
Computers & Operations Research 161 (2024) 106427

A
0
n

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

On optimization formulations for radio resource allocation subject to
common transmission rate
Yi Zhao ∗, Di Yuan
Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden

A R T I C L E I N F O

Keywords:
Integer programming
Modeling
Radio resource allocation

A B S T R A C T

We study a radio resource allocation problem in mobile communication systems. As the distinct characteristic
of this problem, a common data transmission rate is used on all channels allocated to a user. Because the
channels differ in their quality, for each user the achievable rate varies by channel. Thus allocating more
channels does not necessarily increase the total rate, as the common rate is constrained to be the lowest
one supported by the allocated channels. Radio resource allocation subject to the common-rate constraint is
of practical relevance, though little attention has been paid to modeling and solving the problem. We take
a mathematical optimization perspective with focus on modeling. We first provide a complexity analysis.
Next, several integer linear programming (ILP) formulations for the problem, including compact as well as
non-compact models, are derived. The bulk of our analysis consists in a rigorous comparative study of their
linear programming (LP) relaxations, to reveal the relationship between the formulations in terms of bounding.
Computational experiments are presented to illustrate the numerical performance in bounding and LP-assisted
problem solving. Our theoretical analysis and numerical results together serve the aim of setting a ground for
the next step of developing model-based and tailored optimization methods.
1. Introduction

Mobile communication systems have been evolving rapidly in the
past decades. From an optimization standpoint, a key research topic for
mobile networks is radio resource management for utilizing the radio
resource efficiently, particularly because the amount of data traffic is
constantly growing in the current 4th generation (4G) systems, and
the trend will remain or even accelerate in the 5th generation (5G)
networks. Along with this growth, 5G networks target a plethora of
new services (e.g., vehicular communications), making resource man-
agement more challenging than before, as pointed out in Calabrese
et al. (2018).

4G/5G networks deploy orthogonal frequency division multiple
access (OFDMA). In essence, data transmission takes place in two
dimensions, namely time and frequency that are divided into time
slots and channels, respectively.1 Resource management for channel
allocation in a time slot, as well as that across multiple time slots, is
commonly called scheduling. In any time slot, a user may be scheduled
to receive transmission from its base station (BS) on multiple channels,
and a channel may be scheduled for at most one user of this BS. The lat-
ter is what the term ‘‘orthogonal’’ refers to in OFDMA. Among the BSs,
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1 In communication technology, these entities are more formally known as transmission time interval (TTI) and subcarrier. We use a plain style in terminology
throughout this paper for better readability.

the channels are reused, i.e., there is generally no dedicated (sub)set
of channels for a BS. As a result, a channel is exposed to interference,
if the channel is also scheduled in some nearby BSs in the same time
slot. Note that even if interference is not present, the channels are still
frequency-selective (Tse and Viswanath, 2005), meaning that they vary
in quality and hence the achievable data rate from a user’s perspective.

In this paper, we consider the scheduling problem for a BS and one
time slot, in the direction of downlink (i.e., data transmission by the
BS to its users). For a user, a lower or upper bound on the total rate
may be present. The former is for time-critical services (e.g., vehicular
applications) where a minimum amount of data must be delivered
within the time slot. The presence of upper bound originates from that
the amount of data currently buffered at the BS (and hence ready for
transmission) is typically limited. As an additional constraint, by mobile
communication standards for 4G and 5G (3GPP, 2018a,b), the system
has to select a common data rate on all channels allocated to a user.
This has a couple of implications. First, allocating more channels to
a user does not necessarily increase the total rate, since if the rate
supported by the additional channels is low, the common rate will
have to be brought down. Second, in effect, the total rate equals the
common rate multiplied by the number of allocated channels (that
vailable online 14 September 2023
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must all support the rate). In the literature, little attention has been
paid to channel allocation subject to the common-rate constraint. To
our knowledge, the current work is the first study of integer linear
programming (ILP) formulations for the problem.

It should be remarked that, from a conventional optimization view-
point, solving our channel allocation and rate selection problem to
optimality is ‘‘fast’’. For representative problem sizes, it is a matter
of seconds for a standard integer programming solver to do the job.
However, in a practical system, the allocation decision need to be taken
at a time scale of milliseconds. In order to approach highly efficient
solution methods based on optimization models, deriving and studying
mathematical formulations for this problem is crucial. To this end, we
propose compact as well as non-compact ILP formulations. We then
provide a rigorous comparative study of their linear programming (LP)
relaxations, revealing the relationship between these formulations in
LP bound. To numerically examine the performance of the models, we
conduct experiments of LP-assisted problem solving to obtain integer
solutions. Together, the theoretical analysis and the numerical experi-
ments of our work contribute to the forthcoming research of developing
model-based and highly efficient methods targeting practical use.

2. Literature review

There is a vast amount of optimization problems in mobile net-
works, in particular for 4G/5G systems that have a broad range of
applications and networking scenarios. Here, we narrow down the
review to network planning and resource allocation, with scheduling
being part of the latter.

Network planning is a long-term optimization task. Examples of
decisions include BS location and antenna configuration, and typical
performance metrics are coverage, capacity, throughput, and energy
consumption. Network planning has been studied by both the engi-
neering and the operations research (OR) communities. Examples of
the former category for 4G/5G are Bioardi et al. (2013), Al-Kanj et al.
(2015), and Ali et al. (2020). In Bioardi et al. (2013), the authors
propose an ILP model for BS location and configuration, addressing
the trade-off between capital cost and energy cost. The work in Al-
Kanj et al. (2015) minimizes the number of BSs to be deployed as
well as their activation over time for energy efficiency, subject to
coverage and interference considerations. The problem is solved using
integer programming and heuristics. In Ali et al. (2020), meta-heuristics
have been proposed for optimal location of both BS and relay stations,
where signal quality is part of the objective function in addition to the
deployment cost. In the OR literature, the research orientation has been
more on efficient modeling. Mathematical formulations for coverage
planning using minimum power, while explicitly accounting for overlap
to assist hand-over, have been examined in Chen and Yuan (2010).
The work in D’Andreagiovanni et al. (2012) optimizes BS location and
transmission power, to maximize the system capacity subject to inter-
ference constraints. Modeling is also the focus in Ecker et al. (2019),
where the authors propose ILP formulations based on enumeration of
interference scenarios for a BS location problem. A recent trend for
network planning is the use of machine learning (Dreifuerst et al.,
2021).

Resource allocation and scheduling for 4G/5G have been studied
mainly by the engineering research community. The optimization may
involve one BS or multiple BSs. The performance objective usually
targets spectrum efficiency, throughput (sometimes in extended forms
that are often referred to as system utility), and power or energy.

For multi-BS resource allocation, interference is one of the most
crucial issues to be addressed. In Ng et al. (2012), interference is
accounted for by considering how the channels are reused among
multiple BSs. The study proposes an iterative optimization algorithm
using fractional programming for energy efficiency. The work in Lopez-
Perez et al. (2014) proposes a scheme for the purpose of managing
and coordinating the amount of interference. Then, for each BS, the
2
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scheduling problem with the objective of power minimization, is for-
mulated as an integer program and solved using smart search. To
address interference, Kuang et al. (2016) consider subsets of BSs, each
of which is a candidate group of reusing a channel, resembling the
column-oriented formulation for graph coloring (Mehrotra and Trick,
1995). This leads to an ILP formulation that is also able to address
user association (i.e., the selection of the serving BS of each user), and
the Frank–Wolfe method is used to solve the LP relaxation. The work
in Wang et al. (2017) considers power allocation in addition to channel
allocation and user association, and solves the optimization problem
using a method that alternately solves the subproblems obtained by
fixing subsets of variables.

The relevance of resource allocation within one BS originates from
that it is generally difficult to do multi-BS resource optimization in
real time. A more practical approach is some form of decomposition,
separating the optimization tasks for inter-BS and single-BS resource
allocation. This is indeed the general idea in, for example, Lopez-
Perez et al. (2014) and Kuang et al. (2016). For single BS channel
allocation, Lin et al. (2009) propose a tailored branch-and-bound al-
gorithm for power minimization. The work in Yuan et al. (2012)
provides problem complexity analysis for power minimization along
with identifying cases admitting polynomial-time algorithms. Problem
complexity analysis for system utility maximization subject to a power
budget is reported in Liu (2014) and Liu and Dai (2014), and that for
max–min capacity is given in Fallgren (2010). A heuristic algorithm for
power minimization of channel allocation, based on repeatedly solving
network flow problems, is proposed in Joung et al. (2012). Cohen
and Katzie (2010) consider a related though different problem, where
resource is allocated in the two-dimensional space of channel and time,
with a structure similar to a packing problem. For utility maximization,
a fast heuristic is proposed in Ng and Sung (2008), and the authors
show the solution is Pareto optimal (i.e., the utility cannot be improved
for all users) within some neighborhood of the solution. In Letchford
et al. (2017), the authors address rate maximization with channel and
power allocation. That the power is assumed to be continuous and
the rate function is a logarithmic one leads to a nonlinear integer
programming model. The authors propose outer approximation, cuts,
and other mechanisms for solving the problem to optimality.

The studies discussed above all assume that the rates on the al-
located channels of a user are decoupled. To enhance the practical
relevance, extending the optimization problem with the common-rate
constraint in channel allocation is of significance. Very recently, this
constraint is taken into account in Huang et al. (2021) and Chen et al.
(2021). The scope of Huang et al. (2021) and Chen et al. (2021) is
however very different from ours, as these studies focus on the use of
massive graphic processing units (GPUs) to implement parallel heuristic
search for problem solving, whereas our interest lies in optimization
modeling.

3. Problem definition

Our optimization problem is defined for a BS with user set  =
{1,… 𝐼} and channel set  = {1,…𝐿}. By mobile system stan-
dards (3GPP, 2018b), there is a predefined set of candidate data rates,
of which the index set is denoted by  = {1,… , 𝑅}. We use 𝑣𝑟 to denote
the data rate of 𝑟 ∈ , and assume 𝑣1 < 𝑣2⋯ < 𝑣𝑅. The channel
condition differs by channel and user. For user 𝑖 and channel 𝓁, the
index of the maximumly achievable rate is denoted by 𝑟𝑖𝓁 . A user may
have a lower or upper bound on the total rate.2 For user 𝑖, these are
denoted by 𝑑𝑖 and 𝑑𝑖, respectively. Moreover, the importance of user 𝑖
s represented by a positive weight 𝑤𝑖.

2 Strictly speaking, the data demand is in bits rather than in rate that is
efined in bits per time unit. However, since the problem concerns one time
lot, the demand can be equivalently treated in rate.
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By the common-rate constraint, one rate in  is to be selected for
ata transmission on all channels allocated to a user. Thus, if rate 𝑟 is
elected for a user, a channel 𝓁 is useful only if 𝑟𝑖𝓁 ≥ 𝑟. In effect, if 𝑛
hannels are allocated to user 𝑖 with rate 𝑟, the total rate for user 𝑖 is
𝑛𝑣𝑟 and this has to be within the interval [𝑑𝑖, 𝑑𝑖]. Note that, due to the
common-rate constraint, if channel 𝓁 is allocated to user 𝑖, the realized
rate on the channel may be lower than 𝑟𝑖𝓁 . In the rest of the paper, we
say channel 𝓁 supports rate 𝑟 for user 𝑖, if 𝑟𝑖𝓁 ≥ 𝑟.

Our optimization problem amounts to maximizing the weighted
sum of rates of all users, a.k.a. total utility, subject to having at most
one user per channel, and the above common-rate and rate interval
constraints. We refer to the problem as channel allocation with common
rate (CACR).

Remark 1. Throughout the paper, without loss of generality, we
assume that every channel supports the lowest rate for at least one user.
Moreover, for each user, there exist some rate and channels supporting
the rate, such that the total rate is within the given interval. □

We present an ILP model to mathematically formalize CACR. For
user 𝑖 ∈ , a binary variable 𝑥𝑖𝑟 is defined to represent if rate 𝑟
is selected or not. Another set of binary variables encode channel
allocation as well as the rate on each allocated channel. An individual
variable of this set, 𝑦𝑖𝑟𝓁 , is one if channel 𝓁 is allocated to user 𝑖 with
rate 𝑟.

In the model presented below, parameters 𝑛𝑖𝑟 = ⌈𝑑𝑖∕𝑣𝑟⌉ and �̄�𝑖𝑟 =
𝑑𝑖∕𝑣𝑟⌋. Thus, the number of channels to be allocated to user 𝑖 is
onfined by interval [𝑛𝑖𝑟, �̄�𝑖𝑟], if rate 𝑟 is selected. We define utility

coefficient 𝑢𝑖𝑟 = 𝑤𝑖𝑣𝑟; this is the rate value achieved by allocating one
hannel of rate 𝑟 to user 𝑖, scaled by the user’s weight. In addition,
otation 𝑖𝑟 is used to represent the subset of channels supporting rate
for user 𝑖.

𝚂𝙴𝙿) max
∑

𝑖∈

∑

𝑟∈

∑

𝓁∈𝑖𝑟

𝑢𝑖𝑟𝑦𝑖𝑟𝓁 (1a)

s.t.
∑

𝑟∈
𝑥𝑖𝑟 = 1, 𝑖 ∈  (1b)

𝑦𝑖𝑟𝓁 ≤ 𝑥𝑖𝑟, 𝓁 ∈ 𝑖𝑟, 𝑖 ∈ , 𝑟 ∈  (1c)
∑

𝑖∈

∑

𝑟∈∶𝓁∈𝑖𝑟

𝑦𝑖𝑟𝓁 ≤ 1, 𝓁 ∈  (1d)

𝑛𝑖𝑟𝑥𝑖𝑟 ≤
∑

𝓁∈𝑖𝑟

𝑦𝑖𝑟𝓁 ≤ �̄�𝑖𝑟𝑥𝑖𝑟, 𝑖 ∈ , 𝑟 ∈  (1e)

𝑥𝑖𝑟 ∈ {0, 1}, 𝑖 ∈ , 𝑟 ∈  (1f)

𝑦𝑖𝑟𝓁 ∈ {0, 1}, 𝓁 ∈ 𝑖𝑟, 𝑖 ∈ , 𝑟 ∈  (1g)

We refer to the above model as SEP since rate selection and the
tility induced by channel allocation are encoded by two separate sets
f variables. Constraint (1b) states the condition of selecting one rate
or each user. By (1c), a channel may be allocated to a user with a
ata rate, only if this rate is selected for the user and the channel
oes support the rate. The next constraint ensures at most one user
er channel. Finally, by (1e), for each user and rate, the number of
hannels allocated must comply to the demand interval, if the rate is
elected. We remark that the inclusion of (1c) is for strengthening the
P relaxation; it is redundant for any integer solution due the presence
f (1e).

. Problem complexity

Proving the NP-hardness of CACR is not the core of this paper.
evertheless, it is of significance in understanding problem structure, in
articular as this complexity result is novel with respect to the available
iterature. Moreover, we provide the structural insight that, if the rates
re selected, channel allocation reduces to a network flow problem.
his has implications to mathematical modeling and deriving integer
olutions via LP relaxations.
3

l

Proposition 1. CACR is NP-hard.

Proof. We use a reduction from the MAX-3SAT problem where each
clause contains exactly three literals and each literal appears exactly
twice. This version of MAX-3SAT is NP-hard and in fact hard to ap-
proximate (Berman et al., 2003). Let 𝑁 and 𝐾 denote respectively the
numbers of Boolean variables and clauses in an instance of this type of
MAX-3SAT problem.

We define a CACR instance as follows. There are 2𝑁 + 3𝐾 users.
One pair of users, called literal users, is defined for each variable
𝑖, 𝑖 = 1,… , 𝑁 , and three users, called clause users, are defined for
each clause. The rate set is composed by { 1

6 ,
1
3 ,

2
3 ,

4
3 }. For each pair of

literal users, we introduce five channels. We call one of these channels
the high channel. The other four channels, called literal channels,
are formed by two pairs, where each pair corresponds to the two
occurrences of a literal in the MAX-3SAT instance. Both literal users
achieve rate 4

3 on the high channel. For a literal user and any of the
user’s two literal channels, the rate is 1

3 . Next, for each clause, we define
two additional channels, called clause channels. For the corresponding
three clause users, they are symmetric with respect to the two clause
channels. Specifically, they all achieve rate 4

3 on one clause channel,
and rate 2

3 on the other clause channel. Moreover, each of the three
clause users has rate 1

6 on exactly one channel of the three literals
ppearing in the clause of the MAX-3SAT instance, with a one-to-
ne mapping. Any user and channel combination that has not been
entioned has rate zero. The weight of any literal user equals 8𝐾,
hereas the weight of any clause user is one. There is no lower or upper
ound in rate allocation.

Consider the three clause users of any clause. Let us examine the
otal rate that may be achieved by them.

1. If all three literal channels of the clause are used by literal users,
then obviously the best possible allocation is to let (any) two of
the three clause users use the two clause channels respectively
with a total rate of 4

2 + 2
3 = 2. (The third user will have rate

zero.) This is because giving both clause channels to the same
clause user gives a lower total rate of 4

3 , with 2
3 on each clause

channel.
2. If one of the three literal channels is available, then the optimal

allocation is to give this literal channel to the corresponding
clause user, and let the other two users user the two clause users
as above, with a total rate of 2 + 1

6 = 13
6 . Note that it is sub-

optimal to let any clause user use more than one channel (due
to the decrease of per-channel rate).

3. Suppose two or three literal channels are available. From the
above reasoning, it is not difficult to see that the optimal al-
location is to allocate one of the available literal channels to
its corresponding clause user, and let the other two use the
two clause channels respectively. Hence only one of the literal
channels will be used. The total utility is again 13

6 .

To summarize, for each clause, the three clause users will together
achieve a total rate of 13

6 if at least one of the three literal channels
is available, otherwise the total rate is 2. Thus the total utility of all
clause users together will never exceed 13

6 𝐾. Note that the weight of a
literal user is 8𝐾 and the two possible (positive) rates on a channel are
4
3 and 1

3 . Hence, priority will be given to the literal users in channel
allocation.

Let us consider any pair of literal users and the five channels defined
for the pair. Suppose one user is allocated with the high channel, then
it is not optimal to use the other two literal channels as well, because
then the rate on each channel becomes 1

3 , with a total of 1.0, whereas
he high channel by itself provides a rate of 4

3 . Therefore, at optimum,
ne literal user of the pair is allocated the high channel only, leaving
ts two literal channels unoccupied, and the other is allocated its two

iteral channels, or vice versa. This corresponds to the value assignment
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Fig. 1. An illustration of the network flow problem for given rate selection.
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of the Boolean variables in MAX-3SAT. Moreover, at optimum the total
utility of all literal users is a constant of 16𝑁𝐾. For the clause users,
by the above analysis, the total utility equals 2𝐾 + 𝑚

6 where 𝑚 is the
number of clauses for which at least one clause channel is available
for use by clause users. Thus solving the CACR instance also solves the
MAX-3SAT instance, hence the proof. □

Remark 2. In the above proof of NP-hardness, there is no lower or
upper bound on the total rate to be allocated to a user in the CACR
instance. Thus a source of hardness is the common-rate requirement
in rate selection. Having lower or upper bound is another source of
difficulty. Suppose we relax the common-rate requirement, but there is
lower or upper bound on user rate. The problem is also NP-hard via
a simple reduction from the partitioning problem. For a partitioning
problem instance of 𝑘 integers, consider 𝑘 channels and two identical
users of weight one, where each user has the integer numbers of the
partitioning instance as the rates achievable on the channels. Let the
lower (or the upper) bound of the total rate of each user be half of the
sum of the integers. The question is then if the CACR instance is feasible
(in case of lower bound) or if the optimal total rate achieves the sum,
and the answer solves the partitioning instance. □

A solution of CACR is naturally viewed in a bipartite graph where
he nodes are defined for the users and channels. This structure will
e utilized later for the analysis of mathematical formulations. Here,
n the context of complexity, we prove that CACR becomes a network
low problem (and hence can be solved efficiently) if the rates of users
re given.

roposition 2. For given rate selection, CACR reduces to a network flow
problem in an acyclic graph with polynomial-time complexity.

Proof. Let �̄�𝑖 denote the selected rate of user 𝑖 ∈ . Then the subset of
ligible channels for 𝑖 is {𝓁 ∈  ∶ 𝑟𝑖𝓁 ≥ �̄�𝑖}. Moreover, let 𝑛𝑖 = ⌈𝑑𝑖∕𝑣�̄�𝑖⌉

and �̄�𝑖 = ⌊𝑑𝑖∕𝑣�̄�𝑖⌋. The number of channels to be allocated to user 𝑖
s then confined by interval [𝑛𝑖, �̄�𝑖]. We construct a graph, shown in

Fig. 1. The nodes consist of users and channels, a source, a sink, and
an auxiliary node denoted by 𝐼 ′. On an arc, the first value is the utility,
ollowed by flow lower and upper bounds. The total supply equals the
umber of channels 𝐿. Note that an arc from user node 𝑖 and channel
ode 𝓁 is present if and only if 𝑟𝑖𝓁 ≥ �̄�𝑖. Also, there is an arc from 𝐼 ′ to
very channel node with zero utility and flow bounds [0, 1].

By the construction, for each user 𝑖, the number of flow units, which
epresent the number of channels allocated, is constrained to be within
he interval. Having one flow unit from user node 𝑖 to channel node

yields the utility of allocating 𝓁 to 𝑖. In addition, the upper bound
f one on each arc ending at the sink ensures that a channel is used
y at most one user. Finally, channels that are not used by any user
ill be taken by the flow through 𝐼 ′. One can easily see that there is
one-to-one mapping between feasible channel allocations and integer
4

low solutions with equal objective function value. Moreover, the graph
s acyclic by construction. Thus solving the maximum-weighted flow
roblem (or, minimum-cost flow with negative costs) in this acyclic
raph leads to the optimum of CACR for given rate selection. □

We further remark that if for each user the channels are identical
n the rates they support, the problem becomes tractable. This is
ecause the rate selection becomes simple — each user will use the
ighest rate supported by all channels, and the result follows then from
roposition 2.

. ILP formulations

.1. Alternative compact models

SEP in Section 3 is a compact model for CACR. In the following, we
resent alternative compact models. It is observed that the total rate of
user and hence its utility is fully determined by rate and the number of
hannels to use. Using the observation, we can formulate the problem
ithout the need of modeling the utility on individual channels (as
one in SEP). To this end, we define set 𝑖, containing all combinations
f rate and number of channels satisfying the rate demand interval of
ser 𝑖. That is, 𝑖 = {(𝑟, 𝑛), 𝑟 ∈ , 𝑛 ∈ {1,… , 𝐿} ∶ 𝑑𝑖 ≤ 𝑛𝑣𝑟 ≤ 𝑑𝑖}. We
efer to 𝑖 as the domain of user 𝑖. For (𝑟, 𝑛) ∈ 𝑖, we use 𝑢𝑖𝑟𝑛 = 𝑤𝑖𝑛𝑣𝑟

to denote the total utility.
We use binary variable 𝑥𝑖𝑟𝑛 to represent if (𝑟, 𝑛) ∈ 𝑖 is chosen for

𝑖. Moreover, binary variable 𝑦𝑖𝓁 is used to indicate if a specific channel
𝓁 is allocated to 𝑖. The resulting model is as follows. We call the model
COMB, to refer to that, for each user, one set of variables combines the
decisions of selecting a rate and the number of channels to be allocated.

(𝙲𝙾𝙼𝙱) max
∑

𝑖∈

∑

(𝑟,𝑛)∈𝑖

𝑢𝑖𝑟𝑛𝑥𝑖𝑟𝑛 (2a)

s.t.
∑

(𝑟,𝑛)∈𝑖

𝑥𝑖𝑟𝑛 = 1, 𝑖 ∈  (2b)

∑

𝑖∈∶ 𝓁∈𝑖1

𝑦𝑖𝓁 ≤ 1, 𝓁 ∈  (2c)

∑

(ℎ,𝑛)∈𝑖∶ ℎ≥𝑟
𝑛𝑥𝑖ℎ𝑛 ≤

∑

𝓁∈𝑖𝑟

𝑦𝑖𝓁 , 𝑖 ∈ , 𝑟 ∈  (2d)

𝑥𝑖𝑟𝑛 ∈ {0, 1}, (𝑟, 𝑛) ∈ 𝑖, 𝑖 ∈  (2e)

𝑦𝑖𝓁 ∈ {0, 1}, 𝓁 ∈ 𝑖1, 𝑖 ∈  (2f)

By (2b), exactly one (eligible) combination of rate and number of
channels must be selected for each user. The next constraint states that
a channel may be allocated to at most one user among the relevant ones
(i.e., users for which the channel can provide the minimum candidate
rate). Constraint (2d) sets the relation of the two sets of variables. Note
that, for user 𝑖 and each (𝑟, 𝑛) ∈ 𝑖, 𝑛𝑥𝑖𝑟𝑛 ≤

∑

𝓁∈𝑖𝑟
𝑦𝑖𝓁 will ensure that

if 𝑥𝑖𝑟𝑛 equals one, then 𝑛 channels will be allocated. As one 𝑥-variable
per user will equal one by (2b), we have ∑

(𝑟,𝑛)∈𝑖
𝑛𝑥𝑖𝑟𝑛 ≤

∑

𝓁∈𝑖𝑟
𝑦𝑖𝓁 .

However, it is not difficult to see that we can strengthen it, by including

also rates that are higher than 𝑟 in the left-hand side, leading to (2d).
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Remark 3. Variable notation 𝑥 and 𝑦 are reused in COMB. We
have chosen this reuse to avoid introducing additional notation, and
for the reason that the variables, when used, are accompanied either
with subscripts or a model name, and hence there shall be no risk of
ambiguity. □

The next compact model, called COMB’, is a variation of COMB.
COMB’ uses the same decision variables as COMB. However, the
relation between them is formulated differently.

(𝙲𝙾𝙼𝙱′) max
∑

𝑖∈

∑

(𝑟,𝑛)∈𝑖

𝑢𝑖𝑟𝑛𝑥𝑖𝑟𝑛 (3a)

s.t. (2b), (2c)
∑

(𝑟,𝑛)∈𝑖

𝑛𝑥𝑖𝑟𝑛 ≤
∑

𝓁∈𝑖1

𝑦𝑖𝓁 , 𝑖 ∈  (3b)

𝑦𝑖𝓁 ≤
∑

(𝑟,𝑛)∈𝑖∶ 𝓁∈𝑖𝑟

𝑥𝑖𝑟𝑛, 𝓁 ∈ 𝑖1, 𝑖 ∈  (3c)

(2e), (2f)

Instead of (2d), the above model uses two sets of constraints linking
ogether 𝑥 and 𝑦. Constraint (3b) is, to some extent, similar to (2d), as it
tates that sufficiently many channels are allocated with respect to the
umber indicated by the 𝑥-variables. However, unlike (2d), for one user
here is only one constraint of (3b), where the left-hand side considers
ll possible rates. For this reason, it cannot be strengthened as done in
2d). Moreover, since (3b) does not consider if a channel allocated does
atch the rate selected, we need (3c). By this additional constraint,

hannel 𝓁 may be allocated only if it supports the rate selection.

emark 4. It may be more intuitive to state constraints (2d) and (3b)
s equality. It is easily realized that the use of inequality does not alter
he integer optimal value or that of the LP relaxation of COMB and
OMB’. From a solution point of view, inequality permits a solution

n which more channels than that indicated by the 𝑥-variables are
llocated (i.e., the inequality is strict), though reducing this solution to
ne with equality is trivial. We choose inequality as it simplifies some
f the proofs later on. □

.2. Non-compact models

We now turn our attention to non-compact formulations of CACR.
e first derive a model that does not explicitly formulate channel

llocation. Consider the 𝑥-variables defined in COMB. If 𝑥𝑖𝑟𝑛 = 1,
bviously there must exist at least 𝑛 channels, all supporting rate 𝑟 for
ser 𝑖. Taking one step further, consider two variables of two users, say
𝑖1𝑛1𝑟1 and 𝑥𝑖2𝑛2𝑟2 . A necessary condition for having both variables being
ne is the existence of at least 𝑛1 + 𝑛2 channels, such that each of them
upports either 𝑟1 for 𝑖1, or 𝑟2 for 𝑖2, or both. In other words, each of
hese channels is eligible for being allocated to at least one of the two
sers.

We can generalize the above to an arbitrary subset of users, with
ome specific tuple (𝑟, 𝑛) for each of them. Suppose that the total
umber of relevant channels for the user subset is �̃�. The corresponding
ondition states that there must be a minimum of �̃� channels, each
eing eligible for at least one of the users. Leveraging the notion
ives us a model with an exponential number of rows. To present the
odel, let  denote the set containing all non-empty subsets of users.
oreover, for any m ∈ , denote by m the set of vectors, each of
hich contains one combination of rates of the users in m. We use 𝑟v

𝑖
o denote the rate of user 𝑖 in vector v ∈ 𝑚. For m and v, the set of
hannels supporting at least one user and its rate is denoted by mv .

𝙲𝚄𝚃) max
∑

𝑖∈

∑

(𝑟,𝑛)∈𝑖

𝑢𝑖𝑟𝑛𝑥𝑖𝑟𝑛 (4a)

s.t. (2b)
∑

𝑖∈m

∑

(ℎ,𝑛)∈𝑖∶ℎ≥𝑟v
𝑖

𝑛𝑥𝑖ℎ𝑛 ≤ |mv |, v ∈ m ,m ∈  (4b)
5

(2e)
In (4b), the second sum in the left-hand side follows the same ratio-
nale as that in (2d). One can easily verify this is valid and makes
the LP tighter. We refer to the model in (4) as CUT, because it in
fact resembles cut-based models for network optimization problems
(cf. Fig. 1). Because (4b) ensures that there is a sufficient number
of channels for any subset of users and their rates, it is reasonable to
infer that CUT is a correct model for CACR, even though there is no
explicit channel allocation. Mathematically, however, this result is not
immediate. Therefore we formalize the validity of CUT below with a
proof.

Proposition 3. CUT is a valid model for CACR.

Proof. The constraints in CUT are obviously all valid. Thus showing
the validity of CUT amounts to proving that they together are also
sufficient. That is, for any feasible 𝑥-solution of CUT, there exists a
channel allocation, such that each user indeed is given the number
of channels with the rate indicated by the 𝑥-solution. Consider any
solution of CUT, and suppose in the solution 𝑥𝑖𝑟𝑖𝑛𝑖 = 1, 𝑖 ∈ .

With respect to the 𝑥-solution, consider a bipartite graph, and
enote its two node sets by 𝐼 and 𝐼𝐼 , respectively. For each user 𝑖, 𝑛𝑖

nodes are introduced to be in 𝐼 . Hence |𝐼 | =
∑

𝑖∈ 𝑛𝑖. Node set 𝐼𝐼
contains one node for each channel. For a node in 𝐼 for user 𝑖, there
is an edge to channel node 𝓁 ∈ 𝐼𝐼 , if and only if 𝓁 ∈ 𝑖𝑟𝑖 (i.e., the
channel supports rate 𝑟𝑖). A feasible channel allocation corresponds to
a matching covering all nodes in 𝐼 .

Consider any subset  ′
𝐼 of 𝐼 . For user 𝑖, set  ′

𝐼 contains up to 𝑛𝑖
nodes defined for this user. Let m ⊆  denote the set of users having
at least one node in  ′

𝐼 . We now examine how many channel nodes in
𝐼𝐼 are connected to the nodes in  ′

𝐼 . Note that, for any user 𝑖, the
𝑛𝑖 nodes are all connected to the same set of channel nodes (i.e., nodes
defined for channels in 𝑖𝑟𝑖 ). Thus, for user subset m, the most stringent
case is to put all the 𝑛𝑖 nodes in  ′

𝐼 , for all 𝑖 ∈ m. User subset m,
together with rates 𝑟𝑖, 𝑖 ∈ m, corresponds to a constraint of (4b), and
the term 𝑛𝑖𝑥𝑖𝑟𝑖𝑛𝑖 is part of the left-hand side. Moreover, by definition,
every channel in mv , where v is the combination of rates 𝑟𝑖, 𝑖 ∈ m,
is connected to at least one node in  ′

𝐼 . Hence there are at least
∑

𝑖∈m 𝑛𝑖 nodes in 𝐼𝐼 connected to the nodes to  ′
𝐼 . By Hall’s theorem

for matching (Hall, 1935), for the defined bipartite graph, there is a
matching of size |𝐼 | =

∑

𝑖∈ 𝑛𝑖, and the result follows. □

CUT is a row-oriented model. The next non-compact model does
the opposite by being column oriented. It is observed that in terms
of channel allocation, a solution to CACR resembles a partition of
channels among the users. (It is not an exact partition, since there may
be leftover channels.) We consider, for each user, candidate subsets
of channels for allocation. Denote by 𝑖 the set of all valid subsets of
channels for user 𝑖. We denote by 𝑟(s) the rate used for s ∈ 𝑖, and let
𝑛(s) = |s|. A subset s ∈ 𝑖 is called a valid subset if the following two
conditions hold.

• Rate 𝑟(s) is supported by all channels in s, and consequently the
total rate achieved by the subset equals 𝑛(s)𝑟(s). Thus for s ∈ 𝑖,
the utility 𝑢𝑖s = 𝑤𝑖𝑛(s)𝑟(s). In other words, all channels in the
subset are used. Making this restriction is valid, because if some
channels of s are not used, then there is a smaller subset s′ ⊂ s
satisfying the condition with the same utility.

• The tuple (𝑟(s), 𝑛(s)) for s ∈ 𝑖 meets the rate interval of user 𝑖,
i.e., (𝑟(s), 𝑛(s)) ∈ 𝑖.

Let 𝑧𝑖s be a binary variable to represent if subset s ∈ 𝑖 is chosen,
and 𝑎s𝓁 be a binary parameter to indicate if channel 𝓁 is in s. We can
then formulate CACR as follows.

(𝙲𝙾𝙻) max
∑

𝑖∈

∑

s∈𝑖

𝑢𝑖s𝑧𝑖s (5a)

s.t.
∑

𝑧𝑖s = 1, 𝑖 ∈  (5b)

s∈𝑖
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∑

𝑖∈

∑

s∈𝑖

𝑎s𝓁𝑧𝑖s ≤ 1, 𝓁 ∈  (5c)

𝑧𝑖s ∈ {0, 1}, s ∈ 𝑖, 𝑖 ∈  (5d)

Constraints (5b) and (5c) state, respectively, that one subset of
hannels has to be selected per user, and a channel appears at most once
n the selected channel subsets. As the formulation has an exponential
umber of columns, we name it COL.

We remark that the first condition defining a valid subset has no
mpact on the LP optimal value. Suppose we relax this condition,
nd denote by �̃� the LP optimal solution. Then for subsets s and s′

bove, we can increase �̃�𝑖s′ by an amount of �̃�𝑖s and then set �̃�𝑖s =
, without affecting the objective function value. Therefore, without
oss of generality, we can restrict the consideration to valid subsets in
nalyzing COL.

. Analysis of LP relaxations

In this section we examine the LP bounds of the presented optimiza-
ion models. We use LP with a superscript containing a model’s name,
.g., LP𝐶𝑂𝑀𝐵 , to denote the optimal LP objective function value of the
odel. When comparing the values, we use ‘‘<’’ to denote that ‘‘≤’’
olds and there exist instances with strict inequality. Note that since
ACR is maximization, lower LP value means a tighter bound.

As our first result, we show that the non-compact model COL is
tronger than the compact model COMB.

roposition 4. LP𝐶𝑂𝐿 < LP𝐶𝑂𝑀𝐵 .

roof. We prove that a feasible LP solution of COL can be mapped to
feasible solution in the LP of COMB with the same objective function
alue, and hence LP𝐶𝑂𝐿 ≤ LP𝐶𝑂𝑀𝐵 . We then provide an instance for
hich strict inequality holds.

Denote by �̃�𝑖s a feasible LP solution of COL. We define a solution to
OMB as follows.

�̃�𝑖𝑟𝑛 =
∑

s∈𝑖∶𝑟(s)=𝑟,𝑛(s)=𝑛
�̃�𝑖s , (𝑟, 𝑛) ∈ 𝑖, 𝑖 ∈ 

�̃�𝑖𝓁 =
∑

s∈𝑖

𝑎s𝓁 �̃�𝑖s ,𝓁 ∈ 𝑖𝓁 , 𝑖 ∈ 
(6)

For the solution defined in (6), constraint (2b) is satisfied. This is
ecause, for each 𝑖 and s ∈ 𝑖, (𝑟(s), 𝑛(s)) is unique, that is, the value of
ariable �̃�𝑖s appears once in the left-hand side of (2b). The conclusion
ollows then from (5b) in COL. Next, for user 𝑖, ∑

𝑖∈∶𝓁∈𝑖1
�̃�𝑖𝓁 =

𝑖∈∶𝓁∈𝑖1

∑

s∈𝑖 𝑎s𝓁 �̃�𝑖s ≤ 1 by (5c).
We now examine the left-hand side of (2d). Plugging in (6), we

btain the following.
∑

ℎ,𝑛)∈𝑖∶ ℎ≥𝑟
𝑛�̃�𝑖ℎ𝑛 =

∑

(ℎ,𝑛)∈𝑖∶ ℎ≥𝑟
𝑛

∑

s∈𝑖∶𝑟(s)=ℎ,𝑛(s)=𝑛
�̃�𝑖s =

∑

s∈𝑖∶𝑟(s)≥𝑟
𝑛(s)�̃�𝑖s (7)

The second equality is implied by that, for any (ℎ, 𝑛) ∈ 𝑖 (with
≥ 𝑟), �̃�𝑖s appears in the definition of one �̃�𝑖ℎ𝑛 that is multiplied with 𝑛,

f 𝑟(s) = ℎ and 𝑛(s) = 𝑛. Note that in this sum we do not need to require
hat (𝑟(s), 𝑛(s)) ∈ 𝑖 because this is always the case, by the definition
f 𝑖. For the right-hand side of (2d), by using again (6) and swapping
he two sums, we obtain ∑

s∈𝑖
∑

𝓁∈𝑖𝑟
𝑎s𝓁 �̃�𝑖s . Thus, (2d) becomes the

ollowing inequality.
∑

s∈𝑖∶𝑟(s)≥𝑟
𝑛(s)�̃�𝑖s ≤

∑

s∈𝑖

∑

𝓁∈𝑖𝑟

𝑎s𝓁 �̃�𝑖s (8)

It is clear that each �̃�𝑖s in the left-hand side of (8) also appears in the
ight-hand side. Note that 𝑛(s) is the number of channels in s and since s
s valid, these channels all support rate 𝑟(s), and hence they also support

rate 𝑟. Hence ∑

𝓁∈𝑖𝑟
𝑎s𝓁 ≥ 𝑛(s), meaning that (8) and consequently (2d)

holds. Therefore, LP𝐶𝑂𝐿 ≤ LP𝐶𝑂𝑀𝐵 .
Next, consider an instance of two users and three channels. The

set of rates is {0.545, 0.814, 0.960}. The two users have weights 0.44
6

and 0.36 respectively. The first user has its demand interval [0.6, 3.0],
nd that of the second user is [0.9, 3.0]. The achievable rates, given as
wo vectors for the two users respectively, are (0.814, 0.960, 0.960) and
0.545, 0.545, 0.960). One can verify that for this instance we have strict
nequality, and the proposition follows. □

Our next result states the relationship between COMB and the first
on-compact model CUT. By this result, they are equally strong (or
eak) in LP bound. We establish the result by showing LP𝐶𝑂𝑀𝐵 ≤
P𝐶𝑈𝑇 and then LP𝐶𝑈𝑇 ≤ LP𝐶𝑂𝑀𝐵 .

emma 5. LP𝐶𝑂𝑀𝐵 ≤ LP𝐶𝑈𝑇 .

roof. We prove that a feasible LP solution of COMB can be mapped
o a feasible solution of the LP relaxation of CUT. Denote by �̃�𝑖𝑟𝑛 and
̃𝑖𝓁 a feasible LP solution of COMB. Now consider a generic user subset
m and rate selection v ∈ m in CUT. For �̃�, (2d) holds for any user 𝑖 ∈ m
with rate 𝑟v

𝑖 . Summing up both sides of the inequalities, we obtain (9)
below:
∑

𝑖∈m

∑

(ℎ,𝑛)∈𝑖∶ ℎ≥𝑟v
𝑖

𝑛�̃�𝑖ℎ𝑛 ≤
∑

𝑖∈m

∑

𝓁∈𝑖𝑟v
𝑖

�̃�𝑖𝓁 =
∑

𝓁∈

∑

𝑖∈m
𝑒𝓁𝑟v

𝑖
�̃�𝑖𝓁 ≤

∑

𝓁∈
max
𝑖∈m

𝑒𝓁𝑟v
𝑖
, (9)

where 𝑒𝓁𝑟v
𝑖

is a binary indicator: 𝑒𝓁𝑟v
𝑖
= 1 if 𝓁 ∈ 𝑖𝑟v

𝑖
, otherwise 𝑒𝓁𝑟v

𝑖
= 0.

The last inequality above is because ∑

𝑖∈m �̃�𝑖𝓁 ≤ 1. Next, observe that
if max𝑖∈m 𝑒𝓁𝑟v

𝑖
= 1, then channel 𝓁 supports rate 𝑟v

𝑖 for at least one
user 𝑖 ∈ m, and hence this channel contributes to mv . Therefore,
∑

𝓁∈ max𝑖∈m 𝑒𝓁𝑟v
𝑖
≤ |mv |, and the lemma follows. □

To show LP𝐶𝑂𝑀𝐵 ≤ LP𝐶𝑈𝑇 , the underlying idea has similarity to
proving that CUT is a valid model for CACR. The graph is however
more complex than that outlined in the proof of Proposition 3, as we are
dealing with a fractional solution, not an integer solution. Specifically,
we construct a graph, and show that for any feasible solution of the LP
relaxation of CUT, if the maximum flow equals the total capacity (based
on an LP solution of CUT) on the arcs originating from the source,
then the flow leads to a 𝑦-solution satisfying constraints (2c)–(2d) in
the LP relaxation of COMB. If this is not the case, we prove there is a
contradiction, namely at least one of (4b) is violated.

Lemma 6. LP𝐶𝑈𝑇 ≤ LP𝐶𝑂𝑀𝐵 .

Proof. Denote by �̃� a feasible solution of the LP relaxation of CUT.
We construct a graph, shown in Fig. 2. Apart from the source and
sink, there is one node defined for each combination of a user and a
candidate rate. These are called user-rate nodes. For user 𝑖 and rate 𝑟,
the node is denoted by ⟨𝑖, 𝑟⟩. In addition, a node is defined per channel.
The arcs and their capacities are as follows. For clarity, we do not draw
the arcs except for a representative one.

• There is an arc from the source to each user-rate node. For the
arc ending at ⟨𝑖, 𝑟⟩, the capacity is ∑

𝑛∶(𝑟,𝑛)∈𝑖
𝑛�̃�𝑖𝑟𝑛.

• From node ⟨𝑖, 𝑟⟩, there is one arc to each channel supporting rate
𝑟, with capacity one.

• Finally, from each channel node, there is an arc to the sink with
capacity one.

For the maximum flow from the source to the sink, denote by 𝑓
⟨𝑖,𝑟⟩𝓁

the flow on arc (⟨𝑖, 𝑟⟩,𝓁), and for user 𝑖 and channel 𝓁 ∈ 𝑖1, let
̃𝑖𝓁 =

∑

𝑟∈∶𝓁∈𝑖𝑟
𝑓
⟨𝑖,𝑟⟩𝓁 . Due to the unit capacity from channel node

𝓁 to the sink, ∑𝑖∈ �̃�𝑖𝓁 ≤ 1, i.e., constraint (2c) is satisfied.
Suppose the maximum flow reaches ∑

𝑖∈
∑

𝑟∈
∑

𝑛∶(𝑟,𝑛)∈𝑖
𝑛�̃�𝑖𝑟𝑛. In

this case, the minimum cut consists of all arcs connecting the source
to the user-rate nodes. Therefore, the flow from the source to ⟨𝑖, 𝑟⟩
equals ∑

𝑛∶(𝑟,𝑛)∈𝑖
𝑛�̃�𝑖𝑟𝑛. By flow balance, this amount of flow equals

∑

𝓁∈𝑖𝑟
𝑓
⟨𝑖,𝑟⟩𝓁 .

Consider (2d) defined for user 𝑖 and rate 𝑟′. (We use 𝑟′ instead of 𝑟 as
the latter is used as a running index in defining �̃�.) The left-hand side is
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Fig. 2. The graph used to show LP𝐶𝑈𝑇 ≤ LP𝐶𝑂𝑀𝐵 .
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(ℎ,𝑛)∈𝑖∶ℎ≥𝑟′ 𝑛�̃�𝑖ℎ𝑛 =
∑

ℎ≥𝑟′
∑

𝑛∶(ℎ,𝑛)∈𝑖
𝑛�̃�𝑖ℎ𝑛 =

∑

ℎ≥𝑟′
∑

𝓁∈𝑖ℎ
𝑓
⟨𝑖,ℎ⟩𝓁 . Note

hat 𝓁 ∈ 𝑖ℎ implies 𝓁 ∈ 𝑖𝑟′ for ℎ ≥ 𝑟′. Therefore, a channel 𝓁 is
elevant to the terms in the sum, if and only if 𝓁 ∈ 𝑖𝑟′ . This leads to
10), showing that constraint (2d) is satisfied. In conclusion, �̃� and �̃�
orm a feasible solution to the LP of COMB.
∑

ℎ≥𝑟′

∑

𝓁∈𝑖ℎ

𝑓
⟨𝑖,ℎ⟩𝓁 =

∑

𝓁∈𝑖𝑟′

∑

ℎ≥𝑟′∶𝓁∈𝑖ℎ

𝑓
⟨𝑖,ℎ⟩𝓁 ≤

∑

𝓁∈𝑖𝑟′

∑

𝑟∶𝓁∈𝑖𝑟

𝑓
⟨𝑖,𝑟⟩𝓁 =

∑

𝓁∈𝑖𝑟′

�̃�𝑖𝓁

(10)

Let us assume the maximum flow is strictly less than the case
nalyzed above. Denote by 1 and 2 the subsets of nodes con-
aining the source and sink, respectively, for a minimum cut. First,
1 will not be a singleton with the source only, as that cut has

apacity ∑

𝑖∈
∑

𝑟∈
∑

𝑛∶(𝑟,𝑛)∈𝑖
𝑛�̃�𝑖𝑟𝑛, contracting the current assump-

ion. Second, 2 will not be a singleton of the sink. Suppose the
pposite, then the cut capacity is 𝐿 and this value cannot be less
han ∑

𝑖∈
∑

𝑟∈
∑

𝑛∶(𝑟,𝑛)∈𝑖
𝑛�̃�𝑖𝑟𝑛. This is because there is a constraint

f (4b) for all users and their lowest possible rates, for which
𝑖∈

∑

𝑟∈
∑

𝑛∶(𝑟,𝑛)∈𝑖
𝑛�̃�𝑖𝑟𝑛 is the left-hand side and the right-hand side

quals 𝐿. Moreover, the minimum cut will not be formed by all the
rcs connecting the user-rate nodes to the channel nodes either, as
he number of arcs in this cut is at least as large as 𝐿. Therefore, the
inimum cut has the structure shown in Fig. 2, where the green and

ed colors are used to indicate the nodes in 1 and 2, respectively.
ext, we make and prove a series of claims.

1. There is a minimum cut, such that there is no arc from a green
user-rate node to a red channel node. Suppose the opposite, and
say arc (⟨𝑖, 𝑟⟩,𝓁) is in the cut, with green ⟨𝑖, 𝑟⟩ and red 𝓁. Consider
moving 𝓁 to 1 instead. The capacity of the new cut increases
by one due to the arc from 𝓁 to the sink, but decreases by at
least one as (⟨𝑖, 𝑟⟩,𝓁) is no longer in the cut.

2. For the minimum cut above, for each green channel node, there
is at least one arc from a green user-rate node. To see this,
suppose the opposite for a green channel node 𝓁. If we move this
node to 2, the new cut would have lower capacity, because the
arc from 𝓁 to the sink is no longer in the cut, and there is no new
arc added to the cut.

3. The flow from the source to a red user-rate node ⟨𝑖, 𝑟⟩ equals
∑

𝑛∶(𝑟,𝑛)∈𝑖
𝑛�̃�𝑖𝑟𝑛, because the arc is a forward arc in the minimum

cut and hence must be saturated. Moreover, the flow on an arc
from a red user-rate node to a green channel node is zero, as this
is a backward arc in the minimum cut.

4. If a user-rate node ⟨𝑖, 𝑟⟩ is green, then any node ⟨𝑖, ℎ⟩ is also
green, i.e., they are in 1, if ℎ > 𝑟. To see this, suppose ⟨𝑖, 𝑟⟩
is green but ⟨𝑖, ℎ⟩ is red. Consider moving ⟨𝑖, ℎ⟩ from 2 to
1. Then, an amount of ∑𝑛∶(ℎ,𝑛)∈𝑖

�̃�𝑖ℎ𝑛 is no longer part of the
cut capacity. By the first property, there is no arc from ⟨𝑖, 𝑟⟩ to
7

any red channel node, this holds true also for ⟨𝑖, ℎ⟩ because any
channel supporting ℎ will also support 𝑟. Hence the cut capacity,
after the update, will decrease by ∑

𝑛∶(ℎ,𝑛)∈𝑖
�̃�𝑖ℎ𝑛 ≥ 0.

Denote by m the set of users, for which there is at least one green
ser-rate node. For 𝑖 ∈ m, denote by 𝑟𝑖 the lowest rate for which node
𝑖, 𝑟𝑖⟩ is green. By the last property above, all nodes ⟨𝑖, ℎ⟩ with ℎ > 𝑟𝑖
re green as well. Denote further by 𝐿𝑔 the number of green channels.

The cut capacity consists of two parts. The first is the total arc
apacity from the source to the red user-rate nodes, and this capacity
quals ∑

𝑖∈
∑𝑟𝑖−1

𝑟=1
∑

𝑛∶(𝑟,𝑛)∈𝑖
�̃�𝑖𝑟𝑛. The second part is from the 𝐿𝑔 green

hannel nodes to the sink. By the assumption that the cut capacity is
maller than ∑

𝑖∈
∑

𝑟∈
∑

𝑛∶(𝑟,𝑛)∈𝑖
𝑛�̃�𝑖𝑟𝑛, we obtain the following.

∑

𝑖∈

𝑟𝑖−1
∑

𝑟=1

∑

𝑛∶(𝑟,𝑛)∈𝑖

�̃�𝑖𝑟𝑛 + 𝐿𝑔 <
∑

𝑖∈

∑

𝑟∈

∑

𝑛∶(𝑟,𝑛)∈𝑖

𝑛�̃�𝑖𝑟𝑛 ⇒ 𝐿𝑔 <
∑

𝑖∈m

𝑅
∑

𝑟=𝑟𝑖

∑

𝑛∶(𝑟,𝑛)∈𝑖

�̃�𝑖𝑟𝑛

(11)

The right-hand side of the second inequality in (11) is the left-hand
ide of a constraint of (4b) for user set m and rate 𝑟𝑖, 𝑖 ∈ m. Moreover,
y the first and second properties, 𝐿𝑔 equals the right-hand side of this
onstraint, meaning that the constraint is violated. This contradiction
ompletes the proof. □

Lemmas 5–6 together give the relationship of LP bounding via
OMB and CUT. We formalize the result below.

orollary 7. LP𝐶𝑂𝑀𝐵 = LP𝐶𝑈𝑇 .

The next question is the strength of the compact model SEP given in
Section 3. The answer is that it provides the same LP bound as that of
COL. A direct proof, based on showing that any solution of the LP of one
of them maps to a solution in the other LP, and vice versa, turned out to
be difficult, however. We take a different approach in our proof, using
the notion of Lagrangian relaxation and Dantzig–Wolfe decomposition.

Lemma 8. Applying Lagrangian relaxation to (1d), the optimal value of
the Lagrangian dual function equals the LP optimum of COL.

Proof. Denote by 𝜋𝓁 ≥ 0,𝓁 ∈ , the Lagrangian multipliers. The
Lagrangian subproblem decomposes by user. For a generic user, the
subproblem is as follows. For clarity, we omit the user index.

max
∑

𝑟∈

∑

𝓁∈𝑟

(𝑢𝑟 − 𝜋𝓁)𝑦𝑟𝓁 (12a)

s.t.
∑

𝑟∈
𝑥𝑟 = 1, (12b)

𝑦𝑟𝓁 ≤ 𝑥𝑟, 𝓁 ∈ 𝑟, 𝑟 ∈  (12c)

𝑛𝑟𝑥𝑟 ≤
∑

𝑦𝑟𝓁 ≤ �̄�𝑟𝑥𝑟, 𝑟 ∈  (12d)

𝓁∈𝑟
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𝑥𝑟 ∈ {0, 1}, 𝑟 ∈  (12e)

𝑦𝑟𝓁 ∈ {0, 1}, 𝓁 ∈ 𝑟, 𝑟 ∈  (12f)

At the optimum of the subproblem, the solution for a user is a subset
f channels and its utility equals the selected rate multiplied by the
ardinality of the subset. Hence, the solution for user 𝑖 corresponds to
n element in 𝑖. By the properties of Lagrangian relaxation for integer
rogramming, the optimal value of the Lagrangian dual is defined by
he optimal solution obtained over the space defined as the intersection
f the convex hull of the feasible solutions of the subproblem and
he relaxed constraint (that is Dantzig–Wolfe reformulation, Wolsey
2020)). As the subproblem decomposes by user, the convex hull is
he Cartesian product of those over the users, cf. (5c). It is rather
traightforward to see that this Dantzig–Wolfe reformulation is in fact
he LP of COL (after any necessary scaling), and the result follows. □

Remark 5. For solving (12), we can consider the possible rates one
by one. For each rate 𝑟, we sort the channels in 𝑟 in descending
rder of (𝑢𝑟 − 𝜋𝓁). The first 𝑛𝑟 channels are selected. Next, we continue
electing the remaining channels in the sorted sequence, and stops once
he composite objective coefficient is non-positive, or �̄�𝑟 channels are
elected. It is rather obvious that the solution procedure leads to the
ptimum of the subproblem. □

emma 9. Subproblem (12) has integrality property.

roof. Let 𝜇𝑟𝓁 = 𝑢𝑟 − 𝜋𝓁 ,𝓁 ∈ 𝑟, 𝑟 ∈ . Consider the LP relaxation of
subproblem (12), and some rate 𝑟 ∈ . For rate 𝑟 and any 0 < 𝑥𝑟 ≤ 1,
he optimization in the 𝑦-variables of this rate is as follows. Without
oss of generality, we assume that the channel indices are sorted in
escending order of 𝜇, i.e., 𝜇𝑟1 ≥ 𝜇𝑟2 ≥ ⋯ ≥ 𝜇𝑟|𝑟|

. This order is assumed
hroughout the proof.

max
∑

𝓁∈𝑟

𝜇𝑟𝓁𝑦𝑟𝓁 (13a)

.t. 𝑦𝑟𝓁 ≤ 𝑥𝑟, 𝓁 ∈ 𝑟 (13b)

𝑛𝑟𝑥𝑟 ≤
∑

𝓁∈𝑟

𝑦𝑟𝓁 ≤ �̄�𝑟𝑥𝑟 (13c)

0 ≤ 𝑦𝑟𝓁 ≤ 1, 𝓁 ∈ 𝑟 (13d)

Note that in (13), the value of 𝑥𝑟 is given. Denote by 𝑦∗𝑟𝓁 ,𝓁 ∈ 𝑟,
the optimum of (13). We will show that there is an optimal solution,
consisting of 𝑦∗𝑟𝓁 = 𝑥𝑟 for the first 𝑛∗𝑟 channels for some integer 𝑛∗𝑟 ≥ 1,
for any 0 < 𝑥𝑟 ≤ 1.

Suppose this is not the case. Starting from channel one and fol-
lowing the channel indices, assume 𝑘 is the first channel, such that
𝑦∗𝑟𝑘 < 𝑥𝑟. Note that either 𝑦∗𝑟𝑘 is the only variable being strictly less than
𝑥𝑟, or there are more such 𝑦-variables. In the latter case, we continue
scanning the variables and stop at the next channel, say channel 𝑘′,
with 𝑦∗𝑟𝑘′ < 𝑥𝑟. We increase the value of 𝑦∗𝑟𝑘 up to 𝑥𝑟, while reducing 𝑦∗𝑟𝑘′
with the same amount. Note that doing so will not worsen the objective
function value, because 𝜇𝑟𝑘 ≥ 𝜇𝑟𝑘′ . Moreover, the constraints remain
satisfied, because the individual upper bounds are adhered to, and the
sum ∑

𝓁∈𝑟
𝑦∗𝑟𝓁 is not altered. The update has two possible outcomes. In

the first case, 𝑦∗𝑟𝑘 = 𝑥𝑟 and 𝑦∗𝑟𝑘′ > 0 even though the value is reduced.
We let 𝑘 = 𝑘′ and repeat the process for the updated index 𝑘. In the
second case, after the update we still have 𝑦∗𝑟𝑘 < 𝑥𝑟, and 𝑦∗𝑟𝑘′ = 0. For
this case, we continue the scan of the remaining indices to look for the
next variable being strictly less than 𝑥𝑟.

Applying the above process, repeatedly if necessary, we end up
with an optimal LP solution where there is at most one index 𝑘 with
0 < 𝑦∗𝑟𝑘 < 𝑥𝑟, such that 𝑦∗𝑟1 = ⋯ = 𝑦∗𝑟,𝑘−1 = 𝑥𝑟, and 𝑦∗𝑟,𝑘+1 = ⋯ 𝑦∗𝑟|𝑟|

= 0.
Suppose there is such a variable 𝑦∗𝑟𝑘. Let us examine the sign of 𝜇𝑟𝑘.
First, assume 𝜇𝑟𝑘 ≥ 0. Note that ∑𝑘−1

𝓁=1 𝑦
∗
𝑟𝓁 = (𝑘 − 1)𝑥𝑟. Hence 𝑘 − 1 < �̄�𝑟

as otherwise having 𝑦∗ > 0 violates the upper limit �̄� 𝑥 . Therefore, we
8

𝑟𝑘 𝑟 𝑟
can increase the value of 𝑦∗𝑟𝑘 to 𝑥𝑟. The objective function value will not
decrease as 𝜇𝑟𝑘 ≥ 0 (in fact 𝜇𝑟𝑘 = 0 as otherwise the optimality of 𝑦∗ is
contradicted). Now suppose 𝜇𝑟𝑘 < 0. Note that then 𝑘 − 1 ≥ 𝑛𝑟, i.e., the
lower limit is met by the first 𝑘 − 1 variables, because otherwise the
lower limit cannot be satisfied with 𝑦∗𝑟𝑘 < 𝑥𝑟. Hence we can decrease the
value of 𝑦∗𝑟𝑘 and improve the objective value, a contradiction. Finally,
for the special case where 𝑛𝑟 = �̄�𝑟, it is easy to see that having one
𝑦∗𝑟𝑘 < 𝑥𝑟 will not occur, as either the upper or lower limit in (13c) is
violated.

By the above arguments, we conclude that there is an optimal LP
solution in the 𝑦-variables, such that the first 𝑘 variables all equal 𝑥𝑟,
and the remaining variables are zero. To be complete, we still need to
show that this number 𝑘 is invariant to the value of 𝑥𝑟. Observing the
constraints of (13), it is clear that if for some 𝑥𝑟, the optimal number
is 𝑘, then the solution, by setting 𝑦𝑟1 = ⋯ = 𝑦𝑟𝑘 = 𝑥𝑟, is feasible for any
value of 𝑥𝑟 ∈ [0, 1], with the objective function value being scaled by
𝑥𝑟.

Consider two numbers 𝑘1 and 𝑘2, both leading to feasible solutions
by setting the first 𝑘1 and 𝑘2 elements of 𝑦 to be 𝑥𝑟. The objective func-
tion values are then 𝑥𝑟

∑𝑘1
𝓁=1 𝜇𝑟𝓁 and 𝑥𝑟

∑𝑘2
𝓁=1 𝜇𝑟𝓁 , respectively. Suppose

𝑥𝑟
∑𝑘1

𝓁=1 𝜇𝑟𝓁 ≥ 𝑥𝑟
∑𝑘2

𝓁=1 𝜇𝑟𝓁 . It is obvious that the inequality holds for all
𝑥𝑟 ∈ [0, 1]. Therefore, for rate 𝑟, there exists an optimal LP solution,
such that there is one single number 𝑛∗𝑟 , and the first 𝑛∗𝑟 elements of
the 𝑦-variables equal 𝑥𝑟 and thus they increase linearly in 𝑥𝑟.

Based on the above, the LP relaxation of subproblem (12) is
equivalent to the following problem in the 𝑥-variables.

max
∑

𝑟∈
(
𝑛∗𝑟
∑

𝓁=1
𝜇𝑟𝓁)𝑥𝑟 (14a)

s.t.
∑

𝑟∈
𝑥𝑟 = 1 (14b)

0 ≤ 𝑥𝑟 ≤ 1, 𝑟 ∈  (14c)

The above problem (14) obviously has an optimal solution that is
integer, and the proof is complete. □

Proposition 10. LP𝑆𝐸𝑃 = LP𝐶𝑂𝐿.

Proof. LP𝑆𝐸𝑃 equals the Lagrangian dual optimum due to the
integrality property (Lemma 9). The result then follows from
Lemma 8. □

What remains to examine is model COMB’. It turns out that there
is no deterministic relation between its LP bound and that of COMB.
Of this pair, one may outperform the other, depending on problem
instance. Thus we can obtain a strengthened version of COMB (and
COMB’), by integrating the two into one model. We denote this model
by COMB+.

Lemma 11. Applying Lagrangian relaxation to (2c) of COMB+, the
optimal value of the Lagrangian dual function equals the LP optimum of
COL.

Proof. The subproblem decomposes by user in the Lagrangian relax-
ation, and the solution of a user’s subproblem again is a subset of
channels. The lemma is established by applying the same arguments
as in the proof of Lemma 8. □

For COMB+, the Lagrangian subproblem formulation does not
exhibit the integrality property, meaning that the Lagrangian dual
optimum may be strictly better than the LP relaxation, and this is
verified by numerical tests. Therefore we have the following result.

Proposition 12. LP𝑆𝐸𝑃 < LP𝐶𝑂𝑀𝐵+.

Remark 6. We used a direct proof for Proposition 4. The proposition
can be alternatively established via Lagrangian relaxation and the lack
of integrality property of the subproblem of COMB. □
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Table 1
Parameters used for generating CACR instances. (The rates are in megabits per second (Mbps)).

Parameters Value(s)

Number of users 𝐼 {20, 30, 40, 50}
Number of channels 𝐿 100
Set of rates  {0, 0.158, 0.212, 0.305, 0.433, 0.545, 0.650, 0.758, 0.814, 0.960}
Rate lower bound (d𝑖 , 𝑖 ∈ ) Uniformly zero, or random within [0, 20]
Rate upper bound (𝑑𝑖 , 𝑖 ∈ ) Random within [20, 100]
User weight (𝑤𝑖 , 𝑖 ∈ ) Random within [10, 100]
Channel quality COST-231-HATA plus randomly generated interference
To summarize, COMB and CUT are equivalent in LP bound, and
hese two formulations are weaker than SEP and COL. For SEP and COL,
hey form another LP-equivalent pair. Moreover, none of COMB and
OMB’ dominates the other. The combination of these two, COMB+,
emains weaker than SEP and COL.

. Numerical results

.1. Experimental setup

We have generated three groups of CACR instances using pa-
ameters that are very typical for performance evaluation of mobile
ommunication systems. For each group, the number of users varies
rom 20 to 50. The number of channels is set to be 100 for all three
roups. There are 100 instances per group. The users are located
andomly within the coverage area of the BS, of which the radius is
Km. The path loss between the BS and a user follows a widely used
odel, known as the COST-231-HATA model (Damosso and Correia,
999). The interference on a channel is modeled by assuming some
dditional surrounding BSs. Each channel is used by a randomly se-
ected subset of these BSs. Thus the interference varies by channel.
he maximum achievable rate on a channel is then determined by the
hannel bandwidth (assumed to be 180 kHz) and signal-to-interference-
nd-noise ratio (SINR3). A specification of instance generation is given
n Table 1.

The purpose of our numerical experiments is two-fold. First, we are
nterested in making numerical observations of the optimization for-
ulations in their LP bounds. Second, we would like to use numerical

esults to shed some light on the performance of LP-assisted problem
olving. Note that, by the analysis in Section 6, it is sufficient to confine
he evaluation to the compact models, namely, SEP, COMB, COMB’, and
OMB+. Moreover, in light of Proposition 2, it is reasonable to use LP
o derive the user rates, as then an integer solution can be obtained via
olving a network flow problem. In SEP, the rate of user 𝑖 is represented

by variable 𝑥𝑖𝑟. In the other three compact models, this is given by
∑

𝑛∶(𝑟,𝑛)∈𝑖
𝑥𝑖𝑟𝑛. We consider the following schemes for approaching an

integer solution.

• LP + simple rounding: After solving the LP, we fix the rate for
every user, by finding the largest value of the above entities over
the rates.

• LP + iterative rounding: This is a more graceful version for
setting the rate. In one iteration, one user and rate with the largest
fractional value is selected, and the rate is fixed for this user. The
LP is then solved again, until the rate is determined for all users.

• As a reference solution, we consider the integer solution found
by a solver (Gurobi version 9.0) at the root node of branch-
and-bound tree. This scheme is denoted by ILP0. For ILP0, we
consider models SEP and COMB+ as they generally lead to better
performance.

3 This is the ratio between received signal strength (i.e., the transmission
ower on a channel scaled by the path loss), and the total received interference
lus noise. The transmission power is set to 800 mW, and the noise is
174 dBm/Hz multiplied by the bandwidth of a channel.
9

We pay attention to the following two aspects in generating the in-
stances. First, with the presence of a lower bound on the total rate to be
delivered to the users, any heuristic may fail to find an integer feasible
solution, even if such solutions exist. Second, the amount of variation of
interference will most likely impact problem difficulty. This is because
if the interference tends to be uniform over the channels, then from
a user’s perspective, the channels are largely invariant, i.e., there are
many channels being identical in the rates supported. Because in our
experiments a random number of the surrounding BSs is selected as
interference source on a channel, the variation in channel quality can
be steered by varying the number and locations of surrounding BSs.
Having the two aspects in mind, the three instance groups differ as
follows.

• For Group I, the rate lower bound is uniformly set to zero for all
users. Consequently, constructing an integer solution is guaran-
teed to be successful, and hence the models are compared using
all 100 instances of the group. As for interference, we assume
there are six surrounding BSs.

• For Group II, rate lower bound is present. Hence whether or not
a feasible solution is found is part of performance evaluation. The
number of surrounding BSs is set to be two.

• The last instance group, Group III, also uses rate lower bound.
Moreover, the number of surrounding BSs is six. Hence this
instance group is expected to be more difficult than Group II, as
a result of larger variation in interference.

We remark that all instances of Groups II and III are feasible, i.e., in-
teger solutions do exist. We use the following metrics for performance
comparison.

• Gap: For LP, this is the gap of the LP and the integer optimum.
For LP-based problem-solving schemes, the gap value refers to
the difference of the integer solution (if found) and the integer
optimum.

• Success ratio: For Groups II and III, this is the percentage of
instances for which feasible integer solutions are found.

Remark 7. For the LP gap values, we use box plot for presenting
the distribution to provide a comprehensive performance picture. For
the (heuristic) integer solutions, showing distribution is less justified,
mainly because for Groups II and III, the schemes perform very differ-
ently on achieving feasible integer solutions over the instances, and the
common subset of instances for which all the schemes lead to feasible
solutions may be quite small. Moreover, the amount of results will be
excessive as there are ten schemes in the comparison. We therefore
provide tables showing the average results. Moreover, for Groups II and
III, the comparison of gap of the integer solutions is based on a common
subset of instances for which feasible solutions are found by all models
and schemes. If the cardinality of this common set is less than ten (out
of 100 instances), the model or solution scheme with the lowest success
ratio is iteratively excluded, until the cardinality is at least ten. □

The focus of our computational experiments is not on solution time.
This is because, from the time perspective, the solution schemes cannot
be used as is in practice, where CACR need to be solved in millisecond
timescale. In fact, even solving the LP once would exceed by far the
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Fig. 3. LP gap (in percentage) for Group I.
ime limit in real systems. Our focus is to understand the numerical
erformance of LP bounding and LP-based problem solving with respect
o solution quality. The purpose is to set a ground for developing
ailored methods in future works. Such methods, utilizing some of the
ptimization models in the current paper, are likely to be designed to
nable massive parallel computation. Even though solution time is not
he central aspect, we will provide some time results and comparisons.
he results also highlight the need of forthcoming work.

.2. Performance results for group I

For Group I, the comparison of LP gap is presented using box plots
n Fig. 3. The bottom and top of each box are defined by the first
nd third quartiles, respectively. The average and median values are
hown by the blue and orange lines, respectively. The two ends of a
ertical line are obtained by the largest and smallest value samples,
espectively, within a distance of 1.5 times of the interquartile range,
rom quartiles three and one. Finally, the outliers are represented with
ndividual points.

We observe that COMB numerically has smaller gap than COMB’
nd the amount of difference is quite considerable, even though in
heory there is no deterministic relation between the two models in
P bounding. This is probably attributed to that (2d) in COMB is a
trengthened form of (3b) in COMB’. Combination COMB+ reduces the
verage gap of COMB by approximately 50%. Thus even if COMB’ is
nferior, its structure is helpful for improving COMB. For SEP, we know
t is strongest in theory. Numerically, it significantly outperforms the
ther models in bounding, with an average LP gap of being close to
ero. That SEP performs better is also clearly seen from the vertical
pan of the boxes. In fact, the average gap is consistent with the span;
model with higher average gap also exhibits a larger spread of the

ap values over the instances. The coherence also applies to outliers,
amely in general a larger average gap is coupled with outliers further
way from the average. Note that, for the median values (that reduce
he impact of outliers compared to the average values), the relative
erformance between the models largely remain as observed above.
inally, the LP gap does not exhibit an increasing or decreasing trend
n the number of users, and this holds for all models. A likely reason is
he absence of a lower bound on the user rate — the system has the full
lexibility of choosing which users to serve and how much, and having
ore users even improves this flexibility.

Let us now consider the performance of integer solutions presented
n Table 2. For the two rounding schemes, the relative performance
f the models are fully consistent with their respective LP strengths,
hich is quite expected. Note that COMB’ performs poorly in solution
10
quality. Thus the level of accuracy of LP does matter for LP-assisted
problem solving. This is also the case for ILP0, as the results of using
SEP are clearly better than those derived via COMB. Moreover, similar
to the LP gap, there is no clear trend in the quality of integer solutions
with respect to the number of users.

Comparing the two rounding schemes, the iterative one outperforms
simple rounding for all models and problem sizes. The improvement is
most significant for COMB and COMB’. Best performance is obtained
by using the solver — the integer solutions are extremely close to
optimum, in particular for model SEP. This demonstrates the capability
of sophisticated heuristics that are implemented in a state-of-the-art in-
teger solver. We will observe later, though, that the good performance
comes with more computing time.

7.3. Performance results for group II

The instances in Group II have more uniform channel conditions
than those in Group I, which hints better results. However, this is
counter-balanced by the presence of lower bound of user rate.

The LP gap values, shown in Fig. 4, lead to similar observations as
made earlier. Namely, the relative performance of the models more or
less remain as for Group I, in terms of the average, median, box span,
and outliers. There are however also differences. First, the improvement
by combining COMB and COMB’ is now smaller, and the average LP
gap as well as the gap span have a somewhat increasing trend with
respect to the number of users. Both may be linked to the presence
of rate lower bound. Moreover, in comparison to Fig. 3, the LP gap is
generally smaller, and we believe this has to do with that the channel
conditions are more uniform for Group II.

Table 3 shows the results of integer solutions. Let us first observe
the results of the two rounding schemes. COMB’ constantly fails in
terms of reaching feasible solutions for most cases. Note that COMB’
is the only model having an LP gap being greater than one percent.
Apparently, this has a very large impact on the success ratio. For the
other three models, there is no significant difference in success ratio.
For these models, the success ratio is equal or close to 100% for 20
users, and then gradually drops when the number of users grows as
there is more competition for the channels. It is interesting to note that
the two rounding schemes have comparable performance in success
ratio. This can be explained by that the LP solutions are driven by
the objective function, and none of the schemes is actively targeting
maximizing feasibility. For the optimality gap, using SEP gives the
best results. Moreover, the benefit of iterative rounding is smaller (or
even negative in one case) than that of Group I, possibly because the
flexibility of resource allocation is low due to the rate lower bound.
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Fig. 4. LP gap (in percentage) for Group II.
Table 2
Average optimality gap of integer solutions for Group I.

Number of users LP + simple rounding LP + iterative rounding ILP0

SEP COMB+ COMB COMB’ SEP COMB+ COMB COMB’ SEP COMB+

20 0.51% 1.31% 2.56% 11.22% 0.24% 0.41% 0.52% 4.83% 0.01% 0.08%
30 0.30% 1.44% 2.83% 11.45% 0.14% 0.43% 0.56% 4.22% 0.00% 0.08%
40 0.25% 1.31% 3.29% 12.12% 0.14% 0.37% 0.55% 3.76% 0.01% 0.04%
50 0.33% 1.26% 2.46% 11.10% 0.10% 0.37% 0.47% 3.17% 0.01% 0.05%
Table 3
Success ratio and the average gap (within parentheses) of integer solutions for Group II.

Number of users LP + simple rounding LP + iterative rounding ILP0

SEP COMB+ COMB COMB’ SEP COMB+ COMB COMB’ SEP COMB+

20 100% 97% 100% 34% 100% 99% 100% 42% 100% 100%
(0.28%) (0.47%) (0.61%) (4.74%) (0.19%) (0.44%) (0.72%) (4.82%) (0.00%) (0.04%)

30 98% 96% 99% 6% 97% 97% 99% 6% 100% 100%
(0.36%) (0.45%) (0.51%) (–) (0.26%) (0.40%) (0.44%) (–) (0.00%) (0.02%)

40 96% 95% 96% 1% 97% 97% 98% 1% 100% 100%
(0.23%) (0.43%) (0.46%) (–) (0.20%) (0.34%) (0.41%) (–) (0.01%) (0.04%)

50 88% 87% 87% 0% 88% 87% 87% 0% 100% 100%
(0.28%) (0.28%) (0.27%) (–) (0.24%) (0.28%) (0.27%) (–) (0.00%) (0.07%)
Compared to the rounding schemes, ILP0 delivers the best results.
Specifically, it manages to find feasible solutions for all instances, with
very small or even zero gap in optimality. Again, a model with a better
LP bound (SEP) also means better integer solutions by the solver. As
the solver derives integer solutions based on LP, the results in fact
show that LP-based models do have the potential of approaching good
solutions for CACR, and the LP strength does matter.

7.4. Performance results for group III

For Group III, the performance in LP gap is presented in Fig. 5.
Recall that the difference between Groups II and III is that the channels
are less uniform in the latter, meaning that the instances are harder.
Inspecting Fig. 5, this is indeed the case; the average LP gap as well
as its range are now clearly higher. Moreover, the difference in LP
gap becomes larger across the models. Thus problem difficulty does
translate into LP bound. As before, a better average value corresponds
to lower value span. Note that COMB’ is now becoming poor in LP
bound, however adding its constraints to COMB still helps. In addition,
the LP gap boxes move upward in the number of users for all models
except for COMB, for which the LP gap stays at about one percent.
We do not have a definite answer to the underlying reason, though
11
a possible explanation is that the structure of (2d), constructed to
strengthen the LP, is not present in SEP or COMB’.

That the instances of Group III are harder than those of Group II
is manifested not only by the LP gap, but also the results of integer
solutions shown in Table 4. For the two rounding schemes, the success
ratio drops for all models. SEP remains the model giving highest success
ratio, though the values are considerably lower than those for Group II.
In contrast, ILP0 is able to keep its 100% success ratio (albeit with
more computing cost, as will be shown later). We remark that both
rounding schemes are oblivious to the issue of infeasibility, and hence a
feasibility-oriented scheme, e.g., giving priority to users with large rate
requirement in resource allocation, will probably improve the success
ratio.

With respect to optimality gap, the values are larger than those in
Table 4, again confirming that a bigger variation in channel quality
results in harder instances. This holds true also for ILP0. Finally, as one
could expect, using the strongest model implies the best solution quality
for all schemes.

7.5. Computing time

We provide additional results of computing time, based on a note-
book with Intel i7-1165G7, using Gurobi optimizer version 9.5.2 with
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Fig. 5. LP gap (in percentage) for Group III. There is one outlier of value 34% for COMB’ and 50 users that is not shown in the plot.
Table 4
Success ratio and average gap (within parentheses) of integers solutions for Group III.

Number of users LP + simple rounding LP + iterative rounding ILP0

SEP COMB+ COMB COMB’ SEP COMB+ COMB COMB’ SEP COMB+

20 97% 94% 91% 16% 99% 96% 95% 22% 100% 100%
(0.54%) (1.84%) (2.55%) (13.18%) (0.40%) (1.04%) (1.65%) (8.88%) (0.02%) (0.17%)

30 93% 79% 77% 1% 92% 87% 85% 1% 100% 100%
(0.49%) (0.93%) (1.47%) (–) (0.25%) (0.76%) (1.21%) (0.25%) (0.02%) (0.24%)

40 83% 68% 68% 0% 88% 80% 73% 0% 100% 100%
(0.66%) (1.03%) (1.21%) (–) (0.48%) (0.92%) (1.02%) (–) (0.03%) (0.20%)

50 73% 54% 55% 0% 83% 59% 53% 0% 100% 100%
(0.44%) (0.93%) (0.83%) (–) (0.49%) (0.77%) (0.99%) (–) (0.03%) (0.18%)
Table 5
Average solution time in milliseconds.

LP LP + LP + ILP ILP0

simple rounding iterative rounding

SEP COMB+ SEP COMB+ SEP COMB+ SEP COMB+ SEP COMB+

Group I 286 446 295 461 489 690 2451 3976 2391 3721
Group II 213 314 225 326 389 596 1919 1654 1912 1641
Group II 347 371 357 381 536 666 3043 3067 2998 2813
one core and dual simplex as LP method. The instances of 50 users
are considered, as computing time is more relevant for these instances
than the smaller ones. Among the models, SEP and COMB+ are chosen
because they perform better in the LP bound as well as the quality of
integer solutions found. Also, we report average values for each group,
since the variation in time is quite small across the instances.

The results of solution time (in milliseconds) are presented in Ta-
ble 5, giving the following findings. In the table, ILP denotes to solve
CACR to integer optimum.

• All schemes (including just solving the LP) present solution times
that are at least a couple of orders of magnitude higher than what
would be acceptable for real systems. Hence, as is, none of them
can be for practical use (which is in fact expected), highlighting
the need of additional research for highly tailored methods that
admit massive parallel computation.

• SEP generally leads to lower solution times than COMB+, with
the likely reason that the latter has a weaker LP to start with.
Moreover, the most difficult instance group (Group III) is also the
most time-demanding one.

• Iterative rounding takes, as expected, more time than simple
rounding. However the increase is not dramatic. Moreover, both

0

12

schemes are significantly faster than ILP and ILP . Thus, that
the built-in solver heuristics are able to approach very good
solutions comes at the cost of more time. One can observe that
the difference in time for ILP0 and ILP is very small. Hence for
the solver, the time bottleneck is finding integer solutions rather
than performing branching.

7.6. Summary

To summarize, SEP has the best numerical performance, in terms of
the LP bound, and the success ratio as well as the quality of LP-based
integer solutions, whereas COMB’ is on the other end of performance
line. As the combination of COMB and COMB’, COMB+’s improvement
over COMB for the rounding schemes is noticeable but not dramatic, in
particular for instances with rate lower bound. The use of built-in solver
heuristics leads to clearly better integer solutions than the rounding
schemes, at the cost of higher computing time. Finally, LP strength has
a large impact on the quality of integer solutions derived based on LP
relaxations.

8. Conclusions and future work

We have studied mathematical modeling of a resource optimization
problem with common-rate channel allocation in mobile communica-

tion systems. We have demonstrated that the problem admits an array
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of integer programming formulations. The study shows that modeling
does matter, analytically as well as numerically, in terms of perfor-
mance in bounding and LP-based problem solving. Moreover, there is a
clear correlation between the accuracy of LP and the quality of integer
solution derived thereby.

As we have observed, straightforward schemes of constructing inte-
ger solutions are not practical in solution time, whereas for our resource
allocation problem, the ultimate target is real-time optimization. To
approach this goal with model-based optimization, we make several
observations. First, to deliver a solution rapidly, the amount of com-
putation has to be very small, and thus the LP relaxation may have
to be solved approximately, followed by some primal heuristic (both
admitting massive parallel computation). Second, non-compact models
are also of interest, as restricting the number of columns or rows
leads to approximation of the problem (and the LP relaxation). Finally,
with presence of rate lower bound, obtaining solution feasibility is of
clear significance, and one may need to trade solution quality against
feasibility. Developing and implementing algorithmic notions along
these lines form interesting topics for forthcoming research.
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