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ABSTRACT: We confirm the generalized actions of the complete NLO cubic-in-spin in-
teractions for generic compact binaries which were first tackled via an extension of the
EFT of spinning gravitating objects. We first reduce these generalized actions to standard
actions with spins, where the interaction potentials are found to consist of 6 independent
sectors, including a new unique sector that is proportional to the square of the quadrupolar
deformation parameter, Cq2. We derive the general Hamiltonians in an arbitrary reference
frame, and for generic kinematic configurations. With these most general Hamiltonians we
construct the full Poincaré algebra of all the sectors at the fourth and a half post-Newtonian
(4.5PN) order, including the third subleading spin-orbit sector, recently accomplished
uniquely via our framework, thus proving the Poincaré invariance of all relevant sectors. We
then derive the binding energies with gauge-invariant relations useful for gravitational-wave
applications. Finally, we also derive the extrapolated scattering angles in the aligned-spins
configuration for the scattering problem. Yet, as made clear already as of quadratic-in-spin
sectors, the aligned-spins simplification inherent to the scattering-angle observable, entails
a great loss of physical information, that is only growing with higher-spin sectors. Our
completion of the full Poincaré algebra at the present 4.5PN order provides strong confidence
that this new precision frontier in PN theory has now been established.
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Introduction

Within few years of gravitational-wave (GW) astronomy, we already have an impressive cat-

alogue of measurements of 90 accumulated confirmed GW signals [1-3]. This data collected
by current second-generation GW detectors Advanced LIGO [4], Advanced VIRGO [5],
and KAGRA [6], includes as sources inspirals of compact binaries of black holes (BHs) [7],



neutron stars (NSs) [8], and even of mixed binaries of a BH and a NS. [9] as sources. These
binaries evolve virtually all of their lifetime through non-relativistic (NR) motion in weak
gravity, and thus their evolution has been studied analytically using the post-Newtonian
(PN) approximation of General Relativity (GR), see Blanchet’s Living Review for the
comprehensive progress and status of PN theory [10]. Building on PN theory, and inter-
polating over the swift phase of merger, in which the binary is subject to strong gravity
fields, the effective-one-body (EOB) approach [11] has consistently enabled the generation
of theoretical gravitational waveforms from such sources, against which measured signals
are compared.

To that end efforts have been increasing in recent years to push the state of the art of
PN theory. For the conservative dynamics of generic compact binaries the high fifth PN
(5PN) accuracy in the two-body potentials has been tackled in both traditional GR [12-14],
and effective field theory (EFT) approaches [15-17]. These 5PN precision results have
been obtained in the point-mass sector, where finite-size effects, and thus the internal
structure of the individual components of the binary first kicks in at this high order. The
third subleading spin-orbit sector at the 4.5PN order (the PN counting of sectors with
spin is always evaluated for maximally-rotating objects) was also approached following
the approach in [12, 13] via traditional GR [18, 19], but was fully accomplished including
general Hamiltonians via the EFT of spinning gravitating objects in [20-23]. Similar to the
point-mass sector the spin-orbit sector, which is linear in the spins, is also uniquely simple
in that finite-size effects first enter at an even higher PN order than the point-mass sector.

Yet, such finite-size effects hold valuable information to better our understanding of
strong gravity and QCD theories. For higher-spin sectors, namely as of the quadratic order
in the spins of rotating compact components of the binary, such finite-size effects enter
already at the 2PN order [24], and thus have to be consistently tackled in order to push
the PN precision frontier. This has required to formulate a theory for higher-spin orders
in gravity, which was introduced in [20, 25], and has fascinating links to higher-spin field
theories, see e.g. [26]. In particular for the 4.5PN accuracy, the next-to-leading (NLO)
cubic-in spin sectors for generic compact binaries also need to be completed.

This paper is aimed at the completion of such results in the NLO cubic-in spin sectors
at the 4.5PN order, following on our EFT computation of the generalized action of these
sectors [27]. The latter work has built on the EFT of spinning gravitating objects [20, 28],
the EFTofPNG public code [21], and a series of works in this approach that accomplished the
present state of the art in sectors with spins at the 4PN order [25, 29-32] including their
general Hamiltonians. Recently, this EFT approach has also enabled the completion of the
third subleading (N®LO) quadratic-in-spin sectors at the 5PN order in [33-36], including
the general Hamiltonians in [35] (and then also in [37]), and their full Poincaré in [36]. In
this paper we reduce the generalized actions of the NLO cubic-in spin sectors from [27] to
standard actions with spins, and derive the general Hamiltonians for an arbitrary reference
frame, and for generic kinematic configurations. From them we derive the binding energies
with gauge-invariant relations useful for GW applications.

This paper is also aimed at validating the results of all conservative sectors at the 4.5PN
accuracy in order to establish this as the new precision frontier. We accomplish this objective



through the construction of the full Poincaré algebra at this PN order, which includes:
1. The NLO cubic-in-spin sectors from [27], with the general Hamiltonians obtained in the
present paper. 2. The N3LO spin-orbit sector with the general Hamiltonians obtained in
our [23]. The Poincaré algebra in phase space provides the most stringent consistency check
for the full general PN Hamiltonians by way of proving their Poincaré invariance, and it is
sensitive to the smallest deviations from proper canonical Hamiltonians. Thus in addition
to providing the global Poincaré invariants of the system, the completion of the Poincaré
algebra at the 4.5PN order provides a powerful validation of this new PN precision frontier.

In the scattering problem the NLO cubic-in-spin sectors in the weak-field or so-called
“post-Minkowskian” (PM) approximation have also been approached. In [38] scattering
angles for BHs in the aligned-spins case were first approached. In [39] the NLO PM
Hamiltonians in the center-of-mass (COM) frame for BHs were presented, and in [40]
similar NLO COM Hamiltonians for generic compact binaries were approached. All of these
scattering studies built on the higher-spin theory introduced and formulated in our EFT of
spinning objects [20, 25] as their basis, and thus they all put forward derivations that are
inherently dependent on our framework. Moreover, scattering angles simply make for poor
input at higher-spin sectors, since they are always inherently restricted to the aligned-spins
simplification, where there is a growing loss of physical information that is only increasing
with spin orders, as of the quadratic order in spins. Furthermore, when Hamiltonians are
provided in these scattering studies, which thus far seems to be feasible only at low loop
orders and spin orders, which are already known in PN theory, they are always restricted to
the COM frame. This fact also does not allow to study the Poincaré algebra of the system,
which could in turn also provide a critical check for the validity of such results.

In these scattering-amplitudes derivations, quantum degrees of freedom (DOFs) are
unnecessarily invoked, that then need to be laboriously removed from the meaningful
classical results. Moreover the scattering results should be linked to the bound inspiral
setup, which requires more work, and becomes an obstacle as of third subleading loop
or spin orders. In our EFT approach, there are only classical DOFs, directly set up in
the bound problem, and thus our approach readily gets at the necessary results for GW
measurements. Moreover, our approach provides the general arbitrary reference-frame
Hamiltonians, which form part of the full Poincaré algebra. Our EFT approach is thus
instrumental to high-precision GW measurements, as well as critical to guide such efforts to
attempt at diverse derivations in the related scattering problem. To that end, we also derive
from our generic PN Hamiltonians the extrapolated scattering angles in the aligned-spins
configuration for the scattering problem.

This paper is organized as follows. In section 2 we review our EFT of higher-spin in
gravity, which contains two main formal ingredients in the theory, that contribute to all
orders in spin: spin-gauge invariance and spin-induced couplings [20, 25, 28]. In section 3
we confirm the generalized actions that were evaluated via an EFT computation in [27],
and reduce them to the final actions of 6 independent subsectors from which the equations
of motion (EOMs) for both the position and spin can be obtained directly and simply. In
section 4 we derive the full general Hamiltonians in an arbitrary reference frame, and then
gradually specialize to the COM frame, and to the aligned-spins configuration, where it is



shown how significant is the loss of physical information in these simplifications, notably
growing with higher orders in spin. In section 5 we construct the full Poincaré algebra with
the general Hamiltonians of the NLO cubic-in-spin sectors, and N3LO spin-orbit sector,
that make up the 4.5PN precision, thus proving their Poincaré invariance and establishing
this PN order as the new precision frontier. In section 6 we derive useful observables and
gauge-invariant relations for GW applications. We also derive the extrapolated scattering
angles in the aligned-spins configuration of the scattering problem for guidance of scattering-
amplitudes derivations. Finally in our appendices we include: a brief note on typos in [27] in
appendix A, explicit results for the new redefinitions, final actions, and general Hamiltonians
of the NLO cubic-in-spin sectors, in appendices B, C, and D, respectively, and the Poincaré
COM generator of the N3LO spin-orbit sector in appendix E. All the corresponding results
are also provided in the supplementary material attached to this publication.

2 EFT of higher spin in gravity

To complete the precision frontier at the 4.5PN order, we need to consider carefully the
EFT of spinning gravitating objects [20], which was originally formulated to establish the
3PN order as the state of the art, and to then obtain the present state of the art at the 4PN
order, via an EFT approach for spins in gravity. In particular the 4.5PN order requires
to tackle the NLO sectors that are cubic in spin, and thus to extend the EFT at higher
orders in spin with greater attention and rigour [27, 41]. Let us review our theory that was
presented in [20, 28], which we then built on.

For the conservative interactions of the compact binary inspiral we consider an effective
action that captures a two-particle system in a weak gravity field at the orbital scale of

binary separation [15]:
2

Seft = Serlgpw] + Z Spp(Aa)- (2.1)
a=1

Sgr is the purely gravitational action in some classical theory of gravity, e.g. GR, and it
is supplemented by an infinite tower of interactions between the gravitational field and
the worldline degrees of freedom (DOFs), representing each a-th compact object. These
interactions make up the point-particle action, Spp, localized on the worldlines, parametrized
by M. The challenge for rotating objects is then to bootstrap the effective action of a

spinning particle.
First, for a spinning object the action of a point-particle can be written as [20, 42—44]:

1
Spp [g;un y/i7 efﬁl] = /d)‘ {_m\/u? - is;wg'uy + LSI [Uﬂv S/u/yg;w (yﬂ)] ) (2'2)

where u# = dy*/d), and y*, !y are the particle worldline coordinate and tetrad DOFs,
respectively. From the worldline tetrad, n4Be AF(Nep” () = g, the angular velocity is
defined as Q*(\) = €/} DB;W, and then its conjugate, the worldline spin, S, () = —2%,
is added as another explicit DOF to the action. Lg; denotes the non-minimal coupling part

of the Lagrangian that is induced due to the presence of spin.



While the minimal coupling in the form of eq. (2.2) is fixed only from the symmetries
of general covariance and reparametrization invariance [42, 43], it turns out that it conceals
additional symmetries related with the rotational DOFs, the worldline tetrad and the spin:
as we have shown in [20] this form of the action in fact already assumes the Tulczyjew
gauge for the spin [45]. Related with that hidden symmetry is the fact that the particle
worldline coordinate can in general be shifted from the position that represents the rotating
object’s “center”. As to the non-minimal coupling part of the action, the symmetries of
parity and SO(3) invariance play a major role in constraining it.

Indeed, these were the 2 fundamental challenges tackled successfully in bootstrapping
the effective action of a spinning particle in our EFT formulated in [20]: 1. Making the spin
gauge invariance manifest in the action as of minimal coupling. Notice that this contributes
to all orders in spin. 2. Fixing the leading non-minimal couplings to all orders in spin. In
sections 2.1 and 2.2 below we go over these 2 major formal developments accomplished
in [20].

2.1 Spin gauge invariance

The key observation here is the symmetries related with the worldline tetrad. There is an
SO(3) invariance of the worldline spatial triad, and then what we refer to as “spin gauge
invariance”, which is some freedom to complete the timelike component of the worldline
spatial triad to a tetrad [20]. This gauge choice will fix both tetrad and spin variables.
To make the gauge freedom of the rotational variables manifest in the effective action,
we applied a 4-dimensional covariant boost-like transformation on the worldline tetrad,
introducing new gauge DOFs, €1, = wy, for the timelike vector of the tetrad. This leads
to a generic gauge condition for the spin (traditionally called “SSC”) [20]:

S‘NV (pu + \/Eé[O]V) = 07 (23)

which removes the redundant DOFs from both the angular velocity and the spin. From the
minimal coupling term in eq. (2.2) we then obtain [20]:

1

7SNVQ,LLV _ ES’W/Q#V n SHYp, %
2 2

p? Do’

(2.4)

where a new general term emerges in the action, which was not accounted for in past
formulations of spin in gravity, including in Yee and Bander [46], which was later adopted
in [47]. This kinematic term, essentially Thomas precession as elaborated in [20], originates
from minimal coupling, and thus is clearly not preceded by any Wilson coefficient, though
it contributes from leading order in spin — to finite-size effects at all orders in spin.

Using the worldline Lorentz matrices, n4B8A 4%(A\)Ag®(\) = 7%, we can write the locally-
— /A\Aa dAAb

x>
the local tetrad field, n®é,*(x)é&" (x) = g"¥(x). Then, using the Ricci rotation coefficients,

flat angular velocity, Qﬁgt and the conjugate local spin, Sy = etey 5’””, with

w,® = éb,D, e, the first term on the r.h.s. in eq. (2.4) can be rewritten as [20, 48]:

1, A 1., 4 1A
5 S = isang’;t + 5Sabw,ﬁw. (2.5)



At this point we note that we fix the gauge of the rotational variables so as to fully
disentangle the field from the worldline DOFs, as was first put forward in [49]. We fix the
gauge of rotational variables to the canonical gauge for curved spacetime that we generalized
from flat spacetime Pryce-Newton-Wigner SSC [50, 51].

2.2 Higher-spin coupling

Based on the full set of symmetries that we noted, the key element in bootstrapping the
non-minimal coupling of spin to gravity was to invoke the classical analogue of the Pauli-
Lubanski vector, S¥, as the building block for the action [20, 25]. Focusing on parity and
SO(3) invariance and through a full rigorous analysis, the leading non-minimal couplings to
all orders in spin were presented in [20]:

o0 n

Lg1= Z ((2713' 72522_71 Hon "DM3E\‘;;*M22

n=1

o0 n
(—1) CBS2n+1
D ...D
+nzl (2”"‘1)' m2n H2n+1

SH1LGH2 . GH2n—1 GH2n

B
s H;/;Q SH1GH2 ... GH2n—1 Gli2n S;U'2n+l’ (2.6)

with a new infinite set of Wilson coeflicients that correspond to “multipolar deformation

parameters” in traditional GR. This infinite tower of operators contains definite-parity
curvature components, either the electric or magnetic, E,, or B, respectively. For the
present sectors, we only need to pull out the first two terms of this infinite series [20, 25]:

_ C(ES2 E.UV wQy
3 D)\B,y
Lpgs = _Cpge AT gy g, (2.8)

6m?  u2
which correspond to the quadrupolar [24, 44] and octupolar [25] deformations.

Following the EFT of spinning gravitating objects introduced in [20, 25], and as reviewed
above, various scattering-amplitudes approaches tackled the gravitational scattering problem
with massive higher-spin particles, including [38-40]. In particular, the infinite tower of
S! couplings in eq. (2.6) has been used for the corresponding 3-point amplitudes with
massive particles of spin s = [/2, that make up the building blocks to derive any scattering
amplitude. Furthermore, all these approaches used input from implementing the EFT of
spinning gravitating objects [20, 25] for the specific case of BHs within traditional GR [38] —
as a critical guide to their derivations. In particular, the dependence of [38] in our worldline
theory for higher-spin [20, 25] should be noted here, as it was omitted in [38].

As to non-minimal couplings that are quadratic in the curvature, an extension of the
action that covers the cubic order in spin was introduced in [41]. Similar to the spin-orbit
sector, it is found that such cubic-in-spin operators enter only at the 6.5PN order, and thus
are not relevant to the present sectors. At this point it should be noted that the spin which
is used in the construction of non-minimal couplings is in the Tulczyjew gauge to begin
with, and thus in order to switch to a generic spin variable as in section 2.1 above, the
following relation should be used:

o Supppu | Supp”
S = S — “2”21’”+ ””ppzp“. (2.9)




3 Effective actions

Using our effective theory for higher spin in gravity reviewed in the previous section, we
carried out an EFT evaluation of the NLO cubic-in-spin sectors in [27]. The evaluation of
the relevant interactions involved 53 unique Feynman graphs [27]. The printed values for 5
of these graphs contained typos, which we note in appendix A below. These copying errors
in the individual values of graphs in the printed manuscript are arbitrary typos, and did
not affect the total sum of the graphs, that was provided in [27]. The generalized actions of
the NLO cubic-in-spin interactions are then written as [27]:

L3° = Lg%LSO + LNLO +(1 & 2), (3.1)

where we identify the following distinct pieces:

G2 G 1 2 2m
NLO 2
Lezs, = 5 st Cl(ESQ) 1 Loy + Cyms?y 5 5 Ly +Cyg SQ)WLM)
G2 G 1 G2 G2y
ré L(5) + Cl(ESQ) my (6) + Cl(ESQ) A L(7) +C; 1(ES?) d o L(g)
G 1 G 1
* Cl(Esz)ﬁmfle) + Cl(ES%?EL(lOﬁ (3.2)

as well as the following ones:

G2m2 G2 2 Gm my
LNLO Cl(ES2)7 )+ o (ESQ) L[2} + Cl(BS3) ml L[g]
G*m G2m2 Gm
+Cussh 5~ L[4} +Ciesy 5,0 Lis) + Cres?) 5,0 L[G}
G2 sz

+ Cuipst) s ap L+ Cuips®) 5,0 2L + e s3>G; 2 Lo (3.3)
where we also provide these generalized actions in machine-readable format in the supple-
mentary material attached to this paper. Let us stress that the computer files of [27], also
included in the supplementary material attached to this paper, contain the correct results.
Note that in eq. (3.3) there can also exist in principle a piece of the form C gg2ym2/ (m3r?),
which is absorbed into Lg], eq. (5.19) in [27], by a total time derivative.

3.1 Redefinition of actions

As noted in [27] the generalized actions that are obtained from the EFT computation need
to be reduced to “standard” actions with spin variables, namely which do not contain
higher-order time derivatives beyond velocity and spin. The reduction procedure via formal
redefinitions that we show here was introduced in [52] to include rotational variables, and
we build here on the derivations shown in [23, 35]. Table 1 summarizes the redefinitions
that need to be applied gradually to the relevant sectors that contribute to the present
sectors, in increasing PN order, even those that do not require any reduction in themselves.

Based on the spin and PN power-counting of the various redefinitions [52], we first note
that similar to [20], for higher-spin sectors as of the NLO, we need to apply position shifts



l | (N9)LO | NOLO
SO
st + ++
S 4
s? + ++

Table 1. The shorthand notation of sectors, (n,l), and the general formula n + [ 4+ Parity(l)/2
for their PN counting was introduced in [27], where n is the subleading order (or highest n-loop
order), and [ is the highest order in spins of each of the sectors, and the parity is 0 or 1 for even or
odd [, respectively. The 8 sectors that contribute to the present NLO cubic-in-spin sectors, (1,3),
through redefinition of variables. “+” marks sectors that require only position shifts or redefinitions
of rotational variables to be fixed, and “+4” marks sectors that require redefinition of both position
and rotational variables.

beyond linear order. On the other hand, also according to the extension of the procedure
beyond linear order in the rotational variables which we carried out in [23], here we only
need to apply redefinitions of the rotational variables to linear order. For the present sectors
we need to take into account redefinitions that are fixed in 5 sectors, as shown in table 1,
and we follow the detailed presentation in [23, 35].

The redefinitions in 3 of these sectors, below cubic in spin, are detailed in [23, 35], and
thus here we need to further consider the 2 sectors that are cubic in the spin, shown in
tables 2-3, whose structure was explained in [23]. The algorithm used for the reduction
is similar to that we used in [23, 35], only that it implements higher-order position shifts
as seen in table 3. Thus, we now go through the relevant sectors according to their PN
order, with the unreduced actions always computed with the EFTofPNG code [21]. For the
LO and NLO spin-orbit, and NLO quadratic-in-spin sectors, our unreduced actions and
redefinitions can be found in [23], and [35], respectively.

Now we can approach the LO cubic-in-spin sectors as shown in table 2, where we will
not conform to the choices of unreduced actions and redefinitions of our original derivation
of these sectors in [25]. Thus the unreduced potential is:

3GC - . = = .
VSLgozilESz[S%ngﬁ-ﬁl—251-ﬁSlng-ﬁl—S%ngﬁ-ﬁg
mar
+2§1‘ﬁ§1><§2'172—5§2Xﬁ'171(§1-ﬁ)2+5§2xﬁ-ﬁg(gl-ﬁ)ﬂ
3GC P — — — iy -
_ﬁ(gl.ﬁslXﬁ.52+51.ﬁ51><ﬁ.52>
mir
GO pg - - - =
+ B TR (G2G) x it — S35 x 7+ Ty — 55y x 71 71 (S - 7)?
mi°r
+ 551 % ii - TS - ﬁ)z}- (3.4)

There is no new position shift in this sector, but a new redefinition for the rotational
variables that is fixed as:

A\ LO 9o o - o o
C 3GC s (5o - iS{nd — 28, - iSin? + S357] — (i ¢ ). (3.5)

s myr3



) 1 PN | LO $2
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LO ST AT
LO S3 AS

Table 2. Contributions to the LO S3 sectors from position shifts and spin redefinitions in lower-
order sectors.

1 PN | LOS' | LOS? | NLOS? | LO 3
from
LO St (AD)? | (AT)? AT
NLO S! AT AS
NLO $2 AT AS
LO 3 AS
NLO $3 | AZ, AS

Table 3. Contributions to the NLO S? sectors from position shifts and spin redefinitions in lower-
order sectors.

We can now consider the redefinitions at the present NLO cubic-in-spin sectors, as
detailed in table 3.
The new position shifts and redefinitions of rotational variables fixed in the present sectors
can be written as:

(Ay)$ 0 = (Afl)g:;m + (Afl)gg%ﬁ + (Afl)glLs(g) + (Afﬁ)ls\lgm ; (3.6)
-\ NLO -\ NLO ..\ NLO -\ NLO
ij . ij ij ij (s .

(wl )53 N (wl )s§ + (wl )sfsz + (wl )slsg (i 3), (37)

where the explicit redefinitions are presented in appendix B, and we also provide them in
machine-readable format in the supplementary material attached to this paper.

3.2 Final actions

As explained in [20] we can already obtain the EOMs for the position and spin from the
generalized actions before reduction due to our use of the generalized canonical gauge
formulated in [20]. However, it is much easier to derive the EOMs with the more compact
actions obtained after the reduction that we have shown in the previous section. The
final potentials that we obtain for the NLO cubic-in-sectors, comprise the following 6
distinct sectors:

NLO _ /NLO NLO 2 NLO NLO , 1/NLO NLO
Ve = Ve + Cipg2Viggayg, + ClESZVC’;S2S§ +Cips:Vpss~ + Vazg, + Crms2Vimsa)s,
1

+ (14 2), (3.8)

where the explicit actions are presented in appendix C, and we also provide them in
machine-readable format in the supplementary material attached to this paper.



Notice that a new “self-induced” cubic-in-spin potential arises in eq. (C.4), that is
proportional to the square of the quadrupolar-deformation parameter for generic compact
binaries. As we shall see in our construction of the Poincaré algebra of the sectors at this
PN order in section 5 below, and more specifically from eq. (5.27) there, this new sector is
actually imposed by Poincaré invariance. It can be seen as arising from the precession of
spin due to the leading quadrupolar deformation, as it enters and affects in turn on higher
orders of the spin-induced quadrupolar potential. The interference of misaligned quadrupole
effects effectively gives rise to this new self-induced octupole potential. Of course, when the
simplification, that all spins are aligned, is assumed, then this new effect drops out.

From these final potentials for the NLO cubic-in-sectors the consequent EOMs for the
position and spin were derived in [53].

4 Hamiltonians

From the generalized canonical gauge for the rotational variables that is included in our
formulation [20], the derivation of full general Hamiltonians is straightforward, via a
Legendre transform of the final actions only with respect to the position variables. This
Legendre transform involves all the sectors that lead up to the present ones as noted in
table 1. It should also be highlighted that the Hamiltonians which we derive in our approach
hold for an arbitrary reference frame, and thus are the most general ones, and in particular
more general than various specialized Hamiltonians provided in all other methods, such as
the COM, EOB, or aligned-spins Hamiltonians, which are all — to begin with — already
restricted to the COM frame.

The general Hamiltonians already have important applications both formally and
phenomenologically. With the general Hamiltonians the Poincaré algebra of the conserved
integrals of motion can be uniquely uncovered, which also provides a stringent kinematic
consistency-check for the validity of Hamiltonians obtained, as will be discussed in detail in
section 5 below. Phenomenologically from the Hamiltonians one can also construct various
possible EOB models for the present sectors, and study how they perform. Finally, the
general Hamiltonians can be specialized to certain simplified kinematic configurations, see
section 4.2 below, in which gauge-invariant observables, notably the binding energies as
function of the GW frequencies, can be extracted, as will be detailed in section 6 below.

4.1 Full Hamiltonians

Similar to the final potentials presented in section 3.2, our full general Hamiltonian for the
present NLO cubic-in-spin sectors is comprised of 6 distinct sectors:

NLO __ NLO NLO 2 NLO i NLO NLO NLO
Hgs™ = Hgg™ + Cipg2 Hipgayg, +CIES2HCES2S§ + Cipss Hpgs™ + Hgag, + Cips2 Hggyg,
1
+ (1 2), (4.1)

where the explicit Hamiltonians are presented in appendix D, and we also provide them in
machine-readable format in the supplementary material attached to this paper.
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4.2 Specialized Hamiltonians

In order to express specialized Hamiltonians, we use various binary-mass conventions:
m=mi+me, q=mi/me, p=mimy/m, (4.2)
v =mima/m® = q/(1+q)* = p/m, (4.3)

where the latter is the dimensionless symmetric mass-ratio. We further transform all
variables to be dimensionless using Gm and p to rescale length and mass, respectively, and
denote all dimensionless variables with a tilde.

First, the Hamiltonians are specified in the center-of-mass (COM) frame, with p' =
p1 = —po. Using p, the orbital angular momentum is defined as L =ritx p. Then the
COM Hamiltonians of the NLO cubic-in-spin sectors are written in the form:

NLO NLO rTNLO NLO NLO NLO NLO
H H +ClES2H(ES%)S +C%ES2 SS+CIBS3H SS +H +ClES2H(ES%)SQ
+(142), (4.4)
where
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As can be seen, the COM specification already results significant simplification of the
general Hamiltonians. Yet the COM simplification has been the most detailed form of

results provided in recent popular work via scattering-amplitudes methods which treat the
unbound scattering problem.

Comparison of COM results from two scattering-amplitudes works. Chen et
al. in [40], and Bern et al. in [41], presented COM Hamiltonians for BHs, and for generic
compact objects, respectively. To start with, their results are discrepant with each other
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in several ways, and already at the initial level of scattering amplitudes, from which their
COM Hamiltonians are derived. As we note below discrepancies of the two works with our
results, we also touch on the discrepancies between them.

1. Chen et al. In [39] COM Hamiltonians for the case of BHs were presented in
egs. (3.96), (3.97), for the S?S,, and S? parts of the potential, respectively. Both of
these parts are discrepant with our results. As can be seen in their section 3.4, [39]
could not succeed in relating their results to ours via canonical transformations,
beyond the quadratic-in-spin sectors [20], which were already well-confirmed then.
As noted in version 2 of [39], ref. [53] with our final results here was fully shared
on summer 2021 with Chen et al. upon their request, and this discrepancy with our
results has been known prior to version 1 of [39].

Moreover, [39] presented in appendix B their preliminary scattering amplitudes for
generic compact objects, in which they were notably missing the new contribution

proportional to Cé that would correspond to our eq. (4.7) in the Hamiltonian.

2
As this new sector Scon‘clributes even when results are specified to the case of BHs,
it is also clearly missing from their eq. (3.97) in [39] for the Hamiltonian. As we
noted at the end of section 3.2, and as we shall see in section 5.1 below, this new
sector is also imposed by Poincaré invariance, and therefore the Hamiltonian of [39] is
generally not Poincareé-invariant, and thus is not only canonically inequivalent with

our Hamiltonian, but is also inequivalent with any physically correct Hamiltonian.

More generally, it should also be noted that the results in [39] are discrepant already
at the level of scattering amplitudes, even when restricted to the case of BHs, with
various corresponding amplitudes, as in [40], including the absence in [39] of a part
that is proportional to C’és2.

2. Bern et al. The COM Hamiltonians for generic compact objects found in the
ancillary files of [40] are discrepant with ours, even at the LO, and even when specified
to the simpler case of BHs. As noted in [40], their Hamiltonians contain, as of the
cubic order in spin, new unfamiliar singularities in the COM momenta, 1/p?, where it
was claimed there, that these singularities drop out for the case of BHs. However, it is
easy to verify already at the LO cubic-in-spin sectors in [40], that these singularities
remain, even after restricting to the case of BHs, namely when the 2 Wilson coefficients
in these leading sectors are specified to unity, Cpq2 = Cpgs = 1, as stipulated in
our [20]. Thus the results in [40] are discrepant with our LO results in [25] from 2014,
where those have since been well-confirmed via numerous independent methodologies,
including in traditional GR methods.

At the NLO the COM Hamiltonians in [40] for the cubic-in-spin sectors display
similar singularities, even for BHs. Moreover, at the NLO the work in [40] included
contributions with a claimed new Wilson coefficient, Ho, that they stipulated in their
formulation. Such an extra free parameter violates spin-gauge invariance [20], and is
also discrepant and absent in other corresponding scattering amplitudes, as in [39].
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Finally, the singularities that appear in [40] as of the LO, as well as the above
noted extra independent piece at the NLO in [40], cannot be generated by canonical
transformations, and therefore the Hamiltonians in [40] are not canonically equivalent
to our well-verified Hamiltonians at the LO [25], nor to our new present Hamiltonians at
the NLO, which we verified via Poincaré invariance, as shall be seen in section 5.1 below.

Next, we can further restrict the Hamiltonians to the aligned-spins configuration, in
which the spins satisfy Sy =258, P = 0, namely they are both aligned with the orbital
angular momentum. It should be highlighted that the higher in spin the sectors are, the
more dramatically they are affected by this simplification, with a greater loss of physical
information as a consequence. This is in contrast to the simple spin-orbit sector, in which
the single spin and the angular momentum are still trivially coupled [19]. In the present
higher-spin sectors, applying the aligned-spins constraints to our COM Hamiltonians yields:

. 9+E2<2 11>+~2~<33 39u)
AT 22 2
177 g) P 16 "8
L 3u+9+~2 1502 v 1Y o 751/2+9 33
g\ 0 T e T T 4 T8 )T\ T T T 16
L

o 0, 3 L?> (v 3 o (9 63
e (T T \E ) TP R T 16

27 &3
fNLO _ Y LSy
SS —_ ~

76

76
3_3’/+E2(_3”_3>+~27z<_11“_33)
2 2 T F s 8)" 16 8
o v 39 L? /150 15\ ., (75v 15

Then 3T T T e 1) TR T 16

1 (v L? /390 189w
-2 = (= P27 —12
! ( P2 g) e (1 )))

where as noted above, the significant loss of physical information in higher-spin sectors, due

~2~<7u 7u2>>>] VQES%SQl v 63 wI? 2y,
+ + D, T

+(1+2), (4.11)

to the aligned-spins simplification, even in comparison with the already simplified COM
Hamiltonian, is evident. Moreover, notably one of the 6 sectors of the potential drops upon
this simplification — the new distinct sector that appears in eqs. (C.4), (D.4), (4.7), with
the C%SQ prefactor. Accordingly, we see now that this new unique feature will not show up
in any of the familiar observables, be it for GWs, or in the scattering problem, which are all
in the aligned-spins simplified kinematic configuration.

A final simplification appropriate for the inspiral phase, where the orbit is quasi-circular,
is that the necessary circular-orbit condition, p, = §- 7 = 0 = p? = p? + L?/r? — L?/r?, is
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satisfied. Further applying this condition to our aligned-spins Hamiltonians yields:

3 V2183 9 IL? 11 1 3v 9
A =P s G T (- ) o (-

+E 15V2_197V_|_E +C 21/_34_'232(%_‘_3)
P8 4 8 1(ES?) 277 \8 16
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vq 2 "2 7\ 16 4 16
2 1, 2w L? )
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v 39 E2(15z/_15>

+Q®%<2‘4*‘f 5 16

+ (14 2). (4.12)

5 Poincaré algebra

The global Poincaré symmetry of isolated N-body systems in GR provides a powerful
self-consistency check for the validity of general PN Hamiltonians in an arbitrary reference
frame. From Noether’s theorem, this global symmetry implies the existence of conserved
integrals of motion, which form a representation of the Poincaré algebra in phase space.
That is, the generators of Poincaré transformations satisfy the algebra that reads:

{P,P;j} ={P,H} ={J;;H} =0, {J;,J;} = €ijkde, i, Py = €ijpbr, (5.1)
{Gi,P;} =6H, {Gi,H} =P, {Gi,G;}= —€utr, {Ji,Gj} = €jxGr, (5.2)

with P the total linear momentum, H the Hamiltonian, J the total angular momentum, and
K the boost generator, which is traded here for G , the generalized relativistic “center-of-mass”
(henceforth center-of-mass), using K =G-tP. Thus, G;/H is the center-of-mass that forms
a canonical pair with the total linear momentum, P;, but note that this center-of-mass does
not satisfy the vanishing Poisson brackets of Newtonian center-of-mass vectors, but rather
the relativistic Wigner rotation, {G;, G;} = —€;;,Ji. Notice that the Poisson brackets in
the sectors with spins are extended to include spin variables via the generalization [42, 54]:

{f,9y =11, 9} +1{f, g}s, (5.3)

with

& /O9f 99 Of dg
{f’g};‘z(c‘)x{am_ap{am)’ (5.4)

I=1
2
_ af g
{fag}s —122215] X 85[ 65[7 (55)
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where all terms on the r.h.s. are understood to be vectors in scalar or triple products. By
construction H satisfies translation and rotation invariance, and thus the Poisson brackets in
eq. (5.1) are trivially satisfied. However, it is far from trivial to solve for the center-of-mass,
G, which should satisfy the Poisson brackets in eq. (5.2) with:

2
P =p1 + ps, JZZ(f}Xﬁ[-i-S]), (5.6)
I=1
for our binary system, and thus complete the full Poincaré algebra. Let us then turn to
accomplish this ambitious task.
First, for G to satisfy:
{Gi, Pj} = bi;H, (5.7)

it should have the following form:
G = hi&) + hoi's +Y, hy+he = H, (5.8)
where h; and Y are translation-invariant, namely:
{hr, P} = {Y;, P;} = 0, (5.9)

which is equivalent to requiring that the dependence of h; and Y on the position variables
should be only through Z; — Z5, i.e. in terms of 7 and 7. G can then be uniquely solved

from the constraint:
{Gi,H} = P,. (5.10)

As P and H are symmetric under the exchange of worldline labels, 1 <> 2, G should be
symmetric under this exchange as well. This means that Y needs to be symmetric under
1 <> 2, and hj can be written as:

H
hr = 5+hAS, (5.11)

where h{'¥ = —h4"¥ needs to be antisymmetric under 1 ¢ 2. Since this just means that
hiiy + ho@y = H (T, + ) /2 + h{*¥ril, we can just recast G as:

G=H(i +72)/2+Y, (5.12)

where h{*rfi is just contained in Y. Our task thus boils down to constructing Y from the
most general constrained ansatz, and finding the unique solution for it, using eq. (5.10).
Let us then list the considerations for the construction of G. First, the solution of
G is decomposed into different sectors classified according to their PN order, spin order
in S; and So, as well as possible factors of Wilson coefficients. The building blocks for
Y are the vectors: i, Pr, S 1, and we use dimensional analysis and Euclidean covariance,
including parity invariance and time-reversal. The constraint in eq. (5.2), {J;, G;} = €;xGk,
is automatically satisfied as long as G is constructed from vectors, 7, pr and 5‘}, to satisfy
FEuclidean covariance, such that G behaves as a vector under rotation. One subtle point
though is that at 3 dimensions every 4 vectors are dependent through the general identity:

-,

AB-CxD)—B(C-Dx A +C(D-AxB)—D(A-BxC)=0, (5.13)
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which can hide a certain redundancy in a general ansatz for sectors that contain more than
3 vectors, as in any of the sectors with spins.

Finally, in flat spacetime, i.e. where Gy — 0, the relativistic COM generator can be
written in the following closed form [54]:

2

= Si x pr
Gaar = E miiy — ———— |, 5.14
flat Z (’YI 1T m[(l—i-'y]) ( )

where v; = /1 + p2/m2. Eq. (5.14) is then used to fix the O(G%) terms in G to agree with

the special-relativistic limit. If the latter is used to constrain é, then the remainder critical
Poisson brackets involving the Wigner rotation, {G;, G} = —¢€;iJi, are also automatically
satisfied in the solution for G.

Following the various considerations above, we proceeded to solve for the full Poincaré
algebra of the new complete precision-frontier at the 4.5PN order, which includes only sectors
with spins: the NLO cubic-in-spin sectors from our [27] with the full general Hamiltonian first
presented in section 4 above, and the N®LO spin-orbit sector with the general Hamiltonian
provided first in our [23]. It should be highlighted that for the latter sector the general
ansatz to solve for, contains an order of ~ 103 free dimensionless coefficients. Therefore
we needed to scale the solution of this problem, even compared to the most advanced
Poincaré algebra at the 4PN order, that we provided in [32]. Note that the comprehensive
construction of the Poincaré algebra is particularly strong as a consistency check of all
sectors at the 4.5PN order: since there are no new Wilson coefficients introduced in any of
the sectors at this order, the fulfilment of the Poincaré algebra is non-trivial for each of the
relevant subsectors, so that they are all tested by the requirement of Poincaré invariance.
This comprehensive check will thus establish the 4.5PN order as the new precision frontier.

5.1 NLO cubic-in-spin sectors

Let us then enumerate all the sectors in H and G relevant to the solution of G at the
present NLO cubic-in-spin sectors. For the Hamiltonian we have:

H = Hy + Hipx + HSQ + HE + HEGO + HEO + HEP + HEO, (5.15)
with

HES =HEP + (1 2),  HIGO = HMO + (1 2), (5.16)
Hg? = Cipge Hygge + H5132 (12), (5.17)
HYO = HNLO + Cipge Hper? + HYO + (1 5 2), (5.18)
= clESQH(ESQ) + ClBsg HLS3 + HSP& + ClESQH(LE%% + (1 2), (5.19)

while Hg NLO s given in eq. (D.1). For the generalized COM, G, we have:
G =Gy + Gipx + GES + GSE© + GYO + GO, (5.20)
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with

Gl =G+ (12, GY°=GY° 112, (5.21)
G =G =0, (5.22)
Gg© = GO + Cipe G + GIE + (1 ¢ 2), (5.23)

and we need to solve for:

G© =GP + CipeeGd)s, + ClESQG S3 + Cipss Ol + GRS + Crpee G,

+(1+2). (5.24)

Note that all generators for LO sectors with spins (beyond the spin-orbit sector) are
vanishing.

The decomposition above determines which Poisson brackets contribute in eq. (5.10) to
solve for a given sector. GNLO is solved by:

{GNLO HN};B + {GNa HNLO}:E + {G81 ) NLO}I + {GNLO éllo}z (525)

él(\IELsg)s is solved by:
0= {Gud)s, Hx}a +{Cx, H%Ls%s Yo +{GE?, gsLZO}w +{Gien, Hggg s, o

+{GRVO HEQ Yo + {GRP HE Yo +{GEY Hiors }s + {GHO, H\G s (5:26)

GNLO 53 is solved by:
Esz
{GNLO s8» Hx}a + {GN, NLoss}a; + {Ggé?o, HIF:%}S. (5.27)
GNS3 is solved by:
0 = {GReP, Hnbo +{Gn, HRE Yo + {Gien, HiQ Yo + {GE0 HEG: 5. (5.28)

G’NLO is solved by:

0= {G3k) Hx}o +{Gx. HEL Yo +{G8), HF Yo + {GF) 2H3[T Y
+ {élevﬂs% Yo +{GS0, 2HER, Yo + {2GR1E), HECY. + {GNLO HEP Y,
+ {57 Hesg, s +{CS0, Hgig }s + [{2G§1Ls‘;’, 3152}5] +{GE0,2HER, ) s,

(5.29)

S23,

where [ f]sis2 means extracting the part of f that is quadratic in S7 and linear in Sy. Finally,

le(\IELS%& is solved by:
1
0 = {Gl(\IE{JSg) So )HN}.Z‘ + {GN; H(l;g_é(; So };t + {G82 5 gSLZO}x + {@1PN, H(LE%Q Sy }CE
+{GRLO, L9 2}e + {GNS2 VHEOY, +{GY0. H ESQ)S }s+{G°. H ESQ)S b
+ {QGglLs?, 302}5 + {Gggzo» SISQ}S (5.30)
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Each of the above 6 equations corresponds to each of the 6 subsectors that we saw in the
final actions of section 3.2. Notice that none of these equations is trivial, since the NLO
cubic-in-spin sectors do not contain any new Wilson coefficients. Even the new subsector
that is proportional to C}?:sf depends on the already-encountered Wilson coefficient C’ES%,
and therefore, as can be seen, eq. (5.27) is non-trivial, since it contains a third term from
the spin Poisson brackets of two lower-order sectors. Thus even though, as we shall see
below in eq. (5.32), the solution for the COM generator of C’2SQ does not contribute to the
general COM generator of the present NLO cubic-in-spin sectors, eq. (5.27) is only fulfilled
in a non-trivial manner, which actually proves that the new subsector is inevitable due to
the requirement of Poincaré invariance.
We recall that the solution for GNLO is written as:

GO — 5%30@1;;@) + (YNLO YNLO + (1« 2)) , (5.31)
and we find:
GC = s &
YNLO %Eis;?? [1551 X i - pyS%ii — 158 x i - p1ii(Sy - 71)?
1

— 128, x it 51 Sy - 58y + 2528) x p1 + 6(8; - 71)28) x ﬁl}

GCipeamor.= _ = _= -, = 0=
% [651 Xn -p151 . n5’1 + S%Sl X p1 — 3(51 . n)25’1 X pl}
6mq°r
G ~ ~ = = N
4 %[351 X 7 pLS27 — 9528, x gy - 7t — 351 x 7 - 718y - 7Sy
4mq°r
; L 3GC
+ 28281 x i+ 6(S1 - 7281 x i | + = 1ES2 [ S28) x i - it
+ 5§1 X T_iﬁg . T_i(gl . _‘)2 — 25_;1 . ﬁﬁQ . 5151 X 7 — 35%81 X ﬁQ
L - GC
+ 7Sy - 1)°S) % o] = ¢ P8 [65) x 7t~ oSy - 1S + 5281 x iy
ma
— 3(5_:1 . ﬁ)2§1 X ]5’2} — L {38%5:1 X ﬁp_é - — 1251 . ﬁﬁQ . §1§1 X 1
4mq2r3
— 55%5:1 X po + 12( _»1 . ﬁ)2§1 X 52:|, (5.32)
YI\QILO = — G [1551 X 10 - ﬁlgl . §2ﬁ — 9§1 . ﬁ§1 X ﬁl . §2ﬁ
S7S2 4m127“3

— 155:1 X fi-ﬁlgl ’r_iﬁgg ’Fi+6§1 X ﬁ'ﬁlgg ﬁgl +4§1 Xﬁl '5251
— 185_;1 X ﬁ'ﬁlgl . ﬁgg — 6§1 . ﬁ§2 : ﬁgl X ﬁl + 65_:1 . §2§1 X ﬁl}

_ STS;QES; [24§2 X 7t - 1527 — 65 x i - 1Sy - Syt + 278 - 1Sy x py - Syt
4918, x 71 - 55071 - 7+ 35, - 5oy x Ay - 71+ 248, - 7Sy % Gy - 7
— 155, x @ipy - it(Sy - )% — 185 x it - ;1S5 - 1S — 315) x py - 555,
— 278, - 1S, - 1S x 1+ 155 - §55; x P — 19p7 - S15) x 52}
GCips?_

+
8myimor3

[215*2 X it - 5o S27 + 248 - 1Sy x it - Soy - it
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St

+ 248 x 7t - S8, 75 - 7t + 308 - 719 x Sops - 71 — 2451 x 7 - 5.5 - 7AAS, -
+ 398, x 7t - Port(Sy - @) — 248, x 71 - PoSy - Sy — 345, x fy - $55,
— 308, - 1S, - 15, X P + 185 - $25) X i — 1875 - 5151 x §2}
o [1252 X i 5o S27 + 951 x it - poS - Soit
+ 158, - 1Sy x 7 - Sopy - 717t + 1251 x 71 - S8 55 - 71 — 35 - §581 x fipy - it
+ 218, - 7@8) x Sofs - 71 + 1555 x ipsy - i1(Sy - )% — 128 x i1 - a5y - 715,
— 125 x o - 525 — 95 x i1 - §2S) - 719y — 95, - 715, - 1S X P
+1051 - 581 x o — T - $1.81 x S. (5.33)
To recap, we solved for the complete Poincaré algebra of the present NLO cubic-in-spin

sectors, which provides a strong confirmation for the validity of our new general Hamiltonian
presented in eq. (D.1).

5.2 N3LO spin-orbit sector

To complete the Poincaré algebra at the 4.5PN order we proceed to solve for the N3LO
spin-orbit sector. Again, we enumerate all the sectors in H and G relevant to the solution
of G at the N3LO spin-orbit sector. For the Hamiltonian we have:

2 3
H = Hy + Hipn + Hé’g + Hopn + Hé\T(I)_;O + Hspn + HgOLO + Hé\IOLO, (534)
with
HEQ = HEO + (1 + 2), HYO = HIC + (1 2), (5.35)
HYPO = HYMO 4 (142),  HYW = HYO 4 (16 2), (5.36)

where Hé\ISLO is given in our [23]. For the generalized COM, G, we have:

G = Gx + Gipx + GES + Gopx + GY5C + Gapn + GO + GO, (5.37)

with
G =G+ (12, GY°=GY°+(1+w2), (5.38)
GYo0 =GN0 4+ (1 4 2), (5.39)

and we need to solve for:
GYoMO =GN0 4 (1 2). (5.40)

éIS\IlSLO is solved by:

3 = 3 = 2
0= {5, Hx}o + {Gn, HE WOYe + {GE0, HpXOYe + {Gren, HY Y,
2 2 —n13
+{GSO RO Ve + {GA, HYOYe + (G, Hipn o + {GRoR0. HE Yo

2
+ {G81 ’ LO} + {GSLO Hé\llLO} + {GN LO HLO} (541)
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We recall that the solution for éggLO is written as:
=N T+ T e
GO0 — H§§L0(122) + (Y0 + (14 2), (5.42)

and we find ?SIYBLO, which we provide in appendix E due to its large volume. Thus, we
found the complete Poincaré algebra of the N3LO spin-orbit sector, which provides a strong
confirmation for the validity of the full general Hamiltonian first presented in our [23].

To illustrate how stringent the consistency check of the Poincaré algebra is for PN
Hamiltonians, let us note that we have checked that the N3LO spin-orbit Hamiltonian
of Mandal et al. [55] fails to pass the Poincaré-algebra consistency-check, namely the
Hamiltonian of [55] is not Poincaré invariant (beware that version 1 of [55] also incorrectly
assumed that an insertion of the EOM in their section 4.1 was equivalent to the necessary
redefinitions). This is in contrast with our corresponding result, earlier derived in [23],
which we proved to be Poincaré invariant in this section. Thus, clearly, as we also verified
independently, the result of [55] is not canonically related to ours in [23].

6 GW and scattering observables

The full Lagrangians and general Hamiltonians are both useful to derive the EOMs or the
Poincaré invariance, and to construct EOB models essential for GW templates. Despite
their wealth in general physical information, they are all gauge-dependent. Accordingly
they are bulky and leave some room for possible ambiguities, which dramatically multiply
when going to higher-order sectors, such as the present ones. For these reasons, it is crucial
to also obtain some handy observables in various restricted kinematic configurations, which
can be readily compared in GW measurements carried out in LIGO, Virgo, or KAGRA.
With kinematic constraints, as outlined in section 4.2 above for simplified Hamiltonians, one
can define the associated binding energies, e, using e = H, and relate them to observables
and gauge-invariant quantities. In this section we provide such meaningful gauge-invariant
relations expressed via the measured frequency of GWs, which have been critical in the
construction of GW templates.

We also derive extrapolated scattering angles that are specific to aligned spins for the
guidance of recent popular studies of the scattering problem in the weak-field approximation.

6.1 Binding energies and gauge-invariants
The gauge-invariant relations in this section are all derived under the condition of circular
orbit, which is very fitting for the inspiral phase of the binary. Using p, = —0H (7, L) /07 = 0,

on top of the constraints listed in section 4.2, enables to eliminate the coordinate dependence
from the specialized Hamiltonians, and obtain the binding energy for the present sectors as
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a function of the total angular momentum:

~ 233
(01 = V25t [1671/ 389, (11V 927

jAT 4 3 - 8> Cips? — 130 pgs

1 (291 2 389 1032 169 927
( Y oo ++< - V+>CIE82

vq 8 8 8 4 8
17y 12525, 1201v 2913 1437
243 1917 55
( 8” + ( 8” 222> ClESQH +(1o2). (6.1)

Using the PN parameter, 2 = @%/3, for the gauge-invariant frequency, in Hamilton’s equation
for the orbital phase, do/dt = & = oH (7, I}) / AL = 0, provides the relation of total angular
momentum to the GW frequency:

L o iijags 24TV T5T 4430 361 92
== DV / S 81 - ? — 9 — T CIE82 + 14v + ? ClBSS

1 5912 2020 N 757 _6171/2 293v N 361 o
vg \ 18 3 6 12 2 4 | iEs?
(140 12 ) Cuper )] +v21/2573, [ 28500 9025
N (V B 83) (1703u 3083 3083 (40 B 25y> o 2)]
9 12 1ES? q 3 12 1ES
+ (1 ¢+ 2). (6.2)

Then, by using the two previous relations, the binding energy can also be expressed in

terms of the frequency:

~a [4 128y 20v 4
()t (x) = V222 S} {3 B <2 - 9> Cigs? + <_4V_ 3) Cips

1 82 8 4 202
4+ — <++ <+16I/2>01E82

vq 9 3 3 3
28v 4 -0~ [4dv 82
64v 32 1 /28 321/ 32
+(14+2). (6.3)

These results for the binding energy which we provide here for the first time match those

which were initially derived in [53].

6.2 Extrapolated scattering angles

In the so-called post-Minkowskian (PM) approximation for a weak gravitational field, where
scattering events are studied in a perturbative expansion in GG, the common observable is
the scattering angle, defined in the COM frame for the simplified case of aligned spins. The

~ 93 -



extrapolated scattering angle can be computed at low perturbative orders, namely where
logarithms do not show up yet, in the overlap of PN and PM approximations. For the PM
approximation this link is not feasible as of the third subleading order, which amounts to
reaching results only up to the 2PN order. Yet recently a unique novel approach was put
forward in [56], which capitalizes on amplitudes methods directly in the bound problem
of the binary inspiral. Thus the approach in [56] faces none of the obstructions that are
common to all other amplitudes-based approaches that are set on the scattering problem.

At the present NLO sectors thus, the link with scattering can be achieved starting the
computation from our aligned-spins Hamiltonians in eq. (4.11) by extending the binding
energy of our PN Hamiltonian of a binary inspiral to the kinetic energy of scattering. These
Hamiltonians are not specified to the “quasi-isotropic” gauge, as in all other scattering-based
works, and we simply use the integration considerations outlined in [57]. Our scattering
angles are thus computed similarly to our [23, 35], where here we just need to truncate our
final expansion in G at O(G?).

We remind some conventional notation [35]:

_mamz oo _ 2 2 _ 1
Poo = E v 17 E = \/ml + ms; + 2m1m277 = ma (64)
and:
~ v2 v S; F
b= 20 b= i = — M=—"5=/14+2v(y— 6.5
Gm ) v c ) a; bm,;c’ mc2 + V(fy )7 ( )

and thus we find that our consequent scattering angles in the present sectors are given by:

O 0 =050 + 0535 + (1 & 2), (6.6)
where
0N3LO
S . 4 7w (15v _ v 27\ _
— = vas {—601383 t (41;2 + <3u —6— <2 + 4> v2> (o
27 33
v (15 _ 3. 27 .
GNZLO 19 9
% = vadlay {—BCESQ + 512 (6u —12 + 2 (;y - ?:)
2
+ (-31/ - (32” — 27> 2 — 21) Clps?
27 39
+§ <6 + 5+ <—3 + 8@2) ClEsz)ﬂ . (6.8)

Our scattering angles agree with the NLO PM ones derived for the case of BHs in [38], namely
when the Wilson coefficients for both of the objects are specified to unity, Cpq2 = Cpgs = 1,
as we prescribed in [20]. Note that the derivations in [38] built on our higher-spin worldline
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theory, and results presented in [20, 25|, as this dependence was omitted in [38]. Thus the
limited results in [38] are inherently dependent on our self-contained worldline framework.
It should also be highlighted that our results in this work — in contrast with those in [38] —
are also not limited to the aligned-spins constraint, which is a significant and ever-growing
simplification when going to higher-spin sectors. The latter was already clearly demonstrated
at the quadratic-in-spin sectors in [35], in section 4.2 above, and in [36]. The aligned-spins
constraint entails a growing loss of physical information that is always absent from the
scattering-angle observable.

7 Conclusions

We confirmed the generalized actions of the complete NLO cubic-in-spin interactions for
generic compact binaries which were tackled first in [27] via an extension of the EFT of
spinning gravitating objects [20] and the public EFTofPNG code [21]. These higher-spin
sectors enter at the 4.5PN order, and are at the present precision frontier in PN theory.
The interaction potentials are made up of 6 independent sectors, including a new unique
sector that is proportional to the square of the quadrupolar deformation parameter, Cqe2.
From these actions the EOMs of both the position and spin can be directly obtained via
straightforward variation [20, 53]. We derived the full general Hamiltonians in an arbitrary
reference frame and in generic kinematic configurations. Such general Hamiltonians uniquely
enable to study the full global Poincaré algebra in phase space, which also provides a critical
consistency check of state-of-the-art PN theory.

We carried out such a complete study of the Poincaré algebra for all of the sectors at
the 4.5PN precision frontier, including the N3LO spin-orbit sector that we presented for
the first time in [23], in order to establish the new precision frontier at this order. We fully
solved for the Poincaré algebra of both the NLO cubic-in-spin sectors from our [27], and the
N3LO spin-orbit sector from [22, 23]. We note that to accomplish the latter it was crucial
in particular to extend the formal procedure of redefinitions of rotational variables, which
was first introduced in [52]. This extension was indeed carried out in [23] beyond linear
order, but was critically missed in version 1 of [55], and contributed to their incorrect result.
It should thus be highlighted that the Poincaré construction, which serves as a strong
consistency-check, was especially critical in this case, since a valid general Hamiltonian of
the N3LO spin-orbit sector was obtained only in [23]: even the corrected Hamiltonian in
the present revised version 2 of [55] failed to pass the Poincaré consistency-check, and thus
clearly, is also not canonically related to ours in [23].

We note that similar to the N®LO spin-orbit sector, the NLO cubic-in-spin sectors do
not involve new operators/Wilson coefficients with respect to the LO ones at the 3.5PN
order (though the EFT evaluation of the NLO is obviously much more intricate). This is
why the construction of the Poincaré algebra is particularly strong as a consistency check
of all sectors at the 4.5PN order: since there are no new sectors or Wilson coefficients
introduced in any of the sectors at this order, the fulfilment of the Poincaré algebra is
non-trivial for each of the relevant subsectors, so that they are all tested by Poincaré
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invariance. Nevertheless, the Wilson coefficients that appear only in such higher-order
higher-spin sectors are critical to learn on strong gravity and QCD theories.

Subsequently we derived simplified Hamiltonians under restricted kinematic constraints,
where it is seen that the COM aligned-spins Hamiltonians get significantly less informative
at higher-spin sectors. In particular the new potential proportional to C’ESQ vanishes in the
aligned-spins simplification. From these simplified Hamiltonians we derived the observable
binding energies in terms of their gauge-invariant relations to the angular momentum and
the frequency, which are critical for GW applications. We also derived the extrapolated
scattering angles defined for the aligned-spins configuration in the scattering problem. We
found agreement with the angles derived for the scattering of BHs via scattering-amplitudes
methods, that built on our higher-spin theory, and are thus also dependent on our self-
contained framework. Finally, our completion of the Poincaré algebra at the 4.5PN order
provides strong confidence that this new precision frontier for GW measurements has now
been established.
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A Generalized actions from EFT evaluation

We collect below typos from manually printing results from our computer files for 5 graphs
in the journal version of [27], where the correct values are noted in boldface (after an arrow):

Figure 2(al) D

Gmarz L A . > L o2 -
— Cl(BSS)ﬁmi%{Sl V1 X 1)2((2—) 3)51 ] Sl - N+ U2 n(S% — 5(51 . n)2) — Sl - U1 51 n)

—

+ 810y x (83 = 5(8h - 7)) - o+ Si - a(Sh - T — 551 -7 B - )

—

. . = 1
— Sy 58yt = 581 A T -7) ) + Sy B x ﬁ<§Sf(vf+v§)

g -3 = g - - = 9.8 o
—Sl'Ul(Sl'Ug—E)Sl-nUg-n)—5(81"0)2(1)%4-7)%))

1, . g . g =
= U T2 X i St - vl(Sf —5(51 -n)Q)}, (A.1)

Figure 2(a2) D
1 Gmay 1z . T = L
701(353)7% [Sl - U1 X n(S%(U% +3’U%) — 257 - (n—> Vl)(Sl <y — 5 S -1 Uy n)
2 r*mj

- 5(§1 . ﬁ)Q(U% + 3’03)) — 251 . 171 X 172 gl . 171 51 . (A2)

— 96 —



Figure 2(a4) D

G 1 = L= Lo L o L=
+01(E52)f7[2 51 So X Us (S1~CL1 + 51 ‘1)1) + 281 - 59 x Uy Sy - Uy
+452"U1 X Us 31'51 +(2§2'172><5:1 S%—> 0) +§2'52X§2(S%—3(§1-ﬁ)2)
~ 685w x (S} @ 7 0) = 28 - S By di 4+ Sy B Sydi+ Sy-w Sy
+5,-a@ S ﬁ)] (A.3)
Figure 2(a9) D

G 1 = oL = L L
_*Cl(ESQ)*miPSl SQX?)Q(Sl' 1 Vo1 +S51 Uy U170
+ Syt GGy — 58y A i Tyt ) = Soeth x (4 =) S i+ 281 o S -
=5y 78) 0y 1) = oty x it (SHO Ty — 5 - B ) — 281 -5 Sy -

+10§1'171 gl'ﬁﬁQ'ﬁ+10§1'172 glﬁﬁlﬁ)

+5(S1-7) (@B —T B B )) ], (A.4)
Figure 3(b6) D

G? ma L& o = & .3 o
Cl(ES2) [ (23—> 39)51 SQ X 0151 -1m+ 1351 -5y x Uy Sy -710

— S x ﬁ((31—> 15)S7 — 66(S1 - 71)°) — S - S x 71 (108 - 7y — (51— 63) S, -7 v - )
+ 8185 x 7 (1181 - 0 — (54— 66) Sy -7 5 - 7)) | (A.5)

As we noted in [27] and section 3 above the generalized actions of the NLO cubic-in-spin
interactions are confirmed (egs. (5.2) and (5.13) there). There were 2 independent typos in
print (correction marked boldface after an arrow) compared with our computer files. In the
last term of L) (eq. (5.4) in [27]):

Liy> +3 8% x7i(Si-S (v} 5070 -7) - Sy -0 Sy
+ (15— 5) Sy - 0 S -7 0 - ), (A.6)
and in Lg) (eq. (5.8) in [27]):
1 5 4 . . - .
LD +5 8- Sax o (S0 — (15 2)81 -0 =3 8171 6 -1 =3 8y -1 0 -i1). (A7)

Let us stress that the computer files of [27], also included in the supplementary material
attached to this paper, contain the correct results.

B New redefinitions at the NLO cubic-in-spin sectors

The new position shifts fixed in the present sectors can be written as:

(AZ1)FHO = (AT + (AF)FE, + (AT1)SE + (AF)F©, (B.1)
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where
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The new redefinitions of rotational variables fixed in the present sectors can be written as:
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C Final actions

The final potentials that we obtain for the NLO cubic-in-sectors, comprise the following 6
distinct sectors:
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D General Hamiltonians

our full general Hamiltonian for the present NLO cubic-in-spin sectors is comprised of 6
distinct sectors:
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E COM generator of the N3LO spin-orbit sector

We recall that the solution for (_jg(S)LO is written as:

a0 = o T | (7010 4 (1 45 9)) (E.1)

and we find:

YNSLO

GTTZQ
32m45r

— 16(py - o)1 + 425 - iy - Popt — 39P1 - Tp3PL — 201D - TP

+ 24P, - TP - Pope — 123 (Do - 1)1 + 21P) - AP - 1)°Py — 24P - AP - 7)°Pa)
+ 851 X 71 - P (3p3P1 - Pail — piPa - AP — 2P - fipips) + 25, x i - p2 (1301 - Papi
— 5p2fs — O - APa - WP + 16(P - 1) Fa) — 251 X 7i(6p3Fs - fipi - P

— 13py - fipip3 + 3p1 - iipt (P - 71)%) + Sy x Py (2p3ip3 — 46(p1 - Pa)”

+68py - iy - 7Py - P — 29p5(P1 - 1)* — 12p7 (P2 - 7)° — 9(p1 - 1)* (P2 - 7))

G 5 - o S
{Sl x i - py (11pip3it

75, x it - piplii 4 651 x 4}—7
{ 1 pipy 1 X P1Py 32m4 mar

+A8 X P (Updps - o = 5 - ipips 1) + g5 |8y < i (60 - o

— 24p3Ps - APy + TPy - APIPa + 3Py - fipipe - 7il) + 158, x @ - pa( — piii

+ Py - Tipiph) — 481 x Py - papipi — S1 x A(15p) - ipip - Pa — 227 - 7ip})

+ 48, x 1 (8]9%271 <Py — 3Py - ApiPe - ) — Sy x 15’2(14;0411 — 15p7(ph - 5)2)}
o S0 X 51 (227 - i B R — 20 7 - B

+ 3Py - i - Tip3T — 63p1 - Pa (P - 1) + 12(ph - 71)°Py — 3p1 - (P2 - 7)°P2)

— S1 x i - P (38p2p3it — 32(Py - P) i + 34 - P - Paph — 30y - P3P

— 423y - TP + 32 - P - Papa + 3P4 - AP - APy - Pail — 15pT(Ph - 7)1

— 9P - AP - 71)*Py + 215 - A(F1 - )2 F2) — Sy x P - P (43p3ph

— 32 - Pafa — HAP) - P37 — 54(Pa - 7)1 + 2157 - AP - Tipe

+ 60py - 7i(pa - 7)%7) + Sy x it (3p3ps - 7ip3 — 8p3 (P2 - 7)° — 5(p1 - 1) (Pa - 7))

— S x (23p1 - Pop3 — 4P - fips - 7ip3 — 8Py - Pa(Pa - )% — 115y - i(P - 7)*

— Si x pa(41p3p3 — 42(py - Po)? + 5TP - fip - 7Py - Pa — 41p3(Py - 71)?

A6 )+ 21 )] + gy [

+ 2P - fip3pa + 33p3(Pa - )% — (P - 1) P — 15(ph - 1) 1)

+ Sy x it Py (251 - Pap3ii + 8P - fip3py — 10p1 - fip3pa — 9P - Pa(Pa - 1)

+ 91 - (P2 - 7)2Ps) + S1 x P - Do (10p3Ps — 18 - Aip3it — 9( - 1) %P

+ 45(py - 71)? i) — S x i (11p7 - pa(po - )3 + 5p1 - A (P - fi)4) — 28, x Py (210‘21

+Ap3(Fa - ) — 5(f - 7)) — S1 x P2 (81 - Popd + 16, - 7ips - i3

[S1 % 7 (37 - 7p

G
215, - B —a.—a2_13—»'—»—»'—»3
+ 21py p2(p2 n) P1 n(pz n) )} +732m24r

-39 —



+ 10p3(p2 - 7)° — 5(p> - 7)°) + S1 X iy (5p5 + 6p3(p - 7)* — 19(P - 5)4)}

G?*ms2 1~ L L, . o L .
N m {251 x it - py (piii — 28py - fipy — 4(py - 7)%7) + 3051 x 7ip; - 7ip}

J — — — G2m — = - . N o
+ $1 (30 + 100617 | + g[S A (162601 + 63277 -

+ 282 - 7ip) + 426, - ip) + 1967, - fipa — 6700, - i - i + 1287(py - 71)7)
— Sy x 7 - Pa(155p% 7 — 176, - ity + 32(py - 7))
+25) X F1 - o (25671 — 2415, - 717t) + Sy x (19295 - iip?
+ 384p% Py - 7t — AT(Py - ) — 320, - (P - 7)2) — Sy x 71 (219p? — 31367, - P
+ 358, - ify - 7 + T44(py - 1)) + 851 x o (49p% + 38(7, - ﬁ)Q)]
G2

© 96myr?
+ 63435 - 7ify + 25127, - fia - it — 111(Py - 7)°7) — Sy x 7 - Pa (3384p2 7
+ 14137, - Paii — 3888p, - iy + 23320, - ip1 + 107301 - fips — 19607, - iips - 77t
— 224( - 71)271) — S) X 1 - P2 (497251 — 1323, — 5458, - 7ift + 1283 - i)
+ 5 x 71(3282p3s - 7t — 31055 - APy - P + 28 - (P - 1)
+ 19517, - A(Fa - )%) + 25 x P (789p - fa + 1034p3 — 1993, - 7ips - 7
— 108(f2 - )%) — Sy x Pa(3276p3 — 34295, - P + 9415, - 7ips - 7
B G?*my

48my2r2

[5‘1 x 71 - 71 (63005, - Paii + 2894p2ii — 42627, - fipy — 1372p) - i

— 2420(p, - ﬁ)2)] [25*1 X 71 (24, - fip — 83(py - 71)?)
2

96mar?2

— 1827 - i — 284(Pa - 7)) — Sy X 71 - P2 (2343, - Poit — 984p3it

+ 3200, - APy — 935P1 - fiPs — 3180Ps - fiPa — 5607 - fipa - ifi — 900(Ps - 7)7)

— 51 X Py - P2 (14595, — 2773, - iit) + Sy x (1713, - Ay - Pa

— 3057py - fip3 — 1453, - 7i(Py - 71)* + 583(p - 71)°)

+ 25 x 71 (516p3 — 631(py - 7)2) — S1 X 72 (28057, - fa

— 1551 x 5> (13p3 — 15(5 - 7)%)] + [S1 % 7 7 (3561p37

2589p2 — 1313, - iy - 1 + 777 (P - 71)? _GPmg? 173495, x 71 - pyii
— 2589p; — 1313p1 - 7ipa - 7t + T77(Pa - 1) )] - 1800m1r3[ 1 X T prni
5 s 5 G3m,? 5 oL
+ 424748, X iif, - it — 159505, x pl} gz mo [974451 X 7 - Poft
72073
a I al _ G3m22 a I 24 =
1134498, x 7Py - 71 — 96655, x p2} ~ Ti008 [15051 X - (479 — 6577%)7

+ 4841765, X 7 - ot 4 351 x 7((182400 — 2002572)f, - 7 + 1013927, - 77)

G3m1m2
1440073
+ 1508 X 7 - fa(1001 — 6397%)7 + 35, x (2393725, - 7@

— 25(21320 + 51372) 5, x p1 + 1518005, x ﬁg} - [66771651 X 7t - it

— (107500 + 4477572)f, - i) — 2265005) x 7 + 25(21896 + 51372)5) x ﬁg}.
(E.2)

40 —



Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

1]

LIGO ScIeNTIFIC and VIRGO collaborations, GWTC-1: A Gravitational- Wave Transient
Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second
Observing Runs, Phys. Rev. X 9 (2019) 031040 [arXiv:1811.12907] [INSPIRE].

LIGO ScienTIFIC and VIRGO collaborations, GWTC-2: Compact Binary Coalescences
Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X
11 (2021) 021053 [arXiv:2010.14527] [INSPIRE].

LIGO ScCIENTIFIC et al. collaborations, GWTC-3: Compact Binary Coalescences Observed by
LIGO and Virgo During the Second Part of the Third Observing Run, arXiv:2111.03606
[INSPIRE].

LIGO SCIENTIFIC collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001
[arXiv:1411.4547] [INSPIRE].

VIRGO collaboration, Advanced Virgo: a second-generation interferometric gravitational wave
detector, Class. Quant. Grav. 32 (2015) 024001 [arXiv:1408.3978] [INSPIRE].

KAGRA collaboration, Quverview of KAGRA: Detector design and construction history,
PTEP 2021 (2021) 05A101 [arXiv:2005.05574] [iNSPIRE].

LIGO ScienTIFIC and VIRGO collaborations, Observation of Gravitational Waves from a
Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

LIGO ScieNTIFIC and VIRGO collaborations, GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832]
[INSPIRE].

LIGO SCIENTIFIC et al. collaborations, Observation of Gravitational Waves from Two
Neutron Star-Black Hole Coalescences, Astrophys. J. Lett. 915 (2021) L5 [arXiv:2106.15163]
[INSPIRE].

L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries, Living Rev. Rel. 17 (2014) 2 [arXiv:1310.1528] [INSPIRE].

A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body
dynamics, Phys. Rev. D 59 (1999) 084006 [gr-qc/9811091] [INSPIRE].

D. Bini, T. Damour and A. Geralico, Novel approach to binary dynamics: application to the
fifth post-Newtonian level, Phys. Rev. Lett. 123 (2019) 231104 [arXiv:1909.02375] [INSPIRE].

D. Bini, T. Damour and A. Geralico, Binary dynamics at the fifth and fifth-and-a-half
post-Newtonian orders, Phys. Rev. D 102 (2020) 024062 [arXiv:2003.11891] [INSPIRE].

D. Bini et al., Gravitational dynamics at O(G®): perturbative gravitational scattering meets
experimental mathematics, arXiv:2008.09389 [INSPIRE].

W.D. Goldberger and 1.Z. Rothstein, An Effective field theory of gravity for extended objects,
Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].

— 41 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevX.9.031040
https://arxiv.org/abs/1811.12907
https://inspirehep.net/literature/1706018
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.11.021053
https://arxiv.org/abs/2010.14527
https://inspirehep.net/literature/1826648
https://arxiv.org/abs/2111.03606
https://inspirehep.net/literature/1961691
https://doi.org/10.1088/0264-9381/32/7/074001
https://arxiv.org/abs/1411.4547
https://inspirehep.net/literature/1328453
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978
https://inspirehep.net/literature/1311317
https://doi.org/10.1093/ptep/ptaa125
https://arxiv.org/abs/2005.05574
https://inspirehep.net/literature/1795919
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://inspirehep.net/literature/1421100
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://inspirehep.net/literature/1630824
https://doi.org/10.3847/2041-8213/ac082e
https://arxiv.org/abs/2106.15163
https://inspirehep.net/literature/1871882
https://doi.org/10.12942/lrr-2014-2
https://arxiv.org/abs/1310.1528
https://inspirehep.net/literature/1257367
https://doi.org/10.1103/PhysRevD.59.084006
https://arxiv.org/abs/gr-qc/9811091
https://inspirehep.net/literature/479939
https://doi.org/10.1103/PhysRevLett.123.231104
https://arxiv.org/abs/1909.02375
https://inspirehep.net/literature/1752763
https://doi.org/10.1103/PhysRevD.102.024062
https://arxiv.org/abs/2003.11891
https://inspirehep.net/literature/1788451
https://arxiv.org/abs/2008.09389
https://inspirehep.net/literature/1812775
https://doi.org/10.1103/PhysRevD.73.104029
https://arxiv.org/abs/hep-th/0409156
https://inspirehep.net/literature/659452

[16]

[17]

[18]

[19]

[25]

[26]

[27]

J. Bliimlein, A. Maier, P. Marquard and G. Schéfer, The fifth-order post-Newtonian
Hamiltonian dynamics of two-body systems from an effective field theory approach: potential
contributions, Nucl. Phys. B 965 (2021) 115352 [arXiv:2010.13672] [INSPIRE].

W.D. Goldberger, Effective field theories of gravity and compact binary dynamics: A
Snowmass 2021 whitepaper, in the proceedings of the Snowmass 2021, Seattle U.S.A., July
17-26 (2022) [arXiv:2206.14249] [INSPIRE].

A. Antonelli et al., Gravitational spin-orbit coupling through third-subleading post-Newtonian
order: from first-order self-force to arbitrary mass ratios, Phys. Rev. Lett. 125 (2020) 011103
[arXiv:2003.11391] [INSPIRE].

A. Antonelli et al., Gravitational spin-orbit and aligned spini-spins couplings through
third-subleading post-Newtonian orders, Phys. Rev. D 102 (2020) 124024 [arXiv:2010.02018]
[INSPIRE].

M. Levi and J. Steinhoff, Spinning gravitating objects in the effective field theory in the
post-Newtonian scheme, JHEP 09 (2015) 219 [arXiv:1501.04956] InSPIRE].

M. Levi and J. Steinhoff, EFTofPNG: A package for high precision computation with the
Effective Field Theory of Post-Newtonian Gravity, Class. Quant. Grav. 34 (2017) 244001
[arXiv:1705.06309] InSPIRE].

M. Levi, A.J. Mcleod and M. Von Hippel, N2LO gravitational spin-orbit coupling at order G*,
JHEP 07 (2021) 115 [arXiv:2003.02827] INSPIRE].

J.-W. Kim, M. Levi and Z. Yin, N3LO spin-orbit interaction via the EFT of spinning
gravitating objects, JHEP 05 (2023) 184 [arXiv:2208.14949] [INSPIRE].

B.M. Barker and R.F. O’Connell, Gravitational Two-Body Problem with Arbitrary Masses,
Spins, and Quadrupole Moments, Phys. Rev. D 12 (1975) 329 [INnSPIRE].

M. Levi and J. Steinhoff, Leading order finite size effects with spins for inspiralling compact
binaries, JHEP 06 (2015) 059 [arXiv:1410.2601] [INSPIRE].

X. Bekaert et al., Snowmass White Paper: Higher Spin Gravity and Higher Spin Symmetry,
arXiv:2205.01567 [INSPIRE].

M. Levi, S. Mougiakakos and M. Vieira, Gravitational cubic-in-spin interaction at the
next-to-leading post-Newtonian order, JHEP 01 (2021) 036 [arXiv:1912.06276] [INSPIRE].

M. Levi, Effective Field Theories of Post-Newtonian Gravity: A comprehensive review, Rept.
Prog. Phys. 83 (2020) 075901 [arXiv:1807.01699] [INSPIRE].

M. Levi, Binary dynamics from spinl-spin2 coupling at fourth post-Newtonian order, Phys.
Rev. D 85 (2012) 064043 [arXiv:1107.4322] [iNSPIRE].

M. Levi and J. Steinhoff, Nezt-to-next-to-leading order gravitational spin-orbit coupling via the
effective field theory for spinning objects in the post-Newtonian scheme, JCAP 01 (2016) 011
[arXiv:1506.05056] [iNSPIRE].

M. Levi and J. Steinhoff, Nezt-to-next-to-leading order gravitational spin-squared potential via
the effective field theory for spinning objects in the post-Newtonian scheme, JCAP 01 (2016)
008 [arXiv:1506.05794] [INSPIRE].

M. Levi and J. Steinhoff, Complete conservative dynamics for inspiralling compact binaries
with spins at the fourth post-Newtonian order, JCAP 09 (2021) 029 [arXiv:1607.04252]
[INSPIRE].

— 492 —


https://doi.org/10.1016/j.nuclphysb.2021.115352
https://arxiv.org/abs/2010.13672
https://inspirehep.net/literature/1826301
https://arxiv.org/abs/2206.14249
https://inspirehep.net/literature/2103428
https://doi.org/10.1103/PhysRevLett.125.011103
https://arxiv.org/abs/2003.11391
https://inspirehep.net/literature/1788196
https://doi.org/10.1103/PhysRevD.102.124024
https://arxiv.org/abs/2010.02018
https://inspirehep.net/literature/1821432
https://doi.org/10.1007/JHEP09(2015)219
https://arxiv.org/abs/1501.04956
https://inspirehep.net/literature/1340312
https://doi.org/10.1088/1361-6382/aa941e
https://arxiv.org/abs/1705.06309
https://inspirehep.net/literature/1600214
https://doi.org/10.1007/JHEP07(2021)115
https://arxiv.org/abs/2003.02827
https://inspirehep.net/literature/1784112
https://doi.org/10.1007/JHEP05(2023)184
https://arxiv.org/abs/2208.14949
https://inspirehep.net/literature/2151256
https://doi.org/10.1103/PhysRevD.12.329
https://inspirehep.net/literature/104063
https://doi.org/10.1007/JHEP06(2015)059
https://arxiv.org/abs/1410.2601
https://inspirehep.net/literature/1321378
https://arxiv.org/abs/2205.01567
https://inspirehep.net/literature/2076040
https://doi.org/10.1007/JHEP01(2021)036
https://arxiv.org/abs/1912.06276
https://inspirehep.net/literature/1770766
https://doi.org/10.1088/1361-6633/ab12bc
https://doi.org/10.1088/1361-6633/ab12bc
https://arxiv.org/abs/1807.01699
https://inspirehep.net/literature/1680886
https://doi.org/10.1103/PhysRevD.85.064043
https://doi.org/10.1103/PhysRevD.85.064043
https://arxiv.org/abs/1107.4322
https://inspirehep.net/literature/919390
https://doi.org/10.1088/1475-7516/2016/01/011
https://arxiv.org/abs/1506.05056
https://inspirehep.net/literature/1376278
https://doi.org/10.1088/1475-7516/2016/01/008
https://doi.org/10.1088/1475-7516/2016/01/008
https://arxiv.org/abs/1506.05794
https://inspirehep.net/literature/1376942
https://doi.org/10.1088/1475-7516/2021/09/029
https://arxiv.org/abs/1607.04252
https://inspirehep.net/literature/1475678

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[46]

[47]

[48]

[49]

[50]

[51]

M. Levi, A.J. Mcleod and M. Von Hippel, N3LO gravitational quadratic-in-spin interactions at
G*, JHEP 07 (2021) 116 [arXiv:2003.07890] [INSPIRE].

J.-W. Kim, M. Levi and Z. Yin, Quadratic-in-spin interactions at fifth post-Newtonian order
probe new physics, Phys. Lett. B 834 (2022) 137410 [arXiv:2112.01509] [INSPIRE].

J-W. Kim, M. Levi and Z. Yin, N3LO quadratic-in-spin interactions for generic compact
binaries, JHEP 03 (2023) 098 [arXiv:2209.09235] [INSPIRE].

M. Levi and Z. Yin, Completing the fifth PN precision frontier via the EFT of spinning
gravitating objects, JHEP 04 (2023) 079 [arXiv:2211.14018] INSPIRE].

M.K. Mandal, P. Mastrolia, R. Patil and J. Steinhoff, Gravitational quadratic-in-spin
Hamiltonian at NNNLO in the post-Newtonian framework, JHEP 07 (2023) 128
[arXiv:2210.09176] [INSPIRE].

A. Guevara, A. Ochirov and J. Vines, Scattering of Spinning Black Holes from Ezponentiated
Soft Factors, JHEP 09 (2019) 056 [arXiv:1812.06895] [INSPIRE].

W.-M. Chen, M.-Z. Chung, Y.-T. Huang and J.-W. Kim, The 2PM Hamiltonian for binary
Kerr to quartic in spin, JHEP 08 (2022) 148 [arXiv:2111.13639] [INSPIRE].

Z. Bern et al., Binary Dynamics Through the Fifth Power of Spin at O(G?), Phys. Rev. Lett.
130 (2023) 201402 [arXiv:2203.06202] INSPIRE].

M. Levi and F. Teng, NLO gravitational quartic-in-spin interaction, JHEP 01 (2021) 066
[arXiv:2008.12280] [INSPIRE].

A.J. Hanson and T. Regge, The Relativistic Spherical Top, Annals Phys. 87 (1974) 498
[INSPIRE].

I. Bailey and W. Israel, Lagrangian Dynamics of Spinning Particles and Polarized Media in
General Relativity, Commun. Math. Phys. 42 (1975) 65 [INSPIRE].

R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev.
D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE].

W. Tulczyjew, Motion of multipole particles in general relativity theory, Acta Phys.Polon. 18
(1959) 393.

K. Yee and M. Bander, Equations of motion for spinning particles in external electromagnetic
and gravitational fields, Phys. Rev. D 48 (1993) 2797 [hep-th/9302117] [nSPIRE].

R.A. Porto and I.Z. Rothstein, Next to Leading Order spin(1)spin(1) Effects in the Motion of
Inspiralling Compact Binaries, Phys. Rev. D 78 (2008) 044013 [Erratum ibid. 81 (2010)
029905] [arXiv:0804.0260] [INSPIRE].

M. Levi, Next to Leading Order gravitational Spin-Orbit coupling in an Effective Field Theory
approach, Phys. Rev. D 82 (2010) 104004 [arXiv:1006.4139] [INSPIRE].

M. Levi, Next to Leading Order gravitational spini-spin2 coupling with Kaluza-Klein reduction,
Phys. Rev. D 82 (2010) 064029 [arXiv:0802.1508] [INSPIRE].

M.H.L. Pryce, The Mass center in the restricted theory of relativity and its connection with the
quantum theory of elementary particles, Proc. Roy. Soc. Lond. A 195 (1948) 62 [INSPIRE].

T.D. Newton and E.P. Wigner, Localized States for Elementary Systems, Rev. Mod. Phys. 21
(1949) 400 [INSPIRE].

43 —


https://doi.org/10.1007/JHEP07(2021)116
https://arxiv.org/abs/2003.07890
https://inspirehep.net/literature/1785978
https://doi.org/10.1016/j.physletb.2022.137410
https://arxiv.org/abs/2112.01509
https://inspirehep.net/literature/1982936
https://doi.org/10.1007/JHEP03(2023)098
https://arxiv.org/abs/2209.09235
https://inspirehep.net/literature/2153987
https://doi.org/10.1007/JHEP04(2023)079
https://arxiv.org/abs/2211.14018
https://inspirehep.net/literature/2593415
https://doi.org/10.1007/JHEP07(2023)128
https://arxiv.org/abs/2210.09176
https://inspirehep.net/literature/2166045
https://doi.org/10.1007/JHEP09(2019)056
https://arxiv.org/abs/1812.06895
https://inspirehep.net/literature/1709403
https://doi.org/10.1007/JHEP08(2022)148
https://arxiv.org/abs/2111.13639
https://inspirehep.net/literature/1977025
https://doi.org/10.1103/PhysRevLett.130.201402
https://doi.org/10.1103/PhysRevLett.130.201402
https://arxiv.org/abs/2203.06202
https://inspirehep.net/literature/2051084
https://doi.org/10.1007/JHEP01(2021)066
https://arxiv.org/abs/2008.12280
https://inspirehep.net/literature/1813664
https://doi.org/10.1016/0003-4916(74)90046-3
https://inspirehep.net/literature/877
https://doi.org/10.1007/BF01609434
https://inspirehep.net/literature/103172
https://doi.org/10.1103/PhysRevD.73.104031
https://doi.org/10.1103/PhysRevD.73.104031
https://arxiv.org/abs/gr-qc/0511061
https://inspirehep.net/literature/697837
https://doi.org/10.1103/PhysRevD.48.2797
https://arxiv.org/abs/hep-th/9302117
https://inspirehep.net/literature/352886
https://doi.org/10.1103/PhysRevD.78.044013
https://arxiv.org/abs/0804.0260
https://inspirehep.net/literature/782563
https://doi.org/10.1103/PhysRevD.82.104004
https://arxiv.org/abs/1006.4139
https://inspirehep.net/literature/858926
https://doi.org/10.1103/PhysRevD.82.064029
https://arxiv.org/abs/0802.1508
https://inspirehep.net/literature/779184
https://doi.org/10.1098/rspa.1948.0103
https://inspirehep.net/literature/8887
https://doi.org/10.1103/RevModPhys.21.400
https://doi.org/10.1103/RevModPhys.21.400
https://inspirehep.net/literature/26317

[62] M. Levi and J. Steinhoff, Fquivalence of ADM Hamiltonian and Effective Field Theory
approaches at next-to-next-to-leading order spinl-spin2 coupling of binary inspirals, JCAP 12
(2014) 003 [arXiv:1408.5762] [INSPIRE].

[63] R. Morales, High-Precision Gravity Observables: From EFTs to Particle Amplitudes, MSc
thesis, Univerity of Copenhagen, Denmark (2021).

[54] L. Bel and J. Martin, Predictive relativistic mechanics of systems of N particles with spin,
Ann. Inst. H. Poincaré Phys. Théor. 33 (1980) 409.

[65] M.K. Mandal, P. Mastrolia, R. Patil and J. Steinhoff, Gravitational spin-orbit Hamiltonian at
NNNLO in the post-Newtonian framework, JHEP 03 (2023) 130 [arXiv:2209.00611]
[INSPIRE].

[56] A. Edison and M. Levi, A tale of tails through generalized unitarity, Phys. Lett. B 837 (2023)
137634 [arXiv:2202.04674] [INSPIRE].

[57] T. Damour and G. Schaefer, Higher Order Relativistic Periastron Advances and Binary
Pulsars, Nuovo Cim. B 101 (1988) 127 nSPIRE].

— 44 —


https://doi.org/10.1088/1475-7516/2014/12/003
https://doi.org/10.1088/1475-7516/2014/12/003
https://arxiv.org/abs/1408.5762
https://inspirehep.net/literature/1312160
https://doi.org/10.1007/JHEP03(2023)130
https://arxiv.org/abs/2209.00611
https://inspirehep.net/literature/2145386
https://doi.org/10.1016/j.physletb.2022.137634
https://doi.org/10.1016/j.physletb.2022.137634
https://arxiv.org/abs/2202.04674
https://inspirehep.net/literature/2030683
https://doi.org/10.1007/BF02828697
https://inspirehep.net/literature/261152

	Introduction
	EFT of higher spin in gravity
	Spin gauge invariance
	Higher-spin coupling

	Effective actions
	Redefinition of actions
	Final actions

	Hamiltonians
	Full Hamiltonians
	Specialized Hamiltonians

	Poincaré algebra
	NLO cubic-in-spin sectors
	N**(3)LO spin-orbit sector

	GW and scattering observables
	Binding energies and gauge-invariants
	Extrapolated scattering angles

	Conclusions
	Generalized actions from EFT evaluation
	New redefinitions at the NLO cubic-in-spin sectors
	Final actions
	General Hamiltonians
	COM generator of the N**(3)LO spin-orbit sector

