωq − ωck

,

gk
m-q = gk

m-phgk
ph-q

[
1

ωαk − ωck

+ 1

ωq − ωck

]
. (34)

As the photon mode is effectively decoupled from the rest of
the Hamiltonian in Eq. (33), the effective magnon-transmon
interacting Hamiltonian reads

Hk;eff
m−q = ω′

αk
α

†
kαk + ω′

qη
†η + gk

m-qη
†αk + (

gk
m-q

)∗
α

†
kη. (35)

We note that this effective magnon-transmon Hamilto-
nian looks similar to the one considered for a magnon in a
ferromagnetic material [5–12]. However, in contrast to fer-
romagnetic materials where such hybridization is based on
a Kittel magnon mode, for AFM materials, hybridization
is based on the hybridized magnon mode α, which corre-
sponds to the superposition of two Kittel modes a and b [see
Eq. (3)]. Moreover, unlike in the ferromagnetic case where
magnon-transmon hybridization is achieved with a linearly
polarized microwave cavity field, the derivation of the AFM-
based Hamiltonian in Eq. (35) requires a circularly polarized
microwave cavity field [see the discussion below Eq. (18)].
Assuming a linearly polarized cavity mode would couple the
qubit to both magnon modes α and β in the AFM system,
thereby making it impossible to distinguish between differ-
ent magnon modes and chiralities, as well as characterize
magnon-magnon entanglement, which are among the main
objectives of the analysis presented in this work.
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B. Transmon qubit to probe magnons and their quantum
characteristics in AFMs

The computational basis of the transmon qubit consists of
the ground and first excited states |0〉 ≡ |g〉 and |1〉 ≡ |e〉,
respectively, of the anharmonic oscillator in the transmon
regime. In this case, the raising and lowering operators of
the transmon qubit can be represented as η† = |1〉〈0| and
η = |0〉〈1|. The eigenstates of the number operator

Nk = α
†
kαk + η†η = α

†
kαk + |1〉〈1| (36)

are {|0, 0〉; |1, 0〉, |0, 1〉; · · · ; |n, 0〉, |n − 1, 1〉; · · · }, where the
first entry counts the number of magnons in the hybridized
mode α and the second entry labels the qubit state. These
eigenstates span the magnon-qubit Hilbert space. The number
operator commutes with the effective Hamiltonian in Eq. (35),
i.e., [

Nk, Hk;eff
m−q

] = 0. (37)

This implies that the effective Hamiltonian takes the block-
diagonal form,

Hk;eff
m−q =

⊕
n=0

Hk;n
m−q, (38)

where n is the eigenvalue of the number operator Nk, i.e.,
counts the total number of magnon and transmon excitations.
Except for the case n = 0 that the Hamiltonian submatrix is a
one-dimensional block, for each n > 0 the block Hamiltoni-
ans Hk;n

m−q are a 2 × 2 matrix of the form

Hk;n
m−q =

(
nω′

αk

√
n
(
gk

m-q

)∗
√

ngk
m-q nω′

αk
− 2�k

)
, (39)

with �k = (ω′
αk

− ω′
q)/2 being the detuning between the

magnon and qubit frequencies.
By shifting the qubit energy levels |0〉 and |1〉 with the

amount of �k, we may rewrite the Hamiltonian in Eq. (39)
as a effective single transmon-qubit Hamiltonian,

H eff
q = nω′

αk
I + √

n�x
kσx + √

n�
y
kσy + �kσz, (40)

for each n. Here, �k = �x
k + i�y

k = gk
m-q characterizes the

Rabi frequency of the qubit, I is the 2 × 2 identity matrix, and
σl , l = x, y, z, are the Pauli matrices in the ordered effective
qubit basis {|n, 0〉, |n − 1, 1〉}. This Hamiltonian results in the
following energy eigensystem:

ε± = nω′
αk

±
√

�2
k + n|�k|2,

|ε+〉 = cos

(
θk

2

)
|n, 0〉 + eiφk sin

(
θk

2

)
|n − 1, 1〉,

|ε−〉 = sin

(
θk

2

)
|n, 0〉 − eiφk cos

(
θk

2

)
|n − 1, 1〉, (41)

with �k = |�k|eiφk and tan θk = |�k|
�k

.
Suppose the transmon qubit is initialized in the state

|0〉 at time t = 0 for a fixed n, for instance n = 1, that is
|ψ (0)〉 = |1, 0〉. Governed by the effective qubit Hamiltonian

in Eq. (40), the initial state evolves to

|ψ (t )〉 = e−itH eff
q |ψ (0)〉

= e−itε+ cos

(
θk

2

)
|ε+〉 + e−itε− sin

(
θk

2

)
|ε−〉, (42)

after time t , which give rise to the following Rabi oscillation:

P0→1(t ) = |〈1|ψ (t )〉|2 = sin2 (θk ) sin2

(
(ε+ − ε−)t

2

)

= |�k|2
�2

k + |�k|2 sin2

(
(ε+ − ε−)t

2

)
. (43)

This indicates that the probability of finding the transmon
qubit in the state |1〉 after time t oscillates with the frequency

fk = (ε+ − ε−) = 2
√

�2
k + |�k|2, (44)

and intensity

Ik = |�k|2
�2

k + |�k|2 . (45)

Note that the maximum intensity Ik = 1 occurs at the zero
detuning �k = 0, which is equivalent to the following qubit
parameter tuning:

ωq = ωαk ,
∣∣gk

ph-q

∣∣ = ∣∣gk
m-ph

∣∣. (46)

The detuning can be achieved, for instance, by appropriate
adjustments of photon frequency and amplitude of the vector
potential, as well as an applied magnetic field in the z direc-
tion, as depicted in Fig. 1. As a result of zero detuning, the
angular frequency of the Rabi oscillation becomes

fk = 4
∣∣gk

m-ph

∣∣2

|ωq − ωck |
= 4λ2

k

|ωq − ωck |
�[ψ00(rk, φk )], (47)

where

�[ψ00(rk, φk )] = cosh 2rk + sinh 2rk cos φk (48)

is the the Einstein-Podolsky-Rosen (EPR) function for the
two-mode ground state |ψ00(rk, φk )〉 given by Eq. (20) [21,22]
(see the Appendix for details about EPR). The EPR func-
tion, which characterizes the Bell-type nonlocal correlations
known as EPR nonlocality, is a highly relevant concept in the
study of continuous variable entanglement [39,43].

We can always assume the parameter �k in Eq. (4) to be
real valued, in which case φk = 0 or π and thus

�[ψ00(rk, φk )] =
{

e2rk if φk = 0 (�k < 0)

e−2rk if φk = π (�k > 0).
(49)

Since the ground state EPR function and the magnon-magnon
entanglement entropies all depend on the same entanglement
(squeezing) parameter, one may observe the magnon-magnon
entanglement through the EPR function �[ψ00(rk, φk )] and,
in fact, through the qubit angular frequency in Eq. (47) of
the Rabi oscillation. For instance, we obtain the entanglement
entropy for the two-mode ground state,

E [|ψ00(rk, φk )〉] = [cosh2(rk ) log2 cosh2(rk )

− sinh2(rk ) log2 sinh2(rk )], (50)
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FIG. 5. Entanglement entropies of magnon eigenstates corre-
sponding to selected pairs of magnon numbers (x, y) against the EPR
function �[ψ00(rk, φk )] for AFM spin lattices. Stronger entangle-
ment is observed for nonlocal states associated to φk = π , whereas
φk = 0 represents a local state regime with weaker magnon-magnon
entanglement.

as a function of the qubit angular frequency through

rk = eiφk

2
�[ψ00(rk, φk )] = eiφk |ωq − ωck |

8λ2
k

fk, (51)

for φk = 0, π . Equation (51) follows from Eqs. (47) and
(49). The entanglement entropies of all magnon eigenba-
sis states given by Eq. (26) are actually functions of the
qubit angular frequency through the relation in Eq. (51). In
practice, the entanglement entropy, given by Eq. (50), is a
function of the parameter rk, which can be identified by
Eq. (51) once the qubit angular frequency fk has been de-
termined experimentally. Figure 5 illustrates, as an example,
the two-mode magnon entanglement in the ground (vacuum)
state and number of excited states against the EPR function,
�[ψ00(rk, φk )] ∝ fk, for AFM spin lattices.

Two distinct regions, i.e., the nonlocal bipartite entangled
state φk = π and the local bipartite entangled state φk = 0,
with transition point at �[ψ00(rk, φk )] = 1 can be distin-
guished in Fig. 5. The region of stronger magnon-magnon
entanglement for a nonlocal two-mode magnon state is ob-
served by the EPR uncertainty relation �[ψ00(rk, φk )] < 1.
The clear relation between the EPR function and the two-
mode magnon entanglement entropy allows for experimental
quantification of magnon-magnon entanglement through the
EPR function �[ψ00(rk, φk )] and, indeed, the frequency fk of
Rabi oscillation of the transmon qubit. It is worth mentioning
that the EPR nonlocality has been used for verification of
entanglement in optical and atomic systems based on homo-
dyne detection and types of interferometry setups [44–50].
However, these types of measurement setups are not realis-
tic for magnon systems since these technologies are mainly
based on beam splitters that have limitations for characterizing
magnon entanglement. We propose, as a solution, a mecha-
nism and measurement setup that rely on qubit-light-matter
interaction as a probe to observe the EPR function, and thus
EPR nonlocality and the degree of magnon-magnon entan-
glement. Moreover, Eq. (46) shows that at the zero detuning,

FIG. 6. Left panel: The angular frequency fk of the Rabi oscilla-
tion of the transmon qubit depending on whether the transmon qubit
is coupled to the magnon in α mode (red) through a right circularly
polarized photon or to the magnon in β mode (blue) through a
left circularly polarized photon. Inset: The corresponding dispersion
energies for the two hybridized magnon modes α (red) and β (blue).
Right panel: EPR function (gray dashed curve) and entanglement
(black solid curve) between Kittel magnon modes in the vacuum
ground state for different values of lattice momentum k. Similar
results can be obtained for excited states. We assume uniaxial AFM
materials [22] with a simple cubic lattice structure subjected to an ex-
ternal magnetic field in the z direction. The lattice momentum k takes
its values along the (0,0,1) direction with the lattice constant set to
unity. We consider the nearest-neighbor Heisenberg interaction J and
the easy-axis anisotropy Kz with model parameter values J = 5 meV,
Kz = 0.01 J, B = 2 T, for the amplitude of the magnetic field in the z
direction, and S = 1/2. For the microwave cavity photon, we assume
A0 = 1 meV and ωc = 0.05 meV.

the magnon frequency in the hybridized α mode can also be
observed through qubit frequency.

A similar procedure and formulation as above hold if we
couple the transmon qubit to a bipartite AFM material instead
through the magnon β mode, for instance, by using oppositely
(left) circularly polarized light. Using different polarization
for the photon would allow one to detect the twin chiral
magnon modes in bipartite AFM materials. Figure 6 shows
that the angular frequency fk of the Rabi oscillation of a
transmon qubit can observe and distinguish the two hybridized
magnon modes in the system provided that appropriate po-
larized light is used. The figure also shows the correlation
between indistinguishability of the two hybridized magnon
modes, EPR nonlocality, and the entanglement between Kittel
magnon modes. The higher the indistinguishability (around
the zone center), the higher the nonlocality and entanglement.

We end the discussion with a remark on the parameter
range relevant for experimental observation. Although the
frequency of a transmon qubit depends on its physical design
and operating conditions, transmon qubits typically operate
at microwave frequencies, usually in the range of several to
tens of gigahertz. Moreover, the frequency of a transmon qubit
can be adjusted by modifying parameters such as the capaci-
tance or the external magnetic field, making it a flexible and
tunable system for quantum applications. On the other hand,
magnons in AFM materials cover a wide range of frequencies
that can be adjusted by certain parameters such as anisotropy
and external magnetic field. Moreover gigahertz frequency
antiferromagnetic materials, such as the antiferromagnetic in-
sulator CrCl3 [51], are available in nature. In Fig. 6 (inset), we
plot the frequencies of magnons in a uniaxial AFM material,
with some model parameter values provided in the caption
of the figure. In such materials, magnons are typically in the

094430-7



VAHID AZIMI-MOUSOLOU et al. PHYSICAL REVIEW B 108, 094430 (2023)

range of a few tens of gigahertz, which is the typical range of
transmon-qubit frequencies. For larger and more tunable qubit
frequencies, one may consider a flux-tunable transmon qubit
in the proposed architecture shown in Fig. 1 [9]. Once the
detuning condition in Eq. (46) is met, magnons, magnon chi-
ralities, and magnon entanglement can be observed through
the transmon Rabi frequency.

The discussion here has been based on a coupling between
light and magnons coming from the B-field of the electro-
magnetic radiation. It is, of course, possible to also consider
a coupling between magnons and light via the E-field, but
in this case one has to consider multiferroic materials [52]
with a well-documented coupling between electric field and
magnetic degrees of freedom.

V. CONCLUSION

In conclusion, we demonstrate microwave cavity mediated
hybridization of a superconducting transmon qubit and chiral
magnons in bipartite AFM materials. We derive analytical
expressions for the hybridized Hamiltonian and the cou-
pling strengths. This coupling allows us not only to identify
magnons in AFM materials, but also to verify their chirality
and to characterize the nonlocality and bipartite entangle-
ment between Kittel magnon modes in the system. These are
all observed through measurement of the angular frequency
of the Rabi oscillation in the transmon qubit. We hope the
present work opens up a route to experimentally access rich
quantum properties of magnons in AFM materials. The broad
range of crystalline and synthetic AFM materials, such as
the oxides NiO and MnO, the fluorides MnF2 and FeF2, 2D
Ising systems such as MnPSe3, the layered antiferromagnetic
insulator CrCl3, YIG-based synthetic AFMs, and perovskite
manganites [13,26–33], provides a space for the experimental
observation of the present results.
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APPENDIX

Here, for a general two-mode quantum state |ψ〉, the EPR
function is quantified by [39,43]

�(ψ ) = 1
2

[
Varψ

(
X A

k + X B
k

) + Varψ
(
PA

k − PB
k

)]
, (A1)

where X A
k = ak+a†

k√
2

(X B
k = bk+b†

k√
2

) and PA
k = ak−a†

k

i
√

2
(PB

k =
bk−b†

k

i
√

2
) are assumed to be the dimensionless position and mo-

mentum quadratures for the ak(bk ) mode, respectively. The
Varψ (V ) is the variance of an Hermitian operator V with
respect to the state |ψ〉. The uncertainty relation �(ψ ) � 1 is
known to hold for any given bipartite separable state |ψ〉 [43].
Therefore, any violation of this inequality is an indication of
the state |ψ〉 being nonlocal and indeed a bipartite entangled
state. Note that the EPR nonlocality specifies a stronger type
of entanglement than a nonzero entropy of entanglement in
the sense that there are states with nonzero entropy of entan-
glement which do not violate the uncertainty relation.
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