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Hierarchical generalized linear models are often used to fit random effects models. 
However, attention is mostly paid to the estimation of fixed unknown parameters and 
inference for latent random effects. In contrast, standard error estimators receive less 
attention than they should be. Currently, the standard error estimators are based on 
various approximations, even when the mean parameters may be estimated from a higher-
order approximation of the likelihood and the dispersion parameters are estimated by 
restricted maximum likelihood. Existing standard error estimation procedures are reviewed. 
A numerical illustration shows that the current standard errors are not necessarily accurate. 
Alternative standard errors are also proposed. In particular, a sandwich estimator that 
accounts for the dependence between the mean parameters and the dispersion parameters 
greatly improve the current standard errors.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

A wide range of statistical models consist of the observed data x, the latent variables v , and the fixed unknown parame-
ters θ . Widely encountered models of this kind include hierarchical generalized linear models (HGLM, Lee and Nelder, 1996), 
models for missing values (Little and Rubin, 2002), and factor analysis models (Anderson and Rubin, 1956). For models with 
latent variables, the observed log-likelihood is obtained from the complete likelihood f (x, v; θ) by integrating out the latent 
variables, i.e.,

� (θ) ≡ log
∫

exp {h (v, θ)}dv, (1)

where h (v, θ) = log f (x, v; θ). The joint density f (x, v; θ) is known as the extended likelihood of θ and v . Bjørnstad (1996)
showed that, given the statistical model, all information regarding θ and v is contained in the extended likelihood. However, 
naively using the extended likelihood can lead to spurious results (Bayarri et al., 1988; Lee and Nelder, 2005). Hence, Lee et 
al. (2006) proposed the use of the h-likelihood, which is defined as the extended likelihood with v in the (weak) canonical 
scale. The canonical scale requires that the conditional distribution of v given y carries no information about θ . The weak 
canonical scale requires that the random effects combine additively with fixed effects in the linear predictor. The reader 
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is directed to Lee et al. (2017) for a thorough discussion of h-likelihood and Jin and Lee (2021) for a recent review. The 
h-likelihood principle has been applied to generalized linear models (GLMs) with random effects (Lee and Nelder, 1996, 
2001a), frailty models (Ha and Lee, 2003; Ha et al., 2001), robust modeling (Lee and Nelder, 2006), multiple testing (Lee and 
Bjørnstad, 2013), factor analysis (Jin et al., 2018; Wu and Bentler, 2012), just to name a few.

The integral in (1) is often intractable and approximations are necessary. Thus, the use of the Laplace approximation to 
(1) is proposed for the h-likelihood approaches, which is closely related to the adjusted profile likelihood of Cox and Reid 
(1987) and remains computationally efficient even when the dimension of v is high. To reduce the bias of the estimators of 
the dispersion parameters, especially in binary data models, the second-order Laplace approximation is also proposed (Lee 
and Nelder, 1996, 2001a).

Despite the h-likelihood principle being applied to various models, the issue of standard errors is much less studied. 
To our knowledge, Lee (2002) is the only study devoted to the standard errors. However, he only considered the mean 
parameters, not the dispersion parameters. A consequence of using the Laplace approximation is that its Hessian matrix is 
generally difficult, if not impossible, to compute. Regardless of the order of approximation, the R package dhglm (Lee and 
Noh, 2018) always approximates the Hessian of the first-order Laplace approximation, whereas the package mdhglm (Lee et 
al., 2018) extracts the standard errors of the parameter estimators from the Hessian matrix of h (v, θ). To our knowledge, 
the standard errors used in the h-likelihood models are not fully justified in the literature, especially for the dispersion 
parameters. Our main focus is to offer a justification to the current standard error estimators of h-likelihood models and to 
investigate alternative standard error estimators.

The rest of the paper is organized as follows. First, the inferential procedure of the h-likelihood approach is briefly re-
viewed. Second, the h-likelihood standard errors are justified. Third, some alternative standard error estimators are studied, 
followed by numerical illustrations. A conclusion ends the paper.

2. An overview of the inferential procedures

We focus on the HGLM proposed by Lee and Nelder (2001a) because it is general enough to cover various random-effects 
models (Lee et al., 2017). The HGLM inferential procedure is briefly reviewed here.

Given the random effects, the response variable yi belongs to the exponential dispersion family, given by

f (yi | v) = exp

{
yiθi − b (θi)

φi
+ c1 (yi, φi)

}
, (2)

where θi is the natural parameter, φi is the dispersion parameter, and b() and c1() and some functions. Suppose that the 
linear predictor for the mean model is

ημ = gμ (μ) = Xβ + Z v,

where μ = E (y | v), gμ () is the link function, X is an n × qμ model matrix for fixed effects β , and Z is an n × qv model 
matrix for random effects v . For the distribution assumption (2), we let Vμ (μi) be its variance function, and W y be a 
diagonal matrix with diagonal entries

1

Vμ (μi)

(
∂μi

∂ημ,i

)2

,

where μi is the ith entry of μ and ημ,i is the ith entry of ημ .
The distribution of the random effects is

f (vk) = exp

{
ψvk − k (vk)

σk
+ c2 (σk)

}
, (3)

where vk is the kth entry in v , c2() is some function, σk is the dispersion parameter, and ψ is a known constant that 
depends on the specific distribution assumption. The reader is directed to Lee and Nelder (2001a) for examples illustrating 
the correspondence between the distribution assumption and ψ . For the simplicity of notation, we assume that the random 
effects are mutually independent. In the case of correlated random effects, the method of Lee and Nelder (2001b) can be 
easily used to transform the correlated random effects into independent ones. For the distribution assumption (3), we will 
use V v() and W v to denote the analogues of V y() and W y of distribution (2), respectively.

HGLMs allow regression models for dispersion parameters such as

ησ = gσ (σ ) = Gσ γ σ , and ηφ = gφ (φ) = Gφγ φ, (4)

where σ is the vector that collects all σk , φ is the vector that collects all φi , gσ () and gφ () are the link functions, and Gσ

and Gφ are qv × qσ and n × qφ model matrices, respectively. Hence, there are two unknowns in the HGLM, namely, random 

effects v and fixed parameters θ = (βT ,γ T
)T

, where β is the mean parameter and γ =
(
γ T

φ,γ T
σ

)T
is the dispersion 

parameter. The logarithm of h-likelihood (Lee and Nelder, 1996) is then
2
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h (v, θ) = log f (y | v) + log f (v) ,

since v appears additively in the linear predictor. In the HGLM, we may derive inferential procedures by using h (v, θ), 
which has both unknowns as arguments. Hereafter, we suppress the arguments of h for simplicity, unless confusion may 
arise.

2.1. Joint maximization

In some special cases, such as the normal linear mixed model and the Poisson regression model with gamma random 
effects, v and β can be jointly estimated using the h-likelihood. In this context, v̂ and β̂ are the zeros of

∂h

∂β
= X T �−1W y

∂ημ

∂μT
(y − μ) ,

∂h

∂ v
= Z T �−1W y

∂ημ

∂μT
(y − μ) + �−1

(
ψ − ∂k (v)

∂ v

)
,

given γ , where � is a diagonal matrix with diagonal entries φi , ∂ημ/∂μT is a diagonal matrix with diagonal elements 
∂ημ,i/∂μi , and � is a diagonal matrix with diagonal entries σk . This is referred to as the joint maximization. Let δ =(

v T ,βT )T
. As shown in Lee and Nelder (2001a), the Hessian of h satisfies

E

(
− ∂2h

∂δ∂δT
|v
)

=
[

X T �−1W y X T X T �−1W y Z
Z T �−1W y X T Z T �−1W y Z + �−1W v

]
. (5)

Hence, the estimating equation to update v and β is

T T �−1W T

[
β
v

]
= T T �−1W

[
ημ + ∂ημ

∂μT (y − μ)

z1

]
, (6)

for some vector z1, where

W =
[

W y 0
0 W v

]
, � =

[
� 0
0 �

]
, T =

[
X Z
0 I

]
.

The exact expression of z1 can be found in Lee and Nelder (2001a). In particular, if v is Gaussian, then z1 = 0. It can be 
shown from equation (6) that the equation to update β is

β =
(

X T V −1 X
)−1

X T V −1
[
ημ + ∂ημ

∂μT
(y − μ) − V �−1W y Z H−1�−1W v z1

]
, (7)

where V = W −1
y + Z�Z T and H = Z T �−1W y Z +�−1W v . Equation (7) works in a similar way as the iterative re-weighted 

least squares for a regular GLM with X T V −1 X being the information matrix, from which the standard errors can be drawn.
Lee and Nelder (2001a) and Lee and Kim (2016) proposed to extract the standard errors of β̂ from the (2, 2)th block of 

the inverse of (5), which is the negative of the inverse of

∂2h

∂β∂βT
− ∂2h

∂β∂ v T

(
∂2h

∂ v∂ v T

)−1
∂2h

∂ v∂βT
. (8)

Equation (8) reduces to −X T V −1 X in HGLMs.

2.2. Maximum likelihood

Joint maximization does not always yield valid estimators and Lee et al. (2006) suggested to investigate its adequacy on 
a model-by-model basis. For example, in the Rasch (1960) model, Haberman (1977) and Haberman (2004) showed that the 
number of items needs to increase to infinite in order for the joint maximization estimator to be consistent. For the HGLM 
with binary data, Lee and Nelder (2001a) estimated the mean parameter β by joint maximization. Yun and Lee (2004)
further proposed to estimate β using first-order Laplace approximation to reduce bias in β . In general, to approximate the 
integral (1), we may use the first-order Laplace approximation based on the h-likelihood

pv (h) ≡ h (v (β) , θ) − 1

2
log

∣∣∣∣∣− 1

2π

∂2h (v, θ)

∂ v∂ v T

∣∣∣∣
v=v(β)

∣∣∣∣∣ .
The latent variable v in pv (h) is evaluated at v̂ = v (β), the solution of ∂h/∂ v = 0 given β and γ . The notation v (β) is 
used to emphasize that v is merely a function of β for a given γ . In contrast, the notation v is used if it is not considered 
3
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as a function of β when computing the derivatives. Hence, pv (h) is simply an adjusted profile log-likelihood, profiling out 
v . The subscript v in pv (h) indicates that the latent variable v is profiled out. The approximated maximum likelihood (ML) 
estimator of β is obtained by maximizing pv (h) given γ . Since v̂ depends on the value of β , it is essential to take the 
dependence between v̂ and β into consideration in ML. The implicit function theorem implies that

∂ v (β)

∂βT
= −

(
∂2h (v, θ)

∂ v∂ v T

)−1
∂2h (v, θ)

∂ v∂βT
.

Hence, the gradient of the approximation to the observed log-likelihood is

∂ pv (h)

∂θ
= ∂h (v, θ)

∂β
− 1

2

∂

∂β
log

∣∣∣∣∣−∂2h (v, θ)

∂ v∂ v T

∣∣∣∣
v=v(β)

∣∣∣∣∣ .
When pv (h) is used to estimate β , the estimating equation is

T T �−1W T

[
β
v

]
=
⎡
⎣ X T �−1W y

[
ημ + ∂ημ

∂μT (y − s − μ)
]

Z T �−1W y

[
ημ + ∂ημ

∂μT (y − μ)
]
+ �−1W v z1

⎤
⎦ (9)

for some s (see Noh and Lee, 2007, for its expression). If s is set to zero, then equation (9) reduces to equation (6) of joint 
maximization. The equation to update β is then

β =
(

X T V −1 X
)−1

X T V −1
[
ημ + ∂ημ

∂μT
(y − μ) − V �−1W y

∂ημ

∂μT
s

−V �−1W y Z H−1�−1W v z1
]
, (10)

(Noh and Lee, 2007), which is similar to equation (7) for joint maximization. However, a nonzero s can greatly reduce 
the bias of joint maximization if the latter is severely biased (Yun and Lee, 2004; Noh and Lee, 2007). Equation (10) is 
still similar to the iterative re-weighted least squares for a regular GLM. Hence, the R package dhglm (Lee and Noh, 2018) 
extracts the standard errors of β̂ from 

(
X T V −1 X

)−1
, regardless whether h or pv (h) is used for the estimation of β .

2.3. Restricted maximum likelihood

In the small sample case, the restricted maximum likelihood (REML) procedure is commonly used to reduce the bias of 
the dispersion parameter estimators. The REML estimator of γ in the h-likelihood approach is often obtained by maximizing 
the first-order approximation

pv,β (h) ≡ h − 1

2
log

∣∣∣∣− 1

2π

∂2h

∂δ∂δT

∣∣∣∣ ,
where δ = (v T ,βT )T

, v is evaluated at v̂ , and β is evaluated at the approximate ML estimator. It is often the case that the 
first-order approximation is not accurate enough for the dispersion parameters. Hence, Lee and Nelder (2001a) proposed to 
use the second-order Laplace approximation

sv,β (h) ≡ h − 1

2
log

∣∣∣∣− 1

2π

∂2h

∂δ∂δT

∣∣∣∣+ log (1 + r (v, θ)) . (11)

We direct the reader to Shun and McCullagh (1995) for the expression of r (v, θ). In practice, log (1 + r) is often similar 
to r. Hence, Lee and Nelder (2001a) among others used r (v, θ) directly in sv,β (h), instead of log (1 + r (v, θ)). To be more 
specific, v is estimated by maximizing h; β is estimated by maximizing h or pv (h); and γ is estimated by maximizing 
pv,β (h) or sv,β (h). It is worth mentioning that we are not aware of any higher order approximation (e.g., third-order 
approximation) in HGLM, partly due to even higher order partial derivatives in higher order approximations.

Lee and Nelder (2001a) also proposed to approximate h in pv,β (h) and sv,β (h) by the double extended quasi-likelihood 
given by

Q = −1

2

n∑
i=1

{
d0i

φi
+ log

[
2πφi V y (yi)

]}− 1

2

q∑
k=1

{
d1k

σk
+ log [2πσk V v (ψ)]

}
,

where d0i and d1k are the deviance residuals of yi |v and vk , respectively. The reader is directed to Lee and Nelder (2001a)
for the corresponding expressions. They argued that using Q is advantageous over h, since it allows overdispersed distribu-
tion and a broader class of models can be fitted in the same framework, if no substantial bias is introduced. They showed 
4
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Table 1
Objective functions to be optimized for estimation.

Distribution of y|v Parameters

v β γ σ γ φ

Gaussian h h pv,β (h) pv,β (h)

Gamma h pv (h) pv,β (Q ) pv,β (h)

Poisson h pv (h) pv,β (Q ) -
Bernoulli h pv (h) sv,β (Q ) -

that, given v and β , the REML estimation of γ reduce to a gamma GLM. For example, the gradients with respect to γσ, j

and γφ, j are

q∑
k=1

lσ ,k

2

d1k/lσ ,k − σk

σ 2
k

∂λk

∂ησ ,k
Gσ ,kj and

n∑
i=1

lφ,i

2

d0i/lφ,i − φi

φ2
i

∂φi

∂ηφ,i
Gφ,i j,

respectively, where

lσ ,k = 1 − an+k +
⎛
⎝n+q∑

j=1

a j w−1
j

∂ w j

∂σk

⎞
⎠σk and lφ,i = 1 − ai +

⎛
⎝n+q∑

j=1

a j w−1
j

∂ w j

∂φi

⎞
⎠φi,

with A = T
(
T T W �−1 T

)−1
T T W �−1, a j being the jth diagonal entry of A , and w j being the jth diagonal entry of W . The 

derivative of sv,β (Q ) has a similar expression as pv,β (Q ), but another lσ ,k and lφ,i . Due to its complexity, we skip its exact 
expression here. The reader is directed to Noh and Lee (2007) for more details.

Because the gradient has a similar form as the gradient of a gamma GLM, the dhglm package estimates the standard 
errors from the gamma GLM fit. To be more specific, the dhglm package extracts the standard errors of γ σ and γ φ from the 
inverse of G T

σ diag
(
2−1lσ ,k

)
Gσ and the inverse of G T

φdiag
(
2−1lφ,i

)
Gφ , respectively.

2.4. Numerical illustration

To gain insights into the h-likelihood standard errors, four generalized linear mixed models (GLMMs) with random 
intercepts are considered. All models have the linear predictor

β0 + v j + β1x1 jk + β2x2 jk, j = 1, ..., J , k = 1, ..., K . (12)

The first two models are the Gaussian GLMM with the identity link and the gamma GLMM with the log link, which have 
continuous responses. The last two models are the Bernoulli GLMM with the logit link and the Poisson GLMM with the log 
link, which have discrete responses. In all models, we vary J as 30, 60, 90, and 120, and fix K as 10. The mean parameters 
are set to β0 = −1, β1 = 1.0 and β2 = 1.0. The random effect v j follows a normal distribution with mean 0 and variance 
exp (γ0) with γ0 = log (1.5). The covariates are generated from independent standard normal distributions. For the Gaussian 
model and the gamma model, we let φi = 0.5 for all i. The objective functions to be optimized for different parameters are 
tabulated in Table 1. It is worth mentioning that h = Q in the Gaussian model, and that pv,β (h) is used for the gamma 
model to reduce the bias. If pv,β (Q ) is used for the Gamma model to estimate γ φ , the resulting estimator is biased.

The standard error methods considered in the illustration are the approach used by the dhglm package (
(

X T V −1 X
)−1

for β and the Gamma GLM for γ ) and the approach by equation (8) with β replaced by θ . The latter will be referred to 
as the Hessian of h. The reason of extending equation (8) to θ is that in the h-likelihood literature the standard errors of 
the mean parameters are often discussed but not the dispersion parameters. For example, Lee and Kim (2016) studied the 
joint distribution of the estimated fixed effects and the estimated random effects, but the dispersion parameter is excluded. 
A justification of such extension will be offered in the later section.

To evaluate the accuracy of the estimated standard errors, we divide the mean of the estimated standard errors by the 
sample standard deviation for each parameter, where the sample standard deviation is treated as the pseudo true value. In 
order to reduce the uncertainty in the sample standard deviation, the number of replications is set to 10, 000. However, 
standard errors are computed only for the first 1, 000 replications, due to computational complexity. To mitigate the effects 
of outliers, the point estimates and the standard errors are trimmed before computing the mean and standard deviation. 
The estimates that are more extreme than 2.5 times the interquartile range are regarded as outliers and discarded from 
further analysis.

It is seen from Fig. 1 that both methods generally yield accurate standard error estimates for the mean parameters. The 
method used by the dhglm package is biased for the dispersion parameters. In contrast, using the Hessian of h generally 
yields accurate standard error estimates for the Gaussian and Gamma models, but is biased for the Poisson and Bernoulli 
models. Results reported later show that approximately 7% of the estimated covariance matrices using the Hessian of h are 
not positive definite in the Bernoulli model when J = 30. These standard error estimates are removed from the plots.
5
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Fig. 1. The mean of the estimated standard errors divided by the sample standard deviation for each parameter.

3. Justification from first-order Laplace approximations

3.1. Standard error for maximum likelihood

When pv (h) is used to estimate β for a fixed γ , its Hessian may be used to estimate the standard errors. However, 
the inclusion of the logarithmized determinant makes the exact Hessian difficult to obtain. If all partial derivatives of 
log
∣∣−∂2h/∂ v∂ v T

∣∣ are ignored and we only focus on the first two terms in ∂ pv (h) /∂β , it can be easily shown that

∂2 pv (h)

∂β∂βT
≈ ∂2h

∂β∂βT
− ∂2h

∂β∂ v T

(
∂2h

∂ v∂ v T

)−1
∂2h

∂ v∂βT
,

which is the same as (8). In fact, ignoring log
∣∣−∂2h/∂ v∂ v T

∣∣ can be justified from the first-order Laplace approximation to 
the observed gradient ∂� (β) /∂β . For a fixed γ , the gradient of � with respect to β is

∂�

∂β
= 1∫

exp {h}dv
·
∫

∂h

∂β
exp {h}dv, (13)

where both the numerator and denominator involve intractable integrals. Following Evans and Swartz (1995) and Strawder-
man (2000), the first-order Laplace approximation to the integral of the following form is

∫
g (v)exp {h (v)}dv ≈ g (v)

∣∣∣∣− 1

2π

∂2h (v)

∂ v∂ v T

∣∣∣∣
−1/2

exp {h (v)} ,

where v is evaluated at the solution of ∂h (v) /∂ v = 0. If both the numerator and the denominator in (13) are approximated 
by the first-order Laplace approximations, then

∂�

∂β
≈

∂h
∂β

∣∣∣− 1
2π

∂2h
∂ v∂ v T

∣∣∣−1/2
exp {h}∣∣∣− 1

2π
∂2h

∂ v∂ v T

∣∣∣−1/2
exp {h}

= ∂h

∂β
, (14)

where v is evaluated at v̂ after taking all partial derivatives. Hereafter, equation (14) is referred to as the first-order Laplace 
approximated observed gradient. The approximation (14) is simply the gradient of the logarithm of h-likelihood, used in 
the joint maximization, which can perform poorly for the dispersion parameter in the models for Bernoulli data as shown 
in Noh and Lee (2007). Nevertheless, the gradient of equation (14) can be viewed as an approximation to the observed 
Hessian. In particular,

∂

∂β

(
∂h (v (β) ,β)

T

)
= ∂2h (v,β)

T
+
(

∂ v (β)
T

)T
∂2h (v,β)

T
, (15)
∂β ∂β∂β ∂β ∂ v∂β

6
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which reduces to equation (8), the approach used by the dhglm package.
Hence, the standard error using equation (8) can also be viewed as the exact Jacobian of the approximated observed 

gradient when the observed gradient is approximated by the ratio of two first-order Laplace approximations. When estimat-
ing the fixed unknown parameters, the h-likelihood approach uses the exact gradient of the approximation to the observed 
log-likelihood. In contrast, the h-likelihood approach uses the exact derivative of the approximated gradient to compute the 
standard errors, if the Hessian of pv (h) is complicated to compute. If equation (14) accurately approximates the gradient 
of � (β), equation (8) is expected to yield accurate standard error estimates. The pattern in Fig. 1 indicates that the above 
justification works reasonably well.

3.2. Standard error for restricted maximum likelihood

In the special case where β and γ are asymptotically orthogonal, Cox and Reid (1987) showed that pβ (�) is an ap-

proximation to the conditional log-likelihood log L 
(
γ |β̂

)
. Lee and Nelder (2001a) showed that pv,β (h) approximates pβ (�)

to the same order as the first-order Laplace approximation. Consequently, pv,β (h) can be viewed as an approximation to 
log L 

(
γ |β̂

)
under the orthogonality assumption. In a general case, Meng (2009) suggested that pv,β (h) is an approximation 

to 
∫

exp {h}dδ with δ = (v T ,βT )T
under the uniform prior using the first-order Laplace approximation. Hence, the REML 

estimator of γ approximates the solution of

0 = ∂ log
∫

exp {h}dδ

∂γ
= 1∫

exp {h}dδ

∫
∂h

∂γ
exp {h}dδ.

If the integrals are approximated by the first-order Laplace approximations, then

∂ log
∫

exp {h}dδ

∂γ
≈

∂h
∂γ

∣∣∣− 1
2π

∂2h
∂δ∂δT

∣∣∣−1/2
exp {h}∣∣∣− 1

2π
∂2h

∂δ∂δT

∣∣∣−1/2
exp {h}

= ∂h

∂γ
.

Let δ = (βT , v T )T . Consequently, the Hessian of h is a first-order Laplace approximation to the Hessian needed for REML. In 
other words, we may use the curvature of h to estimate the standard errors of γ . Hence, the negative of inverse of (8) with 
β replaced by θ can be used for the standard errors of β and γ .

4. Alternative approaches

It is seen in Fig. 1 that neither the approach used by the dhglm package nor the Hessian of h is always accurate. Hence, 
alternative standard error estimators are needed, which will be studied in this section.

4.1. Standard error from Hessian matrix

When the dispersion parameter γ is estimated from pv,β (Q ), Lee and Nelder (2001a) proposed to estimate the standard 
errors from

−
(

∂2 pv,β (Q )

∂γ ∂γ T

)−1

,

where Q is defined in Section 2.3. They showed how to compute it in their appendix. Since v and β are profiled out from 
Q , estimating β should not inflate the standard error of γ̂ , provided that pv,β (Q ) is sufficient accurate for 

∫
exp {h}dδ. 

However, as suggested by Lee and Nelder (2001a), we still need to account for the dependence between v̂ and γ . The 
expression of ∂2 pv,β (Q ) /∂γ ∂γ T for our numerical examples can be found in the appendix. Following the spirit of Lee and 
Nelder (2001a), if γ is estimated from pv,β (h), we can estimate the standard errors of γ from the negative of the inverse 
of the Hessian matrix ∂2 pv,β (h) /∂γ ∂γ T . In the case when γ is estimated from a second-order approximation, we still 
estimate the standard errors using the Hessian of pv,β (·), due to the complexity of the higher order derivatives in r (v, θ).

For the ML estimator, a common practice is to use the Fisher information matrix to estimate standard errors. Regarding 
the standard errors of β̂ , we can consider to get them from

−
(

∂2 pv (h)

∂β∂βT

)−1

.

However, such a standard error for β̂ assumes that β and γ are orthogonal, since, in pv (h), only v is profiled out from 
h. Hence, the uncertainty of estimating γ is not accounted for. Consequently, we expect the standard errors for β̂ to be 
underestimated if β and γ are not orthogonal.
7
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Hereafter, the approach described in this subsection will be referred to as Hessian of p, where p stands for various 
profile log-likelihood.

4.2. Sandwich estimator

The standard error in Section 4.1 essentially assumes that β and γ are orthogonal, which holds in Gaussian models. 
However, it is not so in general models. The other alternatives aim to estimate the standard errors without explicitly yielding 

a covariance matrix of 
(
β̂

T
, γ̂ T

)T
.

In principle, β̂ and γ̂ are the solutions of the system of equations

[
0
0

]
=
⎡
⎣ ∂

∫
exp{h}dv
∂β

∂
∫

exp{h}dδ
∂γ

⎤
⎦ .

By the standard Taylor expansion, the variance of θ̂ can be approximated by

E−1var

⎡
⎣ ∂

∫
exp{h}dv
∂β

∂
∫

exp{h}dδ
∂γ

⎤
⎦(E−1)T

,

where

E = E

⎡
⎣ ∂2

∫
exp{h}dv

∂β∂βT
∂2
∫

exp{h}dδ

∂β∂γ T

∂2
∫

exp{h}dv

∂γ ∂βT
∂2
∫

exp{h}dδ

∂γ ∂γ T

⎤
⎦ ,

and ∂2
∫

exp {h}dδ/∂γ ∂βT = 0 since β has been integrated out.

When the approximations pv (h) and pv,β () are used, β̂ and γ̂ are the solutions of the approximated system of equations

[
0
0

]
=
[

∂ pv (h)
∂β

∂ pv,β ()

∂γ

]
,

where pv,β () is either pv,β (h) or pv,β (Q ). If pv,β () approximates 
∫

exp {h}dδ well, the variance can be approximated by

⎡
⎣ ∂2 pv (h)

∂β∂βT
∂2 pv (h)

∂β∂γ T

0 ∂2 pv,β ()

∂γ ∂γ T

⎤
⎦

−1

var

[
∂ pv (h)

∂β
∂ pv,β ()

∂γ

]⎛⎜⎝
⎡
⎣ ∂2 pv (h)

∂β∂βT
∂2 pv (h)

∂β∂γ T

0 ∂2 pv,β ()

∂γ ∂γ T

⎤
⎦

T
⎞
⎟⎠

−1

. (16)

This sandwich estimator will be referred to as Sandwich0 hereafter. On the other hand, we can also compute ∂2 pv,β () /

∂β∂γ T , despite that it is an approximation of the zero term (Hessian of 
∫

exp {h}dδ). In such a case, the variance of θ̂ can 
then be approximated by

⎡
⎣ ∂2 pv (h)

∂β∂βT
∂2 pv (h)

∂β∂γ T

∂2 pv,β ()

∂β∂γ T
∂2 pv,β ()

∂γ ∂γ T

⎤
⎦

−1

var

[
∂ pv (h)

∂β
∂ pv,β ()

∂γ

]⎛⎜⎝
⎡
⎣ ∂2 pv (h)

∂β∂βT
∂2 pv (h)

∂β∂γ T

∂2 pv,β ()

∂β∂γ T
∂2 pv,β ()

∂γ ∂γ T

⎤
⎦

T
⎞
⎟⎠

−1

. (17)

This sandwich estimator will be referred to as Sandwich1 hereafter. Even though sv,β () is used for estimation, we still use 
the Hessian of pv,β (), due to the complexity of the higher-order derivatives in r (v, θ). At the cost of computational speed, 
the Hessian of sv,β can be computed by numerical differentiation if the analytical Hessian is difficult to obtain.

A common approach to estimate the variance component in (16) or (17) is to use the sample counterpart such as ∑
j

∂� j
∂θ

∂� j

∂θ T . However, the sample counterpart is not feasible, since β appears in every cluster. Instead, we use bootstrap to 

estimate the variance. Let B be the bootstrap number of replications. For each b in 1, · · · , B , we generate v from f
(

v; θ̂
)

and y from f
(

y|v; θ̂
)

, and compute ∂ pv (h) /∂β and ∂ pv,β () /∂γ using the bootstrap sample, where θ is fixed to θ̂ . The 
variance of the bootstrap gradients is then used as an estimate of the variance component in (16) or (17). This parametric 
bootstrap procedure is similar to that in Flores-Agreda and Cantoni (2019), but in a different context.
8
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Table 2
Percentage of convergence for point estimation.

Dist. Model J with K = 5 J with K = 10

30 60 90 120 30 60 90 120

Poisson GLMM-I 99.75 99.81 99.87 99.88 99.77 99.86 99.91 99.94
GLMM-S 97.60 97.08 97.20 97.07 97.09 97.01 96.73 96.68
HGLM-I 99.52 99.68 99.76 99.76 99.62 99.79 99.82 99.88

Bernoulli GLMM-I 99.30 99.98 100 100 100 100 100 100
GLMM-S 92.44 99.13 99.89 99.99 99.78 100 100 100
HGLM-I 89.55 97.07 98.99 99.63 98.57 99.83 99.99 100

Note: Dist. = Distribution. GLMM-I = GLMM with random intercept (12). GLMM-S = GLMM with random 
intercept and random slope (18). HGLM-I = HGLM with random intercept (12) and (19).

Table 3
Percentage of valid standard errors from the Hessian of h in different models.

Dist. Model J with K = 5 J with K = 10

30 60 90 120 30 60 90 120

Gamma GLMM-I 100 100 100 100 100 100 100 100
GLMM-S 72.19 78.77 81.94 87.05 60.44 59.21 57.27 59.18
HGLM-I 100 100 100 100 100 100 100 100

Poisson GLMM-I 100 100 100 100 100 100 100 100
GLMM-S 97.89 100 100 100 100 100 100 100
HGLM-I 98.67 100 100 100 100 100 100 100

Bernoulli GLMM-I 53.82 48.27 47.97 44.88 93.08 98.59 99.60 100
GLMM-S 16.57 11.81 8.85 6.78 66.29 77.47 85.40 89.77
HGLM-I 31.94 28.83 27.05 23.93 71.92 84.70 92.72 94.75

Note: Dist. = Distribution. GLMM-I = GLMM with random intercept (12). GLMM-S = GLMM with random 
intercept and random slope (18). HGLM-I = HGLM with random intercept (12) and (19).

5. Numerical illustration

5.1. Hierarchical generalized linear model

We first revisit the models considered in Section 2.4. We also include the random slope models with the linear predictor

β0 + v j + (β1 + u j
)

x1 jk + β2x2 jk, j = 1, ..., J , k = 1, ..., K , (18)

where u j is the random effect for the slope. We generate u j from N (0,1.5), which is independent of v j . Besides, we 
consider an HGLM with the same mean model as in (12), and the dispersion model is given by

log
(
σ j
)= γ0 + γ1Gσ , j, j = 1, ..., J . (19)

We let γ0 = log (1.5), γ1 = 0.5, and Gσ , j ∼ N (0,0.5), which is independent of x1 jk and x2 jk . For the sandwich estimator, 
the number of bootstrap replication is 1, 000. The objective functions to be optimized for estimation are the same as those 
in Section 2.4 (tabulated in Table 1). We only considered K = 10 in Section 2.4. Here we will also consider K = 5.

Nonconvergence is encountered when fitting these models. It is seen from Table 2 that the algorithm converged most 
of the time in terms of point estimation for the Poisson models and the Bernoulli models. Nonconvergence was not en-
countered for the Gaussian models and the Gamma models. Hence, they are not tabulated here. Furthermore, it is possible 
that the covariances (var

(
β̂
)

, var
(
γ̂
)
, or var

(
θ̂
)

) estimated by some methods are not positive definite. The corresponding 
standard errors are considered invalid. Among the methods that we considered, using the Hessian of h can yield a large 
proportion of invalid standard errors (Table 3). Especially when the Gamma model or the Bernoulli model has a random 
slope, the percentage can be quite high.

To evaluate the accuracy of the estimated standard errors, we divide the mean of the estimated standard errors by the 
sample standard deviation, as in Section 2.4. Fig. 2 illustrates the standard error estimates for the Gaussian models. Similar 
conclusions to those in Fig. 1 can be drawn. While the method used by the dhglm package overestimates the standard errors 
of the dispersion parameters, the other methods are generally more accurate.

For the gamma models, we exclude the standard errors using Hessian of h from the random slope models, due to their 
potentially high inadmissible rate, as shown in Table 3. Fig. 3 shows that the dhglm package can still yield largely biased 
standard errors for the dispersion parameters. Using the Hessian of pv (h) for the mean parameters and the Hessian of 
pv,β (h) generally yield accurate standard error estimates, so does the sandwich estimators.

For the Poisson models, it is seen from Fig. 4 that the estimated standard errors from the dhglm package and the Hessian 
of h can be more biased than the other methods for the dispersion parameters. Using the Hessian of pv (h) generally yields 
9
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Fig. 2. Mean of the estimated standard errors divided by the sample standard deviation in Gaussian models.

accurate standard errors for the mean parameters. Using the Hessian of pv,β (Q ) often yields less biased standard errors 
than using the Hessian of h. When the mean is divided by the standard deviation, the sandwich estimators can yield a large 
positive ratio for the mean parameters, whereas they tend to be accurate for the dispersion parameters. However, Fig. 5
suggests that the large ratio occurs often when the standard deviation is small, and the sandwich estimators are generally 
still accurate.

Regarding the Bernoulli models, we exclude the standard errors using the Hessian of h due to their potentially high 
inadmissible rate and large bias, as seen in Table 3. Results not shown here show that they are even more biased in the 
random slope model and in the HGLM. It is seen from Fig. 6 that the dhglm package, the Hessian of pv (h) and pv,β (Q ), 
and Sandwich0 often underestimate the standard errors, whereas Sandwich1 tends to be more accurate under most condi-
tions.
10



S. Jin and Y. Lee Computational Statistics and Data Analysis 189 (2024) 107852
Fig. 3. Mean of the estimated standard errors divided by the sample standard deviation in Gamma models.

5.2. Frailty model

A class of models that are related to the HGLM is the frailty model for survival data. Ha and Lee (2003) and Ha et al. 
(2001) have developed the h-likelihood approach for the frailty model, which is implemented in the R package frailtyHL
(Ha et al., 2018). However, they only investigated the standard errors of the mean parameters, not the frailty parameter. 
In this part, we conduct a simulation study to investigate the standard errors for the frailty model using the h-likelihood 
approach. The conditional hazard function of the frailty model is λ jk (t) = λ0 (t) exp

{
η jk
}

, where the linear predictor η jk
remains the same as equation (12) except that β0 is fixed to zero for identification. In other words, the frailty follows a 
log-normal distribution. The uncensored failure time t jk is generated from an exponential-parametric frailty model with the 
baseline hazard set to 1.0. The censoring time c jk is generated from an exponential distribution with an expected value of 
4. The observed responses are then y jk = min

(
t jk, c jk

)
and I

(
t jk ≤ c jk

)
, where I () is the indicator function. The number 
11
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Fig. 4. Mean of the estimated standard errors divided by the sample standard deviation in Poisson models.

replications remains 1000 for standard errors and 10000 for sample standard deviation. The parametric bootstrap procedure 
proposed in Massonnet et al. (2006) is used to generate the uncensored failure time and the censoring time.

First, we consider a parametric frailty model. We assume that the uncensored survival time follows an exponential 
distribution, but the censoring time is left unspecified. As shown in Ha and Lee (2003), the exponential frailty model can be 
fitted using Poisson HGLM with the response variable I

(
t jk ≤ c jk

)
and the offset log y jk . Hence, the standard errors for the 

HGLMs discussed above can be easily computed. In this simulation, we still let J = {30,60,90,120}, and keep K = {5,10}. It 
can be observed from Fig. 7 that using the Hessian of pv (h) and pv,β (Q ), as well as the sandwich estimators, are generally 
accurate under most conditions. Whereas the dhglm package and using the Hessian of h are accurate for mean parameters, 
they can be biased for the dispersion parameter.

Second, we assume that the baseline hazard is unknown and fit a semiparametric frailty model, where the baseline 
hazard function is profiled out by the nonparametric maximum hierarchical likelihood estimator, as described in Ha et 
al. (2001), Ha and Lee (2003), and Ha et al. (2017). Semiparametric estimation is performed in the R package frailtyHL. 
12
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Fig. 5. Mean of the estimated standard errors and the sample standard deviation in Poisson models.

Due to computational cost of the frailty model, we only vary J = {30,40,50,60} and the bootstrap replication is set to 
200, while K remains {5,10}. In frailtyHL, the standard errors are based on Ha and Lee (2003) and Ha et al. (2001). They 
proposed to estimate the standard errors of (v,β) and the frailty parameter from the Hessian of hp and the Hessian of 
pv,β (hp), respectively, where hp is the profiled h-likelihood that profiles out the baseline hazard. Hence, we only consider 
the standard errors used by the frailtyHL packages and the sandwich estimators. It is seen from Fig. 8 that Sandwich1 tends 
to be more accurate than Sandwich0 and the negative inverse Hessian of the profile h-likelihood used by the package.

6. Conclusion

In this study, we investigate the standard error estimators used by the h-likelihood approach. In HGLM, the standard 
errors of the mean parameters are often based on the inverse of equation (8). We show that they can be viewed as the 
exact derivative of the Laplace approximated gradient, taking the dependence between the estimated random effects and 
13
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Fig. 6. Mean of the estimated standard errors divided by the sample standard deviation in Bernoulli models.

the parameter values into account. Our numerical illustration indicates that they are seemingly accurate, but not in the 
Bernoulli models.

Among the alternative standard errors, using the inverses of the Hessians of pv (h) and pv,β (Q ), as proposed by Lee 
and Nelder (2001a), generally improve the standard errors of the dhglm package in the investigated models, although they 
can still yield inaccurate standard errors of the dispersion parameters. Such standard errors assume orthogonality between 
the mean parameters and the dispersion parameters, which may not hold, except in the normal linear mixed model. The 
sandwich estimator Sandwich0 often underestimates the standard errors, whereas the sandwich estimator Sandwich1 gen-
erally performs well for the discrete response models in our simulation study, showing the importance of accounting for 
∂2 pv,β () /∂β∂γ T , despite the fact that 

∫
exp {h}dδ = 0. Our results also show that Sandwich1 based on the Hessian of 

pv,β (Q ) works well even though sv,β (Q ) is used for estimation.
One limitation of the sandwich estimator is that it is computationally more intensive than the other alternatives, due 

to the bootstrap approximated variance of the gradient. For the sandwich estimator to be accurate, the variance of the 
14
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Fig. 7. Mean of the estimated standard errors divided by the sample standard deviation in the exponential frailty model. Note: in this model β0 = logλ0.

Fig. 8. Mean of the estimated standard errors divided by the sample standard deviation in the semiparametric frailty model.

gradient needs to be well approximated. Another limitation of our study is that we only investigated the performance of 
standard error estimates in limited models. Lee and Nelder (2006) also introduced random effects in the dispersion models 
(4), whereas we only considered the fixed effects in them. The random effects considered in the simulation are only normal 
random effects. In principle, they can belong to a large class of distribution (Lee et al., 2017). We leave these topics as future 
directions.
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Appendix A. Hessian matrix

In this section, we present the Hessian matrix of ∂2 pv,β (Q ) /∂θ∂θ T . The notation ∂ log (F ) /∂θ is used to denote 
a matrix whose ( j, k)th entry is ∂ log

(
F jk
)
/∂θ . Lee and Nelder (2001a) showed how to compute the Hessian matrix 

∂2 pv,β (Q ) /∂γ ∂γ T . The ( j,k)th entry of ∂2 pv,β (Q ) /∂γ σ ∂γ T
σ is
15
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1

2

q∑
i=1

(
1

σ 2
i

∂d1i

∂γσ ,k

∂σi

∂ησ ,i

)
Gσ ,i j

+ 1

2

q∑
i=1

(
−2d1i

σ 3
i

(
∂σi

∂ησ ,i

)2

+ 1

σ 2
i

(
∂σi

∂ησ ,i

)2

+ d1i − σi

σ 2
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∂2σi

∂η2
σ ,i
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Gσ ,i j Gσ ,ik

+ 1

2
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{
A

∂ log (W ) − log (�)

∂γσ ,k
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∂ log (W ) − log (�)

∂γσ , j
− AW −1 ∂2W

∂γσ , j∂γσ ,k

}

− 1

2
tr

{
A

[
0 0

0 2 ∂ log(�)
∂γσ , j

∂ log(�)
∂γσ ,k

− ∂ log(W v )
∂γσ , j

∂ log(�)
∂γσ ,k

− ∂ log(W v )
∂γσ ,k

∂ log(�)
∂γσ , j

− �−1 ∂2�
∂γσ , j∂γσ ,k

]}
.

The ( j,k)th entry of ∂2 pv,β (Q ) /∂γ σ ∂γ T
φ is

1

2

q∑
i=1

1

σ 2
i

∂d1i

∂γφ,k

∂σi

∂ησ , j
Gσ ,i j + 1

2
tr

{
A

[
∂ log(W v )

∂γσ , j

∂ log(�)
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0
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∂ log(�)
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− 1

2
tr
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∂ log (W ) − log (�)
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}
.

The ( j,k)th entry of ∂2 pv,β (Q ) /∂γ φ∂γ T
φ is

1
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If pδ (h) is used to estimate γ in the Gamma models, then

∂2 pδ (h)

∂γφ, j∂γφ,k
= ∂2 pδ (Q )

∂γφ, j∂γφ,k
+ 1

2

n∑
i=1

1 + 2
φi

− 2
φ2

i
ψ1

(
1
φi

)
φ2

i

(
∂φi

∂ηφ,i

)2

Gφ,i j Gφ,ik

+1

2

n∑
i=1

φi + 2 log (φi) + 2ψ
(

1
φi

)
φ2

i

(
∂2φi

∂η2
φ,i

− 2

φi

(
∂φi

∂ηφ,i

)2
)

Gφ,i j Gφ,ik,

where ψ() is the digamma function and ψ1() is the trigamma function. The ( j,k)th entry of ∂2 pv,β (Q ) /∂γ σ ∂βT is
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The ( j,k)th entry of ∂2 pv,β (Q ) /∂γ φ∂βT is
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Let di be either d1i or d0i , and θ be a parameter. Then, to account for the dependence between v̂ and θ ,
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∂di

∂θ
= ∂di

∂ v T

∂ v (θ)

∂θ
.

We also need the Hessian matrix of pv (h). Recall that H = Z T W y�
−1 Z + �−1W v . Let K = Z H−1 and R = K Z T . For 

any matrix A, we use Ai· to denote the ith row of A, and A·i the ith column of A . Then, for a parameter θ ,
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−1 ∂ημ

∂βk
+ X T

· j�
−1diag

⎧⎨
⎩

∂ w0,i
∂ημ,i
∂μi

∂ημ,i

∂ημ,i

∂βk

⎫⎬
⎭ (y − μ)

− 1

2
tr

{
∂ R

∂βk

∂W y

∂β j
�−1

}
− 1

2
tr

{
R

∂2W y

∂β j∂βk
�−1

}
− 1

2

∂tr
{

H−1�−1 ∂W v
∂β j

}
∂βk

.

The ( j,k)th entry of ∂2 pv (h) /∂β∂γ T
σ is

− X T
· j W y�

−1 ∂ημ

∂γσ,k
+ X T

· j�
−1diag

⎧⎨
⎩
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∂μi

∂ημ,i

∂ημ,i

∂γσ ,k

⎫⎬
⎭ (y − μ)

− 1

2
tr

{
∂ R

∂γσ ,k

∂W y
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�−1

}
− 1

2
tr

{
R

∂2W y
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�−1

}
− 1

2

∂tr
{

H−1�−1 ∂W v
∂β j

}
∂γσ ,k

.

The ( j,k)th entry of ∂2 pv (h) /∂β∂γ T
φ is

− X T
· j�

−2diag

{
∂φi

∂ηφ,i
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}
W y

∂η

∂μT
(y − μ)
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⎩
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2
tr

{
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}
− 1

2
tr

{
R

∂2W y
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�−1

}
− 1

2
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{
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}
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.
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