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We introduce new techniques for calculations in gauge theories with extended supersymmetry. We are
working in projective superspace where the SUð2Þ R-symmetry is realized geometrically by including an
auxiliary CP1 component in the superspace. Different gauge representations are associated with different
dependence on the CP1 coordinate ζ and using contour integrals on CP1 we define natural projection
operators on these different representations which leads to elegant formulas for all relevant objects. The
new techniques lead to compact expressions for Lagrangians and field strengths in terms of the gauge
prepotential but also to effective ways of reducing superspace expressions to components, i.e. to write them
in terms of fields transforming covariantly only under a subgroup of the supersymmetry group. We
illustrate our findings in several examples in three and four dimensions.
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I. INTRODUCTION

Projective superspace1 [1] is a formalism where theories
with a supersymmetry algebra with an R-symmetry group
containing one or several factors of SUð2Þ can be treated
keeping the supersymmetry manifest. Because of its close
connection to the twistor space description of Hyperkähler
manifolds [2–4] and quaternion Kähler manifolds [5,6] it
has over the years led to many interesting applications in
both mathematics and physics. Among others, one could
mention the Hyperkähler quotient construction [2,7], the
explanation of the wall crossing phenomena [8] and the
c-map [9–11]. In physics, projective superspace makes it
possible to calculate contributions to the effective action

keeping the supersymmetry manifest. This technique was
established for hypermultiplet contributions in [12,13].
Even more interesting are the vector multiplet contributions
where, for a long time, only the Abelian case was fully
known. The topic of Yang-Mills theory in projective super-
space was introduced in [14] and further developments can
be found in [15]. In a previous publication [16] we made
some contributions to this topic by finding explicit expres-
sions for the field strengths in terms of the gauge prepotential
eV and showing that they have the expected properties.
Also, supergravity with extended supersymmetry has been
described in the projective superspace formalism [17–22].
For a review we recommend [23].
The types of theories that can be described in projective

superspace can also be described in harmonic super-
space, albeit not always very directly, see [24–26]. In
particular, Yang-Mills theory in harmonic superspace
was treated in [27]. A nice introduction to the topic can
be found in [28].
In both harmonic and projective superspace, the SUðRÞR

symmetry is kept manifest by introducing an auxiliary
CP1 ¼ SUð2Þ

Uð1Þ on which all the superfields depend so that

SUð2ÞR transformations are realized as coordinate trans-
formations on this CP1. In the harmonic approach the
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1Not to be confused with the generalization of ordinary
projective spaces to the superworld.
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superfields depend on the full SUð2Þ harmonics and the
Uð1Þ dependence is factored out by considering fields with
fixed Uð1Þ charge and actions that are Uð1Þ invariant. In
contrast, the projective superspace formalism has factored
out theUð1Þ dependence from the start by only considering
superfields that depend holomorphically on CP1. Contour
integrals on CP1 are then used to construct invariant
actions. A careful comparison between the harmonic and
projective superspace formalisms can be found in [24,25].
A hybrid formalism between projective and harmonic

superspace, called hyperspace, has also been developed
in [29–33]. In [16] we took the results of [32] to develop the
projective superspace formalism for Yang-Mills theory.
A key insight used in this as well as in our previous paper
is that all objects should be expanded in powers of
X ¼ eV − 1, where V is the gauge prepotential, taken at
different points of CP1. Furthermore, at several points in
our calculations it is convenient to write our objects in
terms of objects regular around the north pole or south pole
of the auxiliary CP1. This may be done using projection
operators defined by contour integrals modified with the ϵ
prescription introduced in [29]. It is interesting that the
projection operators defined in this way do not project
symmetrically on positive and negative powers of ζ but
nevertheless lead to elegant formulas that can be used in
further calculations. We assume that the reader is familiar
with basic superspace technology at the level of [34,35].
The paper is organized as follows: in Sec. II we introduce

the projective superspace formalism, in particular we
discuss general aspects of gauge theory in the projective
superspace approach. In Sec. III we introduce the new
approach by expanding all objects of interest in terms of
X ¼ eV − 1 and using projectors defined using the ϵ
prescription. We try to keep the discussion as general as
possible. After this general discussion, in order to illustrate
the power of the new techniques introduced in this paper,
we treat several specific examples in Sec. IV. We treat
gauge theories with eight supercharges in three and four
dimensions and also with six supercharges in three dimen-
sions. In the latter case we find the surprising fact that
the Lagrangian that gives Yang-Mills theory for the eight
supercharge theories gives Chern-Simons theory in the case
with six supercharges. In the Appendix we review the ϵ
prescription.

II. GAUGE THEORY IN PROJECTIVE
SUPERSPACE

A. Projective superspace

Projective superspace is available as soon as there is an
SUð2Þ R-symmetry in the theory. The R-symmetry is kept
manifest by introducing an auxiliary projective space, CP1,
with coordinate ζ. All superfields transform as sections of
some holomorphic line bundle over this CP1.

The basic matter multiplet is a superfield ϒðζÞ, analytic
around the north pole of the CP1 so it can be expanded as

ϒðζÞ ¼
X∞
n¼0

ϒnζ
n: ð1Þ

Fields with this ζ dependence are called Arctic multiplets.
There are also fields that are analytic around the south pole
of the CP1, they can be expanded as

ϒ̃ðζÞ ¼
X0
n¼−∞

ϒ̃nζ
n; ð2Þ

and are called Antarctic multiplets.
Further, there are multiplets with polynomial depend-

ence on ζ. The Oð2kÞ multiplet is defined as

ηðζÞ ¼
Xk
n¼−k

ηnζ
n: ð3Þ

Of particular importance is the case where k → ∞, which is
called the tropical multiplet since it is singular at both the
north and the south pole.
Conjugation of a generic superfield TðζÞ ¼ P

n tnζ
n is

given by Hermitian conjugation of the coefficients tn
combined with the antipodal map on the CP1

T̄ðζÞ ¼
X
n

tnζn ¼
X
n

t†n

�
−
1

ζ

�
n
: ð4Þ

Using the conjugation it makes sense to define self-
conjugate (or “real”) Oð2kÞ multiplets by imposing η̄ ¼ η,
which implies

Xk
n¼−k

ηnζ
n ¼

Xk
n¼−k

ð−1Þnη†−nζn: ð5Þ

This makes sense also for the tropical multiplet where
k → ∞.
It is also possible to define ζ dependent supercovariant

derivatives that transform as sections of a line bundle of
CP1. The particular line bundle (and thus the ζ depend-
ence) is given by the representation of the derivatives under
the R-symmetry. In the four-dimensional theory with eight
supercharges, there are two SUð2ÞR doublets of super-
covariant derivatives Di

α and D̄iα̇, obeying the algebra

fDi
α; D̄jα̇g ¼ iδij∂αα̇; fDi

α; D
j
βg ¼ 0; ð6Þ

where i, j are the SUð2ÞR indices and α and α̇ are spinor
indices in the Weyl representations of the Lorentz algebra.
Using the spinor index formalism, the space time derivative
is denoted ∂αα̇. The derivatives Di

α and D̄iα̇ transform in

DAVGADORJ, LINDSTRÖM, and von UNGE PHYS. REV. D 108, 066004 (2023)

066004-2



the fundamental and antifundamental representation of
SUð2ÞR. Using this, the definition of the projective super-
covariant derivatives becomes

∇α ¼ D1
α þ ζD2

α;

∇α̇ ¼ D̄2α̇ − ζD̄1α̇; ð7Þ

and they anticommute among themselves as can be seen
from (6). In the general discussion of this paper, we will
often illustrate the new techniques on examples involving
this particular situation, i.e. in the case of N ¼ 2 super-
symmetric gauge theory in four dimensions. However, our
results are more generally true. In other cases the projective
derivatives look slightly different [see for instance
Eqs. (103) or (146)] but the main conclusions remain valid.
Since the supercovariant derivatives constructed in this

way anticommute with each other they can be used to
define constrained superfields. In the N ¼ 2 case defined
above the supercovariant projective derivatives (7) can be
used to define constrained superfields ϒ as the kernel of
this set of operators

∇αϒ ¼ 0; ∇α̇ϒ ¼ 0: ð8Þ

We call such fields projective superfields.2 The most
common instance is if the field ϒ is complex and has
arctic ζ dependence. It is then a projective version of the
hypermultiplet, or some generalization thereof. In this case
we also have the conjugate field ϒ̄ which is projective but
with antarctic ζ dependence. The action is given by

Z
d4xd4θ

I
dζ
2πiζ

ϒ̄ϒ; ð9Þ

where the integral is over only half of the superspace since
the fields are constrained. In what follows, we will suppress
the 2πi factor in the measure.

B. Gauge transformations and gauge invariance

In this section we mimic the usual superspace gauging of
super Yang-Mills as far as possible.
Given an arctic projective field it can be transformed by a

global phase rotation where Λ is a constant

ϒ → eiΛϒ ð10Þ

and the action (9) is invariant under this global symmetry.
To make this transformation local, we allow the parameter
Λ to become a superfield itself. In order to respect the
properties ofϒwe needΛ to also be projective with arctic ζ
dependence. Similarly we have

ϒ̄ → ϒ̄e−iΛ̄; ð11Þ

where Λ̄ is the conjugate of Λ and thus projective with
antarctic ζ dependence. The superspace Lagrangian

ϒ̄ϒ; ð12Þ

which is invariant under the global phase rotation, is not
invariant in the local case. In order to make it invariant
under the local transformation we introduce the projective
superspace gauge field VðζÞ which is projective, self-
conjugate and with tropical ζ dependence.3 Under gauge
transformations it transforms as

eV → eiΛ̄eVe−iΛ ð13Þ

so that the expression

ϒ̄eVϒ ð14Þ

is invariant. Since V and the gauge parameters are projec-
tive superfields, the supercovariant derivatives ∇;∇ are
automatically also gauge covariant without adding any
connection coefficients. Using eV we may redefine fields to
transform with only the arctic parameter Λ, or, alternatively
with the antarctic parameter Λ̄ only. This we call the arctic/
antarctic representation where derivatives of gauge covar-
iant fields are also gauge covariant.
Alternatively one may split eV into parts with only

positive or negative powers of ζ

eV ¼ eŪeU; ð15Þ

where eU contains only non-negative powers of ζ and its
conjugate eŪ contains only nonpositive powers. Under
gauge transformations they transform

eU → eiKeUe−iΛ;

eŪ → eiΛ̄eŪe−iK; ð16Þ

where K is a real ζ independent superfield. Using eU and
eŪ we may convert all fields in the theory to transform with
the parameter K only. This we call the vector representa-
tion. The transformation of the covariant derivatives in
going from the polar to the vector representation is given by
a similarity transformation

½∇α�v ¼ eU∇αe−U ¼ e−Ū∇αeŪ ¼ ∇α þ Γα: ð17Þ

2Sometimes also referred to as projectively chiral superfields.

3V ¼ P∞
n¼−∞ vnζn contains an infinite number of compo-

nents. However, almost all of them can be gauged away leaving
only v−1; v0; v1 where v−1 and v1 are potentials for the adjoint
chiral superfield of the gauge multiplet whereas v0 can be
identified with the N ¼ 1 gauge prepotential.
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The second equality follows from the fact that V is
projective since then

0 ¼ ∇αeV ¼ ∇αðeŪeUÞ ¼ ð∇αeŪÞeU þ eŪð∇αeUÞ: ð18Þ

We thus find that in the arctic/antarctic representations the
supercovariant derivatives do not develop any nontrivial
connection coefficients and they stay the same as the super-
covariant derivatives in the ungauged theory. This should
be contrasted to the situation in the vector representation
in which the gauged supercovariant derivaties do have a
nontrivial connection coefficient piece.

C. The field strength

When we look at the anticommutation relations between
the projective covariant derivatives in the vector represen-
tation, taken at different points on the CP1, ζ1 and ζ2 say,
they no longer anticommute. In all cases studied in this
paper the anticommutator is proportional to a field strength

f½∇α�vðζ1Þ; ½∇β�vðζ2Þg ¼ −ðζ2 − ζ1ÞCαβW†; ð19Þ

which, introducing a derivative ∂

∂ζ on the CP1, allows us to
write

�
½∇α�v;

�
∂

∂ζ
; ½∇β�v

��
¼ −CαβW†; ð20Þ

using the definition of the ζ derivative. Multiplying the
relation (20) by appropriate exponential factors while using
the similarity transformation (17) taking us back to the
arctic representation where we have

�
∇α;

�
e−U

∂

∂ζ
eU;∇β

��
¼ −Cαβe−UW†eU ¼ −CαβW†:

ð21Þ

Here we have introduced the notation W;W† for the field
strength in the vector representation and W;W† for the
field strength in the arctic representation (and W̃; W̃† in the
antarctic case). Later we will also need W;W†;W0 as ζ
components of field strengths that explicitly depend on ζ.
Notice that we use † to denote the conjugate field strength
since the bar denotes the projective superspace conjugation
(4) that also changes the representation from arctic to
antarctic.
Defining the gauge covariant ζ derivative with gauge

field A, that gauges the symmetry (10), (11),

Dζ ¼ ∂ζ þA ¼ e−U∂ζeU; ð22Þ

we see that the field strength in the Arctic representation
may be calculated as

W† ¼ −∇2A: ð23Þ

Similar formulas can be derived in the antarctic represen-
tation where the gauge field is given by

Ã ¼ eŪð∂ζe−ŪÞ: ð24Þ

D. Solving for A

In [16] we expressedA in terms of the gauge potential V
by writing it as an expansion in powers of X ¼ eV − 1.
Using (22) and (24) we wrote

∂ζX ¼ A − Ãþ XA − ÃX; ð25Þ

which gave a recursion relation in powers of X that can be
solved. To find the arctic representation potential A or the
antarctic representation potential Ã one needs to project
onto positive or negative powers of ζ. This can be elegantly
done using contour integrals and the ϵ prescription4

introduced in [29,30] (see the Appendix for more details).
In short, we use the notation

1

ζ10
≡ 1

ζ1

X∞
n¼0

�
ζ0
ζ1

�
n
�
¼ 1

ζ1 − ζ0
if

���� ζ0ζ1
���� < 1

�
;

1

ζ01
≡ 1

ζ0

X∞
n¼0

�
ζ1
ζ0

�
n
�
¼ 1

ζ0 − ζ1
if

���� ζ1ζ0
���� < 1

�
: ð26Þ

Using this, in [16], we found that, after some nonobvious
manipulations, the gauge potential (22) can be written as

Aðζ0Þ ¼
X∞
n¼1

ð−1Þnþ1

I
dζ1…dζn

1

ζ10

X1…Xn

ζ21…ζn;n−1

1

ζn0
;

ð27Þ

where Xk ¼ eVðζkÞ − 1. We also found that, under gauge
transformations, A transforms as a gauge field

δA ¼ −i∂ζΛþ ½iΛ;A� ¼ −i½Dζ;Λ�: ð28Þ

It is also interesting to observe that, under conjugation, the
arctic representation gauge field A transforms into the
corresponding field in the antarctic representation (24)

Ā ¼ −ζ2Ã: ð29Þ

4This is a procedure for avoiding poles analogous to the usual
iϵ procedure in quantum field theory.

DAVGADORJ, LINDSTRÖM, and von UNGE PHYS. REV. D 108, 066004 (2023)

066004-4



III. NEW TECHNIQUES

The analysis up until now has been made by splitting the
gauge field into parts with only non-negative or nonpositive
powers of ζ.

eV ¼ eŪeU; ð30Þ

in such a way that eU and eŪ are conjugates of each other
and subsequently expanding everything in powers of
X ¼ eV − 1. This turns out to be the wrong choice if we
would like to find useful expressions for eU. The main
problem is that since eU and eŪ are conjugates of each
other and, in particular, contain equal parts of terms
independent of ζ, it is awkward to write the resulting
expressions using the ϵ prescription which naturally puts
the ζ independent terms together with the terms with
positive powers of ζ (A4).

A. The splitting

To illustrate this, let us formally expand eU in powers of
X ¼ eV − 1

eU ¼ 1þ Yð1Þ þ Yð2Þ þ…; ð31Þ

eŪ ¼ 1þ Ȳð1Þ þ Ȳð2Þ þ…; ð32Þ

where YðnÞ contains n powers of X. Inserting this ansatz
into (30) we get

eV ¼ 1þ X ¼ ð1þ Ȳð1Þ þ Ȳð2Þ þ…Þ
× ð1þ Yð1Þ þ Yð2Þ þ…Þ; ð33Þ

which gives us an infinite set of equations that can be
solved recursively,

Ȳð1Þ þ Yð1Þ ¼ X;

Ȳð2Þ þ Yð2Þ ¼ −Ȳð1ÞYð1Þ;

Ȳð3Þ þ Yð3Þ ¼ −Ȳð2ÞYð1Þ − Ȳð1ÞYð2Þ;

..

. ð34Þ

At each stage of the solution we have to project the
expression on the right-hand side on positive or negative
powers of ζ with a symmetric splitting of the ζ-independent
terms so that ȲðnÞ is the conjugate of YðnÞ in agreement with
(31) and (32).
If we instead use projection operators defined using

contour integrals and the ϵ prescription as in (A4) and (A2),
then it naturally favors an asymmetrical projection where
the ζ independent part is put together with the terms with
positive powers of ζ

I
dζ1

X1

ζ10
¼

X∞
n¼0

xnζn0;

I
dζ1

X1

ζ01
¼

X−1
n¼−∞

xnζn0: ð35Þ

We therefore make a different ansatz, writing eV ¼ e
ˇ̄UeÛ

where now eÛ contains all the ζ independent terms.
Expanding in powers of X we get

eÛ ¼ 1þ Ŷð1Þ þ Ŷð2Þ þ…; ð36Þ

e
ˇ̄U ¼ 1þ ˇ̄Yð1Þ þ ˇ̄Yð2Þ þ…; ð37Þ

which leads to the recursive relations

ˇ̄Yð1Þ þ Ŷð1Þ ¼ X;

ˇ̄Yð2Þ þ Ŷð2Þ ¼ − ˇ̄Yð1ÞŶð1Þ;

ˇ̄Yð3Þ þ Ŷð3Þ ¼ − ˇ̄Yð2ÞŶð1Þ − ˇ̄Yð1ÞŶð2Þ;

..

. ð38Þ

Solving (38) and implementing the projections through the
contour integrals and the ϵ prescription we find that eÛ and

e
ˇ̄U can be written elegantly as

eÛðζ0Þ ¼ 1þ
X∞
n¼1

ð−1Þnþ1

I
dζ1…dζn

X1…Xn

ζ21…ζn;n−1

1

ζn0
;

ð39Þ

e
ˇ̄Uðζ0Þ ¼ 1þ

X∞
n¼1

ð−1Þnþ1

I
dζ1…dζn

1

ζ01

X1…Xn

ζ21…ζn;n−1
:

ð40Þ

It is also possible to choose a projection where the
ζ-independent terms are put together with the negative
powers of ζ since

I
dζ1

X1

ζ10

ζ0
ζ1

¼
X∞
n¼1

xnζn0;

I
dζ1

X1

ζ01

ζ0
ζ1

¼
X0
n¼−∞

xnζn0: ð41Þ

In this case we are instead lead to the ansatz eV ¼ e
ˆ̄UeǓ and

the expressions
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eǓðζ0Þ ¼ 1þ
X∞
n¼1

ð−1Þnþ1

I
dζ1…dζn

ζ0
ζ1

X1…Xn

ζ21…ζn;n−1

1

ζn0
;

ð42Þ

e
ˆ̄Uðζ0Þ ¼ 1þ

X∞
n¼1

ð−1Þnþ1

I
dζ1…dζn

1

ζ01

X1…Xn

ζ21…ζn;n−1

ζ0
ζn

:

ð43Þ

For completeness we also give the inverse expressions

e−Ûðζ0Þ ¼ 1þ
X∞
n¼1

ð−1Þn
I

dζ1…dζn
1

ζ10

X1…Xn

ζ21…ζn;n−1
;

ð44Þ

e−Ǔðζ0Þ ¼ 1þ
X∞
n¼1

ð−1Þn
I

dζ1…dζn
1

ζ10

X1…Xn

ζ21…ζn;n−1

ζ0
ζn

;

ð45Þ

e−
ˆ̄Uðζ0Þ ¼ 1þ

X∞
n¼1

ð−1Þn
I

dζ1…dζn
ζ0
ζ1

X1…Xn

ζ21…ζn;n−1

1

ζ0n
;

ð46Þ

e−
ˇ̄Uðζ0Þ ¼ 1þ

X∞
n¼1

ð−1Þn
I

dζ1…dζn
X1…Xn

ζ21…ζn;n−1

1

ζ0n
:

ð47Þ

We are now in the situation that we may write

eV ¼ eŪeU ¼ e
ˇ̄UeÛ ¼ e

ˆ̄UeǓ; ð48Þ

where the expressions differ in where we have put the
ζ-independent terms according to the chosen projection,
(35) or (41). We may formally isolate the ζ-independent
part that is different in eÛ, eU, and eǓ and write eÛ ¼ ePeU.
That eP is ζ independent can be seen from the fact that

using (48) we may write eP ¼ eÛe−U ¼ e−
ˇ̄UeŪ explicitly

showing that eP contains at the same time only non-
negative and only nonpositive powers of ζ. From the
definition also follows that eU ¼ eP̄eǓ so that eÛ ¼
ePeU ¼ ePeP̄eǓ.

We may express ePeP̄ ¼ eÛe−Ǔ ¼ e−
ˇ̄Ue

ˆ̄U using contour
integrals as

ePeP̄ ¼ 1þ
X∞
n¼1

ð−1Þnþ1

I
dζ1…dζn

X1…Xn

ζ21…ζn;n−1

1

ζn
;

ð49Þ

with inverse

e−P̄e−P ¼ 1þ
X∞
n¼1

ð−1Þn
I

dζ1…dζn
1

ζ1

X1…Xn

ζ21…ζn;n−1
;

ð50Þ

which can be written compactly defining the Hermitian and
ζ-independent quantities

ΓðnÞ ¼
I

dζ1…dζn
X1…Xn

ζ21…ζn;n−1

1

ζn
;

LðnÞ ¼
I

dζ1…dζn
1

ζ1

X1…Xn

ζ21…ζn;n−1
; ð51Þ

as

ePeP̄ ¼ 1þ
X∞
n¼1

ð−1Þnþ1ΓðnÞ;

e−P̄e−P ¼ 1þ
X∞
n¼1

ð−1ÞnLðnÞ: ð52Þ

Using the rules for conjugation of the fields including the
contour integrals and the ϵ-regulated ζ denominators given
in the Appendix we can check that ΓðnÞ and LðnÞ are self-
conjugate and furthermore that

LðnÞ − ΓðnÞ ¼
Xn−1
k¼1

ΓðkÞLðn−kÞ ¼
Xn−1
k¼1

LðkÞΓðn−kÞ: ð53Þ

This we show by writing the left-hand side using (51) as

LðnÞ − ΓðnÞ ¼
I

dζ1…dζn
X1…Xn

ζ21…ζn;n−1

�
1

ζ1
−

1

ζn

�
; ð54Þ

and then rewriting the ζ factors in two different ways:

1

ζ1
−

1

ζn
¼ 1

ζ1ζn
½ðζn − ζn−1Þ þ � � � þ ðζ2 − ζ1Þ�;

1

ζ1
−

1

ζn
¼ ζn − ζn−1

ζn−1ζn
þ � � � þ ζ2 − ζ1

ζ1ζ2
; ð55Þ

and then canceling the ζ factors ðζk − ζk−1Þ that appear
with the ϵ-regulated 1

ζk;k−1
factors in the numerator. That this

is possible is again proven in the Appendix. We conclude
that (49) and (50) are in fact inverses of each other.
In the following, it will also be useful to introduce the

additional ζ independent but Hermitian conjugate pair
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AðnÞ ¼
I

dζ1…dζn
X1…Xn

ζ21…ζn;n−1
;

ĀðnÞ ¼ −
I

dζ1…dζn
1

ζ1

X1…Xn

ζ21…ζn;n−1

1

ζn
: ð56Þ

Notice that since eP is ζ independent we may use any
representation to calculate the connection coefficient of the
ζ derivative

A ¼ e−U∂ζeU ¼ e−Û∂ζeÛ ¼ e−Ǔ∂ζeǓ; ð57Þ

which can also be checked explicitly using the expressions
(39), (42), (44) and (45).
It is also interesting to check how (49) and (50) transform

under gauge transformations. An explicit calculation gives

δðePeP̄Þ ¼ iλ̄0ePeP̄ − ePeP̄iλ0;

δðe−P̄e−PÞ ¼ iλ0e−P̄e−P − e−P̄e−Piλ̄0; ð58Þ

where λ0 and λ̄0 are the ζ-independent pieces of ΛðζÞ and
Λ̄ðζÞ and are precisely the gauge parameters of the ζ
components of the superfield. More precisely, the gauge
field V transforms under gauge transformations as

δV ¼ iΛ̄ − iΛþOðVÞ: ð59Þ

This implies the ζ-component transformations

δv0 ¼ iλ̄0 − iλ0 þOðvÞ: ð60Þ

This allows us to identify v0 as the component gauge field
with the standard component gauge transformation with
λ0; λ̄0 as the parameter.
Given the definition of eP ¼ eÛe−U and the transforma-

tion properties of eU → eiKeUe−iΛ we find that eP and eP̄

must transform as

eP → eiλ̄0ePe−iK;

eP̄ → eiKeP̄e−iλ0 ; ð61Þ

and furthermore that

eÛ → eiλ̄0eÛe−iΛ;

eǓ → eiλ0eǓe−iΛ; ð62Þ

which again can be confirmed by explicit calculation. This
gives a nice interpretation of the fields eÛ; eǓ; eP; eP̄ as
converters between the arctic, vector, chiral/component and
antichiral/component representations.

B. The basic potentials

To illustrate the power of our new formalism we will
calculate ζ-independent expressions for the connection
coefficients of the four-dimensional (vector representation)
gauge covariant derivatives as defined in (17)

Γα ¼ eUð∇αe−UÞ ¼ e−PeÛ∇αðe−ÛePÞ
¼ e−Pð∇αePÞ þ e−PeÛð∇αe−ÛÞeP;
¼ eP̄eǓ∇αðe−Ǔe−P̄Þ ¼ eP̄∇αe−P̄ þ eP̄eǓð∇αe−ǓÞe−P̄;

ð63Þ

where ∇α ¼ D1
α þ ζD2

α ≕Dα þ ζQα, thus defining Dα and
Qα. (See Sec. IV for a thorough discussion of the four-
dimensional case.) We would like to calculate ∇αe−Ǔ. For
notational simplicity, let us denote the ζ coordinate on
which they depend by ζ0. Then we need to calculate

∇0αe−Ǔðζ0Þ ¼ ∇0α

X∞
n¼1

ð−1Þn
I

dζ1…dζn
1

ζ10

×
X1…Xn

ζ21…ζn;n−1

ζ0
ζn

;

¼
X∞
n¼1

ð−1Þn
I

dζ1…dζn
Xn
k¼1

1

ζ10

×
X1…∇0αXk…Xn

ζ21…ζn;n−1

ζ0
ζn

: ð64Þ

We may use that X ¼ eV − 1 is a projective superfield to
write

∇0αXk ¼
�
1 −

ζ0
ζk

�
DαXk ¼ ðζ0 − ζkÞQαXk; ð65Þ

We see that we have the option to rewrite our formulas into
expressions containing only Dα or, alternatively containing
only Qα. If we keep Qα we rewrite the accompanying ζ
factor as

ðζ0 − ζkÞ ¼ ðζ0 − ζ1Þ þ ðζ1 − ζ2Þ þ � � � þ ðζk−1 − ζkÞ:
ð66Þ

If instead we keep Dα we rewrite the ζ factor as

�
1 −

ζ0
ζk

�
¼ ζ0ðζ1 − ζ0Þ

ζ0ζ1
þ ζ0ðζ2 − ζ1Þ

ζ1ζ2
þ � � �

þ ζ0ðζk − ζk−1Þ
ζk−1ζk

: ð67Þ

Then canceling the ϵ-regulated ζ factors in the denominator
of (64) with the ζ factors from (66) or (67) we find a
number of relations which we may reorganize to read
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Γα ¼ eP̄Dαe−P̄ þ ζe−PQαeP; ð68Þ

as well as

e−PQαeP ¼ eP̄Qαe−P̄ − eP̄DαĀe−P̄;

eP̄Dαe−P̄ ¼ e−PDαeP þ e−PQαAeP; ð69Þ

where we have defined

A ¼
X∞
n¼1

ð−1Þnþ1AðnÞ;

Ā ¼
X∞
n¼1

ð−1Þnþ1ĀðnÞ; ð70Þ

using the definition (56).
Again it is useful to look at how these fields transform

under gauge transformations. An explicit calculation gives

δA ¼ iλ̄0A − Aiλ̄0 − iλ̄−1;

δĀ ¼ iλ0Ā − Āiλ0 − iλ1: ð71Þ

From the projectiveness of Λ and Λ̄ we find that

Dαλ0 ¼ D̄αλ̄0 ¼ 0;

D2λ1 ¼ D̄2λ̄1 ¼ 0; ð72Þ

which means that D2Ā and D̄2A transform covariantly as

D2Ā → eiλ0D2Āe−iλ0 ;

D̄2A → eiλ̄0D̄2Ae−iλ̄0 ; ð73Þ

appropriate for the component field strength in the chiral or
antichiral representation. This will be confirmed in the next
section.

C. The field strength

Similarly we may calculate expressions for the field
strength (23) from the ζ-connection coefficient (27)

W†
0 ¼ −∇2

0A0 ¼ −
X∞
n¼1

ð−1Þnþ1

I
dζ1…dζn

1

ζ10

×
∇2

0½X1…Xn�
ζ21…ζn;n−1

1

ζn0
: ð74Þ

We let the projective derivatives act and, like in (65), use
that X is projective. When we let the derivatives act there
will be terms of the type

X1…∇α
0Xl…∇0αXr…Xn; ð75Þ

as well as terms where both derivatives act on the same X

X1…∇2
0Xk…Xn: ð76Þ

For the leftmost derivative in (75) we rewrite the ζ factor as
in (66) or (67) (depending on whether we want an
expression containing Qα or Dα) but for the derivative
on the right we instead use

ðζ0 − ζrÞ ¼ ðζ0 − ζnÞ þ ðζn − ζn−1Þ þ � � � þ ðζrþ1 − ζrÞ;
ð77Þ

using the ζ expression in front of Qα in (65), or

�
1 −

ζ0
ζr

�
¼ ζ0ðζn − ζ0Þ

ζ0ζn
þ ζ0ðζn−1 − ζnÞ

ζn−1ζn
þ � � �

þ ζ0ðζr − ζrþ1Þ
ζrζrþ1

; ð78Þ

using the ζ expression in front of Dα in (65). For the terms
of type (76) we expand one of the ζ factors according to
(66) or (67) but the other one as in (77) or (78). If we again
cancel the differences of ζ factors in the numerator with the
ϵ-regulated ζ factors in the denominator we find that each
term in the field strength can be written as a product of three
factors which sum up to give

W† ¼ e−ǓðD2ĀÞeǓ ¼ e−ÛðQ2AÞeÛ: ð79Þ

All of the ζ dependence is contained in the outer factors and
could be removed by a similarity transformation. In a trace
with similar objects, these factors drop out. Furthermore we
can find the expression for the field strength in the vector
representation by

W† ¼ eUW†e−U ¼ eUe−ǓðD2ĀÞeǓe−U ¼ eP̄ðD2ĀÞe−P̄;
¼ eUe−ÛðQ2AÞeÛe−U ¼ e−PðQ2AÞeP; ð80Þ

which is manifestly ζ independent.
The expression for the field strength (80) look decep-

tively simple. One might think that is applies in the Abelian
case only when in fact it is true in general. To verify this one
can go to N ¼ 1 components. The N ¼ 1 field strength is
given by W†

α̇ ¼ Q̄α̇W†j. Acting on eP̄D2Āe−P̄ with Q̄α̇ and
focusing on the dependence on the ζ-independent part
of V, i.e. on the N ¼ 1 gauge field v0, we find that W†

α̇ ¼
eP̄D2ðe−v0D̄α̇ev0Þe−P̄, which is precisely the N ¼ 1 non-
Abelian field strength in the vector representation [34].

D. The Lagrangian

The superspace Lagrangian is given by the interesting
expression
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L ¼
X∞
n¼1

ð−1Þn
n

Tr
I

dζ1…dζn
X1…Xn

ζ21…ζn;n−1ζ1n
; ð81Þ

which was shown to be gauge invariant in [32]. It can be
thought of as a generalized Fayet-Iliopoulos term since if
we would ignore the zeta dependence the sum could be
performed with the result lnð1þ XÞ ¼ lnðeVÞ ¼ V. How-
ever, the nontrivial ζ dependence makes the behavior much
more interesting as we shall see in the next section.
It is also interesting to investigate how this term trans-

forms under gauge transformations. Since the basic field X
transforms as

δX ¼ iΛ̄ − iΛþ iΛ̄X − XiΛ ð82Þ

one finds that there has to be cancellation between terms of
different order of X. In particular one finds that at order X0,
the term transforms as an ordinary Fayet-Iliopoulos (FI)
term, with a “Kähler gauge transformation.”
In the next Sec. IVA this generalized FI term serves as

the Lagrangian for four-dimensional N ¼ 2 Yang-Mills
theory, whereas in Sec. IV B it is shown to describeN ¼ 3
Chern-Simons theory in three dimensions.

IV. EXAMPLES

A. N = 2 in four dimensions

1. The algebra

In 4d the N ¼ 2 superspace has an SUð2Þ R-symmetry.
The covariant derivatives transform in the fundamental and
antifundamental representation of the R-symmetry. This
leads to the algebra5

fDi
α;Dk

βg ¼ −ϵikCαβW†;

fD̄iα̇; D̄kβ̇g ¼ ϵikCα̇ β̇W;

fDi
α; D̄kβ̇g ¼ iδik∇αβ̇: ð83Þ

From the Bianchi identities we learn that

D̄iα̇W ¼ Di
αW† ¼ 0: ð84Þ

Introducing the projective derivatives

∇α ¼ D1
α þ ζD2

α ≕Dα þ ζQα;

∇α̇ ¼ D̄2α̇ − ζD̄1α̇ ≕ Q̄α̇ − ζD̄α̇; ð85Þ

analytic around the north pole of CP1 and anticommuting
among themselves, we may introduce constrained super-
fields by

∇αϒ ¼ ∇α̇ϒ ¼ 0: ð86Þ
As mentioned below (7), such fields will be called
projective superfields. Although the projective derivatives
anticommute taken at the same point in ζ, when we take
the anticommutator between projective derivatives at differ-
ent ζ coordinates, they do not anticommute any more
(cf. Sec. II C)

f∇αðζ1Þ;∇βðζ2Þg ¼ −Cαβðζ2 − ζ1ÞW†;

f∇α̇ðζ1Þ;∇β̇ðζ2Þg ¼ Cα̇ β̇ðζ2 − ζ1ÞW; ð87Þ

which gives us the possibility to express the field strength
by introducing the ζ derivative as

�
∇α;

�
∂

∂ζ
;∇β

��
¼ −CαβW†;

�
∇α̇;

�
∂

∂ζ
;∇β̇

��
¼ Cα̇ β̇W: ð88Þ

2. The field strength

As we have seen, this leads to the field strength in the
Arctic representation given by

W ¼ ∇2A;

W† ¼ −∇2A; ð89Þ
and, as we showed in Sec. III C, we can write

W ¼ e−ÛðD̄2AÞeÛ ¼ e−ǓðQ̄2ĀÞeǓ
¼ e−Ue−PðD̄2AÞePeU;

W† ¼ e−ǓðD2ĀÞeǓ ¼ e−ÛðQ2AÞeÛ
¼ e−UeP̄ðD2ĀÞe−P̄eU; ð90Þ

where A and its conjugate Ā are ζ independent fields
defined in (70). As shown in Sec. III C, the field strength in
the vector representation can be written as

W ¼ e−PðD̄2AÞeP;
W† ¼ eP̄ðD2ĀÞe−P̄: ð91Þ

3. The action

The action is the generalized Fayet-Iliopoulos term we
introduced in Sec. III D. It is integrated over the full
superspace, which in this case isZ

d4xd8θ ¼
Z

d4xD2Q2D̄2Q̄2: ð92Þ

5This is the usual super Yang-Mills algebra in four dimensions.
The connection coefficients ΓA ¼ ðΓα; Γ̄α̇;Γαα̇Þ of the gauge
supercovariant derivatives DA ¼ DA − iΓA define a super one-
form in terms of which the field strengths can be expressed in
the standard manner F ¼ DΓþ Γ2. In particular, CαβW† ¼
iD1

αΓ2
β þ iD2

βΓ1
α þ fΓ1

α;Γ2
βg. The ordinary bosonic field strength

can be found as superspace component of this superfield.
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We may write the final Q̄2 in the measure as D2Q2D̄2Q̄2 ¼
D2Q2D̄2ðQ̄ − ζD̄Þ2 ¼ D2Q2D̄2∇2 since the terms that
were added are dependent on D̄ and are projected out
by the rest of the measure. We may also choose the ζ
coordinate of the ∇2 operator in the measure arbitrarily
since the terms containing ζ are projected out in the same
way. Taking this into account and choosing the ζ in ∇ to be
ζ1 we write the action as

S ¼
X∞
n¼2

ð−1Þn
n

Z
d4x

I
dζ1…dζnD2Q2D̄2∇2

1

× Tr

�
X1X2…Xn

ζ21…ζ1n

�
;

¼
X∞
n¼2

ð−1Þn
n

Z
d4x

I
dζ1…dζnD2Q2D̄2

× Tr

�
X1∇2

1ðX2…XnÞ
ζ21…ζ1n

�
: ð93Þ

Concentrating on the expression in the trace we act with
the ∇1 derivatives and, analogously to the procedure in
Sec. III C, use that on any projective field ∇1Xk ¼
ðζk − ζ1ÞD̄Xk

Tr

�
X1∇2

1ðX2…XnÞ
ζ21…ζ1n

�

¼
Xn−1
l¼2

Xn
r¼lþ1

ðζl − ζ1Þðζr − ζ1ÞTr
�
X1…D̄α̇Xl…D̄α̇Xr…Xn

ζ21…ζ1n

�

þ
Xn
k¼2

ðζk − ζ1Þ2Tr
�
X1…D̄2Xk……Xn

ζ21…ζ1n

�
: ð94Þ

Following the procedure described in Sec. III C we
then rewrite ðζl − ζ1Þ ¼ ðζl − ζl−1Þ þ � � � þ ðζ2 − ζ1Þ and
ðζr − ζ1Þ ¼ ðζr − ζrþ1Þ þ � � � þ ðζn − ζ1Þ as well as
ðζk − ζ1Þ2 ¼ ½ðζk − ζk−1Þþ � � � þ ðζ2 − ζ1Þ�× ½ðζk − ζkþ1Þþ
� � � þ ðζn − ζ1Þ�. Canceling the ζ factors in the numerator
with the factors in the denominator and using the cyclicity
of the trace we get

S ¼
X∞
n¼2

ð−1Þnþ1

Z
d4xD2Q2D̄2Tr

Xn−1
k¼1

k
n
AðkÞD̄2Aðn−kÞ:

ð95Þ

Integrating by parts, the expression (95) can be rewritten

S ¼
X∞
n¼2

ð−1Þnþ1

Z
d4xD2Q2D̄2Tr

Xn−1
k¼1

n − k
n

AðkÞD̄2Aðn−kÞ:

ð96Þ

Averaging over the two alternative expressions we get

S ¼ 1

2

X∞
n¼2

ð−1Þnþ1

Z
d4xD2Q2D̄2Tr

Xn−1
k¼1

AðkÞD̄2Aðn−kÞ;

¼ −
1

2

Z
d4xD2Q2D̄2TrAD̄2A

¼ −
1

2

Z
d4xD2Q2TrD̄2AD̄2A; ð97Þ

where A ¼ P∞
k¼1ð−1Þkþ1AðkÞ as defined before. This is

indeed the Yang-Mills action

−
1

2

Z
d4xD2Q2TrWW ¼ −

1

2

Z
d4xD2Q2

I
dζ
ζ
TrWW;

ð98Þ

with W ¼ 1
2
e−PðD̄2AÞeP and W ¼ e−ÛðD̄2AÞeÛ. In [16]

we presented a proof of the equivalence of the Yang-Mills
action in the form (81) and (98) which was rather contrived.
Using the new methods introduced in this paper we have
presented a straightforward proof.

B. N = 3 in three dimensions

This theory has been studied before in harmonic super-
space by Zupnik [36] and in projective superspace in [37–39]
albeit in an N ¼ 3 unitary gauge.

1. The algebra

The N ¼ 3 superspace has SOð3Þ R-symmetry where
the three supercovariant derivatives transform as a triplet.
We index them with a symmetric pair of fundamental
SUð2Þ indices. Including a Yang-Mills field and using the
symmetry properties of the covariant derivatives, we can
write down the most general algebra which gives the
algebra of the gauge super covariant derivatives

fDðikÞ
α ;DðlmÞ

β g ¼ ðϵilϵkm þ ϵimϵklÞi∇αβ

þ i
2
CαβðϵilWkm þ ϵklWim

þ ϵimWkl þ ϵkmWilÞ; ð99Þ

where the field strengths Wik is again given by an SUð2ÞR
triplet of fields encoded by a symmetric pair of fundamental
SUð2Þ indices. Renaming the derivatives as D11 ≡D,
D22 ≡ D̄ and iD12 ≡D0 and the field strengths as
W11 ≡W†, W22 ≡W and iW12 ≡W0 we get

fDα; D̄βg ¼ 2i∇αβ þ 2CαβW0;

fD0
α;D0

βg ¼ i∇αβ;

fD0
α;Dβg ¼ CαβW†;

fD̄α;D0
βg ¼ CαβW: ð100Þ
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As a consequence of the Bianchi identities we then have
additional conditions for the field strengths

DαW† ¼ 0 ¼ D̄αW ðchiralityÞ;
D0

αW† ¼ −DαW0;

D0
αW ¼ −D̄αW0;

D0
αW0 ¼ 1

4
ðDαW þ D̄αW†Þ; ð101Þ

which further imply that

D2W0 ¼ D̄2W0 ¼ 0; ð102Þ

meaning thatW0 is a real linear superfield from the point of
view of the N ¼ 2 superfield components.
These relations clearly show that the supercovariant

derivatives can be put together into a projective super-
covariant derivative that transforms as an Oð2Þ multiplet

∇αðζÞ ¼
1

ζ
Dα þ 2D0

α − ζD̄α; ð103Þ

and anticommute among themselves

f∇αðζÞ;∇βðζÞg ¼ 0: ð104Þ

Similarly the three field strengths can also be put into an
Oð2Þ multiplet

W ¼ 1

ζ
W† þ 2W0 − ζW: ð105Þ

Using this description, the Bianchi identities can be
compactly written

∇αW ¼ 0; ð106Þ

i.e. by saying that the field strength is projective. This
theory has been discussed before in projective superspace
[37–39], where they however were working in N ¼ 3
unitary gauge and where all the components of VðζÞ except
for v−1; v0 and v1 are gauged away.

2. The field strength

The projective supercovariant derivatives anticommute
even when the algebra is gauged. To get nontrivial results
one needs to look at the anticommutators between deriv-
atives at different ζ points

f∇αðζ1Þ;∇βðζ2Þg ¼ −
ðζ1 − ζ2Þ2

ζ1ζ2
2i∇αβ þ 2Cαβ

��
1

ζ2
−

1

ζ1

�
W̄ þ

�
ζ1
ζ2

−
ζ2
ζ1

�
W0 þ ðζ2 − ζ1ÞW

�
ð107Þ

which, by introducing the ζ derivative, can be used to write
the field strength as

Cαβ
2

ζ
WðζÞ ¼ −f∇α; ½∂ζ;∇β�g; ð108Þ

or, by going to the arctic representation, as

WðζÞ ¼ −
ζ

2
∇2A ¼ 1

ζ
W† þ 2W0 − ζW; ð109Þ

where again A ¼ e−U∂ζeU.
We may now calculate explicit expressions for the field

strength using this formula. Here we will use that when
acting on a projective superfield we can write

∇0αX1 ¼
1

2

�
ðζ1 − ζ0ÞD̄αX1 þ

ζ1 − ζ0
ζ0ζ1

DαX1

�
: ð110Þ

We now calculate the field strength from (109) using (27)

W0 ¼ −
ζ0
2
∇2

0A0 ¼ −
ζ0
2

X∞
n¼1

ð−1Þnþ1

I
dζ1…dζn

× Tr

�
1

ζ10

∇2
0½X1…Xn�

ζ21…ζn;n−1

1

ζn0

�
: ð111Þ

Concentrating on the expression in the trace we get

∇2
0Tr

�
1

ζ10

X1…Xn

ζ21…ζn;n−1

1

ζn0

�
¼

Xn−1
l¼1

Xn
r¼lþ1

Tr

�
1

ζ10

X1…∇α
0Xl…∇0αXr…Xn

ζ21…ζn;n−1

1

ζn0

�
þ
Xn
k¼1

Tr

�
1

ζ10

X1…∇2
0Xk…Xn

ζ21…ζn;n−1

1

ζn0

�
: ð112Þ
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Using (110) there will be three different types of contri-
butions with different ζ0 dependence. One with two D
derivatives, one with two D̄ derivatives and a mixed one
with one D and one D̄. The terms with two D̄ or two D
operators are treated completely analogously to what we
did before. Identifying components by comparing the
powers of ζ in (109) the result is

W ¼ 1

2
e−ÛD̄2AeÛ;

W† ¼ 1

2
e−ǓD2ĀeǓ: ð113Þ

This result is given in the Arctic representation. Going back
to the vector representation by conjugating with eU we get

W ¼ 1

2
e−PD̄2AeP;

W† ¼ 1

2
eP̄D2Āe−P̄: ð114Þ

The mixed term is harder to analyze. The ζ factors will be
either

ðζl − ζ0Þ ×
ζr − ζ0
ζ0ζr

; ð115Þ

if the D̄ operator is on the left of the D operator, or

ζl − ζ0
ζ0ζl

× ðζr − ζ0Þ ð116Þ

in the opposite case. In both cases we rewrite

ðζl − ζ0Þðζr − ζ0Þ ¼ ½ðζl − ζl−1Þ þ � � � þ ðζ1 − ζ0Þ�
× ½ðζr − ζrþ1Þ þ � � � þ ðζn − ζ0Þ�;

ð117Þ

and we also always expand

1

ζl
¼ ζlþ1 − ζl

ζlζlþ1

þ � � � þ ζf − ζf−1
ζf−1ζf

þ 1

ζf
;

1

ζr
¼ ζrþ1 − ζr

ζrζrþ1

þ � � � þ ζf − ζf−1
ζf−1ζf

þ 1

ζf
; ð118Þ

where ζf is the ζ coordinate of the Xf where the
denominator 1

ζfþ1;f
was canceled by a ðζfþ1 − ζfÞ from the

expansion (117). Keeping track of signs and factors, this
can be summed to

W0 ¼ 1

2
e−ÛD̄α

	
DαðePeP̄Þe−P̄e−P



eÛ

¼ 1

2
e−ǓDα

	
e−P̄e−PD̄αðePeP̄Þ



eǓ; ð119Þ

or in the vector representation

W0 ¼ 1

2
e−PD̄α

	
DαðePeP̄Þe−P̄e−P



eP

¼ 1

2
eP̄Dα

	
e−P̄e−PD̄αðePeP̄Þ



e−P̄: ð120Þ

3. The action

The Yang-Mills action is constructed using the projective
superfield W. Since the field is projective the action is
integrated with the projective measure D2D̄2

IN3YM ¼ 1

4

Z
d3xD2D̄2

I
dζ
ζ
TrðW2ðζÞÞ

¼
Z

d3xD2D̄2Tr

�
ðW0Þ2 − 1

2
WW†

�
;

¼
Z

d3xD2D̄2Tr

�
ðW0Þ2 − 1

2
WW†

�
: ð121Þ

Using the Bianchi identities (101) this can equivalently be
written

IN3YM ¼
Z

d3xD2ðD0Þ2TrW2 ¼
Z

d3xD̄2ðD0Þ2TrðW†Þ2:

ð122Þ

Our next question is what theory the FI term describes.
In N ¼ 3 in three dimensions, the full measure d3xd6θ
is dimensionless. Since the generalized FI term is also
dimensionless, there is no need to introduce a dimensionful
coupling constant which indicates that the theory defined in
this way could be Chern-Simons theory. To investigate this
we now go to components

S ¼
Z

d3xd6θ
X∞
n¼1

ð−1Þn
n

I
dζ1…dζnTr

�
X1…Xn

ζ21…ζn;n−1ζ1n

�
:

ð123Þ

Writing the measure d6θ ¼ D2D̄2ðD0Þ2 ∝ D2D̄2∇2
1 we act

with the ∇2 again using that X is projective

S ¼
Z

d3xD2D̄2
X∞
n¼1

ð−1Þn
n

I
dζ1…dζn

× Tr

�
X1∇2

1ðX2…XnÞ
ζ21…ζn;n−1ζ1n

�
: ð124Þ
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We expand the ζ factors in the same way as for the field
strength with the result

S ¼
Z

d3xD2D̄2Tr½AD̄2Aþ ĀD2Āþ fD;D̄�; ð125Þ

where fD;D̄ denotes the mixed term with one D and one D̄
which will require more work to analyze. Note that the first
two terms can be written as superpotentials

Z
d3xD2TrðW2Þ þ

Z
d3xD̄2TrððW†Þ2Þ: ð126Þ

As stated, the mixed term is more complicated. It can be
written as

Z
d3xD2D̄2

X∞
n¼1

X
0≤kþl≤n

ð−1Þnþ1

n

× Tr½RðkÞD̄αððDαΓðlÞÞLðn−k−lÞÞ�; ð127Þ

where

RðkÞ ¼
I

dζ1…dζk

�
1

ζ1
þ � � � þ 1

ζk

�
X1…Xk

ζ21…ζk;k−1
: ð128Þ

We have not been able to perform the sum but to at least
partly analyze the meaning of this term we put all
components of V ¼ P∞

n¼−∞ vnζn to zero except for v0
which is the N ¼ 2 gauge field. Then X → ev0 − 1
becomes ζ independent and thus commute with each other.
Also, many of the ζ integrals now vanish, the only nonzero
integrals are

LðkÞ → Xk;

Γð1Þ → X: ð129Þ

Using this we can write the mixed term as

SDD̄ðv0Þ ¼
Z

d3xD2D̄2
X∞
n¼1

ð−1Þn
n

×
Xn
k¼1

TrðXk−1D̄αððDαXÞXn−kÞÞ;

¼
Z

d3xD2D̄2
X∞
n¼1

ð−1Þnþ1

n

×
Xn
k¼1

TrððD̄αXk−1ÞðDαXÞXn−kÞ: ð130Þ

To be able to perform the sum it is useful to write the
expression in operator formalism where

DX → ½D;X�: ð131Þ

Then the mixed term becomes

SDD̄ðv0Þ ¼
Z

d3xD2D̄2
X∞
n¼1

ð−1Þnþ1

n

× Tr

�
½Dα; X�

Xn
k¼1

Xn−k½D̄α; Xk−1�
�
; ð132Þ

and writing out the commutators explicitly the sum that we
would like to do is

X∞
n¼1

ð−1Þnþ1

n
ðD̄αXn−1 þ XD̄αXn−2 þ � � �

þ Xn−1D̄α − nXn−1D̄αÞ: ð133Þ

In the last term the factor n cancels the 1
n and gives a

geometric series. The first n terms also gives a sumable
expression in the following way. If we would replace the D̄
with a δX the result of the sumwould be δ lnð1þ XÞ ¼ δv0.
The idea is then to rewrite δv0 in terms of δX ¼ δev0 where
finally we can change back δX → D̄ for the final result. We
do this using the operator L defined as LX ¼ ½v0; X� as
explained in [34]

δv0 ¼
L

1 − e−L
e−v0δev0 ¼ L

1 − e−L
e−v0δX: ð134Þ

Following our argument we now conclude that the first n
terms sum to L

1−e−L e
−v0D̄α and that the full result can be

written as

SDD̄ðv0Þ ¼
Z

d3xD2D̄2Tr

�
½Dα; X�

�
L

1 − e−L
e−v0 −

1

1þ X

�
D̄α

�
; ð135Þ
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where the first term in the curly brackets comes from summing the first n terms of (133) and the second term is the result of
the geometric sum from the last term. Since 1þ X ¼ ev0 this can be written as

SDD̄ðv0Þ ¼
Z

d3xD2D̄2Tr

�
½Dα; ev0 �e−v0

�
L

1 − e−L
− 1

�
D̄α

�
;

¼
Z

d3xD2D̄2Tr

�
½Dα; ev0 �e−v0

�
L − 1þ e−L

1 − e−L

�
D̄α

�
: ð136Þ

Similarly we may rewrite ½Dα; ev0 �e−v0 ¼ eL−1
L ½Dα; v0�. Finally, using the cyclicity of the trace implying TrððLBÞCÞ ¼

Trð½v0; B�CÞ ¼ −TrðB½v0; C�Þ ¼ TrðBð−LCÞÞ, where B and C are arbitrary expressions, we write

SDD̄ðv0Þ ¼
Z

d3xD2D̄2Tr

�
½Dα; v0�

1 − e−L

L
L − 1þ e−L

1 − e−L
D̄α

�
;

¼
Z

d3xD2D̄2Tr

�
½Dα; v0�

L − 1þ e−L

L
D̄α

�
;

¼ −
Z

d3xD2D̄2Tr

�
½Dα; v0�

L − 1þ e−L

L2
½D̄α; v0�

�
; ð137Þ

which, if we go back to standard notation ½D̄α; v0� → D̄αv0 and expand the function of L in a power series can be written

SDD̄ðv0Þ ¼ −
Z

d3xD2D̄2Tr
�
1

2
Dαv0D̄αv0 −

1

6
Dαv0½v0; D̄αv0� þ

1

24
Dαv0½v0; ½v0; D̄αv0�� þ…

�
; ð138Þ

which is indeed a known form for the action of N ¼ 2
Chern-Simons theory [40–42]. We thus conclude that the
action given by the generalized FI term, which in other
theories gives the action for Yang-Mills theory, in the
N ¼ 3 theory surprisingly gives the action for Chern-
Simons theory.

C. N = 4 in three dimensions

This topic has appeared in the literature before. The
fact that there are two inequivalent vector multiplets
was observed in [43] and was later treated in an off-shell
fashion in harmonic superspace in [44]. It was subsequently
discussed in projective superspace in [45,46] in an AdS3
background.

1. The algebra

The N ¼ 4 algebra has an SOð4Þ≡ SUð2ÞL × SUð2ÞR
R-symmetry. The supercovariant derivatives transforms in
the fundamental representation of each of the R-symmetry
groups. The most general algebra involving also a Yang-
Mills field is

fDia
α ;Dkb

β g ¼ ϵikϵabi∇αβ þ iCαβðϵikWab
R þ ϵabWik

L Þ; ð139Þ

where Wik
L and Wab

R are symmetric SUð2ÞL and SUð2ÞR
triplets. The Bianchi identities are

Diða
α WbcÞ

R ¼ 0;

Dðijaj
α WklÞ

L ¼ 0: ð140Þ

The N ¼ 4 theory is the dimensional reduction of the
N ¼ 2 theory in four dimensions. With the identification

Dα ¼ D11
α ; Qα ¼ iD21

α ;

Q̄α ¼ iD12
α ; D̄α ¼ D22

α ; ð141Þ

and

W†
L ¼ W11

L ; WL ¼ W22
L ; W0

L ¼ iW12
L ;

W†
R ¼ W11

R ; WR ¼ W22
R ; W0

R ¼ iW12
R ; ð142Þ

the algebra becomes

fDα; D̄βg ¼ i∇αβ þ CαβðW0
R þW0

LÞ;
fQα; Q̄βg ¼ i∇αβ þ CαβðW0

R −W0
LÞ;

fDα;Qβg ¼ −CαβW
†
R; fD̄α; Q̄βg ¼ CαβWR;

fDα; Q̄βg ¼ −CαβW
†
L; fD̄α;Qβg ¼ CαβWL; ð143Þ

and the Bianchi identities for the WR multiplet become
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DαW
†
R ¼ QαW

†
R ¼ 0;

D̄αWR ¼ Q̄αWR ¼ 0;

DαWR − 2Q̄αW0
R ¼ 0;

Q̄αW
†
R þ 2DαW0

R ¼ 0;

D̄αW
†
R − 2QαW0

R ¼ 0;

QαWR þ 2D̄αW0
R ¼ 0; ð144Þ

and for the WL multiplet we get

DαW
†
L ¼ Q̄αW

†
L ¼ 0;

D̄αWL ¼ QαWL ¼ 0;

DαWL − 2QαW0
L ¼ 0;

QαW
†
L þ 2DαW0

L ¼ 0;

D̄αW
†
L − 2Q̄αW0

L ¼ 0;

Q̄αWL þ 2D̄αW0
L ¼ 0: ð145Þ

The fact that the R-symmetry group now consists of two
SUð2Þ groups SUð2ÞL × SUð2ÞR leads us to introduce two
auxiliary CP1 manifolds CP1

L × CP1
R with coordinates ζL

and ζR. It is then natural to define the projective super-
covariant derivatives

∇α ¼ ðDα þ ζLQαÞ þ ζRðQ̄α − ζLD̄αÞ;
◁α ¼ ðDα þ ζLQαÞ þ ζRð−Q̄α þ ζLD̄αÞ;

Δα ¼
�
D̄α þ

1

ζL
Q̄α

�
þ 1

ζR

�
Qα −

1

ζL
Dα

�
;

▷α ¼
�
D̄α þ

1

ζL
Q̄α

�
þ 1

ζR

�
−Qα þ

1

ζL
Dα

�
: ð146Þ

Even when taken at the same point at both CP1
L and CP1

R
the gauged supercovariant derivatives do not anticommute.
Instead the anticommutation relations are

f∇α;◁βg ¼ 2CαβζLζR

�
1

ζL
W†

L þ 2W0
L − ζLWL

�
¼ 2CαβζLζRWLðζLÞ;

f∇α;▷βg ¼ 2Cαβ

�
1

ζR
W†

R þ 2W0
R − ζRWR

�
¼ 2CαβWRðζRÞ;

fΔα;◁βg ¼ 2Cαβ

�
1

ζR
W†

R − 2W0
R − ζRWR

�
;

fΔα;▷βg ¼ 2Cαβ

ζLζR

�
1

ζL
W†

L − 2W0
L − ζLWL

�
; ð147Þ

where we have defined the Oð2Þ field strengths

WRðζRÞ ¼
1

ζR
W†

R þ 2W0
R − ζRWR;

WLðζLÞ ¼
1

ζL
W†

L þ 2W0
L − ζLWL: ð148Þ

Furthermore, using these definitions, the Bianchi iden-
tities can be compactly written as

∇αWL ¼ ◁αWL ¼ 0;

∇αWR ¼ ▷αWR ¼ 0: ð149Þ

Notice that the projective derivatives ∇α;◁α form an
anticommuting set only if WL ¼ 0 and that ∇α;▷α anti-
commute only if WR ¼ 0. Thus, if and only if WL ¼ 0 we
may consistently define left projective superfields TL as
fields satisfying the constraint

∇αTL ¼ ◁αTL ¼ 0; ð150Þ

and similarly, if and only if WR ¼ 0 we may consistently
define right projective superfields TR as fields satisfying

∇αTR ¼ ▷αTR ¼ 0: ð151Þ
This theory was studied before in projective superspace
[38,39] but in N ¼ 4 unitary gauge.

2. The field strength

If we assume the WL ¼ 0 so that we may consistently
define left projective matter superfields ϒLðζLÞ, indepen-
dent of ζR and with polar dependence on ζL, then

∇αϒL ¼ ◁αϒL ¼ 0: ð152Þ
Such fields transform under gauge transformations as

ϒL → eiΛLϒL; ð153Þ
where also ΛL is left projective. In this case the gauge field
eVL is introduced as a tropical left projective superfield
transforming under gauge transformations as
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eVL → eiΛ̄LeVLe−iΛL : ð154Þ

We can repeat what we did in the previous sections by
observing that if we take the anticommutator of two ∇
derivatives at different ζL positions we have

f∇αðζ1L; ζRÞ;∇βðζ2L; ζRÞg ¼ ðζ1L − ζ2LÞCαβζRWRðζRÞ;
ð155Þ

which, introducing the derivative operator ∂L ≡ ∂

∂ζL
, can

also be written

f½∂L;∇αðζL; ζRÞ�;∇βðζL; ζRÞg ¼ CαβζRWRðζRÞ: ð156Þ

Splitting the gauge field into polar parts

eVL ¼ eŪLeUL; ð157Þ

we define the field strength in arctic representation

f½e−UL∂LeUL;∇αðζL; ζRÞ�;∇βðζL; ζRÞg
¼ Cαβe−ULζRWRðζRÞeUL ¼ CαβζRWRðζL; ζRÞ: ð158Þ

We see that in the arctic representation, the field strength is
anOð2Þmultiplet in ζR but has an arctic dependence on ζL.
By defining the ζL covariant derivative

DL ¼ e−UL∂LeUL ¼ ∂L þAL; ð159Þ

we can write the field strength in the arctic representation as

WR ¼ −
1

ζR
∇2AL ¼ 1

ζR
W†

R þ 2W0
R − ζRWR

¼ −
�
1

ζR
ðDþ ζLQÞ2 þ ðDþ ζLQÞαðQ̄ − ζLD̄Þα

þ ζRðQ̄ − ζLD̄Þ2
�
AL; ð160Þ

giving the component field strengths

W†
R ¼ −ðDþ ζLQÞ2AL;

2W0
R ¼ −ðDþ ζLQÞαðQ̄ − ζLD̄ÞαAL;

WR ¼ ðQ̄ − ζLD̄Þ2AL: ð161Þ

The new techniques introduced in this paper allow us to
find the components of these expressions. We find that

W†
RðζLÞ ¼ e−ǓLðD2ĀÞeǓL ;

2W0
RðζLÞ ¼ −e−ÛLD̄αðDαðePeP̄Þe−P̄e−PÞeÛL

¼ −e−ǓLDαðe−P̄e−PD̄αðePeP̄ÞÞeǓL ;

WRðζLÞ ¼ e−ÛLðD̄2AÞeÛL ; ð162Þ

where the fields depend on ζL. Notice that the expressions
forWR;W

†
R are exactly the same as for the field strength in

four dimensions.
An entirely analogous argument starting with WR ¼ 0

and right projective matter superfields gives us the expres-
sion for the field strength in the right projective sector as

WL ¼ −
1

ζL
∇2AR ¼ 1

ζL
W†

L þ 2W0
L − ζLWL;

AR ¼ e−URð∂ReURÞ; ð163Þ

leading to the expressions for the components of the field
strengths

W†
L ¼ −ðDþ ζRQ̄Þ2AR;

2W0
L ¼ −ðDþ ζRQ̄ÞαðQ − ζRD̄ÞαAR;

WL ¼ ðQ − ζRD̄Þ2AR: ð164Þ

The expressions for the field strengths when expressed
using only the D and D̄ operators are identical to (162) but
with all the expressions computed from eUR instead of eUL .

3. The action

Using the projective field strength (148) we can write a
gauge invariant action using the projective measure

S ¼
Z

d3xD2D̄2

I
dζR
ζR

TrðW2
RÞ

¼
Z

d3xD2D̄2Trð4ðW0
RÞ2 − 2WRW

†
RÞ: ð165Þ

If we let the D̄2 derivatives act and use the Bianchi
identities (144), then the action can be rewritten in chiral
form as

S ¼
Z

d3xD2Q2TrðW2
RÞ; ð166Þ

where WR is the component of WR that multiplies ζ. To
show that the generalized Fayet-Iliopoulos term is equiv-
alent to this action we follow exactly the same steps as in
the four-dimensional case. We write the full superspace
measure as D2Q2D̄2Q̄2 ¼ D2Q2D̄2ðQ̄ − ζD̄Þ2 and use
that since a left-projective superfield is annihilated by both
∇α and ◁α it is also annihilated by 1

2ζR
ð∇α −◁αÞ ¼

ðQ̄ − ζD̄Þα. The formulas are precisely the formulas from
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the four-dimensional example (94) with the same result
(97) showing that the generalized Fayet-Iliopoulos term
again gives the action of Yang-Mills theory. An analogous
story holds in the right-projective case.
It is possible to reduce expressions inN ¼ 4 superspace

to N ¼ 3 superspace by rewriting the complex super-
covariant derivative Qα in terms of real and imaginary
part as

Qα ¼ D0
α þ iQ0

α; ð167Þ

and then use that on left projective superfields, after setting
ζL ¼ ζR ¼ ζ

Q0
α ¼

1

ζ
Dα þ ζD̄α: ð168Þ

Starting from the Yang-Mills action, if we expand the ζ
factors according to the rules developed in this paper, we
end up with the N ¼ 3 action for Yang-Mills theory (122).

V. CONCLUSIONS

We introduced a new method for manipulating gauge
fields in projective superspace. The main idea was to
expand all expressions in powers of X ¼ eV − 1 (and thus
indirectly in powers of the unconstrained gauge prepoten-
tial V) and then to use the epsilon prescription when
projecting fields to positive or negative powers of ζ leading
to an asymmetric splitting which, however, is much more
convenient to calculate with. This new approach led to
elegant formulas for gauge potentials and field strengths. In
particular, it becomes straightforward to rewrite the expres-
sions in components, i.e. in a superspace with less manifest
supersymmetry (N ¼ 1 in four dimensions,N ¼ 2 in three
dimensions) which also made it possible to analyze various
superspace Lagrangians in detail. We illustrated our results
in several explicit examples.
Using the techniques introduced in this paper we get

formulations of a wide range of theories in terms of the
unconstrained gauge prepotential V. This makes it possible
to calculate perturbative quantum corrections to these
theories keeping the supersymmetry manifest.
We have not investigated the dimensional reduction of

our theories to two dimensions. In two dimensions there are
even more possibilities for projective techniques since a
theory with ðp; qÞ supersymmetry has a SOðpÞ × SOðqÞ
R-symmetry group. For a theory with (4,4) supersymmetry
that means that four auxiliary CP1 manifolds could be
introduced [40]. It would be interesting to see how the
different N ¼ 3 and N ¼ 4 theories fit into this picture.
Another areawhere themethods from this paper should be

useful is in studying mirror symmetry of three-dimensional
N ¼ 4 supersymmetric theories [47]. The mirror symmetry
exchanges a left projective theory with a (twisted) right
projective theory through a duality procedure that can be

explicitly performed in the path integral. The coupling
between the original theory and the twisted theory is through
a BF type [48] term which we know how to write in our
formalism. Since both the Coulomb and the Higgs branches
of the mirror symmetric theories are hyperkähler manifolds,
this might lead to new constructions of and relations
between hyperkähler manifolds.
Similarly our methods are well suited to investigate

ABJM (Aharony, Bergman, Jafferis, and Maldacena)
theory [49] in superspace since there one describes the
N ¼ 6 supersymmetric theory in terms of two N ¼ 3
Chern-Simons theories together with a pair of bifunda-
mental hypermultiplets. This was first done in N ¼ 3
superspace in [50]. The possibility to perform perturbative
calculations with manifest N ¼ 3 supersymmetry and to
extensively analyze the result should lead to new insights.
Another situation where our newly developed proce-

dures may come in handy is for Yang-Mills theories,
or in particular Chern-Simons theory, in five dimensions
[44,51,52]. In [52] an action for five-dimensional Chern-
Simons was given in the Abelian case whereas for the non-
Abelian only the variation of the action was given. We
believe that using the techniques introduced in this paper
and suitably adapted to five dimensions will allow us to
integrate this variation and find a covariant expression for
the full non-Abelian Chern-Simons action.
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APPENDIX: THE EPSILON PRESCRIPTION

1. Definition

In the paper we employ a regularization method of the
poles appearing in some of the contour integrations. It was
originally introduced in [29,30] and called the ϵ prescrip-
tion. Following [29,30] we redefine

1

ζ1 − ζ2
→

1

ζ12
; ðA1Þ

where

1

ζ10
≡ 1

ζ1

X∞
n¼0

�
ζ0
ζ1

�
n
�
¼ 1

ζ1 − ζ0
if

���� ζ0ζ1
���� < 1

�
;

1

ζ01
≡ 1

ζ0

X∞
n¼0

�
ζ1
ζ0

�
n
�
¼ 1

ζ0 − ζ1
if

���� ζ1ζ0
���� < 1

�
: ðA2Þ
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Alternatively, we may define the factors using a small
parameter ϵ (hence the name) that we will let go to zero at
the end of all calculations

1

ζ12
¼ 1

ζ1 − ζ2 þ ϵðζ1 þ ζ2Þ
: ðA3Þ

In this expression ζ1 and ζ2 should be thought of as having
the same magnitude jζ1j ¼ jζ2j so that the ζ1 contour would
actually meet ζ2. By introducing the ϵ, the pole is deformed
away from the integration contour and the integral can
be performed. The ϵ-regulated denominators give rise to
projection operators, more precisely, given a superfield
TðζÞ ¼ P∞

n¼−∞ tnζn the contour integrals are

I
dζ1
2πi

Tðζ1Þ
ζ10

¼
I

dζ1
2πi

1

ζ1

X∞
n¼0

�
ζ0
ζ1

�
n
Tðζ1Þ ¼

X∞
k¼0

tkζk0;

I
dζ1
2πi

Tðζ1Þ
ζ01

¼
I

dζ1
2πi

1

ζ0

X∞
n¼0

�
ζ1
ζ0

�
n
Tðζ1Þ ¼

X−1
k¼−∞

tkζk0:

ðA4Þ

Notice that the projection defined in this way does not treat
the ζ-independent terms in a symmetrical way. They are
always projected together with the positive powers of ζ and
thus

H dζ1
2πi

Tðζ1Þ
ζ10

and
H dζ1

2πi
Tðζ1Þ
ζ01

are not conjugates of each
other. To avoid cluttering we will suppress any factors of
2πi in the measure, dζ

2πi → dζ, in the rest of the paper.

2. Cancellation

In several places we cancel factors of ðζ1 − ζ2Þ against
ϵ-regulated denominators 1

ζ12
. To prove that this is possible

we explicitly calculate the integral

I ¼
I

dζ1
ζ1 − ζ2
ζ12

Tðζ1Þ; ðA5Þ

for an arbitrary field TðζÞ ¼ P∞
n¼−∞ tnζn. We start by

splitting the integral into two integrals

I ¼
I

dζ1
ζ1
ζ12

Tðζ1Þ −
I

dζ1
ζ2
ζ12

Tðζ1Þ

¼
X∞
n¼−1

tnζ
nþ1
2 −

X∞
n¼0

tnζ
nþ1
2 ¼ t−1; ðA6Þ

which is precisely the result for the integral I one would get
by canceling the ðζ1 − ζ2Þ against the 1

ζ12
before performing

the contour integral. An analogous argument can be made
for the factor 1

ζ21
in the denominator.

3. Conjugation

The basic operation of conjugation is always accom-
panied by a transformation on the auxiliary CP1 manifold.
A general field TðζÞ ¼ P

n tnζ
n transforms as

T̄ðζÞ ¼
X

t†n

�
−
1

ζ

�
n
: ðA7Þ

An epsilon-regulated ζ denominator transforms as

1

ζ21
¼ 1

ζ2

X∞
n¼0

�
ζ1
ζ2

�
n
→−

ζ1ζ2
ζ1

X∞
n¼0

�
ζ2
ζ1

�
n
¼−

ζ1ζ2
ζ12

; ðA8Þ

and the contour integral measure transforms as

I
dζ → −

I
dζ
ζ2

: ðA9Þ

Notice the additional minus sign from a change in ori-
entation of the contour.
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