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A B S T R A C T   

Density Functional Theory (DFT) is the prevalent first principles computational method for determining the stacking fault energy (SFE) of face centered cubic (fcc) 
metals and alloys. Due to several theoretical and computational challenges, SFE determination for interstitial alloys with alloying elements such as carbon, nitrogen, 
and hydrogen, has so far been limited to few studies at relatively high interstitial content. We propose a new method, rooted in the axial interaction model, that 
allows rapid and robust mapping of SFE for virtually arbitrary interstitial contents. Instead of computing the total energy of a very large supercell to represent dilute 
interstitial solutions, representative interstitial-affected and bulk regions are treated separately at the equivalent volume. The SFE is obtained by balancing the SFE 
values of the regions with a lever rule approach. The method matches SFE values from the axial interaction model within ≤4 mJ.m− 2 error, as validated for non- 
magnetic fcc Fe-N and paramagnetic fcc Fe-N and AISI 304 alloys. The significantly reduced computational workload and equidistant SFE mapping vs. interstitial 
content down to extremely low values allows accurate fitting of the SFE vs. interstitial content with only few datapoints. This further improves the computational 
efficiency. So far DFT-based SFE mapping was limited to purely substitutional alloys; we demonstrate the first-time DFT-based SFE mapping in fcc AISI 304 vs. N and 
Ni, revealing a non-additive contribution of N and Ni to the SFE. Finally, the remaining challenges and future application for high-throughput DFT SFE computation 
in interstitial alloys is discussed.   

1. Introduction 

The stacking fault energy (SFE) is the energy associated with a 
stacking fault in-between two Shockley partial dislocations following 
the dissociation of a full dislocation. In face-centered-cubic (fcc) alloys, 
SFE is used as a parameter to delineate the different predominant plastic 
deformation mechanisms. At a given pressure and temperature, the SFE 
of alloys can be altered by changing the chemical composition [1,2]. For 
increasing SFE, the prevalent deformation mechanism changes from 
martensite formation to twinning to, exclusively, dislocation slip [3,4]. 
Given the pivotal technological relevance of interstitial elements in 
modern alloy design [5–9], their effect on SFE is a prominent area of 
research. 

Attempts to estimate SFE values computationally can be made with 
thermodynamic modelling techniques such as CALPHAD [10,11] and 
Density Functional Theory (DFT) [12,13]. CALPHAD is the preferred 
method for the efficient computation of phase equilibria as a function of 
temperature, pressure, and alloy composition. Being able to compute the 
Gibbs energies of the hexagonal-closed-packed (hcp) and fcc lattices of 
complex interstitial-containing multicomponent alloys, the method 

principally lends itself well to mapping the SFE vs. composition. How
ever, the Gibbs energies at low temperatures, especially for metastable 
phases with an hcp lattice in steel [14], are inaccurate in thermody
namics databases, leading to unacceptable uncertainties [15,16]. This 
shortcoming is commonly addressed by selectively compiling [4,16–19] 
or fitting [4] thermodynamics parameters to improve the agreement 
between CALPHAD-computed SFE values and experimentally deter
mined SFE values. This practice seems insensible given the recent real
ization that experimentally determined SFE values include unaccounted 
for kinetics contributions to form stacking faults, in addition to the 
thermodynamics associated with the presence of a stacking fault 
[20–24]. 

DFT modeling has become an established approach for the deter
mination of SFE values for metals and alloys [2,25–28]. While its 
capability to determine SFE of interstitial alloys has been successfully 
demonstrated [25,27,29–32], up to now only little work has been per
formed in comparison to interstitial-free alloys. Several limitations of 
current DFT approaches for SFE determination complicate its applica
tion for large-scale SFE mapping in interstitial alloys: 
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(i) Explicit modeling of a stacking fault within a supercell is 
commonly considered to be the most accurate way of modeling 
the SFE, as the interaction between solute and the stacking fault 
and the interfacial energy are explicitly accounted for. For alloys 
containing interstitials, the position of the interstitial atom rela
tive to the stacking fault has an immense effect on the obtained 
SFE values [25,31]. So far, the general tendency of interstitial 
segregation to stacking faults has been proven experimentally 
[32,33], but the precise planar distribution of interstitial atoms 
adjacent to the stacking fault has remained undetermined, even 
using the most recent high-resolution materials characterization 
methods [33]. Hence, choosing a reasonable assumption for 
modeling the SFE to predict the deformation behavior is 
complicated. 

As an alternative to explicit modeling of the stacking fault, the less 
detailed first-order term of the axial interaction model [2,34,35] may 
be applied, in which the total energies of separate fcc and hcp 
supercells are evaluated without explicit modeling of the stacking 
fault. The obtained values were shown to agree with mean values of 
explicitly determined SFE values at different interstitial positions 
[25,31]. While this approach could be deemed less accurate, it is an 
efficient and robust approach to map the overall influence of 
composition on SFE.  

(ii) Interstitial contents in technologically relevant alloys are 
commonly lower than 0.1 wt% [36–39]. Calculation of the SFE of 
alloys with low interstitial content with DFT would require 
extremely large supercells that are associated with an infeasible 
computational workload and complicated convergence. To 
determine the SFE of a Fe-0.05C (wt.%) alloy for instance, a 
single carbon atom would need to be dissolved into a massive 
supercell of 432 host-lattice Fe atoms. Moreover, local distortions 
in the host lattice that are introduced by the interstitial atom 
causes the breakdown of crystal symmetry, leading to further 
computational workload. For most dilute interstitial alloys, SFE 
mapping is therefore unfeasible.  

(iii) Not all DFT formalisms support optimization-guided ionic 
relaxation. Manually redefining the atomic positions in the 
supercells around the interstitial site is tedious and can only be 
carried out approximately. As DFT studies often concern mapping 
of a property as a function of systematically changed parameters, 
the validity of the determined local relaxation must be assumed 
or proven valid within the mapped parameter interval. This 
complication does not only concern the local relaxation around 
the interstitial atom, but also all other ionic and cell relaxations 
such as the c/a-ratio in hcp supercells.  

(iv) Many technologically important interstitial alloys, such as 
austenitic stainless steels, are in a paramagnetic state at ambient 
temperature, albeit rarely accounted for in DFT calculations 
[29,31,40]. In DFT formalisms that incorporate the coherent 
potential approximation (CPA) [41,42], the paramagnetic state 
can partially be accounted for by applying the disordered local 
magnetic moment method [43]. Alternatively, Dick et al. [29] 
demonstrated treatment of paramagnetic properties in Fe-C by 
averaging over several supercells with randomly initialized 
magnetic moments. This approach gave excellent agreement with 
results obtained by the disordered local magnetic moment 
method [31]. However, it is computationally inefficient and may 
not be directly transferable to substitutional alloys that contain 
multiple species per sublattice. 

In summary, CALPHAD modeling is the preferred method for SFE 
mapping across large interstitial compositional spaces, but it currently 
lacks the required accuracy for reliable SFE prediction due to inaccurate 
CALPHAD databases for the phases and temperature ranges of interest. 
DFT on the other hand yields physically meaningful SFE values, but for 
SFE mapping of interstitial alloys the method is too involved and 

computationally expensive. Not surprisingly, recent research therefore 
focusses on creating new, third generation CALPHAD databases, that are 
accurate down to 0 K even for metastable phases [14,15,44,45]. These 
databases are not, as traditionally, exclusively built on experimental 
data but informed by DFT calculations. 

With this motivation, the present work proposes a new DFT-based 
method that attempts to drastically reduce the required computational 
resources to enable SFE mapping in dilute interstitial alloys. The method 
circumvents the necessity of computing the total energies of extremely 
large supercells to reduce the use of computational resources and to 
enable the assessment of systems with extremely low interstitial con
tents. The method is successfully validated against SFE results from the 
axial interaction model for the fcc Fe-N system and nitrogen alloyed AISI 
304 austenitic stainless steel and is applied to demonstrate its potential 
for large-scale SFE mapping. 

2. Ab initio methods 

All calculations in this work were carried out using the CPA [41,42] 
as implemented in the exact muffin-tin orbitals (EMTO) package 
[42,46]. The paramagnetic state was accounted for using the disordered 
local magnetic moment (DLM) method [43]. In the calculations, the 
radii of the Wigner-Seitz spheres of nitrogen were optimized, leading to 
a reduction of 23% compared to the host-lattice elements. For nitrogen, 
2p and 2s2 were considered as valence states. The k-point density in each 
supercell was optimized to yield an error in SFE < 0.01 mJ.m− 2. 

To partially account for the finite temperature effect, experimental 
relationships for the fcc lattice parameters as a function of nitrogen were 
adopted for the atomic volumes. Further details on the optimization of 
the c/a ratio of the hcp supercells, the general layout of the supercells, 
the strategy for relaxing the first coordination shell and the validation of 
the chosen configuration with literature data are reported elsewhere 
[40]. 

The self-consistent EMTO(CPA) Green’s function calculations were 
carried out using all 40 cores of Intel® Xeon® Scalable Gold CPU 6148 
@ 2.20 GHz Skylake nodes, whereas the less involved determination of 
the total energy functional from the full charge density was carried out 
using the single cores of an Intel® Core™ i9-10920X CPU @ 3.50 GHz 
node. The stated runtimes in this manuscript are indicative, as they 
strongly depend on various freely adjustable parameters to steer the 
convergence of the self-consistent routine. It was attempted to optimize 
these parameters towards maximum performance. 

3. The lever rule approach 

3.1. SFE model 

For the lever rule approach, the intrinsic SFE, γ, is approximated 
using the first-order term of the axial interaction model [2,34,35]: 

γ = 2(Fhcp − Ffcc)/A (1)  

where Fhcp and Ffcc are the atomic Helmholtz energies of the hcp and fcc 
lattices, and A is the area of the stacking fault per atom. Abbasi et al. 
[25] and Lu et al. [31] obtained SFE values for fcc Fe-C in agreement 
with averaged SFE values from supercells with carbon atoms placed at 
different offsets with respect to the stacking fault. The axial interaction 
model is insensitive to local interactions of interstitials with the inter
face. It also neglects the interfacial energy, as the stacking fault is not 
modelled explicitly. The strain field of the partial dislocations is always 
neglected in DFT modeling, as even explicitly modelled stacking faults 
within supercells extend infinitely across the periodic boundary condi
tions. Adding an interfacial energy term to Eq. (1), it becomes equivalent 
to the Olson-Cohen model [14]. Fhcp and Ffcc were determined from two 
individual hcp and fcc supercells without explicit modeling of the 
stacking fault. The Helmholtz energy of each phase consists of the total 
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energy, Etot, and, optionally, of the magnetic entropy, Fmag, at experi
mentally determined atomic volumes, V(T): 

F(V, T) = Etot(V(T))+Fmag(μi(V(T)), T) (2) 

Fmag is a function of T and the local magnetic moments μi of the atoms 
at lattice site i and was approximated by a mean field expression which is 
valid for completely disordered localized moments [47]: 

Fmag = − TSmag = − kBT
∑

i
ln(1 + μi(V(T))) (3)  

where kB is Boltzmann’s constant. 

3.2. Concept 

The lever rule approach for SFE determination in dilute interstitial 
alloys is introduced via an example before introducing the generaliza
tion in Section 3.3. Fig. 1 shows Fe hcp and fcc supercells in which a 
single nitrogen atom resides in an octahedrally coordinated interstice. 
The Fe32N1 (Fig. 1a and b) and Fe64N1 (Fig. 1c) supercells are associated 
with interstitial contents of 0.78 and 0.39 wt% nitrogen, respectively. 
The first coordination shell (shown in green) is relaxed around the 
interstitial atom (shown in red) to account for interstitially induced 
lattice distortion. More detail on the generation of these supercells is 
given in Ref. [40] and the SFE values associated with these supercells are 
obtained via Equation (1). 

The supercell for Fe64N1 in Fig. 1c was visually divided into an 
interstitial-affected region and a bulk region. The lever rule approach is 
based on the hypothesis that atoms in the bulk region are sufficiently 
remote from the interstitial atom so they do not experience the alloying 
effect of the interstitial atom in their total energy. Provided that this 
hypothesis holds, the total energy of the Fe64N1 supercell in Fig. 1c can 
be divided into two contributions: the total energy of a Fe32N1 supercell, 
representing the interstitial region, and a Fe32 supercell, representing 
the bulk region. As Eq. (1) for the SFE is based on the difference in total 
energy between the hcp and fcc lattices, the SFE of the Fe64N1 supercell 
can be directly described by the mean value of the SFE values for the 
Fe32N1 and Fe32 supercells, weighted by their respective number of 

atoms. Furthermore, the total energy per atom of the Fe32 supercell is, 
within marginal numeric error, identical to the total energy of a primi
tive cell of Fe [40]. Therefore, assuming a negligible error from dividing 
the Fe64N1 supercell into interstitial-affected and bulk regions, the lever 
rule allows SFE calculation for Fe64N1 by computing the SFE values of 
Fe32N1 and Fe. 

3.3. Generalization, scope and limitations 

The lever rule approach aims at determining the intrinsic SFE of the 
supercell , γs, with nS atoms and volume Vs. The supercell contains one 
interstitial atom per nS − 1 host atoms to reflect the interstitial occu
pancy ys = (nS − 1)− 1. The occupancy thus describes the number of 
interstitial atoms per host atom. The lever rule approximates γs in terms 
of the weighted average between the SFE of the interstitial region γi and 
the bulk region γb. The interstitial region consists of one interstitial atom 
per ni − 1 host atoms to reflect the interstitial occupancy yi = (ni − 1)− 1 

and the weights applied to γi and γb reflect the molar fraction of the 
interstitial region with respect to the total supercell: 

γs(ys, yi,Vs) =
ni

ns
γi(Vs) +

(

1 −
ni

ns

)

γb(Vs)

=
yi

− 1 + 1
ys

− 1 + 1
γi(Vs) +

(

1 −
yi

− 1 + 1
ys

− 1 + 1

)

γb(Vs)

(4) 

While the lever rule approach in principle describes a simple linear 
relation between γs and the interstitial occupancy ys by balancing the 
two SFE values γi and γb, consideration of the interstitially-induced 
change in the super cell volume Vs introduces a non-linear component 
to Eq. (4). Employing the CPA within the here applied EMTO formula
tion allows the analysis of virtually any randomized alloy composition. 
The maximum interstitial occupancy ys

max that can be treated with the 
lever rule approach is given by ys

max = (ni − 1)− 1. A larger value for ni, i. 
e. a larger interstitial region, reduces ys

max. A larger interstitial region 
should however also improve the accuracy of the method, as more of the 
energy tails from interstitial alloying are accounted for. We will 
demonstrate in the following section that this comes at the expense of 
additional required computational resources. 

Fig. 1. (a) hcp Fe32N1, (b) fcc Fe32N1 and (c) fcc Fe64N1 supercells. Fe atoms are colored in gray, the N (interstitial) atom is colored in red, and Fe atoms in the 1st 
coordination shell to N are colored in green. Panel (c) indicates the interstitial-affected and bulk regions. 
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A critical assumption of the method is that the host composition of 
the substitutional crystal lattice can be accurately described by a 
supercell with ni − 1 atoms. The method is therefore ideal for treating 
single-species host lattices (such as fcc Fe-N) or random complex alloys 
when combined with the CPA. Compositional randomness on the host 
lattice may alternatively be represented by computing Special Quasi- 
random Structure [48] or Small Set of Ordered Structures [49] with 
ni − 1 host atoms, which will not be explored further in this work. 

3.4. Validation 

The idea that supercells for dilute interstitial alloys can be divided 
into an interstitial-affected region and a bulk region is intuitive, in 
particular for extremely large supercells. The hypothesis nevertheless 
requires thorough validation to determine relevant limitations and error 
estimates. The main source of validation is the comparison of SFE values 
obtained from the lever rule approach in Eq. (4) with SFE values that are 
directly obtained from the axial interaction model in Eq. (1). 

3.4.1. Non-magnetic fcc Fe-N 
The lever rule approach is first validated for the relationship between 

SFE and nitrogen occupancy for non-magnetic austenitic (fcc) Fe-N. For 
the interstitial regions, two sets of calculations are performed in which a 
single nitrogen atom is inserted in cells of ni − 1 = 32 and 48 host atoms. 
The SFE values γi and γb are computed for each atomic volume associ
ated with the different overall nitrogen occupancies Vs which is given by 
the experimentally determined relationship reported by Cheng et al. 
[50]: 

as
0

(
ys

N

)
= 3.573+ 0.0072 ys

N [Å] (5)  

where ys
N is the nitrogen occupancy and as

0 is the fcc lattice parameter of 
the entire supercell. The c/a-ratio of 1.594 was obtained by relaxing the 
Fe32N1 hcp cell at the ground-state volume and was kept constant for all 
following calculations. The dependence of SFE on nitrogen content in 
non-magnetic fcc Fe-N was previously assessed with DFT modeling by 
Kibey et al. [51] and Niessen et al. [40]. The latter reference shows that 
the obtained SFE vs. nitrogen occupancy relationship is linear and 
equivalent to the SFE vs. carbon occupancy relationship, previously 
treated by Abbasi et al. [25], Gholizadeh et al. [52], Medvedeva et al. 
[27] and Lu et al. [31]. Fig. 2 shows the SFE values obtained from the 
lever rule approach considering interstitial regions of ni = 33 and 49 
atoms. The data is compared with SFE values from direct application of 
the axial interaction model in Eq. (1) with supercells containing 32, 48, 
64 and 80 host atoms. These values are in excellent agreement with the 
SFE values from the lever rule approach. Δγs shows the deviation of all 
data points from the linear fit γs = -35352 + 9786 as

0 [mJ.m− 2] to the 
validation dataset. It is apparent that both data series from the lever rule 
approach fall within the standard error of the linear fit, i.e. ≤3 mJ.m− 2. 
The lever rule approach was also used to compute SFE values for even 
larger supercells, Fe96N1 and Fe112N1. 

The runtime of total energy calculations required for the different 
approaches for SFE determination in Fig. 2 is compared in Fig. 3. As 
expected, for conventional SFE calculation following the axial interac
tion model, the runtime increases gradually with reduced interstitial 
content, associated with increased supercell size, whereas the compu
tational resources required for the lever rule approach are independent 
of the interstitial content. The runtimes for the overall approaches 
applied to the highlighted five supercells are 10.2 ks (~2.8 h) for ni =

33, 23.0 ks (~6.4 h) for ni = 49, and 30.4 ks (~8.4 h) for the conven
tional axial interaction model. These overall runtimes take into account 
that only supercells with less than ni atoms can be treated with the lever 
rule approach, while the remaining supercells are treated with the 
conventional approach (as indicated by the dashed lines in Fig. 3). While 
for ni = 33 about 2/3 of the computational resources is saved with 
respect to conventional SFE determination, forni = 49 the reduction in 

computational resources is only ~1/4. The performance gain using the 
lever rule approach will significantly increase when considering even 
larger supercells, i.e. more diluted interstitial solutions, and when 
treating more complex systems that are more difficult to converge. 

3.4.2. Paramagnetic fcc Fe-N 
Next, the complexity of the calculations is enhanced by considering 

paramagnetic properties for the fcc Fe-N alloy. The conditions for the 
atomic volume at ambient temperature and the c/a-ratio of the hcp 
lattice were kept identical to the non-magnetic case described in the 
previous section. Fig. 4 shows the difference in total energy ΔEtot for the 
fcc and hcp cells of the bulk (b) and interstitial regions (i) with ni = 33 at 
different fcc lattice parameters as

0 and nitrogen occupancies ys
N of the 

entire supercell. The total energies for fcc and hcp in the bulk region are 
close to each other and for low volume or nitrogen occupancy the hcp 
crystal structure is favored over the fcc crystal structure. From ys

N =

0.009 the fcc crystal structure becomes stable in the bulk region. The 
interstitial region on the other hand consistently favors fcc over hcp. The 
resulting SFE values γs and γi as determined with Eq. (1) are shown on 
the right y-axis as a function of volume and yN. For clarity, the SFE 
values are here obtained directly from ΔEb

tot and ΔEi
tot, i.e., the magnetic 

entropy contribution is not included. 
To obtain direct validation of the assumption of an interstitial- 

affected region and a bulk region within the supercell, the local 
atomic energies are plotted for paramagnetic fcc Fe64N1 (supercell in 
Fig. 1c). Fig. 5 shows the supercell with Fe atoms colored according to 
their site-projected energy with respect to the lowest site-projected en
ergy value; the position of nitrogen is indicated with a black pentagram 
marker. The site projected energy is defined using the site-projected 
density of states for the one electron energy contribution plus the 
intracell, local exchange–correlation and site-projected Madelung 

Fig. 2. (a) SFE (γs) of non-magnetic Fe-N as a function of lattice parameter as
0 

and nitrogen occupancy ys
N. Both SFE values from the lever rule using ni = 33 

and ni = 49 are in excellent agreement with the validation dataset of SFE ob
tained from applying Eq. (1) to the entire supercell. Δγs in panel (b) indicates 
the discrepancy between all data points with respect to a linear fit of the 
validation dataset. 
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contributions. The uppermost 32 atoms are considered the bulk region. 
Indeed, the atoms in this region show approximately constant atomic 
energy, as indicative of a homogeneous, defect-free bulk lattice. Only 
the uppermost row shows reduced atomic energies that are associated 
with the alloying effect of nitrogen across the periodic boundary along 
the c-axis of the supercell. The interstitial region in Fig. 5 shows, as 
expected, a drastic reduction in energy for the atoms that are close to 
nitrogen. The data clearly supports the hypothesis of a bulk and an 

interstitial-affected region, despite the slight inhomogeneity introduced 
in the bulk region across the periodic boundary. The following 
convincing validation of the obtained SFE values will show that the 
introduced error by these unaccounted energy tails is negligible. For the 
present case, it is anticipated that an interstitial region consisting of 48 
host atoms, i.e. ¾ of the present supercell volume, should give a slightly 
more accurate representation of the regional energies. 

Fig. 5 also states the SFE values that are associated with the different 
regions (including the contribution of the magnetic entropy Fmag). It is 

Fig. 3. (a) Runtime of the total energy calculations of the entire fcc and hcp supercells (grey bars) vs. the average runtime using the lever rule approach with ni = 33 
and ni = 49. The total runtime for the 5 considered supercells in panel (b) shows that the lever rule approach saves ~2/3 of computational resources for ni = 33 and 
~1/4 of computational resources for ni = 49. 

Fig. 4. Relative total energies of the fcc and hcp supercells of the bulk (ΔEb
tot) 

and interstitial (ΔEi
tot) regions at different volumes and corresponding nitrogen 

occupancies of the entire supercell. Using Eq. (1) the associated SFE values γb 
and γi of the two regions are determined (here shown without the magnetic 
entropy contribution). The bulk region is metastable at the interstitial-free 
volume of whereas the interstitial region is stable throughout the entire vol
ume range. 

Fig. 5. Site projected energies with respect to the lowest site projected energy 
value in the Fe64N1 paramagnetic supercell. The entire supercell is separated 
into a bulk region and an interstitial-affected region. Fe atoms that are near 
nitrogen (black pentagram marker) are associated with a relatively reduced 
total energy. 
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evident that interstitial alloying in the interstitial region leads to a 
drastic increase in SFE with respect to the interstitial-free bulk region, 
and that the SFE value for the entire supercell is given by a mixed 
contribution from both subregions. Applying Equation (4) consequently 
yields: γs

(
ys =

1
65
)

= 88.9mJ.m− 2( 33
65
)
+ 20.3mJ.m− 2( 1 − 33

65
)
=

55.1mJ.m− 2. The SFE value following the axial interaction model in 
Equation (1) yields 57.5 mJ.m− 2. The error from an imperfect separation 
of the interstitial-affected and bulk regions thus only amounts to ≤2.4 
mJ.m− 2. 

Fig. 6 shows the SFE obtained from the lever rule in direct compar
ison with the validation data obtained from the axial interaction model 
for different nitrogen contents and atomic volumes [40]. Assuming an 
interstitial region of ni = 33, the introduced error is ≤3.5 mJ.m− 2. For a 
larger interstitial region of ni = 49, this error is further reduced to ≤0.8 
mJ.m− 2, as anticipated from the distribution of the site-projected en
ergies in Fig. 5. The lever rule was also applied to compute the SFE for 
supercells of size ns = 97 and 113. The required runtimes for the 
different strategies of SFE determination for paramagnetic fcc Fe-N show 
a similar relative trend as for the calculations for non-magnetic fcc Fe-N, 
albeit at increased overall runtime (Fig. 7). The lever rule approach 
saves ~1/2 of computational resources for ni = 33 and ~15% of 
computational resources for ni = 49 with respect to conventional axial 
interaction model calculations. 

3.4.3. AISI 304 austenitic stainless steel 
To validate the lever rule in a complex higher-order alloy, the case of 

fcc AISI 304 with the base composition Fe-18.1Cr-7.9Ni-1.1Mn-0.54Si wt 
% (Fe-19.1Cr-7.4Ni-1.1Mn-1.1Si at.%) is considered. The lattice param
eter as

0 at room temperature as a function of nitrogen content ys
N of the 

entire supercell was obtained following the relationship for fcc AISI316 
by Hummelshøj et al. [53]: 

as
0
(
ys

N
)
= 3.5965 + 0.006029 ys

N [Å](6) 
As for Fe, the c/a-ratio of 1.616 was obtained by relaxing the hcp cell 

with the AISI 304 base composition at the ground-state volume and was 
kept constant for all following calculations. The SFE obtained from the 
lever rule is compared with the validation dataset from the axial inter
action model in Fig. 8 [40]. For an interstitial region of ni = 33 the 
associated error is ≤1.6 mJ.m− 2 and for a larger interstitial region of ni 

= 49, it is ≤0.6 mJ.m− 2. The lever rule also computed the SFE for 
supercells of size ns = 97 and 113. Fig. 9 shows the overall runtime of the 
different approaches for SFE determination in paramagnetic N-alloyed 
fcc AISI 304. For ni = 33 the lever rule saves ~45% of computational 
resources, whereas for ni = 49 the method only saves ~11% of 
computational resources with respect to conventional axial interaction 
model calculations. 

4. Application 

4.1. Equidistant interstitial occupancy increments 

A strong side of the presented lever rule approach is that it is not 
bound to the interstitial occupancies that are representable within 
supercells of (at the very best) 100–200 atoms. As the interstitial occu
pancy y tends to zero, the number of host-lattice atoms required to 
represent it tends to y-1, i.e., infinity. As the lever rule is based on a 
linear combination of total energies from smaller supercells and primi
tive cells, it is not restricted in the representation of low interstitial 
occupancies. As any arbitrary interstitial occupancy up to a maximum of 
ys

max = (ni − 1)− 1 can be represented (see Section 3.3), the approach 
conveniently allows mapping of the SFE at equidistant steps of the 
interstitial occupancy within this range. Given an equidistant point 
distribution in a smoothly developing SFE vs. N-content relationship, the 
feasibility of fitting across a reduced number of equidistantly spread 
points can be assessed with the ambition of further reducing required 
computational resources. 

To demonstrate this, the nitrogen occupancy in AISI 304 was mapped 
in steps of ΔyN = 0.0017, corresponding to lattice parameter increments 
of Δa0 = 0.1 pm. Fig. 10a shows the results from applying the lever rule 
in Equation (4) to determine the SFE values for fcc AISI 304 as a function 
of these increments in nitrogen content and its associated volume 
expansion. Both SFE values that consider and discard the effect of the 
magnetic entropy contribution Fmag from Equation (3) are plotted. The 
equidistant mapping of the SFE gives a smooth relationship and is in 
perfect agreement with values that were obtained using the conven
tional axial interaction model for SFE determination [40] (see green and 
cyan markers). The relationship was fitted with the polynomial 
γ(a0) = − 689937+378016ao − 51767a2

o mJ.m− 2, resulting in a high 
correlation with the SFE data reflected in a Pearson correlation coeffi
cient of 0.99997 (Fig. 10b). Importantly, polynomial fits that were 
performed on gradually reduced SFE datasets resulted in an equally high 
correlation with the full dataset. Even for a reduction by a factor 5 to 
only 5 SFE values across the entire analyzed range of nitrogen content 
(uppermost, purple curve in Fig. 10b), the Pearson correlation co
efficients was >0.99996. The introduced error by fitting drastically 
reduced datasets with respect to the unreduced original dataset was <1 
mJ.m− 2 (Fig. 10c). Therefore, the already reduced computational time 
made possible by the lever rule approach can be further reduced by SFE 
computation for a selective choice of few evenly spaced interstitial 
contents. 

4.2. Multi-parameter SFE mapping 

The presented data in Fig. 10 demonstrates that the lever rule 
approach is ideally suited for SFE mapping vs. interstitial content. 
Hitherto, such DFT-based analysis was limited to purely substitutional 
alloys [2,54]. Departing from the AISI 304 alloy considered in Section 
3.4.3, we demonstrate that the efficiency of the developed method al
lows multi-parameter SFE mapping by efficiently computing the 

Fig. 6. SFE values of paramagnetic Fe-N obtained from the lever rule approach 
using ni = 33 and ni = 49 validated against the SFE obtained with the con
ventional axial interaction model on full supercells. The presented values 
include the magnetic entropy contribution to the SFE. The maximum discrep
ancy between the methods is 3.5 mJ.m− 2 for ni = 33 and 0.8 mJ.m− 2 for ni =

49. The lever rule furthermore obtained SFE values for larger supercells (shown 
in gray). 
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combined influences of N occupancy and Ni content on the SFE. Fig. 11 
shows SFE values determined using Equation (4) and ni = 33 for a ni
trogen occupancy mapped in steps of Δys

N = 0.0017 and Ni content 
mapped in steps of ΔxNi = 0.5 at.%. All ab initio parameters for calcu
lating the SFE were kept identical to the calculations for AISI 304 in 
Section 4.1. Due to a lack of data on the combined effect of N and Ni on 
the lattice parameter at room temperature, only the significantly 
stronger effect of N on the volume Vs as reflected by Equation (6) is 

considered. The contours show that both N and Ni have a stabilizing 
effect on fcc relative to hcp. The stable-to-metastable transition is iden
tified at 9.8 at.% Ni in the nitrogen-free condition, and atys

N = 0.0045 for 
the lowest considered Ni content of 3.4 at.%. The lever rule method 
reveals that nitrogen has a far stronger stabilizing effect on fcc than Ni, 
and that the stabilizing effect of Ni on fcc diminishes with increasing 
nitrogen content. As previously identified for different alloying elements 
in substitutional steel alloys [2,54], the effect of N and Ni alloying on the 
SFE does not obey simple addition, indicating that no universal 
composition equations for the SFE can be established. It is noted that the 
trend of increasing SFE with increasing Ni content is reported for 
ambient temperature. It was previously shown that this trend is inverted 
at elevated temperature [55]. 

5. Discussion 

The presented lever rule approach approximates the total energy of a 
large supercell containing an interstitial by a balanced summation of the 
total energies of representative and smaller interstitial-containing and 
interstitial-free (bulk) supercells. The approach introduces negligible 
error with respect to the axial interaction model (Eq. (1)), extends the 
compositional space that can be analyzed and drastically improves 
computational performance and convergence behavior. It thus provides 
a new avenue for SFE-based materials design of alloys that contain in
terstitials to bridge the gap between efficient but flawed CALPHAD- 
based approaches and accurate but tedious and restricted conven
tional DFT-based approaches. The discussion mainly addresses the error 
margin and limitations of the developed method and draws up possible 
pathways for its future development and application. 

5.1. Error assessment 

The validation in Section 3.4 demonstrated that the underlying 
assumption of the lever rule approach is valid within an error margin of 
a few mJ.m− 2 with respect to the conventional axial interaction model. 
Plotting the individual atomic energies of the Fe64N1 supercell (Fig. 5) 
revealed that defining the interstitial region with a supercell of 32 host- 
lattice atoms and 1 interstitial atom introduced an error which was 
associated with energy tails radiating from the octahedral region. The 
validation in Section 3.4 however demonstrated that these errors 
propagated to <4 mJ.m− 2 error in SFE, often even half of that. While 

Fig. 7. (a) Runtime of the total energy calculations in paramagnetic fcc Fe-N in Fig. 4 of the full fcc and hcp supercells (gray bars) vs. the average runtime using the 
lever rule approach with ni = 33 and ni = 49. The total runtime for the 4 considered supercells in panel (b) shows that the lever rule approach saves ~1/2 of 
computational resources for ni = 33 and ~15% of computational resources for ni = 49. 

Fig. 8. SFE values of paramagnetic fcc AISI 304-N obtained from the lever rule 
approach using ni = 33 and ni = 49 validated against the SFE obtained with the 
conventional axial interaction model on full supercells. The presented values 
include the magnetic entropy contribution to the SFE. The maximum discrep
ancy between the methods is 1.6 mJ.m− 2 for ni = 33 and 0.6 mJ.m− 2 for ni =

49. The lever rule furthermore obtained SFE values for compositions associated 
with large supercells (shown in gray). 
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Fig. 9. (a) Runtime of the total energy calculations in paramagnetic fcc AISI 304 in Fig. 8 of the full fcc and hcp supercells (gray bars) vs. the average runtime using 
the lever rule approach with ni = 33 and ni = 49. The total runtime for the 4 considered supercells in panel (b) shows that the lever rule approach saves ~45% of 
computational resources for ni = 33 and ~11% of computational resources for ni = 49. 

Fig. 10. (a) SFE values of paramagnetic fcc AISI304-N obtained from the lever rule approach in Equation (4) using ni = 33. The computed SFE values for γi and γb as 
well as the resulting SFE value γs are plotted both with and without considering the magnetic entropy contribution Fmag from Eq. (3). The values are validated against 
values from conventional axial interaction model SFE calculations from Ref. [40] (see green and cyan markers). (b) Unreduced (black markers) and gradually reduced 
datasets and their respective 2nd order polynomial fits, offset by 100 mJ.m− 2 steps for clarity. Panel (c) highlights the deviation ε(γs) between the fitted SFE data 
from the different reduced datasets (dashed lines) and the unreduced SFE dataset (black markers). Even when reducing the dataset with a factor 5 the SFE is 
accurately described with <1 mJ.m− 2 error by the respective applied 2nd order polynomial fits. All reduced datasets contained the SFE values for the lowest and 
highest nitrogen contents. 
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most of the bulk region plotted in Fig. 5 had an approximately uniform 
atomic energy, as is characteristic for a homogeneous defect-free lattice, 
the uppermost plane of atoms revealed slightly reduced energy associ
ated with nitrogen alloying. The same energy tail is not observable on 
the other end of the bulk region, which is due to the off-center position of 
the nitrogen atom within the Fe32N1 supercell that represents the 
interstitial region. The error can be reduced by choosing a larger 
interstitial region, for instance containing 48 host-lattice atoms instead 
of 32. The validation in this work highlighted that for most cases the 
slightly improved accuracy of <2 mJ.m− 2 may not be worth the 
considerably increased computational workload. 

It is furthermore encouraging that the error introduced on adopting 
the lever rule is largest for high interstitial contents, when the bulk re
gion is comparably small and possible energy tails thus introduce a 
larger relative error. High interstitial contents are commonly repre
sented with comparably small supercells, suitable for treatment with the 
conventional axial interaction model. In contrast, the lever rule 
approach is most effective for low interstitial contents that traditionally 
are associated with large supercells, which is also the application sce
nario for which the lever rule approach shows the highest accuarcy. 

5.2. Limitations and future perspective 

Following the presented hypothesis, validation and application ex
amples, the proposed method may be applied for elucidating the com
bined effect of interstitial and substitutional alloying contents on the 
SFE. Given the robustness of calculating the total energy for reasonably 
sized supercells, the approach enables SFE-based development of alloys 
that contain interstitial elements. Obviously, this surpasses the limita
tions of current CALPHAD- and DFT-based approaches described in 
Section 1. The potential of the method for this application was high
lighted in Section 4.2 by mapping the SFE in paramagnetic AISI 304 as a 
function of Ni and N content. The application of the lever rule approach 
in conjunction with EMTO is powerful as the CPA and DLM model allow 
the treatment of random solid solutions and paramagnetic alloys. A 
current limitation of EMTO is the lack of optimization-guided ionic 
relaxation, which limits the range in which interstitial compositions can 

be mapped. The applied manual ionic relaxation around the interstitial 
atom is tedious and was only carried out for one condition. While a slight 
deviation from such an optimized reference condition may be deemed 
acceptable, a large deviation could compromise the accuracy of results. 
A potential approach to address this limitation could be the consider
ation of DFT formalisms that allow for optimization-guided ionic 
relaxation to be applied in conjunction with the lever rule. For the 
analysis of multicomponent alloys, the randomness of the substitutional 
lattice would however need to be considered, for instance by the 
application of special quasi-random structures (SQS) [48], which might 
compromise the computational efficiency of the lever rule approach. 
The proposed method is therefore currently mostly limited by the 
complementary limitations of the different available DFT formalisms 
which may be overcome in the future. 

6. Conclusion 

This work introduces a new method for efficient SFE-mapping in 
complex dilute interstitial alloys using ab initio DFT. The method is 
designed towards application in SFE-based alloy design and it positions 
itself between efficient, but inaccurate, CALPHAD-based approaches 
and accurate, but tedious and restricted, traditional DFT-based ap
proaches. The interstitial-affected and interstitial-free (bulk) regions of 
large interstitial-containing supercells are treated separately and their 
contributions to the overall SFE value are weighted with a lever rule 
approach. The main findings are:  

• The lever rule approach led to an error of <4 mJ.m− 2 in comparison 
with the conventional axial interaction model when validating on 
non-magnetic fcc Fe-N as well as paramagnetic fcc Fe-N and nitrogen- 
alloyed AISI 304 austenitic stainless steel.  

• Using the lever rule approach, the computational resources with 
respect to the conventional axial interaction model could be drasti
cally reduced.  

• The lever rule approach makes SFE computation for traditionally 
unfeasible low interstitial contents accessible. 

Fig. 11. SFE obtained using the lever rule with ni = 33 as a function of nitrogen occupancy ys
N and Ni content xNi. The markers indicate compositions where SFE 

values were calculated and the colormap represents interpolated values using a bivariate B-spline function. The SFE values are shown as average values of SFE values 
that consider the effect of the magnetic entropy contribution (Eq. (3)) and SFE values that neglect this contribution (see distinction in Fig. 10a). The dashed lines 
represent contours of constant SFE and indicate that both Ni and N alloying stabilize the fcc lattice. The stabilizing effect of Ni on the fcc lattice reduces with 
increasing N content. 
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• In contrast to traditional methods, the proposed method allows 
mapping of the SFE with equidistant steps in interstitial content. A 
detailed analysis demonstrated that this allows a robust description 
of the SFE vs. interstitial content relationship with only few data
points, associated with a further reduction in computational 
workload.  

• The application of the lever rule approach was showcased by 
demonstrating SFE determination in paramagnetic AISI 304 
austenitic stainless steel vs. tightly spaced nitrogen occupancies of 
the interstitial lattice. Moreover, the combined effect of N and Ni 
alloying on the DFT-based SFE was for the first time mapped in a 2- 
dimensional parameter space.  

• N-alloying stabilized the fcc with respect to the hcp lattice more 
effectively than Ni-alloying. The stabilizing effect of Ni-alloying 
decreased with increased N content. 
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[16] O. Grässel, G. Frommeyer, C. Derder, H. Hofmann, Phase transformations and 
mechanical properties of Fe-Mn-Si-AlTRIP-steels, J. Phys. IV France. 07 (1997) C5- 
383–C5-388. 10.1051/jp4:1997560. 

[17] A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Derivation and variation in 
composition-dependent stacking fault energy maps based on subregular solution 
model in high-manganese steels, Metall. Mat. Trans. A 40 (2009) 3076–3090, 
https://doi.org/10.1007/s11661-009-0050-8. 

[18] O.A. Zambrano, Stacking fault energy maps of Fe–Mn–Al–C–Si steels: effect of 
temperature, grain size, and variations in compositions, J. Eng. Mater. Technol. 
138 (2016), 041010, https://doi.org/10.1115/1.4033632. 
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