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Abstract
Using the supergravity dual and the plane-wave limit as a guide, we conjec-
ture the asymptotic large coupling form of the Hagedorn temperature for planar
N = 4 super Yang-Mills to order 1/

√
λ. This is two orders beyond the presently

known behavior. Using the quantum spectral curve procedure of Harmark and
Wilhelm, we show that our conjectured form is in excellent agreement with the
numerical results.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Confining gauge theories at low temperatures can behave like string theories. A classic sign
of this is a density of states that grows as ρ(E)∼ eE/TH , where TH is the Hagedorn temperat-
ure. At T= TH the string theory picture should break down. This is often associated with the
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deconfinement of the gauge theory, but depending on the circumstances the deconfinement
temperature is often below TH [1, 2].

By putting the gauge theory on a compact spatial manifold and taking the large-N limit it
is possible to still have a Hagedorn temperature and a deconfinement transition, even if the
gauge theory is not confining on R3 [3]. In particular, for the case of planarN = 4 super Yang-
Mills on S3, one finds a coupling dependent Hagedorn temperature. This was first computed at
zero coupling by Sundborg [4] and independently in [1], where they found that TH = (2ln(2+√
3))−1 in units where the radius of the S3 is set to 1. Furthermore, for this zero coupling

case it was shown that TH equals the deconfinement temperature [1, 4]. However, at large ’t
Hooft coupling λ, where λ= g2YMN, one expects the deconfinement temperature to be the same
as the Hawking-Page transition temperature THP ∼ 1 for the supergravity dual [3, 5], while
TH ∼ λ1/4, therefore in this regime TH is far above the deconfinement transition. However,
it still provides information about the growth of states at large energies, or equivalently, the
growth of single-trace operators at large dimension.

Recently, Harmark and Wilhelm have exploited the integrability of planar N = 4 SYM to
make substantial progress in finding the coupling dependence of TH [6–8]. From the Y-system
they computed TH up to the two-loop level at weak coupling [6], which previously was only
known to one loop [9]. Switching over to the quantum spectral curve formalism [10–12] they
extended their results to seven loops at weak coupling and found the asymptotic behavior
numerically at strong coupling [7, 8].

At strong coupling Harmark and Wilhelm found that TH has the form

TH =
∞∑
n=0

cng
(1−n)/2 ≈ 0.3989g1/2 + 0.159− 0.0087g−1/2 + 0.037g−1 + . . . , (1.1)

where g≡
√
λ

4π and the uncertainties are of order 1 in the last digit for c0 and c1 and order 5
in the last digit for c2 and c3. The first coefficient matches within the error bars the flat-space
prediction c0 = 1√

2π
≈ 0.39894, which follows from the original computation of the super-

string Hagedorn temperature [13] and the AdS/CFT dictionary (cf [1] and references therein).
After (1.1) in [8] was announced, the second term was derived analytically by Maldacena and
Urbach [14, 15], where they found that c1 = 1

2π ≈ 0.159155.
We will rederive this last result and also conjecture the analytic result for the next two

terms in the expansion. To do this we will combine analysis from supergravity, where we take
advantage of the lightness of the tachyon mode, as well as properties of the plane-wave limit of
AdS5 × S5. In fact, we can derive the Maldacena–Urbach result from the multiplicity of states
in the plane-wave limit. Our conjecture for the expansion in (1.1) is

TH =
1√
2π

g1/2 +
1
2π

+

([
5

8π
√
2π

]
+

{
−4ln(2)

4π
√
2π

})
g−1/2 +

[
45

128π2

]
g−1 + . . . , (1.2)

where the terms in the square brackets come from supergravity corrections while the term in
the curly brackets comes from a shift in the string zero-point energy.

To test the conjecture we take the QSC prescription described in [8] and go to higher orders
in the series expansions for the Q-functions, as described in section 4 and explicitly given
in (4.10), to improve the numerical estimates. We find

TH ≈ 0.39894g1/2 + 0.15916− 0.00865g−1/2 + 0.0356g−1

− 0.008196g−3/2 − 0.00671g−2 + . . . , (1.3)

where the error is 1 in the last digit for the first four coefficients and 3 for the last two. The
coefficient c1 is computed assuming that c0 takes its analytic value, hence improving its error
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bars, while c2 and c3 are computed together assuming that c1 also takes its analytic value. The
results for c4 and c5 assume that c2 and c3 take the form in (1.2).

The conjectured c2 and c3 are approximately−0.0086538 and 0.03562 respectively, so we
see that they are in very good agreement with the numerical approximations in (1.3). It turns
out that our prediction for c3 is more robust than our prediction for c2. If we assume that c3
equals its conjectured analytic value in (1.2) then our numerical prediction for c2 improves
to c2 =−0.0086538 ± 3× 10−7, which is right on the nose with the conjectured result. The
zero-point shift that affects c2 is twice as large as the shift found in the plane-wave limit. At
the moment we are unable to derive this shift from first principles.

The rest of this paper is organized as follows. In section 2 we rederive the Maldacena-
Urbach result by equating the supergravity calculation for the Hagedorn temperature to find-
ing the ground-state energy for a four-dimensional harmonic oscillator. We then use first and
second order perturbation theory on the perturbed oscillator to find the corrections in the square
brackets in (1.2). In section 3 we consider the plane-wave limit for AdS5 × S5 and show that
the growth of states leads to the analytic result for c1. We also provide two arguments why the
plane-wave captures the correct result. We further show that the shift to the zero-point energy
will lead to half the result in the curly brackets in (1.2) while also showing that it does not con-
tribute to c3. In section 4 we summarize the QSC prescription and give further details about
our numerical results.

In a companion paper [16] we study the coupling dependence of the Hagedorn temperature
for ABJM theory in the planar limit, where we find similar behavior.
Note added: As this paper was being prepared [17] appeared which claims to find the first
correction to the Hagedorn temperature for the Witten D4 black brane background from the
type IIA world-sheet, matching the supergravity result in [18].

2. Corrections from supergravity

The Hagedorn temperature, TH in string theory is inversely proportional to the string length.
This means that for N = 4 SYM on S3, TH ∼ λ1/4, where we have chosen units where the
radius of the S3 is unity. It is also known that N = 4 SYM undergoes a deconfinement trans-
ition at the Hawking-Page temperature [3, 5], which at strong coupling is THP = 3

2π . This is
well below TH, hence at T= TH there is not actually a transition (at least at strong coupling)
[1]. However, TH still provides information about the density of single trace states at zero
temperature. That is, we expect that ρ(E)∼ eE/TH .

Since we are really working at T = 0, the relevant geometry to consider in the gravity dual
is not the AdS black hole. Instead we should consider empty Euclidean AdS5 × S5 with the
Euclidean time direction τ identified by τ ≡ τ +β. The metric for Euclidean AdS5 in global
coordinates can be written as

ds2 =
(
1+R2

)
dτ 2 +

dR2

1+R2
+R2dΩ2

3 , (2.1)

where R⩾ 0 and dΩ2
3 is the unit metric on S3. The string tension is given by 2π/α ′ = 2π

√
λ.

2.1. Zeroth order

To find the Hagedorn temperature we consider a winding string that wraps around the τ
direction [19–21]. At the same time the fermions with odd winding states have anti-periodic
boundary conditions, hence the world-sheet ground state energy is shifted to − 2

α ′ in the
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flat-space limit. Hence the corresponding mass squared for a single winding state in the flat-
space limit is

m2 =

(
β

2πα ′

)2

− 2
α ′ . (2.2)

The Hagedorn temperature is determined by setting m2 to zero, from which we find

TH =
1
βH

=
λ1/4√
8π2

. (2.3)

To find the next term in the expansion, we note that corrections to the world-sheet ground
state energy in the single winding sector should be of order O(λ0), and hence will not affect
the next term in the expansion. In fact, since we are assuming that we are tuning the mass to be
very small, we can treat the problem as that for a point-particle in a supergravity background.
The winding mode is a scalar field, χ, hence its contribution to the action isˆ

d5X
√
g
(
∇µχ∇µχ+m2 (R)χ2

)
, (2.4)

where m2(R) is the radial dependent mass term

m2 (R) =
(
1+R2

)( β

2πα ′

)2

+C , (2.5)

with C≈−2/α ′.
Since the winding mode should be an overall scalar, χ has a nontrivial profile only in the

R direction. Assuming this and minimizing the action, we find the equations of motion are
approximately

− 1
R3

d
dR

R3 d
dR
χ(R)+

(
β

2πα ′

)2

R2χ(R) =

(
2
α ′ −

(
β

2πα ′

)2
)
χ(R) . (2.6)

The solution should be normalizable and hence fall off to zero as R→∞ and finite as R→ 0.
Therefore, solving (2.6) is equivalent to finding the ground-state solution for a rotationally
symmetric four-dimensional harmonic oscillator with ω = β

2πα ′ and energy

E=
1
2

(
2
α ′ −

(
β

2πα ′

)2
)

= 2ω = 2
β

2πα ′ , (2.7)

which leads to

β2

4πα ′ = 2π− 2β . (2.8)

To leading order, the solution of (2.8) gives the Hagedorn temperature

TH =
1

2π
√
2α ′

+
1
2π

+ . . . . (2.9)

2.2. First order

At the next order we have to consider first order corrections in α ′ to the world-sheet sigma
model. We write C=− 2

α ′ +∆C to take this correction into account. From the equations of
motion for χ, there is also the correction to the harmonic oscillator ‘Hamiltonian’,

∆H=−1
2
1
R3

d
dR

R5 d
dR

, (2.10)
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which gives the correction to the energy

∆E(1) = ⟨ψ0|∆H|ψ0⟩= 3 , (2.11)

where the normalized4 ground-state wave-function is ψ0(R) =
√
2ωe−

1
2ωR

2
. Hence we find,

2
β

2πα ′ + 3=
1
2

(
2
α ′ −∆C−

(
β

2πα ′

)2
)
, (2.12)

which we rewrite as

β2

4πα ′ = 2π− 2β−πα ′∆C− 6πα ′ . (2.13)

We will later conjecture that ∆C has the form ∆C= β2

2π2α ′∆c, in which case solving for TH
to the next order we find

TH =
1

2π
√
2α ′

+
1
2π

+
5+ 2∆c

4
√
2π

√
α ′ + . . .

=

√
g

√
2π

+
1
2π

+
5+ 2∆c

8π
√
2π

1
√
g
+ . . . , (2.14)

where g is defined as g=
√
λ

4π = 1
4πα ′ .

2.3. Second order

Motivated by our discussion of the plane-wave in the next section, we assume that the correc-
tions toC are in even powers of β only. Then the next order correction to∆Cwill not affect the
second order result. The correction to the energy is computed using second order perturbation
theory, where we find

∆E(2) =
⟨ψ0|∆H|ψ2⟩⟨ψ2|∆H|ψ0⟩

−2ω
+

⟨ψ0|∆H|ψ4⟩⟨ψ4|∆H|ψ0⟩
−4ω

= 0+

(
−
√
3
)2

−4ω
=−3πα ′

2β
. (2.15)

In computing (2.15) we used that the excited normalized wave-functions are given by

ψ2 (R) = ω
(
ωR2 − 2

)
e−

1
2ωR

2

, ψ4 (R) =
ω√
6

(
ω2R4 − 6ωR2 + 6

)
e−

1
2ωR

2

. (2.16)

Hence we reach the equation

2
β

2πα ′ + 3− 3πα ′

2β
=

1
2

(
2
α ′ −

β2∆c
2π2α ′ −

(
β

2πα ′

)2
)
, (2.17)

which is equivalent to

β2

4πα ′ = 2π− 2β− β2∆c
2π

− 6πα ′ +
3π2 (α ′)

2

β
. (2.18)

Hence the Hagedorn temperature as a function of g is

4 We set
ˆ ∞

0
R3ψ0(R)ψ0(R)dR= 1.
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TH (g) =
√
g

√
2π

+
1
2π

+
5+ 2∆c

8π
√
2π

√
g
+

45
128π2g

+O
(
g−3/2

)
= 0.398942

√
g+ 0.159155+

0.079367+ 0.0317468∆c
√
g

+
0.0356207

g
+O

(
g−3/2

)
.

(2.19)

Notice that the last term is independent of∆c.

3. The Hagedorn temperature from the plane-wave

As we have indicated, the Hagedorn temperature is dependent on the growth of string states as
the energy increases. Unfortunately, the exact spectrum is unknown for type IIB string theory
on AdS5 × S5. However, it is instructive to consider the IIB theory in the plane-wave limit
where the spectrum is known.

The analysis of the Hagedorn temperature in the plane-wave limit was originally carried
out in [22–24] where an exact equation for the Hagedorn temperature in the plane wave back-
ground was derived. Here we will review this analysis, mainly following the discussion in
[24]. We then show that in the plane-wave limit, one finds the same first order correction for
the Hagedorn temperature found numerically in [8] and using the supergravity dual in [14,
15]. We further show that the zero-point energy leads to a correction to the second-order term
in the expansion, but not the third-order term.

Consider the full metric for the AdS5 × S5 type IIB background,

ds2 =−
(
1+R2

)
dt2 +

dR2

1+R2
+R2dΩ2

3 +
(
1−Z2

)
dψ2 +

dZ2

1−Z2
+Z2dΩ ′

3
2

=
(
−
(
1+R2

I

)
dt2 +

(
1−Z2I

)
dψ2 + dR2

I + dZ2I
)
+

{
−R2dR2

1+R2
+
Z2dZ2

1−Z2

}
(3.1)

ds2 = (−2dx+dx− − 1
2
(R2

I +Z2I )dx
+dx+ + dR2

I + dZ2I

− [(R2 −Z2)dx+dx− +
1
2
(R2 +Z2)dx−dx−])+

{
−R2dR2

1+R2
+
Z2dZ2

1−Z2

}
, (3.2)

where x± = 1√
2
(t±ψ) and I= 1, . . .4. If we consider geodesics where R2, Z2 ≪ 1, then we

can drop the term in the curly brackets. If we further focus on geodesics with large angular
momentum along ψ, then ẋ− ≪ ẋ+ and we can drop the term in the square brackets, leaving
the plane-wave metric

ds2 =−2dx+dx− − f 2x2I dx
+dx+ + dx2I , (3.3)

where I= 1, . . .8 and f = 1/
√
2. There is also a background Ramond-Ramond five-form field-

strength,

F+1234 = F+5678 = 2f . (3.4)

In terms of the dimension ∆ and R-charge J of the dual operators, we have

p− =
f√
2
(∆− J) , p+ =

∆+ J√
2f

. (3.5)

Type IIB string theory on the plane-wave metric in (3.3) with the field-strength in (3.4) is
exactly solvable and can be quantized in light-cone gauge [25, 26]. In particular, one finds for
the light-cone Hamiltonian

6
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H= P− = f
(
NB0 +NF0 + 4

)
+

1
α ′p+

2∑
I=1

∞∑
m=1

√
m2 +(α ′p+f)2

(
NBIm+NFIm

)
, (3.6)

where I counts the fermionic world-sheet variables, NBm counts the bosonic oscillators at level
m and NFm counts the fermionic oscillators at level m. More details can be found in [26].

The free energy is the sum over the free energies for each species of the single string spec-
trum. The bosons contribute

1
β
Trln

(
1− e−βp0

)
=−

∞∑
n=1

1
nβ

Tre−
nβ√
2 (p

++p−) , (3.7)

while the fermions contribute

− 1
β
Trln

(
1+ e−βp0

)
=

∞∑
n=1

(−1)n

nβ
Tre−

nβ√
2 (p

++p−) . (3.8)

The trace over states includes an integration over p+ which is normalized to [24]

L

π
√
2

ˆ ∞

0
dp+ = 1 , (3.9)

where L is the length along the spatial part of the light-cone. If we change variables to τ 2,
where

τ2 =
nβ

2π
√
2α ′p+

, (3.10)

then averaging over the free energy from either bosons and fermions leads to

F=−
∞∑

n=1,odd

L
4π2α ′

ˆ ∞

0

dτ2
τ 22

e
− n2β2

4πα ′τ2 tre−
nβ√
2
p− − Lπ

24β2
, (3.11)

where tr refers to the trace over all possible string oscillator modes. The last term arises because
of a mismatch between the number of bosonic and fermionic states at p− = 0. Explicitly writ-
ing the oscillators and enforcing level matching by introducing an integral over τ 1, the free
energy becomes

F=−
∞∑

n=1,odd

L
4π2α ′

ˆ ∞

0

dτ2
τ22

ˆ 1
2

− 1
2

dτ1e
− n2β2

4πα ′τ2

∞∏
m=−∞

(
1+ e−2πτ2

√
m2+ν2+2π iτ1m

1− e−2πτ2
√
m2+ν2+2π iτ1m

)8

− Lπ
24β2 ,

(3.12)

where ν = nβf
2π

√
2τ2

. We then observe that

∞∏
m=−∞

(
1+ e−2πτ2

√
m2+ν2

1− e−2πτ2
√
m2+ν2

)8

= exp

−8
∞∑

m=−∞

∞∑
p=1

[
(−1)p

p
− 1
p

]
e−2π pτ2

√
m2+ν2


= exp

2
∞∑

m=−∞

∞∑
p=1,odd

1
p
16√
π

ˆ ∞

0
dt e−t2−π2τ2

2 p
2m2

t2
− n2β2 f 2p2

8t2


≈ exp

 8nβf

π
√
2τ2

∞∑
p=1

1− (−1)p

p
K1

(
nβfp√

2

) , (3.13)

7
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where K1(x) is the modified Bessel function. To get to the last step we approximated the sum
over m as an integral, since in the following step we will assume that τ2 → 0.

TheHagedorn temperature is determined by taking τ1, τ2 → 0. Using the results from above,
the free energy behaves as

F∼−
∞∑

n=1,odd

L
4π2α ′

ˆ ∞

0

dτ2
τ 22

e
− n2β2

4πα ′τ2 exp

 8nβf

π
√
2τ2

∞∑
p=1

1− (−1)p

p
K1

(
nβfp√

2

) . (3.14)

The dominant contribution comes from n= 1, which corresponds to a single winding around
the thermal circle. The free energy diverges as τ2 → 0 when the relation

β2

4πα ′ =
8βf

π
√
2

∞∑
p=1

1− (−1)p

p
K1

(
βfp√
2

)
(3.15)

is satisfied. Solving this equation for β determines the Hagedorn temperature for the plane-
wave. This equation can be expressed as a series in β by implementing a Mellin transform on
the right hand side and then inverting the transform. After these steps one finds

β2

4πα ′ = 2π− 2β
(√

2f
)
+
β2
(√

2f
)2

2ln2

2π

−
∞∑
k=2

(−1)k
(
22k− 4

)
4
√
π

k!

β
(√

2f
)

4π

2k

Γ

(
k− 1

2

)
ζ (2k− 1) . (3.16)

If we now set f = 1/
√
2 to match the plane-wave limit of AdS5 × S5 and compare (3.16)

to (2.18), we see that the linear term in β is the same in both equations. Hence, the first order
correction to the Hagedorn temperature matches the Maldacena–Urbach result from super-
gravity. Given the success matching this term, it is tempting to set ∆c=−2ln2 in (2.18) so
that the terms quadratic in β also match. The higher order terms in (3.16) lead to corrections
of order g−3/2 and higher and are irrelevant for this study, while the last two terms in (2.18)
are from non-quadratic corrections.

Note that the right hand side of (3.16) with the second term removed is an even function
of β. The second term is the correction coming from the winding mode on the thermal circle
with the extra quadratic piece. The even terms make up the zero-point energy on the string
world-sheet. The first term is the flat-space contribution, while the third term is the leading
order correction.

We now give two arguments why the plane-wave leads to the correct result for the lead-
ing order correction to the Hagedorn temperature. In this analysis the Hagedorn temperature

is found by taking τ2 → 0 in (3.14), such that τ2 ≪ β2

α ′ ∼ 1. Using (3.10) this corresponds to
having p+ ≫ β−1. On the other hand, the modes that contribute to the second line of (3.13)
cut off around m∼ 1/τ2, hence these have p− ∼ β−1. Therefore, the regime that determines
the Hagedorn temperature has p+ ≫ p−, which focuses on the plane-wave limit. This suggests
that including the term inside the square brackets in (3.2) would not affect the Hagedorn tem-
perature, at least to leading order, since as τ2 → 0 the contribution to the free energy would
approach that in (3.14). But this term plus the plane-wave metric gives the quadratic metric
inside the parentheses in (3.1). Since it is effectively this metric that was used in [14, 15] to
compute the leading order correction to the Hagedorn temperature, this shows why the plane-
wave limit can give the correct result.
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A second way to see why the plane-wave limit can give the correct result is by turning on
a chemical potential µ for the charge J= 1√

2
(p+ − p−). The effect of the chemical potential

is to modify the free energy to [23, 24]

F∼ Trln

(
−∂+∂− +

β2 −µ2

4πα ′ −

[
2π− 2(β−µ)+

(β−µ)
2 ln2

π
+ . . .

])
. (3.17)

Hence, the expectation value of J is

⟨J⟩= β
∂F
∂µ

∼ Tr
− µ

2πα ′ − 2+ . . .(
−∂+∂− + β2−µ2

4πα ′ −
[
2π− 2(β−µ)+ (β−µ)2 ln2

π + . . .
]) . (3.18)

Clearly, ⟨J⟩< 0 if µ= 0. This nonzero value for ⟨J⟩ is due to the non-symmetric nature of the
plane-wave metric. To compensate for this we set µ=−4πα ′ + . . . . This results in the new
Hagedorn equation

β2

4πα ′ = 2π− 2β+
β2 ln2
π

− 4πα ′ + . . . . (3.19)

Since the term linear in β is unchanged, the first correction to the Hagedorn temperature also
remains unchanged. However, the last term in (3.19) will affect the next order correction.

4. Numerical results

To test our predictions we carry out and extend the QSC analysis of Harmark and Wilhelm
in [8]. To determine the asymptotic behavior they computed TH from 0⩽√

g⩽ 1.8 in steps
of ∆

√
g= 0.025. Their results for TH are accurate to six significant digits for

√
g= 1.8 and

improve significantly for smaller values of
√
g. In our analysis we are able to push

√
g out to

2.25 where we conservatively estimate that the result for TH is accurate to at least 1× 10−9.
This allows us to make more precise estimates for the asymptotic coefficients.

We briefly sketch the QSC procedure of Harmark and Wilhelm. More details can be found
in [8].5 The starting point are the 256 PSU(2,2|4)Q-functions which satisfy a set of difference
equations. The ones most important for our purposes are

Q+
a|i (u)−Q−

a|i (u)+Qi (u)Qj (u)Q+
a|j (u) = 0 , (4.1)

where a= {1,2,3,4}, i = {1,2,3,4}, Q±
a|i(u) = Qa|i(u± i

2 ), and Qi(u) = χijQj(u), with

χij =


0 0 0 −1
0 0 +1 0
0 −1 0 0
+1 0 0 0

 . (4.2)

We have other Q-functions, Pa(u), which satisfy the relation

Pa (u) =−Qi (u)Q+
a|i (u) . (4.3)

In addition, there are also orthogonality conditions

Qa|iQ
b|i =−δba , Qa|iQ

a|j =−δji , (4.4)

where Qa|i = χabχijQb|j.

5 We keep the same convention as in [8], which reverses the spatial and R-symmetry indices in the Q-functions.
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One must also impose asymptotic and analytic conditions for the Q-functions. The asymp-
totic conditions follow from the T-system and have the behavior

P1 (u) = A1y
−i u ,

P2 (u) = A2

(
u− i

1− 4y2 + y4

2(1− y4)

)
y−i u ,

P3 (u) = A3y
i u ,

P4 (u) = A4

(
u+ i

1− 4y2 + y4

2(1− y4)

)
yi u , (4.5)

Q1 (u) = B1 , Q2 (u) = B2u , Q3 (u) = B3u
2 ,

Q4 (u) = B4u

(
u2 +

5− 2y2 + 5y4

(1+ y2)2

)
,

where y= eiπ exp(−1/(2TH)). Using the so-called H-symmetry, the coefficients can be fixed
to

A1 = iA2 =−A3 =−iA4 =
1− y
1+ y

B1 = B2 = 1 , B3 =− i

2(1− y)4
, B4 =− i

6(1− y)4
. (4.6)

The Qi(u) have a single short cut in the u plane between −2g and 2g. Hence, we can write
the Qi(u) as the series expansions

Q1(u) = 1+
∞∑
n=1

c1,2n(g)g2n

x(u)2n
,

Q2(u) = gx(u)

(
1+

∞∑
n=1

c2,2n−1(g)g2(n−1)

x(u)2n

)
,

Q3(u) = − i
2(1− y)4

(gx(u))2
(
1+

∞∑
n=2

c3,2n−2(g)g2(n−2)

x(u)2n

)
,

Q4(u) = − i
6(1− y)4

(gx(u))3
(
1+

c4,−1(g)g−2

x(u)2
+

∞∑
n=2

c3,2n−3(g)g2(n−2)

x(u)2n

)
, (4.7)

where the coefficients ci,m(g) are real and x(u) is the Zhukovsky variable,

x(u) =
u
2g

(
1+

√
1− 4g2

u2

)
. (4.8)

10



J. Phys. A: Math. Theor. 56 (2023) 435401 S Ekhammar et al

The Pa have a single long-cut on u ∈ {−∞,−2g} and u ∈ {+2g,+∞}. Continuing across the
cut we obtain the new function P̃a(u) which satisfies the gluing condition [12]

P̃a (u) = (−1)1+aPa (u) , u ∈ {−2g,2g} . (4.9)

The P̃a(u) can be extracted from (4.3) by replacing x(u) in (4.7) with x̃(u) = 1/x(u).
To solve numerically, we assume that the Qa|i(u) have the large u expansion

Qa|i (u) = y−sai uupa|i
N∑
n=0

Ba|i,n
un

, (4.10)

where

sa =

{
1 a= 1,2

−1 a= 3,4

pa|i = sa+ a+ i− 3 ,

(4.11)

and N is some large cutoff. To match the asymptotics we set the leading coefficients to

Ba|i,0 =−sa
√
y

1− y
AaBi . (4.12)

A remaining gauge freedom also allows us to set

B3|i,n = (−1)n+1B1|i,n , B4|i,n = (−1)n+1B2|i,n . (4.13)

We then take the difference equation in (4.1) and multiply it by a factor to put it in the form

yi sauu−pa|i
(
Q+
a|i−Q−

a|i+QiQ jQ+
a|j

)
=

∞∑
n=1

u3−nVa|i,n , (4.14)

where the Va|i,n = 0. Solving these in order leads to a set of linear equations for the Ba|i,n.
Solving up to n= 10 and using the orthogonality relations in (4.4) then fixes Ba|j,m up tom= 2
in terms of g, y and all ci,ℓ that appear in the sums in (4.10) with each sum cut off at n= K= 2.
Furthermore, solving up to n= 10 also solves for Ba|4,m, Ba|3,m−2 and Ba|2,m−2 up to m= 10
in terms of the other coefficients. One also finds that consistency requires the relations

c4,−1 =
1+ 10y+ y2

(1+ y2)
+ 9g2c2,1 − 5g4c1,2 (4.15)

c4,1 = − 2
1+ y+ y2

(1+ y2)
+ 3

1+ 4y+ y2

(1+ y2)
c2,1 − 2g2

1− 5y+ y2

(1+ y2)
c1,2 + 9g2c3,2

− 15g4c2,3 + 27g4c2,1c1,2 + 7g6c1,4 − 15g6 (c1,2)
2
. (4.16)

Going beyond n= 10 to n= N+ 8 then fixes all Ba|i,m up to m=N in terms of g, y and all cj,ℓ
up to the cutoff K= N/2+ 1, assuming that N is even. For a given g this then gives 4K− 3
independent ci,ℓ parameters, plus the y parameter.

To fix these 4K− 2 parameters we impose the gluing conditions at the points u= xn ≡
2gcos(π (n− 1/2)/Ip), n= 1,2, . . . IP. Since the Pa(u) are complex on the interval, each point
gives two conditions. However, because of symmetry the point at xn gives the same conditions
as the point at xIP−n =−xn. Hence, in order to fix the parameters, the number of points must
satisfy IP ⩾ 4K− 2. To determine Pa(xn) and P̃a(xn) we consider the large u expansion for
Qa|i(u) at u= xn+ iU/2, where U is a large positive odd integer, and use the QSC equations

11
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Table 1. Values of N, K, U and IP for ranges of
√
g.

Range of
√
g N K U IP

0 to 1.00 18 10 91 44
1.025 to 1.225 24 13 91 56
1.25 to 1.45 30 16 91 68
1.475 to 1.65 36 19 91 80
1.675 to 1.80 42 22 101 104
1.825 to 2.05 48 25 101 124
2.075 to 2.20 54 28 121 136
2.225 to 2.25 60 31 121 148

in (4.1) to bring Qa|i(u) to the points u= xn+ i/2. From there we can use (4.3) to find Pa(xn)
and the corresponding equation to find P̃a(xn).

For the ranges of
√
g carried out in our QSC computations we setN,K,U and IP to the values

shown in table 1. By using a cluster we were able to reach higher values of these parameters
than in [8], thus reaching more accurate predictions for the large

√
g coefficients. The resulting

values for TH are shown in figure 1, along with the results found in [8]. The values computed
here are provided in the supplemental file ‘tempdata.csv’.

We assume that the analytic behavior of TH has the form

TH = c0g
1/2 + c1 + c2g

−1/2 + c3g
−1 + c4g

−3/2 + c5g
−2 + . . . . (4.17)

To find the coefficients cn we go in steps, taking advantage of the fact that the first two coef-
ficients are known analytically. Starting with the leading term, we fit the data by looking
for a stable starting point that is as small as possible but is still in the asymptotic regime.
Typically this occurs somewhere between 0.75<

√
g< 1.0. We then take the data points out

to
√
g= 2.25 and fit to a curve of the form in (4.17) with highest power g−7/2. We find that

c0 = .398 94± 1× 10−5, where the estimated error is mainly due to the uncertainty of the
starting point for the fit. This matches the analytic result c0 = 1√

2π
≈ 0.398 94. Subtracting

off 1√
2π
g1/2 from the curve, the leading term is now the constant. Proceeding as before, we

fit this up to g−4, where we find that c1 = 0.15916± 1× 10−5. This matches nicely with the
analytic result c1 = 1

2π ≈ 0.159155.
Next, we subtract off the analytic result for the constant and are left with the curve shown

in figure 2. We can then compute the next two terms in the series by fitting to a curve up to
g−9/2. We find that c2 =−0.00865± 1× 10−5 and c3 = 0.0356± 1× 10−4, which improves
on the precision of these same two coefficients as found by Harmark and Wilhelm [8]. The
error bars on c2 and c3 are correlated. Moreover, c2 turns out to be unnaturally small, so the
c3 term dominates over the range of

√
g we are able to consider. With this in mind we analyze

the second term first. If we compare it to the corresponding term in (2.19), we see that it
matches to three significant digits. If we now assume that c3 takes the analytic form in (2.19),
we find that c2 =−0.0086538± 3× 10−7 with substantially narrower error bars. If we borrow
from the plane-wave result, then ∆c=−2ln(2), which gives c2 = 0.035366. This obviously
fails to match the numerical result when plugging into (2.19). However, if we instead choose
∆c=−4ln(2), then c2 =−0.0086538 which is right on top of our numerical result! In a
companion paper we will show that the corresponding result for the Hagedorn temperature in
ABJM theory is consistent with∆c=−3ln(2) [16], suggesting that the coefficient in front of
the ln(2) is related to the dimension of the CFT.
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Figure 1. A plot of TH versus
√
g. The results from [8] are in blue while our results are

in red and lie beneath the blue dots for
√
g⩽ 1.80.

Figure 2. Plot of TH−
√
g√
2π

− 1
2π versus

√
g. The plot also shows the curve

c2g
−1/2 + c3g

−1.

Now that we have the conjectured analytic forms for c2 and c3, we can subtract off their
contribution to the curve and attempt to find the next two coefficients. Fitting to a curve up to
g−5, we find that c4 =−0.008196± 3× 10−6 and c5 =−0.00671± 3× 10−5. The resulting
curve, along with the curve c4g−3/2 + c5g−2 are shown in figure 3 . It would be interesting to
find the corresponding analytic results.
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Figure 3. Plot of TH versus
√
g with the first four terms in the expansion subtracted off.

The plot also shows the curve c4g−3/2 + c5g
−2.
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