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Introduction

Quasi-hereditary algebras are algebras equipped with a partial order on the isomorphism classes
of simples which fulfills certain additional properties. They were first introduced by Scott in [25],
and then became a central notion in the theory of highest weight categories, initiated by Cline,
Parshall and Scott in [I0]. The primary motivation of [I0] came from the theory of representations
of semisimple algebraic groups. Among natural examples of quasi-hereditary algebras arising from
this area are the Schur algebras of symmetric groups and algebras underlying blocks of Bernstein-
Gelfand-Gelfand category O associated to a semisimple complex Lie algebra g.

Many other families of quasi-hereditary algebras of significant interest come from representation
theory of finite-dimensional algebras itself. Among these are all finite-dimensional algebras of
global dimension less than or equal to two [I3, Theorem 2], in particular path algebras of quivers
and Auslander algebras.

Again in analogy to Bernstein-Gelfand-Gelfand category O, given a quasi-hereditary algebra A,
there is a set of A-modules known as the standard modules over A, which mimics the structure and
properties of Verma modules over a semisimple complex Lie algebra g. Similarly to the setting
of category O, the category F(A) of A-modules admitting a filtration by standard modules is of
particular interest. By the Dlab-Ringel reconstruction theorem [14], the algebra A together with
its quasi-hereditary structure can be reconstructed from F(A).

Recall that Verma modules over g are defined by induction from simple finite-dimensional mod-
ules over a Borel subalgebra. In analogy, Koenig introduced in [I7] the concept of an exact Borel
subalgebra B of a quasi-hereditary algebra A, which is a directed subalgebra of A such that,
in particular, the induction from B-modules to A-modules maps simple B-modules to standard
A-modules, so that we obtain a bijection between isomorphism classes of simple B-modules and
standard A-modules. Additionally, one requires the induction functor to be exact, whence the
name, which enables us to transfer homological information from mod B to F(A). Together, these
conditions allow us to describe the structure of F(A) using an exact Borel subalgebra.

A fundamental theorem in the study of exact Borel subalgebras of quasi-hereditary algebras is that
of Koenig, Kiilshammer and Ovsienko, proved in [I8], which states that every quasi-hereditary
algebra is Morita equivalent to a quasi-hereditary algebra with an exact Borel subalgebra.
Quasi-hereditary algebras also feature in the work of Chuang and Kessar in [6], which was later
used by Chuang and Rouquier [7] in their proof of Broué’s Abelian Defect Group conjecture for
symmetric groups. There, the quasi-hereditary algebras that appear are Schur algebras corre-
sponding to blocks of the group algebra of the symmetric group. Of central interest in this setting
are the RoCK blocks. These are blocks of a given weight w which are Morita equivalent to the
wreath product of the principal block with the symmetric group S,. The Schur algebras cor-
responding to these blocks are then also Morita equivalent to the wreath product of the Schur
algebra corresponding to the principal block with the symmetric group, see [8, Theorem 5.1]. This
enables Chuang and Rouquier to use previous results by Chuang and Tan in [9] on the wreath
products of quasi-hereditary algebras with symmetric groups, something which was later again
studied by Chan in [5].

Wreath products of quasi-hereditary algebras appear again in a more recent article by Evseev and
Kleshchev [I5], which generalizes the result of Chuang and Rouquier from the group algebra of



the symmetric group to arbitrary Hecke algebras. Here, the quasi-hereditary algebras considered
are zigzag algebras.

Recall that the wreath product algebra AS,, of an algebra A with a symmetric group 5, is isomor-
phic to the skew group algebra A®™ x S,,. Thus, one can hope that, after additional investigation
of the structure of tensor products of quasi-hereditary algebras, results on skew group algebras of
quasi-hereditary algebras may be applied to wreath product algebras of quasi-hereditary algebras.
A skew group algebra A G is an algebra constructed from an algebra A with an action by a group
G in the following way:

e As a k-vector space, Ax G := AR, kG.
e Multiplication is given by
(a®g) (' ®g) =ag(d)®gg'"

The structure of skew group algebras, including their Morita equivalence class, their Hochschild
cohomology and their Yoneda algebra, has been studied extensively, see for example [23], [T1], [20],
[26], [19]. The preservation of various structural properties of A under the skew group construction,
such as global dimension, the property of being an Auslander algebra, or the property of being
Calabi-Yau, has also been investigated by many authors, including [27], [21], [23].

In this article, we examine the relation between possible quasi-hereditary structures on A and
those on A * G. Further, we study the relation between the exact Borel subalgebras of the two.
Assuming a natural compatibility of the group action with the partial order, we show that <,
induces a partial order < 4. on the isomorphism classes of simple A * G-modules, and we obtain
the following theorem:

Theorem (Theorem [3.14)). The algebra (A, <4) is quasi-hereditary if and only if (Ax G, <axq)
is quasi-hereditary .

Moreover, again assuming compatibility with the G-action, we can also relate exact Borel
subalgebras of A and A *x G.

Theorem (Theorem [3.17)). Let B C A be a subalgebra of A such that g(B) = B for every g € G.
Then (B,<p) is an exact Borel subalgebra of (A,<a) if and only if (B * G,<p.qc) is an exact
Borel subalgebra of (A * G, <4.q).

The structure of the article is as follows. Section [I] contains a brief account of skew group
algebras, including a description of the simple A * G-modules in terms of simple A-modules and
irreducible representations of certain subgroups of G. In Section [2] we recall some of the central
results about quasi-hereditary algebras and exact Borel subalgebras. Section [3]is dedicated to the
synthesis of the two concepts and contains our main results. Finally, in Section [] we describe
some exact Borel subalgebras of Auslander algebras of certain Nakayama algebras, exemplifying
our methods from preceding sections.

Notation

Let k be an algebraically closed field. All algebras are assumed to be finite-dimensional k-algebras,
and all modules are assumed to be finite-dimensional as k-vector spaces. Unless otherwise stated,
all modules are assumed to be left modules. Tensor products, if not otherwise indicated, are tensor
products over k. We denote by D := Homy(—,k) the usual k-duality.

For a module M and an indecomposable module N over some algebra A we write N|M if and
only if N is isomorphic to a direct summand of M.

We denote by Sim(A) a set of representatives of the isomorphism classes of the simple A-modules,
and for S € Sim(A) we write [M : S| for the multiplicity of S in M. Moreover, for any module M
we pick a projective cover Py;.

For any algebra A, we denote by rad the functor

rad : mod A — mod A



mapping a module to its radical and by top the functor
top : mod A — mod A

mapping a module to its top. Recall that top(M) = M/rad(M) for every M € mod A.

1 Skew Group Algebras

Throughout, let A be a finite-dimensional algebra over k and G be a finite group acting on A
such that |G| does not divide the characteristic of k. In this chapter, we will repeat some basic
definitions and results about skew group algebras. For a more detailed introduction see for example
[22] and [23].

Definition 1.1. For an A-module M we define gM := M as a k-vector spaces together with the
multiplication

a-gum =g a)m.

Moreover, for an A-linear map f: M — N we define g(f)(m) := f(m).
In this way, every g € G gives rise to an autoequivalence

mod A — mod A, M — gM, f — g(f)

such that the map G — Aut(mod A) is a group homomorphism.

The module gM is also sometimes denoted 9 M, see for example [23] p. 235].
However, we have chosen this notation, so that we may identify g M with the set of formal products
{gm :m € M} and then be able to write

a-gm=gg (a)m.
Definition 1.2. [23, p. 224] The skew group algebra A x G is defined as
AxG:=AkG
as a k-vector space together with the multiplication
(a@g) (' ®g) =ag(d)®gg'"

Definition 1.3. Let M be an A-module. We say that M has a G-action if there are isomorphisms
of A-modules

tréw tgM — M
such that
trg/l og(tr}) = tr%
for all g,h € M.
Remark 1.4. Let M, N be two A-modules with a G-action. Then G acts on Homa (M, N) via
g-f =ty og(f)o (trg")~".

We call a homomorphism f € Homa (M, N) compatible with the actions on M and N, if it is a
fized point of the induced action on Hom (M, N).

Moreover, note that if M = N, then the action of G on Enda(M) is an action of algebra auto-
morphisms.



Proposition 1.5. [22, Proposition 4.8] There is a one-to-one correspondence between modules
(M, (tr)")geq) with a G-action and A x G-modules given by

g-m:= tréw(m).

which induces an equivalence of categories between the A * G-modules and the A-modules with a
G-action together with the A-linear maps compatible with this action.

Remark 1.6. Note that with this identification, the G-action on Homu (M, N) for two A x G-
modules defined in Remark[1.7) can be written as

g- f(m) =g(f(g~'m)).
Definition 1.7. Let M be an A-module. Then we define an A * G-module kG @ M via
g -(gem):=ggam
alg@m) =g ®g " (a)m

forg,gd €e Gime M,a € A.
Moreover, if H is a subgroup of G and M is an AxH module, then M is in particular a k H-module,
so that we can define an A x G-module k G ®yx g M in the same way.

Remark 1.8. Note that if H is a normal subgroup of G, then the G-action on A induces a
G-action on A x H via

g(a®h) = g(a) @ ghg™".

Definition 1.9. Let M be an A+ G-module, V be a k G-module. Then we define an A G-module
M®V via

g (m®@v):=gm®e gv
alm®v) :=am v

forge GGme M,v eV and a € A.
If f : M — N is a homomorphism of A x G-modules, then

fRIdy : MRV >NV
is a homomorphism of A x G-modules, and
—®V modA*G—-modAxG M— MV, f— f®idy

defines an additive functor.
Moreover, note that — @ (VoV )2 -Ve -V and - (Ve V)2 (- V)V’

Definition 1.10. We denote by
Ig:modA —modA*xG,M—kGRM, f—idig®f

the induction functor along G.
We denote by

Rg:mod Ax G — mod A, M 4 M
the canonical restriction functor. Moreover, if H is a subgroup of G, we denote by
Ig/g:mod A+ H— modAxG,M — kG @xg M, fridcg®f
the induction functor from Ax H to Ax G and by
Rg g :mod Ax G — mod A H, M + g,z M

the canonical restriction functor.



Lemma 1.11. [23, Theorem 1.1 C] We have rad(A x G) =rad(A) ® kG.

The content of the following proposition is essentially a compilation of results in [23]. However,
for the sake of convenience we will give a quick proof.

Proposition 1.12. Let V' be an indecomposable k G-module. Then the following statements hold:

1.

S A R S S

For any A * G-module M

IcRa(M) = M®kG,
in other words,

kGoM=MkG.
More precisely, there is a natural equivalence

IcRG = —-—QkG
For any A-module M

Ralg(M) = @ gM.
geG

More precisely, there is a natural equivalence

Rglg = @9

geqG

Ra,Ig and — ® V' are additive.

Rg,Ig and — ®V are exact and reflect exact sequences.
Rg,Ig and — @V preserve and reflect projective modules.
Rg,Ig and — @V preserve and reflect injective modules.
Rg,Ig and — @V preserve and reflect semisimple modules.

We have natural isomorphisms I otop = topols, Rg otop = topoRg and (—® V) otop =
topo(— ® V).

Proof. 1. Let M be an A * G-module. Then we define an isomorphism

aM:IGRg(M):kG’®A|M%M®kG’,g®mr—>gm®g.

It is easy to check that this is an isomorphism of A*G-modules and that o = (aps) s defines
a natural isomorphism.

. Let M be an A-module. Then we define an isomorphism

ﬂM : R(;Ig(M) =A| kG@M — @gMag@)m = (599/m)g'€G’

geaG

where 4,/ is the Kronecker delta of g and ¢'. It is easy to check that this is an isomorphism
of A-modules and that 8 = (8ar)ar defines a natural isomorphism.

This is obvious.

R is a restriction functor and thus exact. Moreover, since tensor products over k are exact,
Ig and — ® V are exact.



5. Since A is an A x G-module via g - a = g(a),
Ic(A) = AQkG = AxG.

Since the projective modules in mod A are exactly the modules isomorphic to direct sums
of direct summands of A, and the projective modules in mod A x G are exactly the modules
isomorphic to direct sums of direct summands of A, this implies that I preserves projectives.
On the other hand, if M is an A-module such that I(M) is projective, then so is Rglg(M) =
@D,cc gM and since M = eM is a direct summand of P, gM this implies that M is
projective. Similarly,
Ra(AxG) = @ gA=|G|A.
g€G

Since the projective modules in mod A are exactly the modules isomorphic to direct sums
of direct summands of A, and the projective modules in mod A * G are exactly the mod-
ules isomorphic to direct sums of direct summands of A, this implies that Rg preserves
projectives. Moreover, if M is an A * G-module such that RgM is projective, then so is
IcRa(M) = M ® kG and since k| kG,

M=~M®ek|MakG.

This implies that M is projective.
Finally, since V is an indecomposable projective k G-module, it is isomorphic to a direct
summand of k G, so that

-®V|-®kG = IgRg,

and thus — ® V preserves and reflects projectives.

6. Since DkG 2 kG as a k G-module, this is analogous to the previous statement replacing A
by DAand A*G by DAx G

7. Let S be a semisimple A-module. Then rad(A)S = (0) and hence
rad(A « G)Ig(S) = (rad(4) @ kG kG® S =rad(4)(kG® 5)
=) kG @ (g(rad(4))S) = > kG @ (rad(4)S) = (0)

geG geG

where the first equality follows from Lemma and g(rad(A)) = rad(A) since G acts on
A via algebra automorphisms. Thus I (S) is semisimple.
On the other hand, if S is a simple A * G module, then rad(A * G)S = (0) and hence

rad(A)Rg(S) =rad(A)S Crad(4 « G)S = (0)

so that R (S) is semisimple. Thus Rg preserves and reflects semisimple modules.
Since for every A % G-module M we have

Re(M@V)= Ra(M)®V = dimk(V)Ra(M),

this implies that — ® V' also preserves and reflects semisimple modules.

Moreover, if S is an A-module such that I5(S) is semisimple, then so is RgI;(S) and hence
S, since S is a direct summand of Rglg(S) = P,cq 95 and if S is an A x G-module such
that R(.S) is semisimple, then so is IgR(S) and hence S, since S is a direct summand of
Ic;Rg(S) 2 SRkG.

8. Let M be an A-module. Then by Lemma [I.11]

rad(IgM) =rad(Ax G)IgM = (rad(A) @ kG) (kG @ M).



Since G acts on A via algebra automorphisms, we have g(rad(A)) = rad(A) for every g € G.
Thus

(rad(4) @ kG) (kG ® M) = kG @ rad(A)M = kG @ rad(M) = Ig(rad(M))

Since I is exact, we thus have I o top = topolg.
On the other hand, let M be an A * G-module. Then

Re(rad(M)) = Ra((rad(A) ® G)M) = Rg(rad(A)M) = rad(A)Rq (M),

so that, since Rg is exact, we have Rg o top = topoRg.
Finally, let M be an A * G-module. Then by Lemma we have

radlM @ V) =rad(A*G)(M V) = (rad(A) @ kG) (M V) = (rad(A* G)M) @ V =rad(M) @ V.

Thus, since — ® V is exact, we have (— ® V') o top = topo(— @ V).
U

Corollary 1.13. Let H be a subgroup of G and let Z C G be a set of representatives of G/H.
Then the following statements hold:

1. Ig g o Iy is naturally equivalent to Ig.

Ry o Rg/y is naturally equivalent to Rg.

Raymg and I/ are additive.

Rg/u and Ig g are exact and refelct exact sequences.
Ra/g and I g preserve and reflect projective modules.

Rgyu and I preserve and reflect injective modules.

RS N R

Rg/u and Ig/p preserve and reflect semisimple modules.
Moreover, if H is a normal subgroup, then we additionally have

8. For any A x H-module M

RG/HIG/H(M) ~ @ZM
z2€Z

More precisely, there is a natural equivalence

Rg/Hfg/H = @Z
z€Z

Proof. 1.-3. These are obvious.

4. Rgyp is a restriction functor and thus exact. Moreover, k H is semisimple, so that tensoring
over k H is exact.

5.-7. Since
Ig/ullg/mo(—®@kH)=1Ig/golgoRy =IgoRy
and
Ra/ul(—=®kH)oRg/y = Iy o Ry o Ry = In o R,

this follows from Proposition [1.12[5.-7.] for H and G.



8. This follows analogously to 2. in Proposition [1.1
O

Corollary 1.14. Let L’ be a simple A x G-module. Then there is a simple A-module L such that
L'|IgL. On the other hand, if L is a simple A-module, then there is a simple A * G-module L'
such that L|RgL’.

Proof. Let L' be a simple A * G-module. Then RgL" = @ cgjp(a)[lieL’ : L]L is semisimple and
L’ is a summand of
LI'e®kG=IgReL'= P [Rel':LlIGL.
L€Sim(A)

Since L' is simple, this implies that there is some L € Sim(A) such that L'|IgL.
The second statement is analogous. O

1.1 An explicit description of the simples

Note that Definition tells us that G acts on mod A via autoequivalences. In particular, gL
is simple for any simple A-module L, so that we obtain an induced action of G on Sim(A). For
L € Sim(A) denote by Hy, the stabilizer of the isomorphism class of L in G and let Zy, be a set of
representatives of G/H,.

In this subsection, we will give an explicit description of the simples of A * G in terms of simple
A-modules L and simple representations of the corresponding stabilizers Hy,, rectifying a result in
[19).

This description is not needed for our main results, but will make it possible to obtain an explicit
description of the standard modules of A * G, see Lemma [3.11

Lemma 1.15. For every isomorphism class of simple A-modules, there exists a representative L
which is Hp -equivariant.

Proof. Clearly, we can assume G = Hy,. Moreover, since rad(A) acts as zero on L, we can assume
that A is semisimple. In this case A is a direct product of matrix rings. Again, the matrix rings
not corresponding to L act via zero, so we can assume A = Mat,, (k) and L = k".

Now G acts on A via automorphisms, but since A is a matrix ring, all of these are inner, so we
obtain a group homomorphism ¢ : G — Gl,, (k). Hence L obtains the structure of an AxHy-module
via trg : gL — L,x — ¢(g)x. O

The following proposition is a rectification of Lemma 2 in [19].

Proposition 1.16. The simple modules of A x G are exactly the modules of the form
kG ®xp, (LRV)

for some irreducible k Hy,-module V' and an Hp -equivariant simple A-module L. Two modules
kG®xp, (LOV) and kG @y, (L'@W) of this form are isomorphic if and only if there is g € G
such that gL =2 L' and gV = W.

Proof. First we show that a module of the form kG ®y g, (L ® V) is indecomposable if V is
indecomposable. First note that, using Corollary [1.13[8], we have an isomorphism

Enda.m, (kG @cp, (L®V)) = @ Homaum, (2(L®V),kG @, (LOV)),
z€ZL,

fo(fe:2(LeV) kG, (LOV),z2@0 > f(20®0)).ez



of vector spaces. It is easy to see that this is in fact an isomorphism of k G-modules, where where
the G-action on the left is given by conjugation, and the G-action on the right is given by

g(f.  2(L®V) kG ®xp, (LOV)).ez
=(f1:2(L®V) > kG®km, (LV),2(z@v) = g(fy-1.(97 2(z @ 0))))zez.

Moreover, since kG g, (L®V) = g(kG Qxp, (L®V)) as an A x Hy-module, we have an
isomorphism

P Homaun, (:(L@V), kG @xn, (L2V)) = @) Homawm, (2(L® V), 2(k G @in, (L&V))),
z€Zp, z€Zy,

(f. :2(L®V) = kG®ku, (LOV)) ez = (fL:2(LOV) = 2kG @k p, (LRV), x> 2(27 f.(2))).
This is again an isomorphism of k G-modules, where the G-action on the right is given by
9(f2:2(L®V) = 2kG@xpn, (LOV)).ez = (9fg-1,:2(LOV) = 2kG ®@xp, (LOV)).cz.

Furthermore, we have an isomorphism

P Homaun, (2(L@V), 2(k G @p, (LRV))) = €D 2Hompum, (L@ V,kG @, (LOV))
z€ZL, zE€ZL,

(fe:2(L@V) = 2(kG&xp, (LRV))sez— (2(z7'f.: LV - kG @k, (LOV)))sez,
which is again an isomorphism of k G-modules, where the G-action on the right is given by
9(2(f: : LAV = kG ®kn, (LOV)))zez = (2(fg-1: : LOV 5 kG ®xn, (LRV)))zez-

Finally, we have an isomorphism

P zHomawn, (L@ V,kG @, (LOV)) = kG @i, Homawn, (L®V,kG @i, LOV),
zEZL

(2(f: 1 LOV kG @xn, (LOV)))sez > Y20 f-
z€Z

of k G-modules, where the G-action on the right is given by left multiplication in k G. Now if —¢
denotes the fix point functor under the G-action

Enda.c(kG @, (L®V)) =Endasp, (kG @xm, (LOV))C
>~ (kG ®xp;, Hompup, (LR VkKG @k, (L& V)))G >~ Homaup, (LR V, kG @k, (LRV)).

Note that for z ¢ Hp,,
Homa(L ®V, 2(L ®V)) 2 dim(V)? Hom4 (L, zL) = 0
so that for z ¢ Hp,
Hom g, (L®V,2(L®V)) CHoma(L®V,2(L@V)) = (0).
Thus

)

Hom . pr, (L ® V. kG ®un, (L& V)) 2 @ Homaun, (L V,2(LeV))
z€Z,

>~ Endgupr, (L ® V) 2 Enda(L ® V)= 2 (End 4 (L) @ Endy (V) 2.

Since k = Enda.z, (L) = Enda (L)L, we have Enda(L) = k with the trivial G-action, so the
above is isomorphic to

(k@ Endy (V)72 = Endy g, (V) = k.



Hence kG ®x g, L ® V is indecomposable. Since it is semisimple by Corollary [1.13]7], it is thus
simple.

To see that these are up to isomorphism all simple A * G-modules, note that by Corollary [1.14]
every simple A * G-module is a summand of kG ® L for some L € Sim(A) and

kGRL2kG®xy, kKHL ® L2kG ®xp, (LOKHL)

So decomposing k Hj, into indecomposable summands yields the claim.
Clearly, we have isomorphisms of A % G-modules

kG&xp, LIV - kG ®xu, gLRgV,h@x Qv hg® 2 Q.
Finally, suppose we have an isomorphism of A x G-modules
kG @k, (LOV) = kG ®@kh, (I'0W).
Then, restricting to A, we obtain an isomorphism
Ra(p) : Ra(kG ®xp, (L®V)) = Ra(kG Qxp,, (L' @ W)).
Since

Ra(kG®kn, (LRV)) @dlmk
z2€EZL

and Rg(kG @xp,, (L' @ W)) = @ dimy (W)zL
2/ €Z;

the theorem of Krull-Remak-Schmidt thus yields a ¢ € G such that gL = L’. In particular,
Hp = Hp and, since kG @i g, L® g7 'W 2 kG @y, gL ® W we have an isomorphism

¢ kG®y, (LOV)—>kG @y, (L®g W)
We can restrict this to A * Hy, to obtain an isomorphism
D -rov) -+ @ rog W)
z€EZL z€EZL

Since L® V, L ® g~ 'W are simple A *x Hy-modules by the above, we conclude that we have an
isomorphism

W' LeV=Log W
of A x Hy-modules. Now note that
Hom .z, (LQV,L® ¢ 'W) = Homu(L ® V,L® g W)Ht
>~ (Homy (L, L) ® Homy (V, g~ W) 2 2 (Homy (V, 7' W) 2 = Homy g7, (V, g1 W).
Hence gV = W. U

The following is a counterexample to Lemma 2 in [19], which claims that every simple A * G-
module is isomorphic to a module of the form S ® V where S is a simple A * G submodule of the
socle of A and V is an irreducible representation of G. The error in their proof lies in the erroneous
assumption that if S is a simple A x G submodule of the socle of A, then Hom4 (S, S) = k.
While this is in general false, it holds if, for example, all simple k G-modules are one-dimensional,
i.e. if G is commutative. The reason for this is that in this case we have for any simple AxG-module
S and any irreducible representation V' of G isomorphisms

Enda.c(S® V) = Enda(S® V)¢ = (Enda(S) ® Endy (V)¢
>~ (End4(S) ® k)¢ = End.c(S) = k

where G acts trivially on Endy (V) as Endy (V) = k & Endy (V) = Endi (V)% so that S ®@ V is
irreducible. Thus the result in [19, Lemma 2] holds in particular if G is commutative.
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Example 1.17. Consider k = C, A :=k°, G := S5 acting on A via permutations of the entries.
A is semisimple and basic, and Hy := Hy,, = Sy, where Ly is the simple corresponding to the first
copy of k, so that by the above proposition we have a simple A*G-module k S5®y s, (k x{0}*®V) for
every irreducible representation V' of Sy. In particular, since Sy has an irreducible representation
V' of dimension 3, Ax G has a simple module of dimension

dimy (k S5 @i s, (k x{0}* @ V)) = dimy (k S5/S4) dim V =5 - 3 = 15.
Moreover, note that A is a simple A x G-module, and if W is an irreducible representation of Ss,
dimy (A @ W) = 5dimy W.

Since S5 has no irreducible representations of dimension 3, this implies that not all simple A x G-
modules are of the form A ® W. Additionally, note that

Homg(A,A) = A2k.
Corollary 1.18. The indecomposable projective A x G-modules are exactly of the form
kG ®yu, (PL®V)
for some irreducible k Hp,-module V. They are isomorphic if and only if there is g € G such that
gL=L",gV =W.

Proof. Since V|k Hy,, k GRy g, (PL®V) is a direct summand of k G® Py, as above, and is therefore
projective. Moreover, by Proposition |[1.12[8]

top(kG @k, (PL®V)) =kG Qk gy, top(Pr, ® V)
=kG ®xn, (top(Pr)® V)
=kG®xu, (LROV).

By Proposition this is simple, so that kG ®y g, (Pr, ® V) is indecomposable.
For any finite-dimensional algebra, we have a bijection between the isomorphism classes of pro-
jective indecomposable modules and the isomorphism classes of simple modules given by

[P] = [top(P)],

Now since by Proposition [1.16| every simple A * G-module is isomorphic to a module of the form
kG®xpu, (LRV), and k Gy iy, (PL®V) is a projective indecomposable with top k GQy g, (LRV),
every projective indecomposable A * G-module is isomorphic to a module of the form kG ®y g,
(L ® V). Moreover, since two simple A * G-modules kG @z, (L® V) and kG ®x g, (L' @ V')
are isomorphic if and only if there is g € G such that gL = L', gV = W, their projective covers
kG ®xp, (PL®V)and kG®y g, (P @ V') are also isomorphic if and only if there is g € G such
that gL = L', gV = W. O

2 Quasi-Hereditary Algebras

In this section, we shall repeat some standard definitions and results about quasi-hereditary al-
gebras, as introduced by [25] and [I0]. For an introduction to quasi-hereditary algebras see for
example [14].

Let A be an algebra. Denote by Sim(A) the set of simple A-modules and suppose < is a partial
order on Sim(A).

Remark 2.1. Suppose < is a partial order on the set Sim(A) of simple A-modules. Then this
induces a partial order on its additive closure add(Sim(A)) via

S<S8 e L<L foral L|S LS

Thus, if < is a partial order on Sim(A), we will also use it to compare semisimple modules.
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Definition 2.2. [T}, p. 3] We call a partial order < on Sim(A) adapted, if all M € mod A with
stmple top top(M) = L and simple socle soc(M) = L', such that L and L' are incomparable with
respect to <, have a composition factor L"” such that L"” > L and L" > L'.

Lemma 2.3. 1. Let M be a module with a composition factor L'. Then there is a factor module
M’ of M with socle soc(M') =2 L'.

2. Let M be a module with a composition factor L'. Then there is a submodule M' of M with
top top(M') = L.

Proof. 1. By definition of a composition factor, there is a factor module M” of M such that
we have an embedding ¢ : L' — M".
Now let N be a maximal submodule of M" subject to N Nim(¢) = (0). Then M’ := M"/N
is also a factor module of M. Denote by

7 M"— M

the canonical projection. Then 7ot : L’ — M’ is injective, so that L'|soc(M’). Write
soc(M') =mou(L’)®S. Then N C 7=1(S) and +(L") N7~1(S) = (0). Hence by maximality
of N, 771(S) = N, so that S = (0).

2. This is dual to 1.
O

Lemma 2.4. The partial order < is adapted if and only if every module M which has a composition
factor L' such that L' is incomparable to every summand L of its top top(M) has a composition
factor L" and a composition factor L|top(M) which is a summand of the top, such that L"” > L.

L + top(M)
L//

L/

Proof. Suppose < is adapted and let M be a module with a composition factor L’ such that L’ is
incomparable to every summand L of its top top(M).

By Lemma M has a factor module M’ with simple socle L’. Let L be any summand of
top(M’). Then, since M’ is a factor module of M, we have top(M')| top(M). Hence L is also a
summand of top(M), and thus in particular incomparable to L’. Moreover, we can again apply
Lemma [2.3]to obtain a submodule M” of M’ with simple top top(M") = L. As M" is a submodule
of M’ soc(M")|soc(M') = L', so that M" has simple socle isomorphic to L’. Since L and L'
are incomparable, M" thus has a composition factor L” > L, L', and since L” is a composition
factor of M", which is a submodule of a factor module of M, L” is also a composition factor of
M. Hence this proves the first implication.

On the other hand, suppose every module M which has a composition factor L’ such that L’ is
incomparable to every summand of its top has a composition factor L” and a composition factor
L|top(M) such that L"” > L, and let M be a module with simple top L and simple socle L’ such
that L and L’ are incomparable.

Then by assumption, M has a composition factor L” such that L > L. Without loss of generality
we can choose L” maximal with respect to L” > L. Then by Lemma 2.3} M has a submodule M’
with simple top top(M’) = L”. Since M has simple socle L', M’ also has simple socle L’. Now if
L' and L” were incomparable, then by assumption M’ would have a composition factor L' > L",
which is a contradiction to the maximality of L”. Hence L’ and L” are comparable. Since L” > L
and L’ and L are incomparable, this implies L' < L”. O
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Definition 2.5. Let < be a partial order on Sim(A). Then for every simple A-module L we define
AL = PL/ Z 1m(<p)
L’ﬁL,cpeHomA(PL/,PL)
and
AL = PL/ Z lm(sﬁ)
L'>L,peHoma (Pr/,Pr)

~1
Denote by 7y, : P, — Ay and 7y, : P, — A} the canonical projection. Moreover, write

A = @ Ar

LeSim(A)

P A

LESim(A)

and R
A

and call (AL) Lesim(a) the collection of standard modules and (AL)LeSim(A) the collection of pseu-
dostandard modules for (A, <).

Later, in_case more than one algebra is involved, we will sometimes add a superscript to A, ﬁ,
Ay and Ay indicating the respective algebra.

Lemma 2.6. Let L € Sim(A). Then the following statements hold:

1. L' £ L for every summand L' of top(ker(w)) and for every epimorphism f : Pr, — M such
that L' £ L for every summand L' of top(ker(f)) we have an epimorphism g : M — Ap
such that mp, = go f.

2. L' < L for every composition factor L' of Ar, and for every homomorphism f : P, — M such
that L' < L for every composition factor L' of M we have a homomorphism g : A, — M
such that f =gomy.

3. We have top(ker(7r)) > L and for every epimorphism f : P, — M such that top(ker(f)) >
L we have an epimorphism g : M — Ap such that 7, = go f.

4. L' £ L for every composition factor L' ofﬁlL and for every homomorphism f : P, — M such

~1
that L' # L for every composition factor L' of M we have a homomorphism g : A} — M
such that f = go7y,.

Proof. 1. We have L' £ L for every summand L’ of top(ker(rr)) by definition. So let f : Py, —
M be an epimorphism such that L' £ L for every summand L’ of top(ker(f)). Then we have
a projection 7 : @L,ﬁL nr Pr — ker(f) for some ny € Ng. Composing with the embedding
yields that
ker(f) C Z im(p) = ker(nwp,).

L'<L,p€Homa (P, PL)

Hence 7, factors through f.
2. By definition, L' < L for every composition factor L' of Ap. So let f : P, — M such that
L %_ L for every composition factor L' of M. Let L’ ﬁ L and let ¢ : Pr, — Pr. Then, since

all composition factors of M are less than or equal to L, f o ¢ = 0. Hence im(p) C ker(f),
so that ker(wy) C ker(f) and thus f factors through 7y,.
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3. This is analogous to 1.

4. This is analogous to 2.

Lemma 2.7. For every L, L' € Sim(A) such that Ext* (A, Ap) # (0) we have L' < L

Proof. By definition, the module A 1 has a projective presentation

-~/

@L”>L, ’I’LL//PLH Pi AL (O)

for some integers ny» € Ng. Suppose Exth(ﬁy, Ap) # (0). Then
Hom 4 ( @ nrPro, Ap) #(0),
L//>L/

so that for some L"” > L'

HOIHA(PLH,AL) 7& (0)

Thus L” is a composition factor of Ay. Now since every composition factor of Ay is less than or
equal to L, this implies L' < L” < L. O

The following definition is due to [14]; it resembles the definition of an exceptional collection,
originating in the work of Beilinson [I} 2], developed in [16] and [3], the only difference being that
condition 3. is here only required for Ext! instead of for Ext™ for all n > 1.

Definition 2.8. Let < be a partial order on Sim(A). Then a standardisable set for (A,<) is a
family of modules M = (ML) csim(a) such that

1. top(Mp) = L.
2. HOIIIA(ML,MLI) 7é (0) =L < L.
3. Exty(Mp,Mp)# (0)=L<L.

Remark 2.9. Note that (Ap)y fulfills condition 1. and 2. in the above definition. Thus by
Lemma if AL = Ar for every L € Sim(A), then (Ar)r = (Ar)L is a standardisable set.

The following lemma tells us that (Ar), = (AL)L if and only if < is adapted. Moreover, the
former is the case if and only if any refinement of our partial order will give rise to the same set of
standard modules. Thus, being adapted means that our partial order is, in a sense, fine enough.

Lemma 2.10. The following statements are equivalent:
1. Ap = Ay for every L € Sim(A).
2. < is adapted.
3. (AL)y is a standardisable set.
4. Homa(AL,Ap) # (0) = L' < L.

Proof.1 = 2 Suppose Ap = ﬁL for every L € Sim(A) and let M be an A-module with simple top
L and socle L'. Suppose no composition factor L of M is bigger than L. Since L = top(M)
there is an epimorphism 7, : P, — M. Now since no composition factor L"” of M is bigger
than L, Lemma yields a homomorphism g : A, — M such that my = go 7. In
particular, g is an epimorphism, so that, since every composition factor of Ay = Ay is less
than or equal to L, every composition factor of M is less than or equal to L. In particular
L’ and L are comparable.
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2 = 3 This holds by Remark 2.9
3 = 4 This holds by definition.

4 = 1 Suppose there is some L € Sim(A) such that Ay # Ap. Then Ay has some composition
factor L’ £ L. Let L' be a maximal such composition factor. Then there is a non-zero

homomorphism f : Pr, — AL. Moreover, since L' is a maximal composition factor of
Ap, we have L" % L' for every composition factor L of Ar. Thus Lemma yields a
homomorphism ¢ : A, — Ay such that f = g o 7. In particular,

HOIHA(EL/7£L) 75 (0)

Example 2.11. Consider the algebra A given by the quiver

a—5p—s ¢

with relations (Ba) = J? and the partial order on Sim(A) = {L,, Ly, L.} given by L. < L, and
L. < Ly. Then the indecomposable projective modules are given by

P, = (‘;) , Py = (i’) and P. = (c),

50 ﬁi = P, for every i € {a,b,c}. In particular, HomA(ﬁb,ﬁa) # (0), so that (ﬁi)i, is not
standardisable.
On the other hand Ay = Lg, Ay = Py and A, = P,., so that

Exty (A, A;) = (0)

foralln > 1,14 € {a,b,c} and j € {b,c}. Moreover

(0) P "5 p " P, " L, (0)

is a projective resolution of L,, where ro and rg denote right multiplication by o resp.  and m,
is the canonical projection. Since Hom (P, A,) = Homa(Py, A.) = (0), this implies that

Ext}y(Aq, Ag) = (0) = Exty (Aq, Ac).
Finally, since
i« Homa(Py, Ap) — Homa (P, Ayp)
is injective, we also obtain that Ext'y(Ay, Ay) = (0). Thus (A;); is standardisable.

The following definition is an adaptation of the definition of an exceptional sheaf which can
be found in [I6], where, as in definition we replace the requirement on Ext™ for n > 0 by a
requirement only on Ext’.

Definition 2.12. An A-module M is called exceptional if Ext (M, M) = (0) and End (M) = k.
Lemma 2.13. The following statements are equivalent:

1. < is adapted and Ap, = ﬁL is exceptional for every L € Sim(A).

2. Every composition factor L' of rad(ﬁL) fulfills L' < L.

3. Homu (AL ,rad(AL)) # (0) = L' < L.
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Proof.1 = 2 Recall that if < is adapted, then (Ap)p = (ﬁL)L. Let L’ be a composition factor of
rad(ﬁL) =rad(Ayr). Then I’ < L. If L = L’ then this induces a non-zero homomorphism
P, — rad(Ayr) and thus, by Lemma an endomorphism Ay — rad(Ap) — Ay which is
neither zero nor invertible. This is a contradiction. Thus L' < L.

2 = 3 Suppose HomA(ALI, rad(AL)) # (0). Then, since Ay has simple top L', L' is a composition
factor of rad(Ay) and thus L' < L.

3=1If L # L’ then
Hom (AL, rad(AL)) = (0) < Homa(AL,AL) = (0).

Thus R
HOHlA(AL/,AL) 7é (0) = I < L,

so that < is adapted, ﬁL = Ay and (Ap)p is a standardisable set by Lemma m
In particular, Ext'(Az, Ar) = (0).
Moreover, Hom 4 (Ap,rad(Ar)) = (0), so that any endomorphism of Ay is either surjective

-~

or zero. Thus Enda(Ar) = Enda(Ar) k. O

Definition 2.14. We denote by F(A) the full subcategory of mod A which contains all A-modules
admitting a filtration by the Ap, L € Sim(A). In other words, an A-module M is in F(A) if and
only if there is an integer m > 0 and an ascending sequence of submodules

O)=MycMyC---CM,=M
such that for every 1 <i < m there is an L; € Sim(A) such that M;/M;_1 = Ap,.

Proposition 2.15. [7], Lemma 1.4 and Lemma 1.5] The subcategory F(A) is closed under direct
sums, direct summands and extensions.

Definition 2.16. [10, (2], [I2] An algebra A together with an adapted partial order < on Sim(A)
is called

1. left standardly stratified, if A € F(A)

2. quasi-hereditary, if additionally Ay, is exceptional for all L € Sim(A)

3. strongly quasi-hereditary, if additionally every Ay has projective dimension one.
4. directed, if A;, 2 L for all L € Sim(A).

Definition 2.17. [17, p. 405][]], Definition 3.4] Let (A, <) be a quasi-hereditary algebra. Then a
subalgebra B C A is called an exact Borel subalgebra if there is a bijection ¢ : Sim(B) — Sim(A)
such that

1. A is projective as a Tight B-module,

2. B is directed

3. A®p L = Ay for all L € Sim(B).
Moreover, it is called

1. a strong exact Borel subalgebra if there is a maximal semisimple subalgebra of A which is
also a semisimple subalgebra of B;

2. a homological exact Borel subalgebra if the induced maps
ARp —: EXt*B(L, L/) — EXtZ(AL, AL/)
are isomorphisms in degree greater than or equal to two and epimorphisms in degree one for

all L, L' € Sim(B);
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3. a normal exact Borel subalgebra, if there is a splitting of the inclusion ¢ : B — A whose
kernel is a right ideal in A;

4. and a regular exact Borel subalgebra if it is normal and the induced maps
A®Rp—: EXt*B(L,L/) — EXtZ(Ai(L), Az(L’))
are isomorphisms in degree greater than or equal to one for all L, L' € Sim(B).

Remark 2.18. Let A be a finite-dimensional algebra, L) := A/rad(A) and ws : A — A/ rad(A)
be the canonical projection. By definition, L\*) is the mazimal semisimple quotient of A. However,
recall that by the Wedderburn-Malcev theorem, there is an embedding

LA - L(A) — A
such that maova = idp ay, which turns LY into a mazimal semisimple subalgebra of A. Moreover,
by the same result, any two mazimal semisimple subalgebras of A are conjugated, so that, in
particular, L) is up to isomorphism the unique semisimple subalgebra of A.

Lemma 2.19. Suppose B is an exact Borel subalgebra of A. Then B is a strong exact Borel
subalgebra of A if and only if Arad(B) C rad(A).

Proof. Let L) := A/rad(A) and L®) := B/rad(B). By Remark LM and LB are up to
isomorphism the unique maximal semisimple subalgebras of A and B respectively.

In particular, a semisimple subalgebra of A is a maximal semisimple subalgebra if and only if it
has the same vector space dimension as L(4). Since any semisimple subalgebra of B is also a
semisimple subalgebra of A, this means that B contains a maximal semisimple subalgebra of A if
and only if dimy LY = dimy L(5).

Thus B is a strong exact Borel subalgebra of A if and only if dimy L(®) = dimy L(4).

Let LP,...,L? be a set of representative of the simple B-modules. Write A := A ®@p LP
and L{‘ := top(A ®p LP). Since B is an exact Borel subalgebra of A, L{, ... LA is a set of
representatives of the simple A-modules, and A, ..., A# are the corresponding standard modules.
Let X := Arad(B)/(rad(4) N Arad(B)). Then, as A-modules,

LW = A/rad(A) = ((rad(A) + Arad(B))/rad(A)) & A/(rad(A) + Arad(B))
>~ Arad(B)/(rad(A) N Arad(B)) ® top(4/Arad(B))
>~ X @ top (A®p B/rad(B))

= X @ top (@[topB : L?]AL?>

3

~ X o PILP : LPIL;.

Recall that for any n € N we have dimy k" = n = [Mat, (k) : k"]. Moreover, by the Wedderburn-
Artin theorem, any finite-dimensional semisimple algebra over k is isomorphic to a direct sum of
matrix rings, and for any two finite dimensional algebras R and R’, Sim(R®R’) is the disjoint union
of Sim(R) and Sim(R’) where R acts on L’ € Sim(R’) via zero and analogously for L € Sim(R).
Hence the equation above generalizes to any finite-dimensional semisimple algebra over k, so that
we have

dimy L = [ : L
for every 1 < i < n. Thus,

dimy LA = [LW : LA = [X : LA + [LYP) . L) = [X : LA] + dimy LE,
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so that

dimy L) = dimy X + > [LP) : L] dim L

7

= dimy X + Y _[LP): LP](1X : L] + dimy (LP))
= dim X + Y [X : LY[LP) : LP] + dimy L7,

Hence B is a strong exact Borel subalgebra of A if and only if X = (0), i.e. if Arad(B) C B. O

3 Quasi-Hereditary Algebras with a Group Action

Throughout, let, as before, A be a finite-dimensional k-algebra and G be a group acting on A via
automorphisms such that the order of G does not divide the characteristic of k.

Definition 3.1. A partial order <4 on Sim(A) is called G-equivariant if
L<sL & gL <shL foralghcdG.
On the other hand, a partial order <a.c on Sim(A *x G) is called G-stable if
S<ac S &SRV <pug SOW

for all k G-modules V, W .

Definition 3.2. 1. Let < be a G-equivariant partial order on Sim(A). Then we define a partial
order <& on Sim(A x G) via

S <q S’ A S <|A S’

2. Let <' be a G-stable partial order on Sim(A x G). Then we define a partial order SiG on
Sim(A) via

L<gLl :kGRLIKkGRL,

, where we extend the partial orders from the simple modules to the semisimple modules as
in Remark [21]

Hence we define a strict partial order (< 4)¢g as the pullback of a strict partial order <4 along
the map

add Sim(A * G) — add(Sim(A)), M +— |4 M,

and similarly a strict partial order (<a.g)|c as the pullback of a strict partial order <a.c along
the map

add Sim(A) — add(Sim(A * G)), M — IgM.

Note that since the above maps are not necessarily injective, the pullbacks of <4 resp. <a.q
along these maps are not necessarily partial orders. For example, if we consider the case A =k,
G = Z/2Z with the trivial action, and the unique partial order <4 on Sim(A), then we have
A% G = k? with simple modules L; and Lo corresponding to the first and the second copy of
k, respectively. In this setting, if we tried to define L; <av.q¢ L;j & RgL; <4 RgL; we would
obtain that Ly < Ly and Ly < Ly since RgLy = RyLo, that is, the asymmetry of <4.¢ would be
violated, so that it would not be a partial order.

On the other hand, the pullback of a strict partial order along any map is always a strict partial
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order.
In particular, the above pullbacks yield well-defined partial orders < and gfc even for a not

necessarily G-equivariant partial order < and a not necessarily G-stable partial order <'.
However, if e.g. < is not G-equivariant, then there may be some simple A * G modules S # S’
such that L <4 L', but L"” ¢ L" for some simple summands of L,L” of S and L', L" of S, so
S and S” would be incomparable with respect to <4, even though all summands of |4S and |45
may be comparable. Hence even a total order < might result in an empty order <, and so there
is little hope to conclude adaptedness of < from adaptedness of <.

Similar considerations hold for a non G-stable partial order <’ and its induced partial order <i -

Proposition 3.3. 1. Let < be a G-equivariant partial order on Sim(A). Then <g is the unique
G-stable partial order such that

L<IL' kGR®L<ckG® L.

2. Let <' be a G-stable partial order on Sim(A x G). Then STG is the unique G-equivariant
partial order on Sim(A) such that

§ <S8 w4 S(<ig)a)S"
Proof. 1. Clearly, < is G-stable, and
L<l'kG®L<ckG®L.
Now suppose that <’ is another G-stable partial order on Sim(A * G) such that
L<L'©kGL<kGaL.

Let S,8" € Sim(A x G). Then there are L, L’ € Sim(A) such that L|4S, L'[45". Thus
kG LIkG® 4 S=S®kGand kG L'|kG® 45" =5 @kG.

Moreover, by Corollary [1.14] there are L”, L" € Sim(A) such that S|kG® L”,5'|kG& L".
In particular, L|4 kG ® L" and L'|4 kG ® L", so that L = gL" and L' = hL' for some
g,he€G. Hence kGRL=2kGR L' and kG® L' kG ® L". Thus

S<8 eS8SkG< kG =kGRL<kG®L
SL<Il ©kGRL<cgkGRL =8 <g ¥,

and analogously S <g §' = S <’ §'.
2. Clearly, <T ¢ is G-equivariant and
A8 <lg aS & kG S<kG®@a 5
S SekG < SokGe S<S.
Moreover, if < is another G-equivariant partial order on Sim(A) such that
S<S enS<a s
then

L<l'e@el <Pyl 4 kGRL<y kG ©kGOL<kGRL & L<; L
geG geG

for all L, L' € Sim(A).
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Corollary 3.4. Let < be a G-equivariant partial order on Sim(A). Then < coincides with (<g)|q-
Let <" be a G-stable partial order on Sim(A x G). Then <" coincides with (<{g)c. Thus the
assignments

{G-equivariant partial orders on Sim(A4)}
— {G-stable partial orders on Sim(A * G)},
< —=<g

and

{G-stable partial orders on Sim(A4 * G)}
— {G-equivariant partial orders on Sim(A)},
< HSTG
are mutually inverse bijections.

From now on, let <4 be a G-equivariant partial order on Sim(A) and < s,¢ the corresponding
induced order on Sim(A * G), or the other way around.

Lemma 3.5. For every g € G, L € Sim(A) we have gAr = Ay and gﬁL = ﬁg(L)

Proof. This is a direct consequence of the fact that g induces an order preserving automorphism
of mod A. O

Proposition 3.6. For every simple A-module L € Sim(A)

kGoALz2 P KkGeL:SAs
SeSim(AxG)

where [k G ® L : S| denotes the multiplicity of the simple summand S in kG ® L.
Proof. Since kG ® Py, is projective with top
top(kG® Pr) =2 kG ®top(Pr) =kG® L

by Proposition [1.12]8], there is an isomorphism

¢ P kGeL:SPs »kG® Py
SeSim(AxQ)

For the sake of notation, fix a set Sy, of simple A * G-modules such that for any S € Sim(A4 * G)
there are exactly [k G ® L : S] modules in Sy, which are isomorphic to S and consider instead the
isomorphism

oL : @ Ps 5> kG® Py.
SeSt

For every S € Sy, consider the map
fs = (kG@??L)OgOLOLPS :Ps—>kG®£L

where tp, 1 Pg — EBs’esL Pg: is the canonical embedding.

Then since A has a filtration by L' #4 L and kG ® — is exact, kG ® Ay has a filtration by
kG ® L' such that L' #4 L. Since for every L' # 4 L any two simple summands S|kG ® L and
S'|kG® L’ fulfill S" # 4 S, this means that no composition factor S’ of kG ® Ay, is greater than
any summand S of kG ® L.
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Hence Lemma implies that for any S € Sy there is a homomorphism g : ﬁs S kG®A L
such that fg = s o7Tg. Thus we obtain a homomorphism

v: P As 2 kG AL (z5) SHZVS (zs)
SeSL

such that
Yo (Ts)s Z'YSOWS (zs) Zfs zs)

= Z (kGeTL)oprops(rs) = (kGRTL)opr((xs)s).
S

In other words, the diagram

@S PS (TrS)S @S AS

M !

kG® Py 2 kG AL

commutes. On the other hand, note that by Proposition mm and Lemma we have a
commutative diagram

Rg(kG® Pr) —— ®geGQPL — 69geG

ide GemL) l@gec 9(7z) leageg FoL

Rg(kG®£L) — @geggﬁL E— EBgeG EQL

where the horizontal arrows are isomorphisms. Since Rg(ﬁs) has a filtration by Rg(S’) where
S’ € Sim(A * G) such that S” ¥ 4.¢ S and any simple summand L’ of Rg/(S’) fulfills S'| kG ® L/,
we have for any composition factor L’ of Rg(ﬁs) that kG® L' # S. Thus for S|kG® L, Rg(ﬁs)
has no composition factor L’ such that kG ® L’ is greater than kG ® L and thus no composition
factor L' which is greater than L. R
Hence, analogously to the construction of v, we can construct an A-linear map 7' : Rg(kGR®AL) —
Ra(Dg Ag) such that the diagram

Ro(kG o Py) FeX99T) b kG @A)

lRG ()™ “/l

R, T -~
Ro(@g Ps) —275% , R (@g Ag)

commutes.
We obtain a diagram
c(kG @ Py) 2T pokG e Ay
goL)H(RG(@L -1 RG(V)T\L’%
Ra(@g Ps) —= "2 Ro(@g As)

where both squares commute, i.e.

7 o Ra(kG@71) = Ra((Ts)s) o Ra(pr) ™
and R(;(’y) o Rg((;{'\s)s) = Rg(kG (9 7/T\'L) o) Rg(LpL).
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In particular,

Ra(7) o+ o Ra(kG @ 7L) = Ra(v) o Ra((Fs)s) o Raler) ™"
= Ra(kG®@7L) o Ra(pr) o Ralen) ™
=Re(kG®7y)

and

7 o Ra(v) o Ra((Ts)s) =7 o Ra(kG®@7L) o Raler)
= Ra((7s)s) o Ra(pr) ™' o Raler)
= Re((Ts)s)-

Since Rg(kG®71) and Rg((7s)s) are epimorphisms, this implies that 7/ = Rg(y)~!. In partic-
ular, « is bijective and hence an isomorphism.
Thus

kGoAL= (P As= P KkGoL:SAs

SeSL SESIm(AxQ)

Corollary 3.7. For every simple A * G-module S € Sim(A x G)
A|£Sg @ [A‘S:L]AL
LeSim(A)
where [4)S : L] denotes the multiplicity of the simple summand L in 4|S.

Proof. By Corollary 4} there is a simple A-module L such that [k G®L S] # 0. By Proposition
| this implies that Ag is a direct summand of kG ® A L- Hence 4 AS is a direct summand of

kG@AL @gAL—@AgL

geG geG

where the last isomorphism follows from Lemma In particular, 4 35 is a direct sum of
pseudostandard modules. Moreover, by Proposition [1.12[8],

top(a] As) = 4 top(Ag) = 4|5
so that, since every pseudostandard module A 1. has simple top L, we obtain

A|£Sg @ [A‘S:L]KL.
LeSim(A)

Corollary 3.8. ﬁA*G kG ® AA and AA \Rg(ﬁA*G),

Proof. The first claim follows directly from Proposition and Corollary while the second

claim follows from Corollary [3.7] and Corollary O
Example 3.9. Let QQ be the quiver
L
172

and A == kQ/J?, where J denotes the arrow ideal. Consider the partial order < on Sim(A) =

{L1, L2} given by an antichain, i.e. all distinct elements are incomparable. Then the standard

modules of A are simple. Moreover, the group G = {e,g} 2 Z/2Z acts on A via the k-linear map

defined via g(e1) = ea, g(ez) = e1, g(a) = B and g(B8) = «, and the G action preserves the partial

order. Now by [23, 2.3], Ax G is Morita equwalent to k[ “ x?), hence Ay = k[x]/(2?) is not
3.5

simple. In particular, neither Proposztzon h nor Corollary|3.8 hold for (AL)r instead of (AL)

22



/\A*G
Using Corollary and Proposition we also obtain a concrete description of (Ag )g.

We denote, as before, by Hj, the stabilizer of the isomorphism class of L and, using Lemma [1.15]
choose an Hp-equivariant representative L of this class. Moreover, we let Pf*HL be a projective
cover of L as an A * Hp-module. We endow Sim(A = Hp) with the partial order induced by

~ Ax
the partial order on Sim(A) as in Definition and let A} " be the pseudostandard module of

AxH, corresponding to L with respect to this partial order. Then by Corollary[3.8] the restriction
~AxHjp,

VIRAY) is isomorphic to a direct sum of standard modules with top
~AxHp, ~AxHp,
tOp<A| AL ) =~ Al tOp(AL ) = A|L,
-~ A*HL ~A . .
so that 4| Ap =~ A;. Thus we obtain the following corollary:

~A
Corollary 3.10. A} has the structure of an A x Hy-module.

/\A*G -~
Lemma 3.11. The pseudostandard modules Ag — for Ax G are of the form kG ®x g1, (AL ®V)
where V' is an irreducible representation of Hy,. Morevoer, two such modules kG @y g, (A V)

and kG @y g, (ﬁy QW) of this form are isomorphic if and only if there is g € G such that
gL =L and gV = W.

Proof. By Proposition and Corollary [1.13]1]

P kGoL:SAs=kGO®A, =kG@wu, kH, ® A,
SEeSim(A*G)

kG @, (Ap@kH) = @ [kHy:VIkG@cu, (BLaV).
VeSim(k Hr)

Moreover, k G®x ;. (EL ®V') has simple top k G®y g, (L®V') and is in particular indecomposable.
Thus it is isomorphic to Ay g, 1y (LOV)-

Moreover, kG ®y Hy, (AL ®V) = ﬁk G®i 1, (LOV) and kG ®y Hyp/ (AL/ ®W) = Ak G®in,, (L'@W)
are isomorphic if and only if kG @y g, (L®V) and kG ®x g, (L' ® W) are isomorphic, which, by
Proposition [1.16} is the case if and only if there is a g € G such that gL = L' and gV = W. O

Now we use the description of the pseudostandard modules to compare properties of (A4, <4)
to (A x G, SA*G)'

Lemma 3.12. The following statements are equivalent:
1. <4 is adapted and (A4) is exceptional.
2. <awc is adapted and (AS*%) is exceptional.

Proof. By Lemma and Proposition <4 is adapted and (Af) L is exceptional if and only
if

Homu(Ap,rad(AL)) # (0) = L <4 L'
and < 4.¢ is adapted and (A4*%)g is exceptional if and only if

Hom .(Ag,rad(Ag)) # (0)
=L <4 L’ for some (equivalently all) L, L' such that S|kG ® L and S| kG @ L'

Now if <4 is adapted and (A#') exceptional, then for all S, S’ € Sim(A x G) and L, L' € Sim(A)
such that S|kG® L,S'| kG ® L' we have

Hom 4, (As, rad(Ag)) € Homaug(kG @ Ar,rad(kG @ AL))
CHomu (kG ® Ay, rad(kG @ Ap)) = @ HomA(ﬁg(L),rad(ﬁgl(y))).

9,9'€G
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Thus if Hom e (Ag,rad(Ag:)) # (0), there exist g, ¢’ € G such that

HomA(A rad( g)) 7 (0).

By assumption, this implies gL <4 ¢’'L, and hence, since <, is G-equivariant, L <4 L’. Thus
kGR®L <a.g kG® L' sothat S <a.g 5.
On the other hand, if < 4.¢ is adapted and (A5*“) exceptional, then

Hom (A, rad(AL)) # (0)
= Homa.¢(kG ® Ap,rad(kG @ AL)) # (0)
= & Hom . (Ag,rad(Ag)) # (0)
S|kGRL,S' |k GRL’
=35|kG®L,S'|kG® L : Homa.g(Ag,rad(Ag)) # (0)
=35 kGRL,S' kGO L : 8 <pug S
L <, L.

O

Example 3.13. It is not true that <a.c 1s adapted if and only if <4 is adapted. Consider for
example A := k[z]/(2?) and G = {1,9} = Z/2Z with g(x) = —x. Then A has a unique simple k
and the unique order is clearly G-equivariant and adapted. However, A x G is given by the quiver

A=T_gz

/\

=~ k(1/v2(1 + g)) Ly = k(1/v2(1 - g))

\_/

Bz""gz

with af = 0 = Ba and < .q being an antichain. Hence Ay = Py has socle Ly and top Ly and Lo
is incomparable to L.

Theorem 3.14. The following statements hold:
1. (A, <4) is quasi-hereditary if and only if (A x G, <a.q) is quasi-hereditary .
2. (A,<a) is strongly quasi-hereditary if and only if (Ax G, <a.q) is strongly quasi-hereditary.
3. (A, <4) is directed if and only if (A G, <a.q) is directed.

Proof. 1. Suppose (A, <4) is quasi-hereditary . Then <, is adapted and (A#') is exceptional.
So by Lemma <ax«c is adapted and (A%£*Y) is exceptional. Moreover, A has a filtration
by the A, = Ap. Hence A+ G = kG ® A has a filtration by kG ® AL. Since_these
decompose into a direct sum of Ag, where S|k G ® L, by Proposition and Ag = Ag by
Lemma this implies that A x G has a filtration by standard modules Ag = Ag. Hence
Ax G e F(AYMG),

On the other hand, suppose A*G is quasi-hereditary . Then < 4. is adapted and (AA*G)
exceptional, so that <, is adapted and (Af) is exceptional. Moreover, A* G has a filtration
as an A x G-module by standard modules. Hence as an A-module A x G = P,cc9A=][GlA

has a filtration by the Rg(Ag), and by Proposition [1.12[2], Lemma and Lemma

Re(As) = Ra(As)|Ra(kG @ Ap) = @ Ny =P Ay

geG geG

for S|kG ® L', so that, since the standard modules of A are indecomposable, Rg(Ag) is
direct sum of standard modules and hence |G|A € F(A). Since by Proposition 2.15] F(A )
is closed under direct summands, A € F(A).
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2. By 1., (A, <4) is quasi-hereditary if and only if (AxG, <a.¢) is quasi-hereditary . Moreover,
if the projective dimension of A“ is less than or equal to one, so is the projective dimension

~ AxG ~A
of AM*CG = A kG ® A" = kG ® A4, and if the projective dimension of A4*@ is less
~ *G
than or equal to one, so is the projective dimension of A4 = A" |Rg( ) = Rg(AA*E).
3. Byl,(A,<a)is quasi—hereditary if and only if (A*G <axq) is quasi-hereditary . Moreover,
if A4 is semisimple, so is AA*C = |k G® A =kG® A4, and if A 4,¢ is semisimple,
~A ~AxG
sois A4 =A" |Rg(A ) = Rg(AA*G).
O

Remark 3.15. Ezample shows that it is not in general true that if (A,<a) is standardly
stratified so is (A * G, <pxq)-

The following lemma can essentially be found in [19, Lemma 8|]. However, we have included a
proof, since the assumptions there slightly vary from our assumptions.

Lemma 3.16. Let M be an AxG-module. Then G acts on Ends(RgM) via algebra automorphism
as in Remark[14), and we have an algebra isomorphism

91\/1 : EHdA(RGM) *xG — EndA*G(kG® M),
fegm (h@me hg™ © f(gm)

Proof. 1t is easy to see that the action given by Remark[[.4]is an action of algebra automorphisms.
Let f ® g € Enda(RgM) * G. Then for any h,h' € G, a € A, m € M we have

O (f @ g)(a® W) (h@m)) = 0u(f ® g)(h'h® (hh) (a)m)
=NW'hg™ @ f(g(h')~" (a)m))
ZWM”'(WW_51Wﬁ@m)

=(a®h')(hg™" ® f(gm))
=(a®h )0 (f @ g)(h®m).

Thus 05 (f ®g) is A*G-linear, so that 0 is well-defined. Moreover, for any f, f € Ends(RaM),
g,9',h € G, m € M we have

GM(f®g)09M(f’®g’)(h®m)=9M(f®9)( ()@ f(g'm)))
=h(g) g~ ®f@f@’»
= h(gg) ' @ fol(g-f)gg'm)
=0m(folg- ) ® g9')(h ® m)
=0u((fg)(f ®@d))(ham)

Thus 6y is an algebra homomorphism. Let ¢ € Enda.q((kG ® M)). Then we can identify
Rgt € Enda(@,cc 9M) with a matrix Rat = (tg,n)g,nec Where
tg.h i gM — hM
and since t is A * G-linear we have
tg.n =tg'g.9'h
for all g,¢’,h € G. For g € G let

fo@t) : M — M, fo(t) :=tgc0 (trfy)_l
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and set

) :ng@)g.

geG
Then for all m € M, h € G we have
O (Tar(t))(h @ m) = Z@M fo(t) ® g)(h @ m)
geG
=Y hgt @ fyt)(gm) =Y hg Tt = hgTt @ty o (i) (gm)

geG geG geG
:Zh_1®tge Zhg ®thhg_1( )

geG geG

=Y g@tng(m) =t(ham).
geG

On the other hand, for f ® g € Enda(RgM * G we have

fn(Om(f®g)) =0

unless h = g and

foOu(f®g)) = f
Thus 7ar(Oar (f ® 9)) = f ® g, so that 7py = 0}, and 6y is an isomorphism. O

Theorem 3.17. Let (A, <4) be quasi-hereditary and let B be a subalgebra of A such that g(B) =
B for all g € G. Then there is a partial order <p on Sim(B) such that (B,<p) is an exact
Borel subalgebra of (A, <a) if and only if there is a partial order <p.c on Sim(B *x G) such that
(B x G, <pB«q) is an exact Borel subalgebra of (A * G,<a.q)-

Proof. First of all, note that B % G is a well-defined subalgebra of A * G, since g(B) C B for all
g € G, and that A x G is quasi-hereditary by Theorem

Let (Lf)lgign be a set of representatives of the isomorphism classes of simple B-modules and let
(Lf*G)lgiSm be a set of representatives of the isomorphism classes of simple B * G-modules.
Suppose first that (B, <p) is an exact Borel subalgebra of (A4, <4).

Recall that Rg both preserves and reflects short exact sequences, and note that we have a natural
isomorphism

(A®p —)oRg = Rg o (A*G) ®puc —) (1)
given by
A®p ReM — Rg((A*G) ®pig M),a@m— (a®1g) ®@m
with inverse given by
Re((A+G)®psg M) > A®p ReM,(a® g) @ m — a ® gm.

Thus if A®p — is exact, so is (A * G) @pwg —-
By assumption we have a bijection

Sim(B) — Sim(A), L2 — L# := top(A ®@p LP)
such that Lf <g Lf if and only if Lf‘ <a Lj‘. In particular, since

g(top(A®p L)) = top(g(A @5 Lp)) = top(A @p gLp))
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and <4 is G-invariant, so is <. Thus it induces a partial order <g.c on Sim(B * G) according
to Proposition [3:3]

Next we want to show that there is a bijection between isomorphism classes of simple modules
given by

Sim(B * G) — Sim(A * G), Lf*G — LJA*G = top((4 * G) ®p.c Lf*G).
Note that for this, it suffices to show that for any semisimple B % G-module S, the induced map
s2 : Endp.g(S) = Endaxg(top((A * G) @y 9)), f — top(idasc &f)

is a bijection. Recall from Proposition that Endp.c(S) = Endg(RgS)® and End 4. (top((A*
G) ®psc S)) = Enda(Re top((A * G) ®psg S))¢ where the G-action is given as in Remark
Moreover, note that by Proposition [1.12[8] and [I} we have a natural isomorphism

a: Rgotopo((A*xG)®p«g —) = topo(A®p —) o Rg,
an : Rgtop((A * G) ®@pwc M) — top(A ®@p ReM),
(a@g)@m+rad(A«G) @M +— a®gm+rad(4) @ M

with inverse given by
ay(a@m+rad(A) @ M) = (a® 1g) @ m +rad(A * G) @ M.

Transporting the A x G-module structure of Rgtop((A * G) ®p.g S) along ag gives rise to an
A x G-module structure on top(A ® g RgS), which is given by

gla®s+rad(4) ® S) := g(a) ® gs +rad(4) ® S.

According to Remark |1.4] this induces a G-action on End4(top(A ®p RgS)). With this G-action,
the homomorphism

s1: Endg(RgS) — End4(top(A ®p RgS)),
f = top(ida ®f)
becomes G-equivariant, since we have
top(ida®(g- f))(a®s+rad(A)®S) =a® (g f)(s) +rad(4)® S
=a®g(f(g™'s)) +rad(4) ® S = g(ida(g™ () @ g(f(g™"s)) +rad(4) ® §
= g(top(ida ®f) (97 (s ® a +rad(A) ® S))) = g - (top(ida @f).

Additionally, since B is an exact Borel subalgebra of A, s; is an isomorphism. Hence it restricts
to an isomorphism

5¢ : Endp(ReS)¢ — Enda(top(A @p RaS)),
f— top(ida ®f).

Moreover, for any f € Endg(RgS)® we have

ag'otop(ida @f) oas((a®g) ®s+rad(A*G)®S) = ag’ otop(ida ®f)(a® g(s) + rad(A) @ S)
=ag' (a® f(g(s)) +rad(A) ® S) = ag'(a ® g(f(s)) +rad(4) ® S)
=@®1)®@g(f(s))+rad(A*G) RS =(a®g)® f(s) +rad(A*G) ® S = top(ida«c ®f).

Hence conjugation of s§ by ag gives the desired isomorphism sp. Thus we have a bijection

Sim(B * G) — Sim(A * G)
Lf*G — Lf*G =top((A * G) @B« LJB*G).
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Moreover, for every LP*%, LP* € Sim(B * G) we have, using Definition Proposition [3.3| and
the fact that B is an exact Borel subalgebra of A, that
LiB*G <BxG Lf*G & R(;LiB*G <B RngB*G & tOp(A QB RgL?*G) <A tOp(A XpB R(;«L]B*G)
& Re(top((A = G) ®pac LP*Y)) <a Ra(top((A * G) @pug LF*))
& top((A* Q) @pwc LP*Y) <auc top((A * G) @pac Lf*c) o LM < Lf*G.

Finally, by Proposition 3.6

AxGop.c (kG LP)2kG® (Awp LP)

~kGe P A
LAcSim(A)

<5 T kG @ L L)AL,

LeSim(A) L#*FeSim(AxG)

1%

Since for every simple B % G-module Lf*G we have that A * G ®@p.qg LJB*G is a summand of
Ax G ®p.c kG @ LB, the module A * G Qpsc LJB*G is isomorphic to a direct sum of standard
modules. Since it has indecomposable top L#*¢, this implies that A * G ®p.g LF*% = A LAG-
Thus (B * G, <p.q) is an exact Borel subalgebra of (4 x G, <a.q).

On the other hand, suppose that (B x G, <p.¢) is an exact Borel subalgebra of (A% G, <a.q).
Recall that I both preserves and reflects short exact sequences, and note that we have a natural
isomorphism

(AxG)®pwg —)olg = Igo (A®p —). (2)
given by
(A+xG)®@pickGAM - kGRARp M,(a®g) ®h®@m+— gh® gh(a) @ m
with inverse given by
kGRARpM — (A+G)®p.c kGO M,g@a@m— (g7 (a) ®@1) ® g@m.

Thus if (A% G) ®p«c — is exact so is A®p —.
By assumption we have a bijection

Sim(B * G) — Sim(A x G), LP*¢ s L = top((A * G) ®p.c LP*)
such that Lf*G <B:a Lf*G if and only if Lf‘*G <axc Lj‘*G. In particular, since
(A*G) @pic (LP*C @ V) 2 (A G) ®pic LEC) @ V)

for every irreducible representation V of G, and since <4.¢ is G-stable, so is <p.g. Thus it
induces a partial order <p on Sim(B) according to Proposition

Next we want to show that there is a bijection between isomoprhism classes of simple modules
given by

Sim(B) — Sim(A), L? — L .= top(A @5 LP).
Note that for this, it suffices to show that for any semisimple B-module S, the induced map

s1: Endp(S) — Enda(top(A ®p S)), f — top(ida @f) (3)
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is a bijection, and, in fact, this holds as soon as it holds for some semisimple B-module .S such

that [S : LP] # 0 for all LZ € Sim(B). By Corollary it thus suffices to consider the case

S = RgLP*¢ | where LB*¢ = @L_B*Gesim(B*G) Lf*G. By Lemma , we have an isomorphism
J

Op5.c : Endg(RgL?*%) x G — Endp.c(IgRcLP*C), f @ g (h@z — hg™' @ f(gz))
as well as an isomorphism

G(A*G)(@B*GLB*G : EndB(Rg(A * G) ®BxG LB*G) * G — EndA*G(IgRg(A * G) OBxG LB*G),
fogm (h®(a®g)@me—hg™ @ f(g-(a®g) @m)))

Moreover, since B * G is a regular exact Borel subalgebra of A x G, we have an isomorphism
sy : Endp.c(IgRaLP*Y) = Enda.q(top((A * G) @pag IgRaLP*)) f + top(idavg @F)
Additionally, by Proposition M[S] and [2| there are natural isomorphisms

¢1 :topo(A®p —) o Rg — Rg otopo((AxG) @pwg —),
gﬁw stop(A®p ReM) — Ra(top((A * G) ®pwa M)),
a®@m+rad(4) @ ReM — (a®1lg)@m+rad(A*xG) @ M

and

¢2 : Ig o Rg otopo((A * G) ®pwc —) = topo((A x G) ®psc —) o Ic © Ra
¢3" : IgRa top(((A * G) ®p.g M)) = top(A * G) @p.c IaRaM,
h@((a®g)®@m+ IgRgrad(A*G) @ M) — (h(a) @ h) ® (1¢ @ g(m)) + rad(A * G) ® IcRaM,

which give rise to isomorphisms

@1 : End(top(A @5 ReLP*Y)) = End 4 (Rg(top((A * G) @pyq LP*Y))).

and

P2 - EHdA*G(tOP((A * G) RBxG IGRGLB*G)) — EndA*G(IgRG tOp((A * G) RBxa LB*G)),

Now consider the diagram

0, BxG

EndB(RgLB*G) x G EndB*G(I(;RgLB*G)

s1®idk GJ/ lSQ

EndA(top(A Xp RgLB*G)) * G EDdA*G(tOp((A * G) R pxG IgRgLB*G))

p2®idk GJ{ J{‘Pl

Enda(Rg(top((A x G) @B LB*G)) x G ———— End.¢(IgRa top((A x Q) @B LB*G))

Oop((A+@)@ 5. LB*C)
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For f € Endg(RgL?*%), g,h € G ,a € A and z € LP*¢ we have

208200k, 18-¢(f®g)(le® ((1a®1g) ®z+rad(A * G) ® LP*Y))

= (¢F7 )V o (s200p,15:6)(f @ g) 0ok C(1a® (14 ® 1g) ®  + rad(A * G) ® LB*F))

)l o(sg00p.ma)(f®9)((1a®1g)®1lc ®x +rad(A* G) ® IgRGLP*Y)

V1o (top(idase @O, o (f ® ¢)))((1a ® 1¢) ® 1g @ 2 + rad(A * G) ® IgReLP*C
)N (1a®16) @ O, poea(f ® 9)(1g ® 2) + rad(A * G) ® Ig RgL”*)

) H(1a®1le) @ g @ f(ga)) +rad(A * G) @ IgRgLP*)

)

and

Orop(A+G) 2 5.6 LB+6) © (91 ®idka) 0 (51 ©idia)(f @ 9)(1e ® (14 ® 1¢) ® x + IgRgrad(A « G) ® LP*9)
= Orop((A+@)@p.0L5+0) (01 051)(F) ® 9) (16 @ (14 © 1g) ©@ z + IgRgrad(A  G) @ LP*Y))
=9 @ ((pros)(N))(9((Lla® 1) @ z +rad(A * G) ® L))
=g eol  on(f)o @) o((1a® 16) @ o +rad(A % G) @ L))
=g @ ot 0 51(f)(1a ® gz + rad(4) @ RaLP*C)
=g '® qblLB*G otop(ida ®f)(14 ® gz + rad(A) ® RgLP*%)
=g @ ¢F (14 @ f(gz) + rad(A) ® ReLP*€)
=g ' ®((1a®1¢) @ f(gz) + rad(A * G) ® LP*%).

As all maps are A*G-linear, and elements of the form 1¢®((14®1g)®@z+I1g R rad(A*G)@ LB*)

generate I Rg top((A*G)®p.c LP*F) as an AxG-module, this proves that the diagram commutes.

Since we know all maps except s1 ®idk ¢ to be isomorphisms, we can conclude that s; ®idy ¢, and

thus s; is an isomorphism. This shows that we have a bijection between the isomorphism classes
of simple modules given by

Sim(B) — Sim(A), LZ — L# := top(A @5 LP).

Moreover, using Definition [3.2] Proposition [3.3]and the fact that BxG is an exact Borel subalgebra
of A x G, we have that
LY <p LY ©IgLy <p. IcL}
& top((A* Q) ®pug IoL)) <axc top((A* G) ®puc LY)
&Ig(top(A®p L)) < avaq Ig(top(A @5 Lf))
s top(A®p LP) <4 top(A®p LJB) & LA <, L;‘.

Finally, by Corollary

A®p RaLP*? = R ((A G) @p.q LP*C) = Rg(A*C) = (DL L;“}A;‘{,.

i=1

Since for every simple B-module L? we have that A ®p LP is a summand of A ®p RgLP*“, the
module A®p LP is isomorphic to a direct sum of standard modules. Since it has indecomposable
top L, this implies that A ®p LF = ALiA.

Thus (B, <p) is an exact Borel subalgebra of (A4, <4). O
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Proposition 3.18. Let (A,<4) be quasi-hereditary and let B be a subalgebra of A such that
g(B) = B for all g € G. Let (B * G,<p.«c) be the corresponding exact Borel subalgebra of
(A% G,<axg) Then the following statements hold:

1.
2.
3.

4.

B is a strong exact Borel subalgebra if and only if B * G is a strong exact Borel subalgebra.
B is a normal exact Borel subalgebra if and only if B+ G is a normal exact Borel subalgebra.

B is a homological exact Borel subalgebra if and only if B * G is a homological exact Borel
subalgebra.

B is a reqular exact Borel subalgebra if and only if B* G is a reqular exact Borel subalgebra.

Proof. 1. Suppose B is a strong exact Borel subalgebra. Then by Lemma Arad(B) C

3.+4.

rad(A). Hence A * Grad(B*G) C rad(A* @) by Lemma [1.11} so that again by Lemma [2.19]
B x G is a strong Borel subalgebra of A x G. On the other hand, suppose that B x G is a
strong Borel subalgebra of A x G. Then A x Grad(B % G) C rad(A4 * G), so that again by
Lemma [L.TT]

Arad(B) C (A*Grad(B*G))NA Crad(4A* G) N A =rad(A).

Suppose that B is normal. Then the inclusion ¢ : B — A has a splitting 7 : A — B as right
B-modules whose kernel is a right ideal of A. Since tensoring over k is exact, the inclusion
t ® idk ¢ has the splitting 7 ® idx ¢ which is a right B * G-module homomorphism whose
kernel is a right ideal of A * G.

On the other hand, suppose that B * G is normal. Then ¢ ®idy g has a splitting 7’ : A*xG —
B % G of right B * G-modules whose kernel is a right ideal in A * G. Since the fixed point
functor —¢ for the G-action given by left multiplication is exact by [I9, Lemma 3], (7/)% is
a splitting of the embedding (: ® idy )¢ as right (B * G)%-modules such that its kernel is a
right ideal in (A * G)“. Now since the upwards arrows in the commutative diagram

G (L®ide)G G
(Bx@)Y ——=— (AxQ)
bHﬁ >gea g(b)@gT TaHﬁ > ,ec 9(a)®g
B L A

are isomorphisms of algebras, (7/)¢ induces a splitting of ¢ as right B-modules such that its
kernel is a right ideal in A.

Assume that B is homological, resp. regular. In the latter case, we have already seen that
B % G is normal. Let PP be a projective resolution of L®. Then A @5 P is a projective
resolution of A4, kG ® PB is a projective resolution of kG ® L?, kG ® (A ®p PB) is a
projective resolution of kG ® (A ®@p L?), and similarly for the restriction of the induction.
Now G acts on Endp(Re(kG ® PB)) and on Enda(Rg(kG ® (A ®p PP))), and since
Rg (kG ® LP) is semisimple, the map

Endp(Rg(kG @ PP)) = Enda(A®p Rg(kG @ PP)), f —ids ®f

is an epimorphism in homology of degree one and an isomorphism in homology of degree
strictly greater than one, resp. an isomorphism in homology of degree strictly greater than
Z€ro.

As in Theorem conjugating with the isomorphism

A®p Ra(kG® PP) = R5((A+G) @p.c (kG PP))
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yields an isomorphism
Endp(Rg (kG ® PB)) = Enda(Rg(A* G) @p.c (kG ® PB)), f s idawc OF,
which is, as before, G-equivariant, so that it induces a homomorphism

Endp.q(kG ® PP) = Endg(Rg(kG ® PP))¢
— End.q((A % G) @pwe (kG ® PP)) = Enda(Ra(A * Q) @p.¢ (kG @ PP))C,
f — idA*G ®f

Since the fixed point functor —¢ is exact, this is an epimorphism in homology of degree one

and an isomorphism in homology of degree strictly greater than one, resp. an isomorphism
in homology of degree strictly greater than zero.

Thus we obtain an epimorphism in degree one and an isomorphism in degree strictly greater
than one, resp. an isomorphism in degree strictly greater than zero

Exth,o(kG® LP kG ® LP) = Ext’,o (A% G) @p.c L, (A% Q) @p.c LP),
[f] = [[dasc ®f].

The result now follows from Corollary

On the other hand, suppose B % G is homological resp. regular. In the latter case, we
have already seen that B is normal. Let PP*¢ be a projective resolution of LZ*¢. Then
(A x Q) ®p.g PP*C is a projective resolution of A4.q, RgPP*C is a projective resolution
of Rg(LP*%), and Rg((A* G) ®@p.«c PP*Y) =2 A®p Rg(PP*C) is a projective resolution of
Ra(A*G) ®@p.c LP*C) 2 A®p Rg(LP*Y) and similarly for the induction of the restriction.
Since LP*¢ ® k G is semisimple, we have that by assumption

Exth.o(LP*Y @ kG, LP*C @ kG) = Ext’, (A9 @ kG, AMC 9 k@)

is an epimorphism in degree one and an isomorphism in degree strictly greater than one,
resp. an isomorphism in degree strictly greater than zero.

Moreover, G acts on Endg(Rg(PB*%)) and on Enda(Rg((A * G) ®p.c PP*%)) viag- f =
gf(g~1—) and, arguing as in Theorem we obtain a commutative diagram

0pBxG

EndB(RGPB*G) * G EndB*G(IGvR(;PB*G)

s1®idg GJ, J{SQ

Enda(A®p RePP*%) % G Enda.q((A x G) ®p.c IgRaPP*%)

2 ®idk Gl ltm

Enda(Rg((A* G) ®p.g PP*E)) % G — Endac(IgRa(A* G) ®pic PB*&)

(A*G)® p.gPB*C

where 0ps.c and Ops.c and 0 4.q)g ., pB+c are the isomorphisms from Lemma

51 : Endg(RaPP*¢) — End (A ®@p PB*Y), f = ids ®f
sy : Endpya(IgRaPP*®) = Enda.q((A * Q) ®@pwg IgRa PP ), f — idpwa ®f

are the maps obtained from the induction functor, and ¢; and @9 are the isomorphisms
arising from the natural isomorphisms [I] and

Note that all maps except s; ® idkx ¢ and so are isomorphisms and that by assumption s, is
an epimorphism in homology degree one and an isomorphism in homology in degree strictly
greater than one, resp. an isomorphism in homology in degree strictly greater than zero.
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Thus, idx ¢ ®s1 is an an epimorphism in homology degree one and an isomorphism in homol-
ogy in degree strictly greater than one, resp. an isomorphism in homology in degree strictly
greater than zero.

This implies that s; is in homology degree one and an isomorphism in homology in degree
strictly greater than one, resp. an isomorphism in homology in degree strictly greater than
Zero.

We obtain that the vector space homomorphism

H*(s1) : Exty(RoLP*¢ RGLP*Y) — Ext’y(A®p LP*Y Ao LP*Y9),[f] — [ida ®f]

is an epimorphism in degree one and an isomorphism in degree strictly greater than one,
resp. an isomorphism in degree strictly greater than zero.
Moreover, since A®p LB 22 A, 4 for every LP € Sim(B) and

Ra(tP%) 2 @ [Ra(L™): LPLP
LB €Sim(B)

by Proposition [7], this induces for every L5, Lf € Sim(B) a vector space homomorphism

[Ra(LP*9) : LP)[Rq(LP*¢) : LP)Exty(LE, L)
—[Ra(LP*C) s LP][Ra(LP*C) : L7 Ext}(Apa, Apa),
frida®f,

which is an epimorphism in degree one and an isomorphisms in degree strictly greater than
one, resp. an isomorphism in degree strictly greater than zero. Since by Corollary
[Ra(LP*C) . LB] # 0 for all 4, this implies that (B, <p) is homological resp. regular. O

4 Auslander algebras of Nakayama algebras

In this section, we will give, at some length, an example of the above. However, before that, we
will need two more general statements.

Lemma 4.1. Let A be a finite-dimensional algebra and suppose G is a commutative group acting
on A wia automorphisms. Let [X] be an isomorphism class of indecomposable A-modules and let
Hix) be the stabilizer of [X| in G. Then there is a representative Y € [X| such that Y has an
Hixj-action.

Proof. Let n := |H|x)|. Let X be any representative of [X] and consider the A * Hxj-module
kHix) ® X. As an A-module, this is isomorphic to the direct sum nX, so that via this iso-
morphism nX obtains likewise the structure of an A x H{xj-module. Thus we obtain a group
homomorphism ¢ : Hix] — Mat, (End4(X))*, where Mat,(Enda(X))* denote the invertible el-
ements of Mat, (End4(X))*. Since End4(X) is local with residue field k, this induces a group
homomorphism ¢ : Hix] — Gl, (k) = Gl,(Aut(X)). Since G and thus H[x is commutative, the
matrices in the image have a common eigenvector. This corresponds to a summand YV|nX, Y = X
which is stable under the action by H|x) on nX defined by ¢©', and thus Y has an Hixj-action. [

The following proposition is related to [23] Theorem 1.3 (c) iii].

Proposition 4.2. Let G be a group acting via automorphisms on an algebra D of finite rep-
resentation type. Then there is an induced G-action on an algebra A’ Morita equivalent to the
Auslander algebra A of D such that A’ x G is Morita equivalent to the Auslander algebra of D G.
Moreover, if G is commutative, there is even an induced action on the Auslander algebra A of D
such that A x G is Morita equivalent to the Auslander algebra of D x G.

33



Proof. Let {X} be a set of representatives of the isomorphism classes of indecomposable D-
modules, and let M := @ X and N := IocM = kG ® M. Note that for every indecomposable
AxG-module Y, RgY is a direct summand of M, so that I RgY is a direct summand of IcM = N.
Since Y|IgReY by Proposition [2}, this implies that Y is a summand of N. By definition,
A’ := Endp(RgN) is Morita equivalent to the Auslander algebra A of D. Moreover, as N is a
D x G-module, G acts on A’ = Endp(RgN)°P via conjugation. Now by Lemma

A"+« G =Endp(RgN)® x G = (Endp(RgN) * G)°® 2 Endp.g(N @ kG)°P.

As every indecomposable D * G-module is a summand of N, the latter is Morita equivalent to the
Auslander algebra of D x G.

Now if G is commutative, choose instead a set of representatives {Y'} for the orbits of the iso-
morphism classes of indecomposable D-modules under the G-action which are equipped with a
Hy)-action, according to Lemma

Then the module N’ := @YE{Y} k G ®y Hpy Y obtains the structure of a D * G-module. Moreover,
for any Y € {Y'} let Z[y] be a set of representatives of G/Hy). Let X be an indecomposable
D-module. Then by assumption there is a ¢ € G and a Y € {Y} such that X & gY. Since
LY =Y for every h € H[y] we can assume without loss of generality that g = 2z € Z[y}. Since by
Corollary [8] ReN' = Dy vy ®Z€Z[y] 2Y, we have that X|RgN. Thus A := Endp(N') is
isomorphic to the Auslander algebra of D. As before, we can use Lemma to see that

AxG= EndD(RgN/)Op * G = (EHdD(RgN/) * G)Op = EHdD*G(Ig(RgN/))Op,

which is Morita equivalent to the Auslander algebra of D x GG, arguing as before that since every
indecomposable D-module is isomorphic to a summand of RgN’, every indecomposable D * G-
module is a summand of IoRgN. O

The example we consider arises as follows. Let D := k[z]/(z") and G = {(g|g") = Z/nZ be a
cyclic group with n elements and generator g € G.
Consider the G-action on D given by gz = &x where £ is a primitive n-th root of unity. Then by
[23, p.241-244] D % G is a self-injective Nakayama algebra with quiver @

[o 73}
€p — €1

€n—1 €2

-] F

and relations given by all paths of length N, i.e. DxG = kQ/JY. The idempotent e; for 1 <i <n
here is given by

n—1

1 L
ej = ZZ§ Mog
k=0

and «; corresponds to the element

n—1
—jk k
ejr1ze; =1/n E EPr gt =re; = ejqa.
k=0
In particular, ge; = &’e; and
n—1
_ i e = i — E —ijk .3’ k
Ay —1-.. 05 =TEj4j/ _1T€j445/_2...TC;41TE; = T €5 = T €5 = f r & g
k=0
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so that

n—1 n—1 n—1
. . . A S . -
9oy 0; =gy €M @gh =Y el @ gttt = g Y @ gt
k=0 k=0 k=0

The indecomposable modules of D are given by M; = D/(zN=%) for 0 < i < N — 1, and the
irreducible maps between them are given by the canonical projections and embeddings

mit My — My, d+ (2N ") = d+ (@) for 0<i <N -2
v My = M_y,d+ (V") = de+ (V" F ) for 1<i< N -1

with relations

Ti—10t;=tiq10m for 1 <i< N —1

TnN—20LN—1=0.

So the Auslander algebra A of D has quiver Q'

L ..... A ™2
My My 2o My My
L1 LN -1
with commutator relations at every middle point M, ... My_o and a zero relation at My _;.

Moreover, gM; = M; for all 0 < i < Ny, so in Proposition we may chose N/ := Zf\;l M; and
obtain that A = End 4 (N')°P is the Auslander algebra of D, and G acts on it via g(iday,) = iday,,
g(m;) = m; and g(v;) = &

Note that since G acts trivially on the primitive idempotents, AxG is basic, so that it is isomorphic
to the Auslander algebra of D x G.

By [23] p.241-244], the algebra A x G has Gabriel quiver Q' given by

where the last column is identified with the first column, so that @' becomes a cylinder, with
relations given by commutator relations in every parallelogram

[}
[} [ ]
L]
and a zero relation given between neighbouring points in the last row
[ ]
[} [}
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More concretely, the simples correspond to the D % G modules
M;; = PP*G)(zN=TPP*G) = (D % G)ey) /@ (D x Qe ).
for 1 <i< N, 1<j<mn, which is given by the D-module M; together with the multiplication

g- (@l ej+aVNTPPY) = g (o) = 0l e 4 aN PP,

J

and the extensions correspond to the maps
N—ipD N—i+1 pD N—i+1pD
Lij - Mi,j — Mifl’jfl, a+x sz G d are; 1 +x o+ Pji*lc = a1 +x o Pji*lG
LR ML]‘ — Mi+1,ja a+ INiinD*G = a4+ IN?iileD*G

Now consider A. The projective P/ at M; is given by

%/%\%1
NS

o ey
L A
My ALk ALk My_1
\ K oy /
My Ak Mpy_o
MO AW Ak
Ak Ak
L Ak
A /
My

M

If we define the partial order M; < Mj if and only if ¢ < j, then we obtain that A is quasi-hereditary
with standard modules given by

My

My
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where P/ has standard filtration

AA

K2

N

A
Ai-i—l

e

AL
Moreover, note that the subalgebra B of A given by the quiver
My —— M, b » Mn_1

is directed. Additionally A has a vector space basis consisting of
ti—p 0o oidpy,om_jo--rom_jfor 0 <i <N —-1;0 <5,k <.

Thus, as a right B-module

N-1 i N—1N-1
Ap= @@Li,kon-oqoidMiB% @ @eiB
i=0 k=0 i=0 j=i

is projective, and
A®p LY, = Aidy, /(Arad(B)idy,) = Py, /Am; = AL

Thus B is an exact Borel subalgebra of A.

Now, since G acts trivially on the simples of A, <4 is automatically G-equivariant. Hence we obtain
by Proposition an induced partial order <4,¢ on A * G, given by M, ; <a.g My j i <7,
such that by Theorem (A x G, <axc) is quasi-hereditary . Moreover, by Theorem it has
an exact Borel subalgebra given by B x G. Using our explicit description of B, and the fact that
G acts trivially on B, we obtain that B % G is the subalgebra of A x G given by the subquiver

O— - &—— 06— @
: AR :
o ¢ e— o

of Q. Moreover, if tg : B — A is the canonical embedding, I C A is the ideal generated by
t1y---5tn—1 and 77 : A — A/I is the canonical projection, then 7; o 1p is an isomorphism, so that
tp admits a splitting with kernel I. Hence B is normal in A, so that B * G is normal in A x G by
Theorem B.17

However, note that for N > 3 the extension of A and A4 given by
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N/

e
My My
N
My
e
My
has a submodule X
My My
e
M,

N/

My

which is an extension of Ag' and Az'. Hence Ext!(Ag', A4) # (0) = Exty (LY, , L%, ), so that B
0 2
is not regular. Similarly, we can see that B * G is not regular by considering tha A x G-module

Moy 1 My o

N

which is an extension of AS‘EG and A‘247’§G, while Extg*G(Lﬁch, Lf/[’ﬁ) = (0) For the case N = 2,

B is a regular exact Borel subalgebra as seen in [I8] Example A.1].
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