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Abstract
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Memristive crossbar arrays hold the great promise for fast and energy efficient neuromorphic
computing due to their parallel data storage and processing capabilities. As the key
component, memristor should achieve stable resistance switching (RS) characteristics with low
energy inputs and be compatible with complementary metal–oxide–semiconductor (CMOS)
technology. It should also exhibit sufficient device flexibility for applications in wearable
electronics. In this thesis, we fabricate flexible memristors (FMs) based on Ag2S films,
investigate their RS behavior and mechanism, demonstrate CMOS-compatible array integration
and validate their computing applications.

The thesis starts with a full-inorganic FM, utilizing ductile Ag2S thick films as both a flexible
substrate and a functional electrolyte. The device exhibits dense multiple-level non-volatile
states with a remarkable ON/OFF ratio of 106. The exceptional RS behavior is induced by
sequential processes of Schottky barrier height (SBH) modification at the contact interface and
silver filament formation inside the electrolyte. As a follow-up, we show that interface RS by
SBH modification can be facilitated with smaller setting voltages. In contrast to traditional
filamentary memristors, the sole interface RS achieves an ultralow switching energy of about
0.2 fJ. An image processing with interface RS indeed exhibits 2 orders of magnitude lower
power than that with filamentary RS on the same hardware.

Moreover, interface RS avoids the  stochastic nature of filament formation and ablation inside
electrolytes. The Ag2S-based FM operating with interface RS exhibits an impressive cycle-to-
cycle variation of 1.4%, which is in direct contrast to the variation (28.9%) of filament RS
extracted from the same device. Its significantly improved image learning ability over filament
RS is also demonstrated during the frequent weight update process in simulations.

Large-scale memristor array, with energy-efficient memristive units at each cross-point, is
imperative for neuromorphic computing. We further demonstrate a wafer-scale integration of
Ag2S-based memristive crossbar array by fully CMOS-compatible processes. With modulated
Ag2S microstructure, the integrated memristors exhibit a record low threshold voltage of
approximately -0.1V for filament formation, and an ultra-small switching energy approaching
biological synapses at femtojoules. In addition, the same crossbar arrays are integrated on
flexible polyimide substrates, on which analogue multiply accumulate calculations and image
recognition simulations are successfully demonstrated. An impressive accuracy of 92.6% is
finally achieved in handwritten digit recognition, with the intrinsic nonidealities of the integrated
memristors compensated by an advanced training algorithm.
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1. Introduction 

1.1 Background 
Driven by technological advancements and societal trends like the 
proliferation of Internet of Things (IoT), cloud computing, and 
communication networks, today's world is grappling with an unprecedented 
surge of data [1]–[3]. While these developments offer opportunities for 
innovation, they also face challenges, particularly in terms of data congestion 
and latency [4]. To overcome these challenges, neuromorphic edge computing 
has emerged as a promising solution. Inspired by human brain's architecture, 
neuromorphic computing utilizes artificial neurons and synapses for 
information processing and transmission, which offers powerful cognitive 
capabilities [5], [6]. This paradigm opens up new possibilities for a wide range 
of artificial intelligence (AI) applications and beyond. 

In a human brain, approximately 1011 neurons are interconnected via about 
104 synapses [7], [8]. Figure 1.1.1 illustrates the communication between two 
neurons through a synapse. Dendrites receive incoming signals, generate 
action potentials, and transmit them along axons to neighboring neurons. At 
the axon terminals, action potentials trigger the release of neurotransmitters 
into the synapse. This process regulates the connection strength between 
neurons, which is essential for memory and learning. The artificial counterpart 
of this signal transmission process is represented by the perceptron (see Figure 
1.1.2), a fundamental computational unit that computes the weighted sum of 
inputs and generates an output using activation functions [9]. Perceptrons can 
be stacked in specific configurations to build up artificial neural networks 
(ANNs) for neuromorphic computing, as exemplified in Figure 1.1.3 [10]. 
Data such as images are fed as the inputs, which are processed and 
transformed through multiple layers. Each layer in ANNs refines the 
representation, and ultimately, an output layer produces results to achieve 
tasks like predictions and classifications [11], [12]. ANNs rely on optimizing 
a large number of synaptic weights to improve the task performance.  
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However, executing complex ANN models demands substantial computa-
tional resources in terms of power and time. For example, thousands of peta-
flops/s-days of computation is needed to train the 175 billion parameters in 
the GPT-3 model [13]. As depicted in Figure 1.1.4, in the classical computer 
architecture, central processing units (CPUs) and memories are separated by 
the communication bus [14]. During computing, CPU fetches data from 
memory units, performs operations, and sends the result back to memories. 
Since the processing speed of CPU is much higher than that of memory ac-
cessing, severe latency is generated, which is known as “Von Neumann bot-
tleneck”. Besides, frequent data transfer causes significant energy consump-
tion in communication interface, which in turn requires additional thermal 
management in hardware design [15]. This is particularly important when ex-
ecuting complex computing tasks. Recognizing this bottleneck, dedicated ef-
forts have been devoted to optimize the computing hardware. Graphics Pro-
cessing Units (GPUs) and Tensor Processing Units (TPUs) have emerged as 

Figure 1.1.2 Schematic illustration of a perceptron. Inputs (x1, …, Xn) are associated 
with their corresponding weights (W1, …, Wn). The weighted sum is fed to the activa-
tion function to introduce non-linearity into the perceptron. The output result repre-
sents the prediction of the perceptron, which is based on differential importance of
the respective inputs. 

Figure 1.1.1 Illustration of signal transmission between two neurons. Reprinted
with permission from [10]. Copyright (2019) Elsevier Ltd.  
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specialized processors for parallel processing tasks, such as rendering graphics 
or performing matrix operations for machine learning. GPUs employ many 
processing cores, each with own memories to improve the computing [16], 
while the architecture of TPUs is optimized to achieve higher throughput for 
machine learning tasks [17]. However, GPUs and TPUs still have to interact 
with memories, and they are not immune to memory access and data transfer 
challenges. 

To achieve in-memory computing, memristor-based computing hardware 
has gained increasing attention in recent decades [18]. Memristors, as the key 
component of this hardware revolution, are capable of modulating resistance 

Figure 1.1.4 Illustration of a classic computing hardware with Von Neumann archi-
tecture. The central processing unit is physically separated with different hierarchies
of memories. Reprinted with permission from [14]. Copyright (2015) Springer Nature.

Figure 1.1.3 Illustration of image classification using an artificial neural network. Re-
printed with permission from [10]. Copyright (2019) Elsevier Ltd.  
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based on the history of electric charge applied to them, and retain their con-
ductive states after external power is withdrawn. This characteristic enables 
memristors to perform both data storage and processing within integrated 
memristor crossbar arrays (see Figure 1.1.5). Such computing hardware can 
avoid the data transfer between separated memory and processing units, thus 
alleviating the “Von Neumann bottleneck” [15]. 

Although memristor technology holds immense promise, it faces 
substantial challenges on multiple fronts. At the device level, despite their 
capabilities in efficient data processing and non-volatile data storage, 
memristors still consume much more energy than biological synapses [19]. 
Furthermore, device-to-device and cycle-to-cycle variabilities exist, even 
within memristor devices fabricated from the same batch [20]–[23]. These 
variabilities will inevitably degrade the accuracy in setting conductive states. 
Moreover, at the circuit integration level, developing large-scale memristive 
crossbar arrays with complementary metal-oxide-semiconductor (CMOS)-
compatible technology presents significant technical hurdles [24]. Achieving 
computing on memristor-based hardware with a level of accuracy that meets 
practical computing needs remains a rare accomplishment. Dedicated research 
efforts must be devoted to overcome these challenges and to advance the 
integration of memristors into practical computing systems. 

 
 

Figure 1.1.5 Mapping a multi-layer perceptron onto a memristor hardware array.
Reprinted with permission from [10]. Copyright (2019) Elsevier Ltd. 
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1.2 Thesis organization 
This thesis is focused on Ag2S-based memristors for neuromorphic computing. 
Chapter 2 introduces the fundamentals of memristors, Ag2S-based conductive 
bridging memristors and the working principle of memristor-based computing 
hardware. Chapter 3 focuses on the fabrication of thick Ag2S film-based full-
inorganic flexible memristor, and the study of its interface and filament 
combined resistance switching (RS) mechanism. In chapter 4, we investigate 
the device behavior under sole interface RS, demonstrating its ultra-low 
switching energy and small cycle-to-cycle variation. Chapter 5 introduces the 
wafer-scale integration of Ag2S-based memristive crossbar array for energy-
efficient computing. The thesis is concluded in chapter 6, and future 
perspectives are also proposed. 

A brief summary of the appended papers is presented as following. In 
paper I, a full-inorganic flexible memristor is fabricated using thick Ag2S 
films. A high ON/OFF ratio of ~106 is achieved, and the unique resistance 
switching mechanism combining interface Schottky barrier height modulation 
and filament formation/ablation is discussed. In paper II, the sole interface 
RS under small programming voltages is demonstrated. By avoiding filament 
formation, an ultra-low switching energy at about 0.2 femto-joule is achieved. 
In paper III, we further demonstrate that the sole interface leads to 
significantly smaller cyclic variation, which helps to improve the 
programming accuracy during weight updating process. Paper IV 
demonstrates a wafer-scale integration of Ag2S-based memristive crossbar 
array using CMOS-compatible processes. The integrated device exhibits a 
record low threshold voltage (~ 0.1 V) and a small switching energy at 
femtojoules, which holds the promise for energy-efficient computing. 
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2. Fundamentals 

The chapter discusses the fundamentals about memristor technologies. 
Chapter 2.1 gives a briefly overview of memristors. Chapter 2.2 focuses on 
the development of Ag2S-based conductive bridging memory. In chapter 2.3, 
the design and working principle of memristor-based computing hardware are 
discussed. 

2.1 Memristors  
The concept of memristor, a term derived from "memory resistor", was first 
introduced by Leon Chua in 1971 [25]. Chua's pioneering work focused on 
addressing a fundamental gap in circuit theory—the absence of a direct 
relationship between electrical charge and magnetic flux. In his paper titled 
"Memristor—The Missing Circuit Element," Chua presented a set of five 
foundational relationships that connect four fundamental circuit variables: 
voltage (V), current (I), flux (Φ), and electric charge (q). These relationships 
were summarized as follows (as also illustrated in Figure 2.1.1): 

a. Charge (q) was defined as the integral of current (I) with respect to  
time. 

b. Flux (Φ) was defined as the integral of voltage (V) with respect to 
time. 

c. Voltage (V) and current (I) were linked through resistors. 
d. Voltage (V) and charge (q) were connected through capacitors. 
e. Current (I) and flux (Φ) were connected through inductors. 
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The critical observation in Chua's work was the missing relationship be-
tween electrical charge and magnetic flux. Chua proposed that a novel circuit 
element, denoted as memristor, should exist with the unique ability to memo-
rize the quantity of charge that has traversed it in the past. The resistance of a 
memristor (M(q)) is a function of the charge passed through the device. Since 
the magnitude of the induced electromotive force in any closed circuit is equal 
to the rate of change of the magnetic flux passing through the circuit (ܸ  the resistance of a memristor can be related to the rate of change of ,(ݐ݀/ߔ݀=
the magnetic flux with respect to the electrical charge [26].  (ݍ)ܯ 	= 	݅/ݒ	 = ݅)/ߔ݀	 ∗ (ݐ݀ 	=  (2.1.1)                                                            ݍ݀/ߔ݀	

Despite Chua's theoretical proposition, the practical realization of memristors 
remained elusive for several decades. 

In a groundbreaking development in 2008, researchers led by Stan 
Williams and R. Stanley Williams at Hewlett-Packard (HP) Labs successfully 
demonstrated memristive behavior in titanium dioxide (TiO2) thin films [27]. 
They connected the doped (with low resistance) and undoped TiO2 films (with 
high resistance) in series (Figure 2.1.2a). Under the application of an external 
bias across the device, the boundary between the two regions would move due 
to the drift of the charged dopants. For the simplest case of ohmic electronic 
conduction and linear ionic drift in a uniform field with average ion mobility, 
they found the resistance of the memristor is a function of charge, which 
relates the physical TiO2-based device to Chua’s theory. The device exhibited 
a hysteresis in its current-voltage characteristics (as depicted in Figure 2.1.2b). 

Figure 2.1.1 Schematic diagrams of six combination relationships among voltage (V),
charge (q), flux (Φ) and current (I). Reprinted with permission from [26]. Copyright
(2019) Springer Nature. 
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During the set process, the device current sharply increased when a positive 
voltage exceeded a certain threshold. The resulted low-resistance state (LRS) 
could be maintained until a specific negative voltage was applied to obtain 
high-resistance state (HRS) again. This experiment demonstrated the non-
volatile nature, low energy consumption, and synaptic behavior of TiO2-based 
memristors, highlighting their potential to store and process data in a manner 
similar to biological systems. 

For memristors to be utilized for diverse applications, they should meet the 
following crucial requirements [28]:  

a. Operating voltage: The voltage that can trigger resistance switching 
of a memristor is noted as the operating voltage. Memristors should 
operate within the range of a few volts or less, offering an advantage 
over conventional flash memory technologies.  

b. Response time: Memristors should exhibit rapid resistance 
switching dynamics, enabling real-time modulation of conductance. 
For example, to compete with Dynamic Random-Access Memories 
(DRAMs), the programming pulse duration should be shorter than 
100 nanoseconds. High-performance static random-access memory 
(SRAM) can even achieve writing within 10 ns. 

c. Switching energy: The switching energy consumed during 
programming a memristor can be estimated by integrating the 
product of applied voltage and device current over the programming 
time. Achieving energy efficiency comparable to synapses in human 

Figure 2.1.2 (a) Illustration of the TiO2-based memristor. (b) The experimental I-V 
characteristics of a Pt/TiO2/Pt device by HP lab. Reprinted with permission from 
[27]. Copyright (2008) Springer Nature. 
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brain requires that the energy consumed during each switching 
event remains at femtojoule levels.  

d. Switching ratio: The switching ratio (also named as ON/OFF ratio 
or dynamic ratio) of a memristor is defined as the ratio of the 
maximum and minimum resistance. A high switching ratio, often 
exceeding 10, is essential to ensure acceptable computing accuracy 
in some neuromorphic computing applications.  

e. Endurance: Resistance switching between LRS and HRS should be 
sustained with a certain number of cycles without significant 
deterioration. State-of-the-art memristors often withstand over 
millions of switching cycles. 

f. Retention: Data retention evaluates the ability of a memristor to 
maintain its conductance when external electric bias is withdrawn. 
High retention is vital, especially in memory applications, where 
data must be preserved for extended periods. Memristors with 
robust retention characteristics can reliably serve as non-volatile 
memory elements. 

g. Variation: Variation refers to the differences in performance or 
characteristics among multiple devices (denoted as device-to-device 
variation) or among multiple operations within the same device 
(denoted as cycle-to-cycle variation). In applications where 
consistent and predictable performance is critical, minimizing 
cycle-to-cycle and device-to-device variation is essential. 

h. Multiple-level states: While some memristors are binary (capable of 
logically representing only 0 and 1), others offer multiple 
distinguishable conductive states to enable analog information 
processing and to support more intricate computations. Multiple-
level conductive states are indispensable for the synaptic weight 
update within a memristor-based artificial neural network 
(MANN).These states play a pivotal role in efficiently performing 
complex computing tasks.  

i. Linearity and symmetry: Linearity and symmetry ensure the precise 
and predictable conductance modulation in artificial neural 
networks. When the modulation process is linear, a proportional 
relationship between the input signal and the resulting change in 
conductance can be realized. The system can accurately represent 
and process information, making it easier to fine-tune the network's 
behavior. Symmetry implies consistent behavior in response to both 
positive and negative input signals. Symmetric conductance 
modulation is aligned with the bidirectional plasticity observed in 
biological synapses, allowing for dynamic and versatile learning in 
neuromorphic systems. 

j. Flexibility: Flexible memristors (FMs) have the potential to meet 
the requirement in the flexible electronics community as basic 
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nonvolatile memories. For flexible applications such as wearable 
electronics, FMs may utilize solid-state or gel-based electrolytes to 
achieve their resistive switching behavior. These materials should 
maintain flexibility and resistive switching characteristics under 
bending or stretching, without performance degradation under long-
term operations. 

k. Fabrication: The fabrication of memristors should be compatible 
with silicon technology for monolithic integration with peripheral 
circuits. This is particularly challenging for the large-scale 
integration of FMs. FMs must be fabricated using low-temperature 
processes, which operate below the maximum temperature 
threshold of the flexible substrate. Furthermore, the choice of 
materials for FMs is critical. Materials used in the memristor stack 
have to be compatible with low-temperature process while 
maintaining the desired electrical properties. 

Memristors can be categorized into various types based on their distinct 
resistance switching mechanisms. These categories include Phase Change 
Memory (PCM), Conductive Bridging Memory (CBM), Resistive Random-
Access Memory (RRAM), Electrochemical Random-Access Memory (EC-
RAM), Ferroelectric Random-Access Memory (FeRAM) and etc (Figure 
2.1.3). Each type exhibits unique characteristics and operational principles.  

a. PCM relies on the significant difference in electrical resistivity 
between the amorphous (low-conductance) and crystalline (high-
conductance) phases of electrolytes [29]. In PCM, low-current pulses 
heat the phase-change materials to their crystallization temperature, 
resulting in a low-resistance state. Conversely, high-current pulses 
quench the material back to its amorphous phase, leading to a high-
resistance state. Since setting PCM involves melting and quenching 
the electrolyte, it tends to be an abrupt process, leading to one-sided 
switching characteristics.  

b. CBM is based on the metallic ion migration and redox reaction, which 
can electrochemically form/ablate metallic filaments (as the 
conductive bridge) in the solid electrolyte [30]. The CBMs are known 
for their short response time and high switching ratio, but the highly 
conductive metallic filaments often lead to large overall currents, 
which exacerbate the sneak current path and increase the energy 
consumption during memristor array operations.  

c. RRAM operates by the formation and dissolution of conductive 
filaments within a solid-state dielectric material, often metal oxides 
[31]. When a voltage is applied, oxygen vacancies migrate and form 
a continuous filament between the electrodes, resulting in a low-
resistance state. Switching the voltage polarity disrupts the filament, 
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returning the memristor to a high-resistance state. Similar to CBM, 
thick filaments in RRAM contributes to relatively large currents.  

d. ECRAM relies on ion migration and intercalation within an electrolyte, 
but does not necessarily require the formation of continuous filaments 
[32]. ECRAM achieves resistance modulation through 
electrochemical reactions within the electrolyte layer, altering the 
distribution of ions, creating or disrupting conductive paths, or 
modifying the properties of the electrolyte or interfaces. The low-
resistance states are energetically favourable, making it suitable for 
non-volatile memory applications. However, based on the utilized 
electrolyte material, the properties of ECRAMs can vary a lot. And 
since the electrolytes in most ECRAMs are either liquid or organic 
polymers, the integration of these devices is limited by their poor 
compatibility with CMOS technology.   

e. FeRAM operates with bistable polarization states of ferroelectric 
materials [33]. These electrolytes can be polarized by an electric field, 
and get reversed under an opposite bias. FeRAM normally exhibits a 
high operation speed with exceptional switching endurance, making it 
suitable for data storage. However, it primarily operates with binary 
switching, meaning that complex computing on FeRAM can be 
difficult. Moreover, integrating FeRAM devices with CMOS 
technology can also be challenging. 
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These diverse memristors exhibit varying properties owing to their distinct 
resistance switching dynamics. Table 2.1 summarizes some general properties 
of PCM, CBM, RRAM, ECRAM and FeRAM. It is important to note that 
specific performance characteristics of memristors can vary based on under-
lying materials and mechanisms, and most devices exhibit relatively high en-
ergy consumption compared with biological synapses for neuromorphic ap-
plications.  
Table 2.1 Comparison of resistance switching properties among state-of-the-art 
PCM, CBM, RRAM, ECRAM and FeRAM devices. 

Categories Operating 
voltage 

Response 
time 

Switching 
energy 

Endurance Retention Multiple-
level states 

Number of 
electrodes 

PCM > 1 V ns - µs high >106 long binary 2 
CBM 0.1~10 V ns - µs low >106 long multiple 2 

RRAM 0.1~10 V ns low >106 long multiple 2 
ECRAM 0.1~10 V >µs low moderate moderate multiple 3 (4) 
FeRAM > 1 V ns - µs moderate >106 long binary 3 (4) 

 

Figure 2.1.3 Schematic illustration of (a) PCM, (b) CBM, (c) RRAM, (d) ECRAM and
(e) FeRAM  devices. (d) is reprinted with permission from [77]. Copyright (2017) 
Springer Nature. 
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In addition to the abovementioned devices that work with forming 
conductive paths, memristors based on interface RS is drawing intensive 
research attention. Many interface-type memristors have been reported to 
operate by modifying Schottky barrier at the interface, without the 
requirement of forming conductive filaments. The barrier modification in  
these memristors is mainly based on trapping/detrapping of  charged carriers 
in the interface states, or field induced oxygen vacancy migration [34], [35]. 
However, trapping/detrapping of charged carriers is metastable, which leads 
to severe conductance decay. The Ag/CoOx/Ag device reported by Jianbo et 
al. could switch for thousands of cycles, but the conductive states decayed 
rapidly to an intermediate resistance state, due to the short lifetime of the 
metastable pinning effect caused by the interface states [36]. The research 
indicated that the pinning effect was dependent on the depth and density of 
the interface state energy levels. On the other hand, the field-induced oxygen 
vacancy migration demands high energy cost due to the limited mobility of 
oxygen vacancy in oxides electrolytes, resulting in the relatively larger energy 
consumption of the device. Wei et al. reported a Pd/WO3/W memristive array 
working on the interface RS (Figure 2.1.4) [37]–[39]. The Schottky barrier 
width of the WO3/W Schottky junction could be modulated by the movement 
of oxygen vacancy. However, the input pulse to trigger interface RS in the 
memristor required 1.4 V/400 µs, which indicated a high energy consumption 
at ~10-10 J level. Besides, the relatively poor retention only allowed for short-
term potentiation/depression on the device, which could be utilized to process 
simple information in temporal domain. For these non-filamentary memristors, 
stable conductive states along with low switching energy are rarely 
demonstrated.  

 

Figure 2.1.4 (a) Scanning electron micrograph image of a fabricated memristor array
used in this study. Upper right inset: magnified SEM image of the crossbar. Scale bar,
3 µm. Lower left inset: memristor chip integrated on the test board after wire-bond-
ing. Reprinted with permission from [39]. Copyright (2017) Springer Nature Limited
(b) Schematic of the reservoir computing system with pulse streams as the inputs, the
memristor reservoir and a readout network. Reprinted with permission from [38].
Copyright (2017) from the authors. 
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2.2 Ag2S-based memristors  
Ag2S-based memristors represent a promising innovation in the realm of 
future non-volatile memory devices. Their appeal stems from several 
remarkable characteristics, including efficient electrochemical process for 
resistance switching, scalability down to the nanometer scale. 

The study of Ag2S-based memristors began in 2005 when Kazuya et al. 
introduced a quantized conductance atomic switch based on Ag2S thin films 
(see Figure 2.2.1) [40]. This work involved creating one-nanometer gap 
between a fixed Ag2S electrode and a Pt electrode. Through the tunnelling 
current across this nano-gap, silver nano-protrusions could be formed or 
ablated, which effectively switched the device between high and low 
resistance states. 

 
Notably, this resistance switching can be triggered with a low operating 

voltage of 0.6 V, at a remarkable frequency of 1 MHz, even at room 
temperature. Further investigations revealed an aspect: the stability of the 

Figure 2.2.1 (a) The scanning electron microscopy image of the Ag2S-based atomic 
switch. (b) Schematic diagrams of the atomic switch at ON and OFF states. Reprinted
with permission from [40]. Copyright (2005) Springer Nature. 
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silver filament formed within Ag2S-based atomic switches is dependent on the 
applied voltage pulses. By controlling the amplitude and width of the applied 
electrical pulses, the device can switching between short-term and long-term 
memory states, enabling both the forgetting and memorization of intricate data 
patterns within device arrays [41]. 

The intricate process behind this switching phenomenon unfolds in three 
fundamental steps: 

a. Oxidation: at the anode interface, silver atoms underwent oxidation 
reactions, yielding positively charged silver ions according to the 
reaction:  
Ag → Ag⁺ ⁻ + e . 

b. Migration: Ag⁺  ions migrated through the Ag2S thin film in 
response to an external electric field. 

c. Reduction and electro-crystallization: at the cathode interface, 
reduction and electro-crystallization occurred, converting Ag⁺  ions 
back into solid silver via the reaction: Ag⁺ ⁻ + e  → Ag. 

A more common device configuration employs a two-terminal structure 
(Figure 2.2.2), featuring a nanometer-thick Ag2S electrolyte sandwiched 
between top and bottom electrodes. By further optimization in material 
synthesis and device engineering, researchers achieved precise control of 
nanometer-scale silver filaments by nanosecond voltage pulses [42]–[44]. The 
resistance switching exhibited endurance more than 10,000 cycles, and 
retention over 10,000 seconds, and could be realized even at a low temperature 
of 4.2 Kelvin.  

Figure 2.2.2 Typical RS behavior of an Ag2S-based memristive junctions at room 
temperature (a) and at 4.2 K (b). The inset in (a) illustrates the typical measurement 
configuration, where a metallic tip was utilized as a top electrode for material anal-
ysis. Reprinted from [44] with permission from the Royal Society of Chemistry. 
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In addition to the electrochemical properties, monoclinic α-Ag2S exhibits 
extraordinary ductility at room temperature. As first reported by Xun et al. in 
2018 [45], α-Ag2S material could be deformed up to 50% strain in the 
compression test, and allowed large elongation under bending and tensile tests 
without destroying the material (Figure 2.2.3). Such metal-like mechanical 
property was enabled by the low slipping barrier for atomic movement along 
slip planes, together with the strong interaction between atoms within the slip 
planes. Considering the intrinsic ductility of the material, Ju-Young at al. 
reported an Ag2S-based flexible memristor for wearable electronics [46]. The 
device fabricated by solution processes exhibited bipolar RS behavior with 
exceptional mechanical stretchability, which enabled its integration with 
motion sensors for a wearable healthcare monitoring system (Figure 2.2.4). 

 However, the mentioned RS mechanism in these Ag2S-based memristors 
only involve simplified filament formation and ablation processes, while the 
memristive behavior beyond filament region has never been systematically 
studied, which leaves some phenomena unexplained. And the follow-up 
research mostly stayed at material-level using simple material testing structure 

Figure 2.2.3 (a) A machined cylinder for the compression test (top) and its defor-
mations under hammering (bottom). The thin and winding wires are obtained dur-
ing the lathing. Strain–stress curves for compression (b), bending (c) and tension 
(d) tests at room temperature. Reprinted with permission from [45]. Copyright 
(2018) from the authors. 
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with a metallic nano-tip as the top electrode. The integration of Ag2S-based 
memristor array (especially on flexible substrate), detailed resistance 
switching mechanism, as well as further device performance optimization 
remain to be demonstrated. 

 

 

 

 

 

 

 

Figure 2.2.4 (a) Photograph of the self-powered Ag2S-based memristive system cell 
matrix with 4 × 4 pixels. (b) I–V characteristic for the Al/Ag2S/Ag memory cell. (c)
Schematic illustration and photograph showing the flexible/stretchable Ag2S-based 
memristive system. b) Schematic illustration showing the corresponding device com-
position of the panel. Reprinted with permission from [46]. Copyright (2021) Wiley‐
VCH GmbH. 
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2.3 Memristor-based computing hardware 
Memristors, due to their unique ability to emulate synaptic behavior, offer a 
promising device option for artificial neural networks and brain-inspired 
computing systems. One of their most significant advantages lies in the 
potential for realizing computations directly within memory units, 
overcoming the limitations of traditional von Neumann computers. In this 
chapter, the operation of a deep learning neural network (DNN) on memristor 
arrays is illustrated. 

Traditional DNN training relies on the stochastic gradient descent (SGD)-
based backpropagation algorithm, which consists of three essential processes: 
forward propagation, backward propagation, and weight updates [47]. These 
processes are executed within memristor arrays equipped with peripheral 
circuits (refer to Figure 2.3.1), and the operations are iterated until a 
convergence criterion is met [48]. 

In the following instruction of DNN training with conventional SGD, we 
consider a single fully connected layer between N input neurons and M output 
neurons. During forward propagation, a vector-matrix multiplication (ݖ௝ 	=	∑ ௜ܹ௝ݔ) is performed, where the vector x of length N represents the activities 
of the input neurons and the matrix W of size M × N stores the weight values 
between each pair of input and output neurons. The resulting vector ݕ  of 
length M undergoes further processing through a non-linear activation 
function to generate an output (ݕ௝ =  For DNNs containing multiple .((௝ݖ)݂
layers as shown in Figure 2.3.2, the output of current layer serves as the input 
to the next layer until the information reaches the final output layer. To train 
the network, the overall error between the prediction (the final output of 
forward feed) and the ground truth is calculated and propagated backward 
through the network [49].  

Similarly, the backward propagation within a single layer involves a 
vector-matrix multiplication using the transpose of the weight matrix 
(߲ܼ௞ ௝ݕ߲ = ⁄௞ߜ்ܹ ), where the vector ߜ௞ = ܧ߲ ߲ܼ௞⁄  of length M represents 
the error calculated by the output neurons, and the vector z of length N is 
further processed using the derivative of neuron’s non-linearity and then 
passed to the previous layer. The key process in training involves updating the 
weights, which is mathematically implemented by performing an outer 
product of the two vectors used in the forward and the backward cycles: ΔW 
= η (δ ⊗ x), where η represents learning rate. For weight update across multiple 
layers, the derivative of each individual weight with respect to the error is 
calculated using the chain’s rule: 

 డாడௐೖೕ = డாడ௬೗ డ௬೗డ௓೗ డ௓೗డ௬ೖ డ௬ೖడ௓ೖ డ௓ೖడௐೖೕ                                                                     (2.3.1) 
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where the derivatives of the form ߲ݕ௞ ߲ܼ௞⁄  correspond to the derivatives of 
the appropriate activation function.  

 

 
The above three processes can be efficiently implemented in memristive 

crossbar arrays, where the stored conductance of memristors represents the 
weight matrix. It is worth noting that the physical conductance is always 
positive. To encode both positive and negative weight values, a pair of 
memristor devices can be coupled in differential mode: 
௜௝ݓ  = ௜௝݃)ܭ	 	െ 	݃௜௝,௥௘௙)                                                                        (2.3.2) 

Figure 2.3.2 The forward feed (a) and backward feed (b) in multiple layer perceptron.
Reprinted with permission from [10]. Copyright (2019) Elsevier Ltd. 

Figure 2.3.1 Multiple layer perceptron using memristor-based computing hardware. 
Reprinted with permission from [10]. Copyright (2019) Elsevier Ltd. 
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Here, gij is the conductance value stored on the first memristor device, gij,ref is 
the conductance value stored on the second device used as a reference, both 
corresponding to ith column and jth row and K is the gain factor controlled at 
the peripheral circuit. In the physical implementation of forward and back-
ward propagation, the input is transmitted as reading voltage pulses through 
each of the columns, while the output vector is read as a differential current 
signal from the rows [50]. These operations perform the vector-matrix multi-
plications using Ohm’s law and the Kirchhoff’s law. To update the weight (the 
conductance of memristors) based on the calculated weight change, pulse 
streams can be effectively utilized (see Figure 2.3.3). For instance, stochastic 
translators adjust the pulse probabilities at the periphery to control the total 
number of the pulse coincidences occurring at each crossbar element.[48] In 
this scheme, pulse streams are simultaneously sent into the crossbar array for 
all rows and all columns. For each coincidence event, the corresponding 
memristor device changes its conductance by a small amount Δgmin. The total 
conductance change required by the algorithm is achieved as series of small 
conductance changes through numerous pulse coincidence events.  

In conventional stochastic gradient descent and backpropagation 
algorithms, the memristive devices are required to change conductance in a 
symmetrical fashion when subjected to positive or negative pulse stimuli. 
However, the actual changes triggered by each device per pulse coincidence 
(Δgij) are different from the Δgmin in the most reported devices [51]. Three 
common switching characteristics are illustrated in Figure 2.3.4. For the ideal 
device (as shown in Figure 2.3.4a), the change of conductance is linear and 
has the same value for the positive and negative branches. The hardware 
induced update rule simplifies back to the desired SGD update rule. The 
second device changes conductance in a non-linear but symmetric fashion for 
both potentiation and depression. For the third one illustrated in Figure 2.3.4c, 

Figure 2.3.3 (a) Stochastic update of a memristor device at the crossbar array. (b)
The pulse streams applied to the array lines for weight update. Reprinted with per-
mission from [10]. Copyright (2019) Elsevier Ltd. 
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the actual device responses for positive and negative stimuli at the coincidence 
event are different. In most cases, their responses are dependent on the current 
conductance. Since the pulses generated at the periphery are common for the 
whole array (columns and rows), it is impossible to compensate for the 
mismatch between Δgmin and Δgij as each device has a different value due to 
device-to-device variability. This non-ideality competes with the original 
optimization objective of neural networks, thus degrading the computing 
accuracy in the practical hardware.  

Gokmen et al. reported an advanced training algorithm, denoted as the 
“Tiki-Taka” (TT) algorithm, that eliminates the symmetry requirement in 
device programming [51]. In the abovementioned non-symmetric device, 
there is a symmetry point at which the strengths of the conductance increment 
and decrement are equal. As illustrated in Figure 2.3.5, if the device 
conductance is smaller than the symmetry point, then the conductance 
increments are stronger than the decrements and vice versa. Therefore, a 
sufficiently long alternating pulse sequence can push the device conductance 
toward the symmetry point independent of the initial conductance value. After 
applying this initial alternating pulse sequence, these conductance values at 
symmetry points (sij) are transferred to the corresponding reference devices so 
that gij,ref = sij. Consequently, g(wij = 0) = 0 is met for all devices in the matrix, 
which is denoted as the symmetry point shifting technique [52].  

In TT algorithm, each weight matrix of the neural network is represented 
by a linear combination of two matrices: 

W = γA + C                                                                                                  (2.3.3) 

where A is the first matrix, C is the second matrix and γ is a scalar factor. The 
elements of A and C matrices are also encoded by a pair of devices as 

Figure 2.3.4 Three different device switching characteristics. (a) Ideal device: con-
ductance increments and decrements are equal. (b) Symmetric device: conductance
increments and decrements are equal in strength, but both have a dependence on de-
vice conductance. (C) Non-symmetric device: conductance increments and decre-
ments are not equal, and both have different dependencies on device conductance.
Reprinted with permission from [51]. 
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discussed before. All elements in matrix A are implemented with symmetry 
point shifting technique to ensure aij = 0. Afterwards, conventional SGD is 
utilized to calculate the gradient information and the weights in A are updated 
accordingly. Notably, the weight in C is sparsely updated, with the value 
changed only in a single column while the remaining elements are kept 
constant. In this algorithm, the noise in updates due to the random sampling 
of the data examples pushes the elements of A toward zero, while the sign of 
the average gradient information in A is very likely to be correct thanks to the 
symmetry point shifting. The true average gradients represented as the correct 
sign information are transferred to C. Although the memristors in C are non-
ideal as well, the sparse updates significantly mitigate the impact of the 
artifact. Simulation results on DNNs show that the accuracy achieved using 
the TT algorithm with non-symmetric device switching characteristics is 
comparable to the conventional SGD algorithm with symmetric device 

Figure 2.3.5 Response of two separate devices to the alternating (up and down) pulse
sequence starting from different initial conductance values. Reprinted with permis-
sion from [51]. 
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switching characteristics (as shown in Figure 2.3.6). Moreover, all the array 
operations are still parallel and therefore the hardware implementation 
maintains the power and speed benefits.  

In a more advanced algorithm, TTV2, the noise tolerance of memristor de-
vices is further increased [53]. Unlike Tiki-Taka, TTV2 uses an additional 
digital matrix H between A and C as a low-pass filter (as shown in Figure 
2.3.7a). The algorithm first employs symmetry point shift technique to ensure 
that positive and negative updates are treated symmetrically on A. The gradi-
ent information is then accumulated on H’s corresponding row. When the 
magnitude of any element in H exceeds the threshold, the corresponding ele-
ments are reset back to zero, and a single pulse is applied to C to update the 
weights. After sufficient training, the weight in matrix C converges to the op-
timized value. Compared with TT, TTV2 requires only tens of device con-
ductance states, and increases the noise tolerance to the device conductance 
modulations by about 100 times. Simulation results show that TTV2 can train 
various neural networks close to their ideal accuracy even at extremely noisy 
hardware settings (as shown in Figure 2.3.7b).  
 

Figure 2.3.6 Test error of fully connected neural networks on Modified National In-
stitute of Standards and Technology (MNIST) dataset trained using TT algorithm. The
comparison of the training results with different mixing terms (a) γ = 1 and γ = 0, and
different learning rates on C matrix (b) λ = 0.005, 0.02 and 0.04, as well as different
choices of vectors (c) in sparse update of C. Reprinted with permission from [51]. 



36 

 
 

Figure 2.3.7 (a) Schematics of TTV2 dynamics. (b) Training simulations for SGD, 
Tiki-Taka, and TTV2 algorithms. Reprinted with permission from [53]. 
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3. Resistance Switching in Flexible 
Memristors Based on Thick Ag2S Films 

In this chapter, we demonstrate a full-inorganic flexible memristor based on 
thick Ag2S films. In chapter 3.1, the synthesis of thick Ag2S films is 
introduced. Subsequently, chapter 3.2 outlines the fabrication process for 
flexible memristors on the obtained thick Ag2S films. Finally, in chapter 3.3, 
the resistance switching mechanism of the Ag2S-based flexible memristor is 
discussed. Understanding RS mechanism plays a vital role in optimization of 
device performance. 

3.1 Synthesis of thick Ag2S films  
The free-standing α-Ag2S films was obtained from bulk Ag2S ingots, a process 
elucidated in this section. The used bulk Ag2S ingots were meticulously 
prepared through solid-state reactions, ensuring the high purity of the 
materials. The details of the Ag2S film synthesis are summarized as below: 

a. First, high-purity elemental Ag (99.999%, Alfa Aesar, shots) and S 
(99.999%, Alfa Aesar, powders) were combined in a stoichiometric 
ratio of 2:1, resulting in an admixture of approximately 8 grams. 

b. This admixture was sealed within an evacuated quartz tube, which 
was then heated to a temperature of 1000 °C. It was allowed to dwell 
at this temperature for 12 hours before undergoing a slow furnace 
cooling process over 25 hours, ultimately reaching 100 °C. 

c. Subsequently, the tube was annealed for a period of 5 days at 450 °C 
to yield the final Ag2S product. 

d. The dense Ag2S ingot was directly cut into pieces with a thickness of 
approximately 1 millimeter. 

e. These Ag2S pieces were thoroughly cleaned using acetone and 
ethanol. 

f. The cleaned Ag2S pieces were then transformed into films by 
employing a roller-pressing technique. This process continued until 
the film attained the desired thickness, such as 100 μm. 

g. During the rolling process, the edges of the samples were carefully 
trimmed. 
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To characterize the obtained film, X-ray diffraction (XRD) and Rutherford 
backscattering spectrometry (RBS) were employed. The XRD results shown 
in Figure 3.1.1a agree well with the patterns from Ag2S single crystals, indi-
cating a successful synthesis of polycrystalline Ag2S film in monoclinic phase. 
The measured RBS signal aligns with the simulation results (Figure 3.1.1b), 
where the atomic ratio of Ag:S gives a stoichiometry at 2:1. Moreover, the 
Ag2S film, with a thickness of 100 μm, possesses impressive mechanical prop-
erties. It can withstand an elongation of 2.1% under a tensile stress of approx-
imately 100 MPa, as depicted in Figure 3.1.2. This small tensile modulus value 
is comparable to some metallic materials, showcasing the remarkable mechan-
ical strength and flexibility [45]. 

Figure 3.1.1 Characterization of the thick Ag2S film. (a) X-ray diffraction pattern of 
a 100 μm-thick Ag2S film, which is consistent with α-Ag2S (01-089- 3840). (b) Exper-
imental RBS-spectrum recorded from an Ag2S film (with an Ag top electrode as refer-
ence) using a microbeam of 2 MeV He+ ions (open circles). The best fit to the experi-
ment (red line) yields a composition of Ag0.675S0.325, which is close to the target stoi-
chiometry of Ag2S. 

Figure 3.1.2 Mechanical tension of the thick Ag2S film at room temperature. The inset
shows the bended film. 
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3.2 Fabrication of thick Ag2S film-based flexible 
memristor 
In this section, we detail the fabrication process of flexible memristors directly 
on free-standing α-Ag2S films, without the need for additional polymer 
substrates in our device demonstration. Figure 3.2.1a provides an overview of 
the fabrication process for these flexible memristors. The steps involved are 
as follows: 

a. A 100 nm-thick blanket silver layer was deposited as the bottom 
electrode using thermal evaporation under a vacuum of 5 × 10-6 Torr, 
with a deposition rate of 0.1 nm/s. 

b. On the top side of the film, a 5 nm-thick HfO2 layer was deposited at 
170 °C by atomic layer deposition (ALD). 

c. Nano contact holes were then precisely patterned using electron-beam 
lithography (EBL), followed by a reactive ion etching (RIE) process 
to etch through the HfO2 layer. 

d. Finally, 100 nm-thick silver top electrodes were formed through the 
nano contact holes using a silver evaporation and lift-off process. 

Notably, our approach departs from the conventional symmetric memristor 
device with a crossbar structure. Instead, we employ an asymmetric device 
structure. The nanoscale top contacts, formed in the 100 nm contact holes 
through the 5 nm-thick cap HfO2 layer (as depicted in Figure 3.2.1b, a top-
view scanning electron microscopy (SEM) image of the 100 nm contact hole 
array), are approximately 10 orders of magnitude smaller than the bottom con-
tacts (1 × 1 cm2 contact size). This asymmetry in contact size ensures that the 
top contact dominates the total resistance of the device and takes all the volt-
age bias to the device, if the device is measured in the vertical configuration 
between the top and bottom contacts. The contribution from contact resistance 
at the bottom interface is effectively negligible. 

Figure 3.2.1 (a) Process flow of Ag2S-based memristor device fabrication. The di-
mensions shown are not scaled to the actual size. (b) Top-view scanning electron 
microscopy image for a 100 nm nano-hole array fabricated on top side of α-Ag2S 
film. In each memristor device, only one contact hole was formed for top contact.  
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3.3 Interface and filament combined resistance 
switching 
The obtained device exhibits a typical bipolar memristive characteristics when 
measured in vertical configuration, as illustrated in Figure 3.3.1a. The current 
(I)-voltage (V) characteristics were recorded by scanning the voltage through 
a sequence of: 0 V→ −0.5 V → 0.5 V → 0 V on top electrode. Under negative 
bias (-0.5 V), the memristor switches into a low-resistance state (tens of ohms), 
and maintains this state until reset to a high resistance state (about 10 MΩ) 
with a positive bias. The ON/OFF ratio achieved is about 106, an ultra-high 
value compared to previously reported flexible memristors, especially 
considering the low setting voltage (Figure 3.3.1b) [40], [46], [54]–[68].  

The asymmetric device structure clearly outperforms conventional 
symmetric Ag2S-based devices in dynamic ratio. Furthermore, our 
experimental results challenge the simplified filament formation/ablation 
models proposed for RS in the literature. Notably, the exponential decrease in 
resistance before the sharp current jump at approximately -0.4 V (between 
stages I and II in Figure 3.3.1a) cannot be attributed solely to filament 
formation since no abrupt current increase is observed. It is also evident from 
the resistance increase observed when a positive bias is applied to an initial 
memristor device without any pre-existing filament (Figure 3.3.1c). To 
investigate the resistance switching mechanism, we model the relevant 
resistances in our device. At the initial stage of the vertical configuration 
measurement, the total device resistance (Rtot) consists of three components: 
contact resistances at the top (Rc, top) and bottom (Rc, bot) Schottky contacts, 
along with bulk Ag2S resistance (Rbulk). 

Figure 3.3.1 (a) Current (I)-voltage (V) characteristics of Ag2S-based memristor in 
vertical configuration. Different stages of the resistance switching processes are 
marked by I, II, III, IV in the curve. (b) Comparison of the ON/OFF ratio under dif-
ferent setting voltages between Ag2S-based memristor and the recently reported full-
organic and hybrid flexible memristors. (c) The current-voltage curves recorded by 
applying electric bias to top electrode of an initial memristor device. 
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 ܴ௧௢௧ = ܴ௖,௧௢௣ ൅ ܴ௕௨௟௞ ൅ ܴ௖.௕௢௧ = ఘ೎,೟೚೛஺೟೚೛ ൅ ܴ௕௨௟௞ ൅ ఘ೎,್೚೟஺್೚೟ 	                        (3.3.1)  

Where Rc, top and Rc, bot can be expressed by ρc/A, and ρc is the contact 
resistivity and A is the contact area. Notably, Rc, bot is negligible due to its 
contact area (being 10 orders of magnitude larger than Rc, top). During the 
negative setting voltage application, the reversely biased top Ag/Ag2S 
Schottky junction dominates, overpowering Rbulk in the setting process as 
shown in the simulation (Figure 3.3.2). This results in a substantial electrical 
field that accumulates Ag+ ions at the top Ag/Ag2S interface to form a strong 
interfacial dipole [69], [70], and thus reduces the electron Schottky barrier 
height (SBH), as depicted schematically in Figure 3.3.3a (Ag accumulation - 
stage II). Simultaneously, Ag+ ions are reduced to Ag atoms, forming 
filaments that grow towards the bottom electrode. As these filaments reach the 
bottom electrode, they create a conductive path that effectively shunts both 
bulk Ag2S and contact resistances, resulting in the sudden current jump at 
approximately -0.4 V (see metallic contact stage III in Figure 3.3.3a). 

Figure 3.3.2 Simulated electric potential and electric field distribution of vertical con-
figuration device using finite element analysis. (a) The potential distribution under -
0.5 V bias. The result shows that the top nano-contact interface takes most of the
setting bias. (b) The simulated electric field distribution under a -0.5 V setting bias. 
(c) The potential distribution under 0.5 V bias. When a 0.5 V bias is applied on top,
this top Schottky contact is forwardly biased. The top interface remains taking the
main applied bias due to its extremely small nano-contact area comparing to the bot-
tom contact, which is responsible for the formation of Ag+ depletion region. (d) The 
simulated electric field of device under a 0.5 V resetting bias. The bias was applied
on the top electrode. 
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The dependence of resistance on temperature at stages I, II, and III further 
validates the SBH modification (Figure 3.3.3b). Stages I and II exhibit typical 
Schottky junction conduction behavior [71], dominated by the thermionic 
emission process. As seen in the inset, the electron SBH decreases from 0.206 
to 0.120 eV from stage I to stage II. In contrast, stage III demonstrates a stable 
temperature coefficient of resistivity (TCR) of 0.00135 K-1, indicating the for-
mation of continuous silver filaments. 

During the reset process under positive bias, the formed Ag filaments are 
oxidized to Ag+ ions at the top electrode and get ablated at approximately 
0.4−0.5 V, leading to an abrupt drop in current. Subsequently, the strong local 
electrical field induced by the reformed top Schottky contact drives away Ag+ 
ions, leaving negatively charged Ag vacancies at the top interface. The 
negatively charged Ag vacancies further bends the energy band upward and 
increases the barrier height at the top contact interface, as indicated by the 
further exponential decrease of the current in Figure 3.3.3a-IV. Low-
temperature measurements also confirm that the electron SBH indeed 
increases to 0.407 eV after the reset process. The increased SBH leads to 
enlarged OFF state resistance compared to its initial value. These findings 
suggest a new interface-filament combined resistance switching mechanism 
in our Ag2S memristors, where sequential SBH modifications and filament 
formation/ablation processes synergistically contribute to a substantial 
resistance change, resulting in a large ON/OFF ratio.   

Figure 3.3.3 (a) Schematic illustration of resistance switching mechanism (The cor-
responding stages I, II, III, IV are also indicated in I−V curve in Figure 3.3.1a). (b)
Temperature dependence of the device resistance at initial (I), Ag+ accumulation (II), 
filament (III), and Ag+ depletion (IV) stages measured under low temperatures. The
inset shows electron Schottky barrier height extraction for stages I, II, IV. 
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The interface-filament combined mechanism in our flexible memristor 
demonstrates densely populated conductive states. As illustrated in Figure 
3.3.4a, a series of writing pulses, each with a constant duration of 20 ms but 
increasing amplitudes, gives discrete nonvolatile states. This dynamic 
progression, characterized by silver depletion, accumulation, and filament 
formation, effectively reflects the resistance switching processes at both the 
interface and filament regions. With a more sophisticated pulse program, as 
depicted in Figure 3.3.4b, we can further expand the multiple conductive states. 
By applying small pulses with a fixed amplitude of -0.2 V but variable durations 
ranging from 2 to 800 ms, 28 states are identified within the range of 3.5 × 10-6 
S to 3.5 × 10-5 S in the interface resistance switching region. This signifies the 
potential for fine-tuning and continuous adjustment of conductive states. 

To investigate the RS behavior under deformation, we bended the device 
to a curvature radius of 3 mm, and recorded the conductance after returning it 
to a flat state. As illustrated in Figure 3.3.4c, during 1000 repetitive bending 

Figure 3.3.4 (a) Conductive states evolution (read at 5 mV) under pulse voltage stim-
ulations (with 20 ms constant duration and variable amplitude from −0.15 V to −2.0
V). The obtained high density working states cross both interface and filament re-
gions. (b) Conductive states evolution (read at 5 mV) under pulse voltage (with a
fixed −0.2 V amplitude and variable width from 2 to 800 ms) (c) Resistance variation
before and after mechanical bending with 3 mm curvature radius as shown in the
inset. (d) The in-situ data retention recorded when the device was kept in bending
state with 3 mm curvature radius. 
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tests, the conductance of both the ON and OFF states remained consistent at 
their respective levels. Even when the device was maintained in a bent 
configuration, it exhibits exceptional state stability, as evidenced by the 
retention test shown in Figure 3.3.4d. The reliable RS behavior along with 
deformation tolerance demonstrates the potential of the Ag2S-based FMs for 
flexible applications. 
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4. Sole Interface Resistance Switching for 
Neuromorphic Computing 

As discussed in chapter 3, the thick Ag2S film-based FM undergoes sequential 
processes of Schottky barrier height modification at the contact interface and 
filament formation inside the electrolyte. High-voltage pulses (over the 
threshold voltage ∼ 0.4 V) set the memristor into the 10−4 to 10−2 S range by 
forming/ablating Ag filaments, while low-voltage pulses drive the device to a 
relatively lower conductance range (about 10−6 to 10−4 S) by modifying the 
SBH. Considering the beneficial of utilizing lower conductance for reducing 
energy consumption, we further investigate the sole interface resistance 
switching in this Ag2S-based FM. The sole interface RS behavior is introduced 
in chapter 4.1, and its energy consumption and cyclic variations are discussed 
in chapter 4.2 and chapter 4.3, respectively.  

4.1 Sole interface resistance switching in Ag2S 
Memristors 
As depicted in Figure 4.1.1a, the observed high ON/OFF ratio is a result of 
sequential processes involving Schottky barrier modification at the contact 
interface (set bias below -0.4 V) and the formation of nanoscale Ag filaments 
within the electrolyte (set bias above -0.4 V). An abrupt reduction in resistance 
marks the transition between these two processes, as illustrated in the inset of 
Figure 4.1.1a. Schottky barrier modification relies on Ag+ ion accumulation at 
the top contact interface, whereas the continuous formation of Ag filaments 
within the electrolyte demands extensive electrochemical reduction of Ag+ 
ions at the cathode. Consequently, resistive switching based on Ag filaments 
is more energy-intensive. Here we record the I-V characteristics of our Ag2S 
FMs under sole interface Schottky barrier modification. As shown in Figure 
4.1.1b, reversible RS is achieved under a bias sequence of 0 V → -0.2 V → 
0.2 V → 0 V, where the setting and resetting processes are exclusively induced 
by the reduction/increase of the SBH at the top interface. Notably, no abrupt 
current increase is observed during the set process, indicating the absence of 
filament formation within the Ag2S electrolyte (Figure 4.1.1b). 
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To further validate this, we conducted in situ cryogenic measurements to 
monitor changes in device resistance (after setting) under varying tempera-
tures. As shown in Figure 4.1.2, the device set with a -0.2 V voltage exhibits 
an exponential resistance-temperature relationship (stage II). This behavior 
signifies typical carrier transport through thermal emission processes. It con-
firms that device resistance is primarily governed by the Schottky junction at 
the Ag/Ag2S interface following a -0.2 V setting. In direct contrast, the device 
resistance after a -0.5 V voltage (stage I, after Ag filament formation) shows 
a weak dependence on temperature, indicative of phonon scattering effects 
typically observed in metallic conductors [18], [72], [73]. 

Figure 4.1.1 (a) Current (I)−voltage (V) characteristics of FM under 0 V → −0.5 V
→ 0.5 V → 0 V voltages applied to the Ag TE. The inset shows resistance reduction
under negative setting bias, where interface RS (setting bias < −0.4 V) is observed
before filament formation. Device set by −0.5 V bias is marked by stage I in the
curve. (b) I−V characteristics of the device under 0 V → −0.2 V → 0.2 V → 0 V
voltages applied to the Ag TE. As schematically illustrated, the device is set by the
Ag+ ion accumulation-induced SBH reduction and reset by the Ag+ ion depletion-
induced SBH increase at the top contact interface. Device set by −0.2 V bias is
marked by stage II in the curve.   

Figure 4.1.2 Device resistance evolution under temperature variations. 
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4.2 Ultra-low energy consumption of interface RS 
Low conductance states hold the promise for reducing energy consumption 
during memristor array operation. With this understanding, we further 
conducted an extensive investigation into the tunability, stability, and 
switching energy of interface RS states. The efficient modulation of low-
conductance states is demonstrated by applying −0.2 V pulses with varying 
durations (refer to Figure 4.2.1a). Besides, the nonvolatility of 20 multiple-
level states is further verified by the retention measurements, as shown in 
Figure 4.2.1b. The tunability and stability of multiple conductive states 
promise the programming reliability of interface RS for the synaptic weight 
update in MANN. More importantly, the switching energy of interface RS in 
the Ag2S-based device is significantly lower than the reported filament RS-
based FMs. As summarized in Figure 4.2.1c, the pulse energy required to 
trigger interface RS with different ON/OFF ratios is benchmarked with 
recently reported filamentary FMs [74]–[80]. This benchmarking reveals a 
remarkable reduction in switching energy, achieving a decrease of several 
orders of magnitude. An ultralow switching energy of only ∼0.2 fJ is needed 
to attain a 5 ON/OFF ratio with the interface RS in our Ag2S FM. The result 
demonstrates a promising strategy to reduce memristor power dissipation with 
this new RS mechanism. 

We demonstrated multiply-accumulate (MAC) operations on a single-dot 
device array, which can be logically regarded as a 1 × N crossbar structure. 
As shown in Figure 4.2.2a, the convolutional kernel values for "sharpening" 
and "softening" operations were mapped to the FM conductance in an Ag2S 
device array. For comparison, we encoded the kernel values utilizing filament 
or interface RS, respectively (additional details can be found in Paper II). The 
pixel values of the original image, ranging from 0 to 255, were linearly 
transformed into reading voltages, with amplitudes ranging from 0 to 25.5 
mV. Since the device array shares a common bottom electrode, we collected 
the output current resulting from the voltage-conductance multiplication and 

Figure 4.2.1 (a) Conductance evolution of Ag2S device under −0.2 V setting pulses.
(b) Retention of 20 interface RS conductive states. (c) Comparison of switching energy
between Ag2S device (with interface RS) and recently reported filamentary devices. A 
significant reduction of switching energy is demonstrated with interface RS. 
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subsequent current addition. This output current represents the convoluted 
feature map, which can be decoded into the grayscale output image for 
visualization. Figure 4.2.2b illustrates the decoded output images obtained 
from both software simulations (i and iv) and hardware processing (ii, iii, v, 
and vi). The simulation results were derived from precisely designed kernels 
and serve as a reference for evaluating the hardware's processing performance. 
In the outputs generated by filament-type memristors (FTMs) and interface-
type memristors (ITMs), the sharpening operation significantly enhances the 
contrast between the subject (e.g., the "horse") and its surroundings, while the 
softening operation imparts a smoother appearance to the subject and its 
adjacent pixels. The close alignment between experimental and simulation 
results shows the potential of the Ag2S device for artificial neural network 
hardware. 

Interface RS exhibits superior energy efficiency compared to FTM in hard-
ware-based computing. In this image processing demonstration, the total en-
ergy consumption arises from both the convolutional operation and the kernel 
encoding processes. During convolutional operations, multiplication and ad-
dition occur naturally after applying reading voltages, with power density di-
rectly scaling with the device conductance. Consequently, the ITM array (with ∼10-5 S conductance) substantially reduces energy consumption by two orders 
of magnitude compared to FTM (with ∼10-3 S conductance). Furthermore, we 
calculated the power consumption of the kernel encoding process by integrat-
ing the power of the setting pulse over the device's setting time. ITM-1 con-
sumes 9.95 × 10-10 J, approximately 300 times less than the energy consumed 
by FTM-1 (refer to Figure 4.4.2c and d). This significant reduction in energy 
consumption, coupled with processing accuracy comparable to simulations, 
demonstrates the advantages of employing low-conductance interface RS for 
energy-efficient computation. Finally, it is essential to note that the dot-point 
device array utilized in this study serves as a proof-of-concept for computing 
demonstrations based on interface RS-enabled FM hardware. The practical 
application will need integrating crossbar memristor array with peripheral cir-
cuits.  
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Figure 4.2.2 (a) Convolutional kernel values are encoded into either an FTM or ITM
Ag2S device array. The grayscale value of each pixel of the original image is mapped
to the input voltage, which is fed to the top electrodes of different devices via a 3 × 3
input block. The postsynaptic current after MAC operation is recorded at the bottom
electrode and back-transferred to grayscale values to generate the output image. (b)
Software-based simulation result (i) and hardware outputs of FTM (ii) and ITM (iii)
after sharpening operation. Software-based simulation result (iv) and hardware out-
puts of FTM (v) and ITM (vi) after softening operation. (c) Pulse power against
elapsed time in the kernel encoding process for FTM-1. The energy consumption is 
calculated by integrating the pulse power against the device setting time. (d) Pulse 
power against elapsed time in kernel encoding process for ITM-1. 
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4.3 Reduced cyclic variation of interface RS 
Currently, many memristors employ the filamentary resistance switching 
mechanism for operation. However, the formation of conductive filaments 
necessitates the application of high-energy electrical pulses (as discussed in 
chapter 4.2), which result in the generation of significant overshoot currents 
within nanoseconds [81]. Consequently, precise control over filament size 
becomes challenging, thereby diminishing the tunability of conductance. 
Additionally, it has been well-established that the joule heating produced by 
these overshoot currents can lead to severe degradation of multiple minuscule 
filaments (formed within disordered defects and grain boundaries in 
amorphous or polycrystalline electrolytes). Consequently, these filament-
based devices unavoidably exhibit substantial cycle-to-cycle variations due to 
the abundance of residual filaments [82], [83]. The stochastic nature of 
filament RS significantly undermines the computing accuracy of neural 
networks, especially when subjected to frequent weight update processes.  

In this chapter, we demonstrate another advantage of filament-free 
interface resistance switching in Ag2S-based memristors, showing its 
remarkable ability to significantly reduce cyclic variations. As shown in 
Figure 4.3.1a, when subjected to forward scanning voltage sweeps (ranging 
from 0 to -0.4 V), the device current exhibits an exponential increase by SBH 
modification at the Ag2S/Ag interface. This interface resistance switching at 
the top nano-contact effectively turns on the Ag2S memristor. Upon reaching 
approximately -0.5 V, the Ag filament bridges the top and bottom electrodes, 
as indicated by a sudden and pronounced current jump in the plot. However, 
when subjected to repetitive triangle ±0.5 V setting/resetting biases, the 
residual filament effect becomes apparent. The threshold voltage for filament 
formation varies between -0.1 to -0.5 V across different cycles, introducing 
stochasticity and resulting in a wide distribution of ON state conductance. By 
reducing the setting/resetting biases to ±0.2 V, highly conductive filaments 
are no longer formed, effectively mitigating stochastic behavior and overshoot 
current. Consequently, the uniformity of switching under interface RS is 
significantly enhanced, as illustrated in Figure 4.3.1b. To quantitatively assess 
the cycle-to-cycle variation in RS, we conducted an endurance test spanning 
10,000 cycles for both interface and filament RS, as summarized in Figure 
4.3.1c. A statistical analysis of the ON state conductance (as depicted in 
Figure 4.3.1d) unequivocally reveals a substantially narrower conductance 
distribution for interface RS compared to filament RS. The ultra-small 
coefficient of variation (Cv), computed as 1.4% (obtained by dividing the 
standard deviation by the population mean to evaluate data dispersion), 
extracted from the interface RS data stands in direct contrast to the 28.9% of 
Cv observed for filament RS. 
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The reliable interface RS enables the Ag2S-based memristors to emulate 
the synaptic plasticity for neuromorphic applications. Herein, we show that 
both short-term potentiation (STP) and long-term potentiation (LTP) can be 
realized by interface RS, and the transition between them can be controlled by 
the spike train applied to the device. Figure 4.3.2a shows the current response 
under a sequence of seven consecutive weak pulses (with an amplitude of -0.3 
V, a duration of 100 μs, and a pulse interval of 100 μs). This sequence results 
in transient conductance increments, demonstrating a typical STP process. 
LTP can be achieved by extending the pulse duration to 1 ms (Figure 4.3.2b). 
Here, the post-synaptic current (PSC) exhibits a multi-step increase under con-
secutive strong pulses and stabilizes over a period of tens of seconds. We show 

Figure 4.3.1 (a) I-V characteristics of the filament RS in the Ag2S memristor under 10 
repetitive 0→-0.5→0.5→0 V d.c. pulses. The filament RS leads to a wide distribution
of forming voltage and ON state conductance. (b) I-V characteristics of the interface
RS in the Ag2S memristor under 10 repetitive 0→-0.2→0.2→0 V d.c. pulses. The in-
terface RS shows significantly improved switching uniformity. (c) The ON state con-
ductance (read at 5 mV) of interface (under ± 0.2 V biases) and filament RS (under ±
0.5 V biases) during 104 switching cycles. (d) The cumulative probability of the ON
state conductance of the interface and filament RS during 104 switching cycles. The 
coefficient of variation (Cv) is calculated to evaluate the dispersion of conductance. 
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that the transition from STP to LTP can also be achieved by either increasing 
the pulse amplitude or reducing the pulse interval, as demonstrated in Figures 
4.3.2c and d, respectively. With the capacity for controllable synaptic plastic-
ity, the Ag2S artificial synaptic device array enables the demonstration of psy-
chological "memory and forgetting" behavior. For demonstration, letters "I" 
and "L" were encoded into the same Ag2S memristor array (Figure 4.3.2e). 
This encoding is achieved by applying -0.3 V pulses in distinct patterns, with 
durations of 10 ms for "I" and 0.5 ms for "L". Afterwards, the conductance of 
each pixel was recorded as the memristor array was bent with a curvature ra-
dius of 3 mm. The letter "L" gradually fades after the input pulse and nearly 
gets removed within 30 seconds. By contrast, the letter "I" is exceptionally 
well-maintained in the LTP mode, exemplifying the dynamic capacity of the 
artificial synaptic device to mimic memory formation and retention. 

To further evaluate the computing performance of interface RS, we 
conducted an image learning simulation of a 28 × 28 memristor-based neural 
network [84]. In this simulation (Figure 4.3.3a), the image sensor detects the 
pixel value of the input image and linearly maps the greyscale value to the 
target conductance. The presynaptic neurons are fully connected to the 
postsynaptic neurons via 28 × 28 synaptic devices, with the learnt synaptic 
weights updated towards the target conductance value. In each learning cycle, 
if the learnt synaptic weight (wl(i)) is smaller than the target value (wt(i)), a 
presynaptic spike is sent ahead of the postsynaptic spike, and vice versa. The 
initial states of 28 × 28 memristors were randomly distributed between 0 and 
1. During each learning cycle, one integrated pulse containing pre-synaptic 
and post-synaptic spikes is sent to the memristors, and the synaptic weights of 
memristors evolve towards the corresponding target values to improve the 
learning accuracy. Different cycle-to-cycle variations in interface and filament 
RS, which were extracted in endurance characterization (see more details in 
Paper III), were introduced into the weight update process in the simulation. 
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Figure 4.3.2 Transition from STP to LTP under interface RS. (a) The recorded post-
synaptic current during the application of pulses with -0.3 V amplitude, 100 μs dura-
tion and 100 μs interval, showing STP behavior. (b) The recorded post-synaptic cur-
rent during the application of pulses with -0.3 V amplitude, 1 ms duration and 1 ms 
interval, showing LTP behavior. (c) The recorded post-synaptic current during the 
application of pulses with -0.5 V amplitude, 100 μs duration and 100 μs interval,
showing LTP behavior. (d) The recorded post-synaptic current during the application 
of pulses with -0.3 V amplitude, 100 μs duration and 30 μs interval, showing LTP
behavior. (e) Demonstration of “memory and forgetting” behavior on Ag2S device
array. The enclosed optical photograph shows a bended device array. The letters “I” 
and “L” were encoded into a 7×7 Ag2S device array, with conductance evolution of
each device against the elapsed time recorded.  
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Figure 4.3.3b shows the calculated accuracy against the learning cycles. 
The neural network operated with interface RS exhibits rapidly improved ac-
curacy in the first 30 cycles, and reaches a saturated value of 99.6 %. By con-
trast, the one operated with filament RS shows a smaller slope in the accuracy 
curve and a reduced saturation value of 94 %, indicating the degradation of 
learning ability caused by the large cycle-to-cycle variation. The visualization 
of the updated synaptic weights shown in Figure 4.3.3c provides the direct 
comparison of the learning ability between interface and filament RS. The 
pattern gradually gets recognizable and remains stable after 50 learning cycles, 
with more dead pixels observed in filament RS. 
 

 
 

Figure 4.3.3 The image learning demonstration on the neural network simulation. (a)
The schematic illustration of the network structure. (b) The learning accuracy of net-
works operating with interface-type and filament-type synaptic devices. (c) The visu-
alization of learnt patterns in different learning cycles. 
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5. Integration of Wafer-Scale Ag2S-Based 
Memristive Crossbar Array  

Although some standalone memristors exhibit low switching-energy, most 
reported devices in crossbar arrays still consume much more energy than 
biological synapses (as discussed later in chapter 5.2) during device 
programming [29], [81], [84], [85]. This is mostly due to the slow kinetics in 
forming conducting paths inside the solid-state electrolyte. Some three-
terminal ECRAMs can reduce their switching energy by limiting gate leakage 
current, but their fabrication is more complicated than 2-terminal devices, and 
is typically incompatible with CMOS technology for large-scale array 
integration [77], [86], [87]. CMOS-compatible memristive crossbar arrays 
with energy efficiency comparable to biological synapses are greatly desired 
for future energy-efficient computing.  

In this chapter, we further demonstrate wafer-scale integration of Ag2S-
based memristive crossbar arrays, fabricated with a fully CMOS-compatible 
process. The switching-energy of the integrated memristive unit is 
approaching the one for biological synapses. Chapter 5.1 introduces the 
synthesis of Ag2S thin films and the fabrication of Ag2S-based memristive 
crossbar array. The RS behavior and its kinetics behind of the obtained devices 
are discussed in chapter 5.2. We also demonstrate flexible memristor array on 
polymer substrates, and conduct computing applications on it, as shown in 
chapter 5.3.  

5.1 Fabrication of Ag2S-based memristive crossbar array 
Figure 5.1.1a illustrates the Ag2S thin film synthesis through reactive sputtering 
technique. Before the deposition, the sputter chamber was evacuated to reach a 
high vacuum level of approximately 10-7 Torr to ensure the purity of the 
deposited films. After introducing Argon (Ar) gas into the chamber, radio 
frequency (RF) power was applied to initiate the formation of an Ar plasma, 
which was directed towards the high-purity silver target to eject Ag atoms. With 
complete reaction with hydrogen sulfide, these ejected Ag atoms yielded the as-
synthesized Ag2S compounds. As the sputtering process continued, the Ag2S 
film grew on the rotating substrates, with a stable deposition rate of 
approximately 6 nm/s (detailed recipe can be found in paper Ⅳ).  
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To demonstrate large-scale film synthesis, we deposited an Ag2S film on a 
4-inch SiO2/Si wafer. The film morphology was analyzed utilizing AFM. The 
average surface roughness of the obtained film is ~3.5 nm, which is slightly 
larger than that of a SiO2/Si substrate (~ 1 nm). This film uniformity is also 
evidenced by the mirror-like film surface (see Figure 5.1.1b and its insets). To 
analyze the chemical composition, RBS was conducted on the obtained film. 
The measurement result (Figure 5.1.1c) shows robust silver and sulfur signals 
at channel number ranges of 750-900 and 450-620, respectively. The best fit 
from quantitative simulation shows an Ag:S stoichiometry of 2:1, indicating 
the complete reaction between the ejected Ag atoms and H2S precursors. To 
set the phase structure, we annealed the as-deposited film at different 
temperatures (up to 160 oC for 3 hours in H2S ambient), and conducted XRD 
analysis. As shown in Figure 5.1.1d, the film after 160 oC annealing displays 
sharp peaks in the XRD diffractogram, which aligns well with the PDF for α-
Ag2S crystals. The results demonstrate the wafer-scale synthesis of a 
polycrystalline Ag2S thin film in monoclinic phase.  

Figure 5.1.1 (a) The schematic illustration of reactive sputter process for Ag2S thin 
film synthesis. (b) The average surface roughness before and after 50 nm Ag2S film 
deposition. The insets show optical photographs of the wafer before and after depo-
sition. (c) The RBS spectra of the Ag2S film grown on SiO2/Si substrate. (d) The XRD 
pattern of the Ag2S film (annealed at 160 ℃) and the monoclinic Ag2S crystal. 
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The synthesis of Ag2S films through low temperature reactive sputter re-
tains the CMOS compatibility for the fabrication of Ag2S-based memristive 
crossbar arrays. The fabrication started with forming bottom gold electrodes 
(50 nm thick) via consecutive metal deposition and lift-off processes on 
SiO2/Si substrates. Subsequently, the Ag2S film was sputtered on the whole 
wafer, followed with a lift-off process to create square Ag2S islands at the 
cross-points. After forming top silver electrodes, post annealing processes 
were performed to set the microstructure of the Ag2S electrolyte. A global 
view of the fabricated memristor arrays on a 4-inch wafer is shown in Figure 
5.1.2a. In each array, 150×150 Ag2S-based devices (each with a lateral dimen-
sion of 5×5 µm2) are formed at the cross-points between the top and bottom 
electrodes (Figure 5.1.2b). The memristive crossbar array is a promising can-
didate for in-memory computing. By applying voltages to specific columns, 
the selected memristive unit in crossbar array can be programmed to store in-
formation, and device currents can be collected at corresponding rows to con-
duct analogue data processing, as schematically illustrated in Figure 5.1.2c. 
The zoomed-in SEM images (Figure 5.1.2d and e) provide further insights of 
the crossbar array, with the sandwiched layer stack of a single Au/Ag2S/Ag 
cell unit revealed by the cross-sectional SEM image in Figure 5.1.2f.  

 

 

Figure 5.1.2 (a) The optical image of the Ag2S-based memristor crossbar arrays fab-
ricated on 4-inch SiO2/Si wafer. Scale bar, 1 cm. (b) The optical micrograph of a
150×150  memristive array. Scale bar, 1 mm. (c) Schematic illustration of the cross-
bar structure. At each cross-point, the Ag2S electrolyte is sandwiched between a silver
top electrode (Ag TE) and a gold bottom electrode (Au BE). (d) The SEM images of a
sub-array. Scale bar, 30 μm. (e) The SEM images of a 2×2 sub-array. Scale bar, 10 
μm. (f) The cross-sectional SEM image of an Au/ Ag2S/Ag memristive unit. Scale bar, 
50 nm.  
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5.2 RS characteristics of the Ag2S-based memristor 
To investigate the memristive behavior of the fabricated device, we conducted 
d.c. I-V measurements by applying voltages to the top silver electrode (with 
the bottom electrode grounded). As depicted in Figure 5.2.1a, an Au/Ag2S (50 
nm thick)/Ag unit exhibits a typical bipolar RS behavior. Negative voltage can  
accumulate Ag+ ions at cathode Ag2S/Ag interface and reduces them to 
continuous silver filaments, as characterized by an abrupt increase in current 
at approximately -0.3 V. The resulted LRS remains stable until a positive 
voltage is applied to reset the device back to HRS, offering a substantial 
dynamic range over six orders of magnitude. Notably, the device demonstrates 
a low threshold voltage (Vth) for continuous filament formation (read out as 
the voltage at which the sudden increase in current occurs in the d.c. 
operation). A statistical analysis of the Vth from 30 devices (as summarized in 
Figure 5.2.1b) demonstrates a distribution ranging from -0.1 V to -0.4 V, with 
an average value of -0.22 V from a Gaussian fit. This mean Vth is significantly 
lower than values observed in state-of-the-art 2D material-based memristors 
(typically ~1V). The highest LRS conductance of the device could reach milli 
siemens (mS) regime, with a device-to-device variation (evaluated by 
coefficient of variation Cv) approaching 0.6 as shown in Figure 5.2.1c. Such 
variations are resulted from the inherent stochastic nature of filament 
formation along the defects and grain boundaries inside the electrolyte [21], 
[88], [89]. To mitigate this variation in practical array operation, selectors (e.g. 
transistors) or peripheral circuits are often integrated to improve the tunability 
of RS in memristors [90]. Here we demonstrate the modulation of the LRS 
conductance by implementing current compliance (Icc) during d.c. settings. As 
summarized in Figure 5.2.1d, Icc could reduce Cv to below 0.1, decreasing 
mean conductance value by two orders of magnitude. Furthermore, the 
conductance of these states (read by 5 mV bias) remains stable over 1000 
seconds (Figure 5.2.1e). This LRS conductance modulation with exceptional 
retention allows devices operating at lower conductance range, which is 
crucial for reducing both sneak path currents and switching energy [91], [92]. 
Moreover, the device was subjected to repeated RS across the full dynamic 
range, revealing robust switching endurance over 104 write-read cycles 
(Figure 5.2.1f). 
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The small Vth value suggests fast kinetics of Ag+ migration and redox 

processes within our Ag2S-based device. To provide deeper insights, we 
conducted in-situ SEM observations of the electrochemical process in 
polycrystalline Ag2S films. The repeated electron beam scanning during SEM 
imaging could induce Ag+ migration (towards the film surface) and 
subsequent reduction (at the surface). This was evidenced by the rapid growth 
of silver clusters on Ag2S film surface under SEM imaging (Figure 5.2.2a and 
b). Furthermore, Figure 5.2.2c displays a silver particle induced during SEM 
analysis, whose chemical composition was confirmed by energy-dispersive 
spectroscopy (EDS). Silver clusters were also observed during cross-sectional 
SEM analysis of an Au/Ag2S/Ag memristor cell, as highlighted by dashed 
lines in Figure 5.2.2d. The direct observation of Ag clusters within the 
memristor reflects the fast Ag+ migration and reduction, which aligns with the 
small Vth observed in electrical measurements. 

Early material studies concluded that dominant ion carriers in monoclinic 
Ag2S are the Frenkel defect-induced interstitial Ag+ ions, which effectively 
migrate between adjacent tetrahedral and octahedral sites in their crystals 
[93]–[96]. This process within the crystal lattice (instead of the grain boundary) 

Figure 5.2.1 (a) The I-V characteristics of the device under 0→-0.3→0.3→0 V d.c. 
bias. (b) The distribution of Vth measured from 30 devices and its Gauss fit. (c) The
cumulative probability of the highest LRS conductance. The mean value (σ), standard
deviation (μ) and coefficient of variation (Cv) are calculated. (d) The mean conduct-
ance value (red-marked) and their coefficient of variation (blue-marked) under dif-
ferent current compliance (10 μA, 50 μA, 100 μA and 500 μA) during d.c. settings. (e)
The retention of conductance read under 5 mV bias. (f) The endurance of the device
under 104 switching cycles. 
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suggests that larger grain sizes could lower the energy barrier for Ag+ ion 
migration. Based on this understanding, we post-annealed the deposited Ag2S 
films with varying temperatures to modulate the film microstructure. 
Considering the susceptibility of Ag2S films to electron beams, we utilized 
AFM to investigate the surface morphology. Compared with the as-deposited 
film, the one after 160 oC post-annealing clearly exhibits larger grain size 
(Figure 5.2.3a). Devices fabricated with higher post-annealing temperatures 
indeed required smaller setting voltages to form continuous silver filaments, 
as summarized in Figure 5.2.3b. To further confirm the impact of grain 
structure, we examined devices with varying thicknesses of Ag2S electrolytes. 
AFM analysis revealed that as film thickness increased from 50 nm to 200 nm 
(after 160 oC post annealing), the average surface roughness linearly increased, 

Figure 5.2.2 In situ SEM (with accelerating voltage at 4.5 kV) images of an Ag2S film
surface taken before (a) and after (b) repeated electron beam scanning for 40 s. (c)
SEM (with accelerating voltage at 4.5 kV) image of the Ag2S film (top), with a partic-
ipated silver cluster on the surface, and the corresponding EDS images (bottom-left
for Ag signals and bottom-right for S signals). (d) Cross-sectional SEM image of an
Au/Ag2S/Ag cell taken under 2 kV accelerating voltage. The red dash line highlights
the electron-beam induced silver clusters in the Ag2S layer.    
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indicating larger grain sizes in thicker films. Experimental results show that 
devices with thicker Ag2S electrolytes exhibit further reduced Vth (Figure 
5.2.3c). Notably, the Au/Ag2S (200 nm, 160 oC annealed)/Ag memristor 
devices displayed a Vth at approximately -0.1 V (see I-V characteristics in 
Figure 5.2.3d), representing the lowest reported value to our knowledge.  

Given the fast kinetics of Ag+ ion migration and redox, our Ag2S-based 
memristors hold the promise for rapid and energy-efficient operations. We 
applied short write-read pulses to Au/Ag2S (200 nm, 160 oC-annealed)/Ag 
devices, and monitored the current response. Figure 5.2.4a shows that three 
successive write pulses (-0.3 V, 1 µs) gradually increase the peak device 
current. A zoomed-in view at the reading process (Figure 5.2.4b) further 
demonstrates the discrete conductive states under fast programming. The 
switching energy of each rapid writing process was calculated to be 
approximately 20 fJ, which is comparable to the energy consumed per 
synaptic event in human synapses. Compared with recently reported CMOS-

Figure 5.2.3 (a) Color-coded AFM images of the raw Ag2S film (bottom) and the 160 ℃-annealed Ag2S film (top). (b) The threshold voltage of the Ag2S (50 nm)-based 
memristors fabricated with different annealing temperatures. (c) The threshold volt-
age of the Ag2S (160 ℃-annealed)-based memristors fabricated using Ag2S films with 
different thickness. (d) The I-V characteristics of the device with 200 nm Ag2S films 
(160 ℃-annealed). 
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compatible memristive crossbar arrays, our device exhibits the lowest 
switching energy (Figure 5.2.4c) [90], [97]–[101].   

It is crucial to note that the operation speed of the memristor is not only 
limited by conductance modulation but also by conductance readouts. During 
fast programming, the transition from write to read pulses (as green-shaded 
Figure 5.2.4a and b) induces a current recovery process. This transient 
behavior, known as resistor-capacitor delay [90], arises as the parasitic 
capacitance of the memristor starts to charge/discharge during the voltage 
switching, which stabilizes after complete charge transfer. Our Au/Ag2S (200 
nm, 160 oC-annealed)/Ag device exhibits a recovery time of about 5 µs, 
suggesting a write–read operation frequency approaching sub-megahertz in 
the crossbar array. It is worth noting that the lateral device dimension directly 
correlates the device current and the parasitic capacitance, and thus both the 
energy efficiency and the programming speed of our Ag2S-based memristive 
crossbar array could be further improved by device downscaling.  

 
 
 
 
 
 

Figure 5.2.4  (a) The current trace of the Ag2S-based device (200 nm, 160 ℃-an-
nealed) under write (-0.3 V, 1 μs)-read (5 mV) pulses. The switching energies of each
writing pulse are calculated by integrating the product of the voltage and the current 
over the writing time. The pink and light green shadings highlight the writing and the
recovery time, respectively, and the regime in black dashed line is zoomed-in as (b). 
(c) Comparison of switching energy between the Ag2S-based device and recently re-
ported memristors in their CMOS-compatible arrays. The pink shading marks the
switching energy of biological synapses per synaptic event. 
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5.3 Demonstration of neuromorphic computing using 
Ag2S-based flexible memristive crossbar array 
The low temperature (≤ 160 oC) fabrication of the Ag2S-based memristive 
crossbar array retains the full compatibility with CMOS technology and makes 
it promising for integration in wearable electronics. To validate this potential, 
we fabricated the same selector-less Ag2S-based memristive array on flexible 
polyimide substrates (see Figure 5.3.1a), and conducted the on-chip MAC 
operations on it. In this demonstration, 3×3 digital kernels for vertical and 
horizontal edge detection were encoded into the analogue conductance of 18 
memristors in the crossbar, with a differential pair of devices to represent both 
positive and negative kernel values. The pixel values (ranging from 0 to 255) 
of input images were then linearly transferred into the voltage of read bias 
(ranging from 0 to 25.5 mV), which was fed to different rows of crossbar 
array. Consequently, an overall current, weighted from the encoded 
conductance, can be collected in the shared column. This current represents 
the output of a convolution process utilizing analogue MAC operation. 
Convoluting across the entire input image results in an output image, as 
illustrated in Figure 5.3.1b). Notably, the 6 LRS memristive units representing 
the kernel values of those "1" and "-1", dominate the overall output current in 
a MAC operation, while the units at HRS representing those "0" contribute 
negligible differential currents. This is illustrated by the significant difference 
between the encoded "1" (red-marked), "0" (green-marked) and "-1" (blue-
marked) in vertical edge detection kernel (Figure 5.3.1c). In Figure 5.3.1d, we 
show the differential currents of the 6 encoded LRS memristive units in the 
flexible array (bent with a 3 mm radius). Their linear I-V relationships under 
the entire input voltage window validate the analogue MAC operations 
through Ohm's law and Kirchhoff's current law. As a proof-of-concept 
demonstration, we established a dataset of MAC operations based on the 
differential currents of these 6 memristors, allowing the reference of 
corresponding output currents for any input voltages. Figure 5.3.1e and f 
provide a comparison of output images between hardware processing and 
software simulation for vertical edge detection and horizontal edge detection, 
demonstrating the tolerable device-to-device variation in our flexible 
memristive array during image processing. 
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In addition to MAC operations (for data propagation), we also demonstrate 
continuous potentiation/depression (for weight updates) in the flexible array. 
As depicted in Figure 5.3.2a, programming a memristive unit under a 3 mm 
bending radius was achieved through 1200 up-and-down pulses (±0.3V, 1 µs 
for 30-cycle potentiation/depression). The maximum conductance during this 
1200-step modulation exhibited a Cv at 6%, and the inherent non-linear 
switching characteristics were also evident in repeated weight update cycles. 
Based on this, we simulated an image classification task using the Modified 
National Institute of Standards and Technology (MNIST) dataset. The 4-layer 
DNN architecture, illustrated in Figure 5.3.2b, contains 784 input neurons, 
256 and 128 hidden neurons, and 10 output neurons. The experimental con-
ductance modulation results, considering non-linearity, asymmetry, and vari-
ations, were utilized as the characterization of non-ideal synaptic devices to 
control the synaptic strength between neurons. After training 10 epochs with 
conventional SGD algorithm, the DNN with Ag2S-based memristors achieved 
a recognition accuracy of 78.4% on the testing dataset, which is lower than 
the 93.2% accuracy achieved by ideal devices (without non-linearity and 
asymmetry). We show that the impact of inherent non-ideality can be com-
pensated by a specialized in-memory SGD training algorithm, referred as 
TTV2 [51], [53]. This advanced DNN employs two matrices (A and C) to 

Figure 5.3.1 (a) (a) Optical photography of a flexible memristive crossbar array fab-
ricated on polyimide substrate. (b) Schematic illustration of image processing on the 
memristive crossbar array. (c) The encoded kernels for vertical edge detection. Red,
green, and blue-marked values represent the “1”, “0” and “-1” respectively. (d) The 
differential currents of 6 dominant LRS memristors, whose conductance represents
the kernel values of those “1” and “-1”. (e) The output image from hardware and
software processing after vertical edge detection. (f) The output image from hardware
and software processing after horizontal edge detection. 
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store weight information, and connects them with a low-pass filter (H), as il-
lustrated in Figure 5.3.2b. By employing the symmetry point shifting tech-
nique during weight update in matrix A, the randomness from the input data 
(unintended features, acting as short-term noise) was significantly reduced. 
After further filtering by the low-pass function of matrix H, true features were 
effectively propagated to matrix C, updating the weights towards their opti-
mized values. The simulation results of our Ag2S-based advanced DNN reach 
a remarkable saturation accuracy of 92.6%, despite the inherent non-idealities 
in the memristive units. Moreover, the accuracy of the Ag2S-based DNN with 
TTV2 converged quickly after 3 training epochs, in direct comparison with 
that from conventional SGD. This result demonstrates that the TTV2 algo-
rithm compensates for the intrinsic non-idealities of the integrated memristors, 
significantly improving both the training accuracy and training speed. 

 
 
 
 
 
 
 
 

Figure 5.3.2 (a) Programming of the Ag2S-based flexible memristors by consequent
30 potentiation pulses (-0.3 V, 1 μs) and 30 depression pulses (0.3 V, 1 μs). Cv of 6
% was calculated from the maximum conductance during 1200-step programming 
to evaluate cycle-to-cycle variation. (b) Schematic illustration of the DNN architec-
ture. The conventional SGD and TTV2 are utilized as training algorithms, respec-
tively. In TTV2, the weights are stored in two matrices (A and C), and matrix H
serves as a low-pass filter to minimize the randomness from the inputs. (c) The sim-
ulation accuracy of DNN with the Ag2S-based memristors using SGD or TTV2 as 
the training algorithm. 
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6. Conclusions and Future Perspectives 

The main purpose of this thesis is to study the resistance switching behavior 
of Ag2S-based flexible memristors, and to explore their applications in 
neuromorphic computing. To pursue the goal, we start with fabricating 
flexible memristors (FMs) using thick Ag2S films, and investigate their 
resistance switching (RS) mechanism. Afterwards, the CMOS-compatible 
integration of wafer-scale Ag2S-based memristor crossbar array is achieved, 
and its computing capabilities are demonstrated. The conclusions are 
summarized as follow: 
1. Full-inorganic FMs are demonstrated utilizing free-standing  thick Ag2S 

films. The devices exhibit a remarkable ON/OFF ratio of 106 at ±0.5V 
setting/resetting bias, and operate with high-density non-volatile 
conductive states. The stable RS can be retained when FMs are bent with 
3 mm curvature radius, with exceptional endurance (over 1000 cycles) 
and retention (over 104 s). It is confirmed that the RS in the thick Ag2S 
film-based FMs is induced by the sequential Schottky barrier height (SBH) 
modulation at the Ag/Ag2S interface and the continuous silver filament 
formation inside the electrolyte, which can be realized by an asymmetric 
contact geometry as demonstrated in this thesis. 

2. Sole interface RS by SBH modulation is achieved in the same thick Ag2S 
film-based FMs. This unique RS only relies on Ag+ ion migration and 
accumulation/depletion at the cathode interface, eliminating the need for 
continuous filament formation. Compared with conventional filamentary 
memristors, an ultra-low switching energy of ~0.2 fJ is achieved in the 
FM. The hardware-based image processing of interface RS indeed 
consumes two orders of magnitude lower energy than filament RS 
measured in the same devices. 

3. The click variation in thick Ag2S film-based FMs can be significantly 
reduced by interface RS, due to the avoided stochasticity in filament 
formation and ablation. And the synaptic functions such as short-term 
potentiation (STP), long-term potentiation (LTP) and psychological 
“memory and forget” behavior can be emulated by the interface RS in the 
device. An artificial neural network simulation further confirms the 
reduced cycle-to-cycle variations in interface RS improve the image 
learning ability of artificial neural network. 
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4. Wafer-scale integration of Ag2S-based memristive crossbar arrays with 
low thermal budget under 160 oC is demonstrated. The Ag2S thin films are 
synthesized by reactive sputtering and the memristors are fabricated using 
CMOS-compatible processes. The integrated Ag2S-based memristive unit 
exhibits a record low threshold voltage of ~ -0.1V in d.c. operation to form 
continuous silver filaments. Under fast operation at sub-megahertz 
frequency, the device achieves an ultra-small switching energy of ∼15 fJ, 
which is comparable to that of biological synapses in human brains. The 
same crossbar array is demonstrated on polyimide substrates for flexible 
electronics application. The obtained flexible device array enables 
analogue multiply-accumulate calculations for image processing, and 
their inherent non-linear switching characteristics can be significantly 
compensated by the advanced training algorithm in deep learning neural 
networks (DNNs). The image recognition simulation yields an impressive 
image recognition accuracy of 92.6%, demonstrating its potential for fast 
and energy-efficient neuromorphic computing.  

Based on the studies discussed in this thesis, the fabrication of memristive 
crossbar array is developed, basic knowledge on resistance switching inside 
Ag2S materials is accumulated, and the corresponding computing application 
is demonstrated. In future work, dedicated efforts should be devoted to explore 
the following issues. 

1. The interface RS by SBH modulation is realized by forming asymmetric 
contact geometry to ensure that the contact resistance at cathode interface 
dominates the total device resistance. The same purpose can be potentially 
achieved by forming a stable ohmic contact at the counter anode interface 
in a symmetric contact geometry. The strategy holds the promise to induce 
interface RS in memristive crossbar array for further performance 
optimization. 

2. The Ag+ ion migration and redox play a vital role in resistance switching. 
More studies should be conducted to explore the details of the 
electrochemical process. For example, the impact of Ag2S film 
microstructure on Ag+ ion migration and redox needs to be further 
investigated and characterized. A deeper understanding on the kinetics 
helps to both improve device operation speed and reduce device switching 
energy. 

3. Memristive crossbar array should be monolithically integrated with 
peripheral circuits as a deep learning accelerator for neuromorphic 
computing. In this thesis, selector-less memristive crossbar array is 
demonstrated. And the CMOS-compatible integration of selectors should 
be explored to better controlling RS in memristive units. 
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Sammanfattning på svenska 

Huvudsyftet med denna avhandling är att studera det resistiva 
switchningsbeteendet hos Ag2S-baserade flexibla memristorer och att utforska 
deras tillämpningar inom neuromorfiska beräkningar. För att uppnå detta mål 
börjar vi med att tillverka FM-enheter med tjocka Ag2S-filmer och undersöka 
deras RS-mekanism. Därefter färdigställs den CMOS-kompatibla 
integrationen av en Ag2S-baserad memristormatris på en kiselskiva och dess 
beräkningsförmåga demonstreras. Slutsatserna sammanfattas enligt följande: 

1. Helt oorganiska FM-enheter demonstreras genom användning av 
fristående tjocka Ag2S-filmer. Enheterna uppvisar ett 
anmärkningsvärt PÅ/AV-förhållande på 106 vid ±0.5 V inställnings-
/återställningsförspänning och arbetar med hög densitet av icke-
flyktiga ledande tillstånd. Den stabila RS kan bibehållas när FM-
enheter böjs med en krökningsradie på 3 mm, med exceptionell 
uthållighet (över 1000 cykler) och retention (över 104 s). Det bekräftas 
att RS i FM-enheter baserade på tjocka Ag2S-filmer induceras av 
sekventiell SBH-modulering vid gränssnittet mellan Ag/Ag2S och 
kontinuerlig silverfilamentbildning inne i elektrolyten, vilket kan 
realiseras genom en asymmetrisk kontakgeometri vilket 
demonstrerats i denna avhandling. 

2. RS enbart vid gränssnittet genom SBH-modulering uppnås i samma 
FM-enheter baserade på tjocka Ag2S-filmer. Detta unika RS förlitar 
sig endast på Ag+-jonmigration och ackumulering/uttömning vid 
katodgränssnittet och eliminerar behovet av kontinuerlig 
filamentbildning. Jämfört med konventionella memristorer baserade 
på filamentbildning uppnås en extremt låg switchningsenergi på ~0.2 
fJ i FM-enheten. Hårdvarubaserad bildbehandling av RS vid 
gränssnittet förbrukar så lite som två storleksordningar mindre energi 
än filamentbaserad RS uppmätt på samma enheter. 

3. Klickvariationen i FM-enheter baserade på tjocka Ag2S-filmer kan 
minskas betydligt genom RS vid gränssnitet på grund av undvikandet 
av stokasticitet i filamentbildning och ablation. Och synaptiska 
funktioner som STP, LTP och psykologiskt "minnas och glömma"-
beteende kan emuleras av RS i gränssnittet i enheten. En simulering 
av artificiella neurala nätverk bekräftar ytterligare att de minskade 
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cykel-till-cykel-variationerna hos RS i gränssnittet vilket förbättrar 
bildinlärningsförmågan hos artificiella neurala nätverk. 

4. Integration av Ag2S-baserade memristormatriser med låg termisk 
budget under 160 °C på kiselskiva demonstreras. De tunna Ag2S 
filmerna syntetiseras med reaktiv sputtring och memristorerna 
tillverkas med hjälp av CMOS-kompatibla processer. Den integrerade 
Ag2S-baserade memristorenheten uppvisar en rekordlåg 
tröskelspänning på ~-0.1 V vid likströmsdrift för att bilda 
kontinuerliga silverfilament. Under snabb drift vid frekvenser under 
megahertzområdet uppnår enheten en extremt liten switchningsenergi 
på ~15 fJ, vilket är jämförbart med biologiska synapser i mänskliga 
hjärnor. Samma korsstångsmatris demonstreras på polyimidsubstrat 
för böjbara elektroniktillämpningar. Den erhållna flexibla matrisen 
möjliggör analoga multiplikationsackumuleringsberäkningar för 
bildbehandling, och deras inneboende icke-linjära 
switchningsegenskaper kan till stora delar kompenseras av den 
avancerade träningsalgoritmen i DNN. 
Bildigenkänningssimuleringen ger en imponerande 
bildigenkänningsnoggrannhet på 92.6%, vilket visar dess potential för 
snabb och energieffektiva neuromorfiska beräkningar. 
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