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Complement and platelets: prothrombotic cell activation requires
membrane attack complex–induced release of danger signals
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Key Points

• Proximal and terminal
complement activation
products fail to directly
induce prothrombotic
platelet activation.

• MAC-mediated release
of intracellular ADP is
sufficient and
necessary for
complement-mediated
platelet activation.
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Complement activation in the diseases paroxysmal nocturnal hemoglobinuria (PNH) and

atypical hemolytic uremic syndrome (aHUS) results in cytolysis and fatal thrombotic events,

which are largely refractory to anticoagulation and/or antiplatelet therapy. Anticomplement

therapy, however, efficiently prevents thrombotic events in PNH and aHUS, but the underlying

mechanisms remain unresolved. We show that complement-mediated hemolysis in whole

blood induces platelet activation similarly to activation by adenosine 5′-diphosphate (ADP).

Blockage of C3 or C5 abolished platelet activation. We found that human platelets failed to

respond functionally to the anaphylatoxins C3a and C5a. Instead, complement activation did

lead to prothrombotic cell activation in the whole blood when membrane attack complex

(MAC)-mediated cytolysis occurred. Consequently, we demonstrate that ADP receptor

antagonists efficiently inhibited platelet activation, although full complement activation, which

causes hemolysis, occurred. By using an established model of mismatched erythrocyte

transfusions in rats, we crossvalidated these findings in vivo using the complement inhibitor

OmCI and cobra venom factor. Consumptive complement activation in this animal model only

led to a thrombotic phenotype when MAC-mediated cytolysis occurred. In conclusion,

complement activation only induces substantial prothrombotic cell activation if terminal

pathway activation culminates in MAC-mediated release of intracellular ADP. These results

explain why anticomplement therapy efficiently prevents thromboembolisms without

interfering negatively with hemostasis.
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Introduction

Not all thrombotic conditions respond substantially to treatment with anticoagulation and/or antiplatelet
therapy. A key example is the complement model disease, paroxysmal nocturnal hemoglobinuria (PNH),
which has been described as the “most vicious acquired thrombophilic state known in medicine.”1 Clinically,
2023; prepublished online on Blood
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classical PNH is characterizedby anemiadue to complement-mediated
hemolysis, smooth muscle dystonia, and arterial and/or venous throm-
bosis, among other symptoms (reviewed previously2-4). To prevent or
treat thromboembolic complications, patients with PNH underwent
therapeutic anticoagulation, whereas antiplatelet therapy was usually
not used.4,5 However, thrombotic complications in PNH proved largely
resistant to anticoagulation, with thrombi (re)occurring often despite
anticoagulation therapy,4 including in patients receiving combined
anticoagulation and antiplatelet therapy.5,6 In contrast, a therapeutic
block of the terminal and lytic complement pathway reduced throm-
boembolic events in patients with PNH, for example, from a rate of 10.6
events per 100 patient-years on antithrombotic therapy to 0.6 events
per 100 patient-years on treatment with the C5-inhibiting monoclonal
antibody eculizumab.7 Eculizumab also reliably reduced thrombotic
microangiopathy in the complement-mediated disease atypical hemo-
lytic uremic syndrome (aHUS), with 81% of patients reaching a com-
plete thrombotic microangiopathy–free status during treatment.8,9

Several other disease entities exhibit a substantial complement
activation signature, which leads to thrombosis despite application
of established antithrombotic drugs (reviewed in10,11). This
includes antiphospholipid syndrome (APS) or catastrophic APS
(CAPS)12-15 and autoimmune hemolytic anemia.16-20 Yet, not every
disease entity with aberrant and strong complement activation
presents with thromboembolic events, suggesting that comple-
ment activation products alone are not sufficient to induce a pro-
thrombotic state of clinical manifestation. This becomes obvious in
a comparison among the 3 complement-driven diseases PNH,
aHUS, and C3 glomerulonephritis (C3G).10 Common among them
is the dysregulation of the complement alternative pathway (AP),
leading to C5 activation. However, thrombotic events are only
typical for PNH and aHUS. A unifying feature of PNH and aHUS is
the occurrence of complement-mediated cytolysis affecting eryth-
rocytes and endothelial cells, respectively, whereas membrane
attack complex (MAC)-mediated cytolysis does not occur in
C3G.10,21-24 This is in line with data from animal studies using
cobra venom factor (CVF) to decomplement animals via an
exhaustive fluid phase consumption of C3 and C5 which appar-
ently occurs without any ill effect to the animal.10,25-27 However,
these conclusions from clinical practice in humans and animal
studies using CVF are contrasted by a plethora of published data
from in vitro or animal studies that suggest a direct mechanistic link
between complement activation and coagulation and/or pro-
thrombotic cell activation (reviewed previously4,10,11,28,29).

We propose that an important intermediate step between com-
plement activation and prothrombotic cell activation had been
overlooked (and/or conclusions were misguided because of a
highly artificial in vitro setup). We hypothesize that this crucial
intermediate step is the liberation of intracellular, prothrombotic
danger signals due to complement-mediated cytolysis via MAC
formation. Novel mechanistic insights into the cross talk between
complement and hemostasis promise to (1) unravel mechanistically
why eculizumab prevents thromboembolism in PNH, which is
unclear to date,30 and (2) explain why antithrombotic therapy alone
does not deliver the expected outcome in complement-associated
thrombotic disorders, such as PNH, autoimmune hemolytic anemia,
and CAPS. Tackling these important issues is expected to provide
novel approaches to how these severe diseases may be better
addressed in the future.
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Using 2 different whole blood models, isolated platelets, and an
established in vivo model of a mismatched erythrocyte transfusion
reaction in Wistar rats, we prove our hypothesis that complement
activation and its purified activation products have only very limited
effect on direct platelet activation. Instead, complement activation
provides the means to prothrombotic cell activation by liberating
the intracellular danger signal adenosine 5′-diphosphate (ADP)
that forcefully activates platelets among other cell types.

Material and methods

Collection of human blood

Venous blood from healthy donors was collected under the ethical
approval by the ethics committee of Ulm University in either hirudin
monovettes (S-Monovette Hirudin, 04.1959.001, Sarstedt, Nüm-
brecht, Germany) or neutral monovettes (S-Monovette neutral,
02.1726.021, Sarstedt) in which the specific factor Xa inhibitor
fondaparinux (FPX; Arixtra, Aspen Pharma Trading Limited, Dublin,
Ireland) was provided, leading to a final concentration of 8 μg/mL.
Blood was carefully inverted and immediately used for the
experiments.

Complement proteins and inhibitors

The monoclonal anti-C5 antibodies eculizumab (Soliris, Alexion) and
ravulizumab (Ultomiris, Alexion) were obtained from remnants in
infusion bags. A recombinant version of the natural tick-derived C5
inhibitor OmCI (endotoxin tested) was expressed in Pichia pastoris.
C5 double inhibition was used as previously described.31,32 CVF
(derived from Naja naja kaouthia) was purchased from Quidel and is
known to convert C3 into C3 fragments and C5 into C5a and
SC5b-9, per the manufacturer’s specifications. CVF (130 μg) was
injected intraperitoneally per rat (as further detailed in “Results”). The
C3 peptide inhibitor Cp40 was a kind gift from J.D. Lambris, Uni-
versity of Pennsylvania. All purified complement proteins C3a, C4a,
C5a, C3b, and C4b were purchased from CompTech.

Preparation of erythrocytes

Rabbit erythrocytes (rRBCs; 36100010, Fiebig Nährstofftechnik,
Düsseldorf, Germany) were washed 3 times in phosphate-buffered
saline (PBS; −/− [containing no calcium or magnesium ions]) by
centrifuging at 2000g. After the last centrifugation, the supernatant
was discarded, and packed cells were kept at room temperature
until further use. For preparation of shattered RBCs, packed
rRBCs or human erythrocytes were disintegrated using an ultra-
sound stick and subsequently centrifuged at 10 000g for 20 sec-
onds at room temperature. The supernatant was kept at room
temperature until further use within 1 hour of the preparation.
These erythrocytes were denominated shattered RBCs.

Blood count and laboratory parameters of

hemostasis

Citrated and EDTA-supplemented human FPX–treated blood
samples and rat blood samples were handed to the clinical routine
laboratory of the University Hospital of Ulm for small blood count
analysis (Coulter DxH 800; Beckman Coulter) and measurement of
routine coagulation parameters (prothrombin time/Quick test;
partial thromboplastin time; turbidimetry, Siemens-BCS XP,
Siemens Healthineers, Erlangen, Germany).
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
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EDTA-plasma generation

For plasma generation, EDTA-anticoagulated (10 mM) FPX-treated
blood samples were centrifuged at 800g for 5 minutes at 4◦C and
again at 16 000g for 2 minutes at 4◦C. Hirudin-treated blood was
centrifuged at 2000g for 3 minutes. Finally, plasma was aliquoted
and stored at −80◦C until further use.

Platelet-rich plasma generation

Citrated or lepirudin-anticoagulated blood was centrifuged at 150g
for 15 minutes, with the lowest possible adjustment of centrifuge
acceleration and brake. The upper one-third was collected and
kept at room temperature until further use.

Statistics

For descriptive statistics, statistical testing, and graphical depic-
tion, Prism9 (GraphPad Software) was used. Results were
considered statistically significant for P < .05. Note that, for the
sake of visibility, depiction of statistically nonsignificant data, P
values were omitted if not of relevance for the experimental
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hypotheses. For a detailed description of the statistical methodol-
ogy, see supplemental Material.

Results

Artificial surface-induced complement activation

induces activation of innate immune cells

We used 2-methacryloyloxyethyl phos-phorylcholine–coated reac-
tion tubes to attenuate complement activation on different artificial
surfaces as previously demonstrated.33 However, we measured a
time-dependent increase of the complement activation fragments
C3a, C5a, and SC5b-9 in anticoagulated whole blood incubated in
2-methacryloyloxyethyl phosphorylcholine–coated tubes. Addition
of the C3 peptide inhibitor Cp40, a member of the compstatin
family,34 to a final concentration of 20 μM (C3 concentration in
serum is ~6 μM) completely inhibited the generation the anaphy-
latoxins and SC5b-9 (Figure 1A). In comparison, the addition of
2.5 mg/mL zymosan, a potent activator of the AP, produced
~10 000–fold higher C3a plasma levels in this whole blood model
(supplemental Figure 1A). Analysis of polymorphonuclear cells via
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flow cytometry revealed a complement-dependent surface
expression of the activation markers CD11b and CD62L
(Figure 1B). Complement-dependent cell activation occurs to a
lesser extent for CD14+ monocytes as well but not for T cells
(supplemental Figure 1B-C). In line with this, interleukin-8 and
matrix metalloproteinase–9, which are mainly derived from poly-
morphonuclear cells or monocytes were found to be elevated in a
complement-dependent manner (Figure 1C-D), whereas soluble
interleukin-2 receptor, an activation marker of T cells, was unaltered
(supplemental Figure 1D). Taken together, complement activation
triggered by the reaction tube clearly induced cell activation of
innate immune cells in our whole blood model, whereas adaptive
immune cells remained unaffected within the observed 2-hour
incubation time.

Artificial surface-induced complement activation

does not alter hemostatic system parameters

Next, we investigated whether complement activation would affect
the cellular and/or humoral part of the hemostatic system. We
observed no decrease in platelet count under any of the experi-
mental whole blood conditions tested (Figure 2A). The routine
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laboratory hemostatic parameters prothrombin time (Quick;
extrinsic pathway) and partial thromboplastin time (partial throm-
boplastin time; intrinsic pathway) revealed no significant differ-
ences between samples in which complement activation occurred
or those in which it was inhibited by Cp40 (Figure 2B). Levels of
thrombin/antithrombin complexes did not increase over time
(Figure 2C). Rotational thromboelastometry (ROTEM) analysis of
the aforementioned reactions, after specific activation of the
extrinsic or intrinsic pathway, revealed no significant differences
(supplemental Table 1). ROTEM analysis was also performed with
freshly drawn citrated blood (without prior incubation) in the
presence or absence of the C3 inhibitor Cp40. Although no sig-
nificant difference was measured after extrinsic activation or after
addition of cytochalasin D to exclude a platelet contribution (FIB-
TEM), a significant elongation of the clotting time in the intrinsic
pathway was recorded when C3 activation was inhibited
(supplemental Table 2). The same tendency (without reaching
statistical significance) was observed with C5 blockage
(supplemental Table 3). However, prolonged clotting time under
C3 inhibition in the intrinsic pathway was not observed when
conducting the experiment with platelet-rich plasma (supplemental
Table 4), suggesting that this phenomenon is likely induced by
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leukocytes rather than being driven by a direct interaction of
complement activation fragments with platelets. We also observed
no significant differences when measuring either the soluble
platelet activation marker CD40L or von Willebrand factor, both of
which are reportedly released upon platelet activation35,36

(Figure 2D-E). Platelet activation was determined at different
incubation time points by evaluating the surface expression of
CD62P with or without stimulation with 5 μM ADP. Only addition of
ADP led to platelet activation, whereas complement activation
induced by the reaction conditions had no measurable effect
(Figure 2F). Addition of Cp40 did not affect platelet activation after
ADP stimulation either. In summary, artificial surface-induced
complement activation triggered an innate immune response but
induced neither a relevant activation nor any measurable impair-
ment of the hemostatic system.

No direct effects of complement activation products

on platelet activation

Because some reports in the literature described platelet activation
based on the complement activation products (recently
reviewed10,11), we performed a series of experiments to analyze the
effect of purified complement activation products on platelet
function. Isolated platelets and whole blood were exposed to
purified anaphylatoxins as well as soluble C3b and C4b (Figure 3A;
supplemental Figure 3A-B). None of these stimuli caused platelet
activation. Concomitant incubation of platelets with ADP or
thrombin and anaphylatoxins achieved no additional effect on the
expression of surface activation markers as had been detected for
ADP or thrombin stimulation alone (Figure 3A). By performing
multiplate aggregometry analysis in lepirudin-anticoagulated whole
blood or platelet-rich plasma, platelet aggregation was only
observed after stimulation with ADP (6.5 μM) or thrombin-receptor
activating peptide (TRAP; 32 μM) but not with C3a or C5a
(Figure 3B). In another setup, prestimulation by anaphylatoxins was
followed by ADP/TRAP addition (supplemental Figure 3C). Pres-
timulation with anaphylatoxins skewed toward increased platelet
aggregation in whole blood but not in platelet-rich plasma, sug-
gesting an indirect effect on aggregation that likely is mediated by
anaphylatoxin-induced leukocyte activation. C3a and C5a also had
no impact on clotting time in a modified ROTEM experiment
without the addition of a specific trigger for the extrinsic or intrinsic
pathways (Figure 3C). Preincubation of blood with C3a or C5a
followed by stimulation with thrombin had also no impact in this
modified ROTEM analysis (supplemental Figure 3D). Unable to
observe any direct functional effect on platelet stimulation via
anaphylatoxins, we re-examined the expression of the anaphylatoxin
receptors C3aR and C5aR, which have recently been described to
be present on human platelets.37,38 Analysis of isolated platelets
via flow cytometry demonstrated a lack of the C3aR and both C5a
receptors, that is, C5a receptor 1 (C5aR1) and C5aR2, on
quiescent platelets. Interestingly, after activation with ADP and
thrombin, we received a significant increase of the median fluo-
rescence signal for C3aR and C5aR2, albeit the portion of positive
platelets only increased significantly for C3aR (Figure 3D). How-
ever, when investigating this further, we observed an increase of
the isotype signal upon cell activation, albeit not to the same level
as the increase of the anti-C3aR antibody (Figure 3E). Staining of
neutrophils using the same antibodies (even at 10-fold lower anti-
body concentrations than that used for platelet staining)
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
demonstrated that the used antibodies successfully recognize the
anaphylatoxin receptors (supplemental Figure 3E). Collectively, we
could not identify any direct functional impact of purified comple-
ment activation products on platelets within whole blood or after
being isolated. Consistent with this, we failed to detect signs for
the surface expression of the C5a receptors, whereas the C3aR
appeared to be expressed on a small proportion of platelets acti-
vated by ADP/thrombin.

Complement-dependent and -independent lysis of

rabbit erythrocytes causes platelet activation

In a hirudin-based whole blood model, we induced complement
activation by the addition of rabbit red blood cells (foreign cells),
which are known to be lysed by the AP. Platelet activation in this
setup was confirmed by analyzing CD62P surface expression. Both
proximal (at the level of C3) and terminal (at the level of C5) inhi-
bition stopped the complement-mediated hemolysis of the rabbit
erythrocytes and inhibited platelet activation (Figure 4A). We
confirmed this by measuring the binding of PAC-1 recognizing a
neoepitope in the activated integrin 2b/3a (supplemental
Figure 4A). Because we failed to detect a platelet-activating
effect via the addition of anaphylatoxins (Figure 3), we hypothe-
sized that platelet activation in this model is solely triggered through
intracellular danger signals, which are released upon the
complement-mediated lysis of rabbit erythrocytes. Therefore, we
investigated the effect of rabbit erythrocytes, which were lysed
mechanically by sonication in a complement-independent manner.
This resulted in elevated free hemoglobin, as expected, and led to
CD62P surface expression on platelets (Figure 4B). Of note, this
time, platelet activation could not be reversed by the addition of
Cp40, indicating that complement-dependent or -independent lysis
of cells is sufficient and necessary to activate platelets.

ADP, and not complement activation, is the main

trigger of platelet activation upon cell lysis

To substantiate our hypothesis, we focused on ADP as the intra-
cellular danger signal known to trigger platelet activation. ADP can
address 2 purinergic G-protein coupled receptors on platelets,
P2Y12 and P2Y1, which can be inhibited by the receptor antag-
onists cangrelor and MRS2179, respectively.39,40 The addition of
both purine receptor antagonists completely abolished ADP-
induced platelet activation (Figure 4C), whereas activation by
thrombin is still possible (supplemental Figure 4C). Cangrelor and
MRS2179 did not influence the hemolytic readout (as expected)
but completely suppressed hemolysis-induced platelet activation
irrespective of erythrocytes being lysed in a complement-
dependent or mechanical (complement independent) fashion
(Figure 4C).

Complement-dependent cell lysis in a fully human

AB/O mismatch model causes platelet activation

Using a completely human model, we simulated an AB/O blood
transfusion mismatch by adding washed AB erythrocytes to
hirudin-anticoagulated blood from a donor having blood group O.
We observed substantial complement-dependent cell lysis, which
correlated with platelet activation (Figure 5A). Further analysis of
complement activation in the reaction mixtures proved the
expected functionality of C5 double inhibition (using ravulizumab
and OmCI). Although C5 activation was blocked in the presence of
COMPLEMENT-MEDIATED RELEASE OF INTRACELLULAR ADP 6371
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ravulizumab and OmCI, substantial activation of C3 is obvious as
judged by the liberated C3a. Consistent with the aforementioned
findings, strong proximal complement activation that failed to
induce cytolysis also failed to cause platelet activation (Figure 5B).

In vivo model of acute intravascular hemolysis

To confirm our findings in vivo, we used an established rat model of
acute intravascular hemolysis, modeling a mismatched transfusion
of erythrocytes including close monitoring of vital signs41,42

(Figure 6A-B). Human AB+ erythrocytes were infused into Wistar
rats, which naturally contain antibodies against human AB anti-
gens, thus, strongly activating the classical pathway via RBC
agglutinating antibodies. Animals that received PBS instead of
RBCs served as negative controls, and those with an RBC infusion
without inhibitor (PBS group) served as positive controls. Specific
complement inhibition at the level of C5 was achieved via the
administration of the C5 inhibitor OmCI before RBC infusion.
Alternatively, a CVF injection 24 hours before experimental start
was administered to deplete the animals’ complement activity. End
point blood count analysis indicated elevated neutrophil levels in
the PBS group, which is slightly reduced under complement inhi-
bition (Figure 6C). Unfortunately, few data points are missing in
some of the graphs because of initial sample handling errors.
Explanations for missing values are listed in supplemental Table 5.
Erythrocyte lysis was determined from blood in the final bleed by
measuring released hemoglobin via absorbance measurements as
well as determining lactate dehydrogenase (LDH) levels. Hemolysis
was most pronounced in the PBS group (Figure 6D; supplemental
Figure 5A). As expected, determination of LDH levels via clinical
analysis and absorbance measurements of released hemoglobin
correlate well (supplemental Figure 5B). Animals treated with the
C5 inhibitor OmCI or undergoing decomplementation with CVF
exhibited substantially reduced hemolysis levels. However, espe-
cially in the inhibitor groups, a high variation of baseline values is
noticeable for 1 (CVF group) or 2 (OmCI group) animals. To
assess the levels of nonactivated C5 at certain time points in all
animals, an in-house enzyme-linked immunosorbent assay detect-
ing only native, nonactivated C5 was developed, using the desired
binding property of OmCI.32,43 We observed that free, nonacti-
vated C5 was absent in the OmCI group, indicating full C5 binding
by OmCI in these animals. In contrast, in the CVF group, a signif-
icant reduction of C5 levels was obtained for all but 1 animal, which
exhibited C5 levels comparable with those of baseline blood
samples before the experiment (Figure 6E). This indicates a failure
in complement depletion in this animal (likely because of a sample
handling issue). Compared with the control animals, the animals
Figure 3 (continued) plasma was mixed with NaCl (0.9%, neg. Ctrl), ADP (6.5 μM), TRA

aggregation. Mean of the area under the curve with standard deviation is shown. (C) ROT

pathway. Immediately before starting the reaction, citrated blood was exposed to Thr (1 U

extrinsic or intrinsic pathway starting reagents. Mean values with standard deviation of the c

platelets were stimulated with either PBS−/− (neg Ctrl) or ADP (5 μM) and Thr (0.2 U/mL) f

clone: hC3aRZ8), C5aR1 (final antibody concentration: 1 μg/mL; clone: S5/1), and C5aR

Respective isotype controls were included in equimolar concentrations. Mean values with st

but with isotype staining after platelet stimulation. At least 3 independent assays are shown

Data sets in panels A [CD62P ADP, CD62P Thr], B-C, and E were analyzed using repeat

effects model (because of a missing value). Experimental groups were post hoc tested for st

Dunnet comparison; and panels C,E, Tukey test). The data set in panel D was tested using

sake of visibility, nonsignificant P values were omitted from graphs, unless they were of re
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experiencing substantial intravascular hemolysis exhibited a
decreased platelet count although the differences did not reach
statistical significance in this acute model, lasting only 2 hours
(Figure 6F). However, platelet counts significantly correlated with
the levels of released hemoglobin (optical density, 405 nm),
pointing to a direct association of complement-mediated cell lysis
and alterations in the hemostatic system (Figure 6G). Comparably,
the animals in the OmCI group experiencing high levels of hemo-
lysis despite C5 inhibition (marked as star and square) were among
the animals with the lowest platelet counts. Immunohistochemical
examination of lung tissue for fibrin deposition shows pronounced
deposition in the PBS group in comparison with that in all other
groups, although no statistically significant difference was reached
(Figure 6H). Of note, elevated fibrin deposits in the OmCI and CVF
groups were observed in the animals with the highest levels of cell
lysis (optical density, 405 nm). Analyzing fibrin deposition and LDH
levels for all animals exhibited a statistically significant positive
correlation of these parameters (supplemental Figure 5C). Taken
together, these in vivo results support the concept that
complement-mediated lysis is associated with platelet activation
and alterations in the hemostatic system, whereas massive gen-
eration of C3a and C5a in the CVF group (leading to exhaustive C3
and C5 consumption, as judged from the nonactivated C5 enzyme-
linked immunosorbent assay) does not induce a prothrombotic
phenotype per se.

Discussion

We set out to mechanistically uncover why anticomplement ther-
apy efficiently prevents thromboembolisms in the complement-
mediated diseases PNH and aHUS but does not interfere nega-
tively with hemostasis. Whole blood models in reaction tubes
exhibited substantial levels of surface-induced complement acti-
vation but failed to induce prothrombotic platelet activation. How-
ever, innate immune cells (granulocytes and monocytes) were
activated by these complement split products (Figures 1 and 2;
supplemental Figure 1), demonstrating their functionality. ROTEM
in whole blood showed that C3 inhibition (but not C5 inhibition)
prolonged the clotting time after specific activation of the intrinsic
pathway (Figures 2 and 3; supplemental Tables 1-4). This effect is
likely due to the complement activation products activating leuko-
cytes within the whole blood setting. In addition, the results from
aggregometry experiments in whole blood and platelet-rich plasma
support this concept. C3a and C5a alone did not activate platelets
in the whole blood. However, with consecutive stimulation by
anaphylatoxins and the known platelet activators TRAP and ADP, a
P (32 μM), C3a (1.8 μM), or C5a (0.18 μM), 2 minutes before analyzing platelet

EM without the addition of a specific reagent that activates the intrinsic or extrinsic

/mL), C3a (1.8 μM), or C5a (0.18 μM) and was recalcified without addition of the

lotting time are shown. (D) Expression of anaphylatoxin receptors on platelets. Isolated

or 10 minutes before being analyzed for C3aR (final antibody concentration: 2 μg/mL,

2 (final antibody concentration: 4 μg/mL; clone: 1D9-M12) surface expression.

andard deviations are shown. (E) C3aR expression on isolated platelets. As in panel D

in each panel. Data sets were tested for outliers using the ROUT outlier test (Q = 5%).

ed measures one-way ANOVA and data set in panel A [CD63 Thr]) by Prism mixed-

atistical significance with correction for multiple comparisons (panel A, Sidak; panel B,

a repeated measures two-way ANOVA test for adjusted multiple comparisons. For the

levance to the experimental hypotheses.
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trend (but no significant change) toward increased platelet
aggregation was noticeable in the whole blood setup but not in
platelet-rich plasma lacking leukocytes (Figure 3B; supplemental
Figure 3C). This indicates that platelets fail to respond to C3a
and C5a. Although there was no sign for the expression of the
C5aR1 on nonstimulated or ADP-stimulated platelets, a signal for
C3aR appeared only on ADP-stimulated platelets (Figure 3D).
Because ADP-stimulated platelets also bound more of the C3aR
isotype control antibody (Figure 3E), the difference for C3aR
staining was not statistically significant but represented a clear
signal. An increased staining signal for C3aR upon platelet acti-
vation has been described previously.37 Binding studies with
radioactively labeled ligands failed to detect C3aR and C5aR1 on
6374 MANNES et al
nonstimulated human platelets,44,45 and an RNA-sequencing
analysis of human platelet transcriptomes revealed very low copy
numbers of C3aR and C5aR1.46 A recent study also failed to
observe an effect of C3a on platelet activation.47

To understand how complement activation, then, may induce pro-
thrombotic platelet activation, we resorted to well-controlled in vitro
models of hemolysis.31,32,48 Taken together, data on hemolysis of
rabbit or human erythrocytes suggest that it is not the complement
activation products themselves that activate the platelets but rather
the MAC-mediated hemolysis reaction (Figures 4A and 5). To test
this, mechanically shattered rabbit or human RBCs were added to
whole blood with or without Cp40 addition (to control that
24 OCTOBER 2023 • VOLUME 7, NUMBER 20



B C3a C5a

[n
g/

m
l]

+Ravu + OmCI – –
–AB-RBC + +

0

1000

2000

3000

4000 ns

+Ravu + OmCI – –
–AB-RBC + +

0

20

40

60

80

[n
g/

m
l]

ns

A CD62P Hemolysis

0

50

100

150

200

Ravu + OmCI +– –
AB-RBC – + +

Me
dia

n 
FI

� 0.01
� 0.01

0.0

0.5

1.0

1.5

OD
40

5n
m

+Ravu + OmCI – –
–AB-RBC + +

0.01
0.01

Figure 5. AB/O-mismatch–induced lysis of human RBCs causes platelet

activation. Washed erythrocytes of a donor with AB-group blood were added to

hirudin-anticoagulated whole blood of a donor with group O blood in absence or

presence of ravulizumab and OmCI (both at final concentration of 0.8 μM). (A)

Surface expression of the platelet activation marker CD62P was determined via flow

cytometry, and hemolytic activity was determined in the respective plasma samples

measuring released hemoglobin from the supernatant. (B) The level of complement

activation in the reaction mixtures was investigated by measurement of C3a and C5a

concentrations after the reactions had been stopped by the addition of EDTA. Data

sets were either analyzed using a Prism mixed-effects model (in case of missing

values) or repeated measures one-way ANOVA. Experimental groups were post hoc

tested for statistical significance with Tukey correction for multiple comparisons. For

the sake of visibility, nonsignificant P values were omitted from graphs, unless they

were of relevance to the experimental hypotheses.

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/7/20/6367/2085240/blooda_adv-2023-010817-m

ain.pdf by guest on 27 N
ovem

ber 2023
complement activation is stopped in case it was to occur unex-
pectedly also on the shattered rRBCs) (Figure 4B; supplemental
Figure 4B). Shattered RBCs induced strong platelet activation in
whole blood irrespective of the presence of complement inhibition.
This clearly shows that complement activation only provides the
means for releasing intracellular danger signals via MAC-mediated
cell lysis, which in turn activate platelets. This hypothesis was
confirmed by repeating the experimental setup, but this time the
ADP receptor antagonists cangrelor and MRS2179, which inhibit
the purine receptors P2Y12 and P2Y1, respectively, were
included39,40 (Figure 4C; supplemental Figure 4C). The ADP
receptor antagonists completely blocked prothrombotic cell acti-
vation in conditions that produced strong complement activation.

Finally, we crossvalidated these findings using an in vivo rat model
of acute intravascular hemolysis. Human erythrocytes were
administered IV into Wistar rats, which is known to result in
complement-dependent lysis of the transfused erythrocytes.41,42

The complement inhibitor OmCI (inhibiting C5) or CVF (known to
deplete the animals of C3 and C5 in the fluid phase49), were
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
administered minutes or 24 hours before the transfusion of the
human erythrocytes, respectively. Rats that did not receive trans-
fusion did not exhibit signs of intravascular hemolysis or reduced
platelet numbers, as expected (Figure 6D,F; supplemental
Figure 5A), but animals that received transfusion but did not
receive a complement inhibitor did show, for example, high LDH
levels and low platelet counts, albeit differences not reaching sta-
tistical significance (within 120 minutes of the experimental pro-
cedure). Of the 5 animals receiving OmCI, erythrocyte lysis was
only inhibited in 3. All but 1 of the CVF-treated rats exhibited nearly
complete C5 consumption, whereas in 1 animal, complement
depletion by CVF apparently did not work (Figure 6E). CVF-
mediated complement depletion did not, per se, lead to a pro-
thrombotic phenotype in the animals. That the level of intravascular
hemolysis correlates inversely with the platelet count (Figure 6G)
but positively with the fibrin deposition levels in the lungs
(supplemental Figure 5C) is also consistent with our concept:
complement activation only then leads to strong prothrombotic cell
activation whenever its activation triggers the release of the intra-
cellular danger signals by MAC-mediated cytolysis. Therefore, by
extrapolating our data it can be explained why massive complement
activation in C3G does not predispose to thrombotic complications
in contrast to aHUS and PNH. In C3G, terminal pathway activation
products are “quenched” and do not inflict cytolysis21,22 (and
reviewed previously10). However, our data are at variance with a
number of reports that suggest a direct impact of isolated com-
plement components on prothrombotic cell activation (50-54, sum-
marized here10,11). It is likely that, at least in some of these reports,
it had been overlooked that complement activation had led to ADP
release, which secondarily induced prothrombotic cell activation
and/or purified plasma-derived complement components might
have been contaminated with minuscule amounts of thrombin.

Our findings have several important clinical implications. Wide-
spread fluid phase complement activation not leading to MAC-
mediated cytolysis is not a risk factor for complement-mediated
thrombosis, but surface-targeted complement activation liberating
intracellular ADP is. Complement-induced thrombotic complica-
tions do not readily respond to anticoagulation therapy as is the
case for PNH. The reason is that coagulation is neither the
upstream nor the central event in the pathophysiology of
complement-mediated thrombosis (Figure 7). Tentatively, our
results suggest that inhibition of ADP receptor signaling may be
clinically more efficient in stopping thrombotic complications in
these conditions. However, preventing cytolysis by anticomplement
therapy represents the most upstream and likely most successful
therapeutic intervention route. Regarding prothrombotic mecha-
nisms in PNH, it has to be stated that there is a small number of
patients with PNH with a rather small erythrocytes clone who still
experiencing an increased thrombotic risk.55 Potentially, other
prothrombotic mechanisms are at play in these patients, like
complement-induced shedding of microparticles from the endo-
thelium or effects introduced by free hemoglobin.56,57 In any case,
the clinical experience with patients with C3G unequivocally
demonstrates that strong proximal and terminal complement acti-
vation alone is insufficient to cause clinically relevant thrombosis.

Our study focuses mainly on the prothrombotic cell activation
mechanisms of peripheral blood cells. Building on current
studies,58 the contributions of the endothelium to thrombotic
complications need to be addressed from a similar angle in
COMPLEMENT-MEDIATED RELEASE OF INTRACELLULAR ADP 6375
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future studies. In line with our observations, however, it is well
established that ADP functions also as a danger signal for
endothelial cells. In response to ADP the endothelium upregu-
lates P-selectin expression.59 Because anticomplement therapy
does not interfere with coagulation or platelet activation as such
(Figure 7), inhibiting complement is of course not expected to be
beneficial in conditions characterized by “pure” coagulation as it
occurs in atrial fibrillation. However, not interfering with coagu-
lation and platelet activation is the very reason why anti-
complement therapy is not associated with bleeding risks. Our
results, therefore, call to investigate anticomplement therapy
(potentially in combination with ADP receptor antagonists) in
diseases in which complement-mediated cytolysis associates
Figure 6 (continued) hours, animals were euthanized, and organs were extracted to asses

after transfusion. Mean values with standard deviation are shown at each time point. A star i

point clinical blood analysis of neutrophil count and hemolysis levels measured by spectrop

shown. Star or square symbols in the OmCI and CVF group indicate outlier animals and cor

nonactivated C5. EDTA-treated plasma samples were added to the surface-coated OmCI

detected using a polyclonal anti-rat C5a antibody (PA5-78891). (F) End point clinical bloo

hemoglobin (optical density, 405 nm [OD405nm]). (H) Fibrin deposition in lungs was visualize

was quantified. From each group, 1 representative image (original magnification ×100) is sh

B, each time point was compared with the respective time point in the Ctrl group. Data sets

were post hoc tested for statistical significance against Ctrl/baseline with Dunnett correctio

(Tukey test with correction for multiple comparisons). In panel G, data sets were tested for

omitted from graphs, unless they were of relevance to the experimental hypotheses.
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with thrombotic complications that cannot be adequately
addressed through anticoagulation and/or antiplatelet therapy.
This includes, among others, warm agglutinins-mediated
autoimmune hemolytic anemia, CAPS, and transplantation-
associated thrombotic microangiopathy.
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correlation using Pearson test. For the sake of visibility, nonsignificant P values were
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