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ABSTRACT

Accurate computations of experimental observables are essential for interpreting the high information content held within x-ray spectra.
However, for complicated systems this can be difficult, a challenge compounded when dynamics becomes important owing to the large num-
ber of calculations required to capture the time-evolving observable. While machine learning architectures have been shown to represent a
promising approach for rapidly predicting spectral lineshapes, achieving simultaneously accurate and sufficiently comprehensive training
data is challenging. Herein, we introduce D-learning for x-ray spectroscopy. Instead of directly learning the structure-spectrum relationship,
the D-model learns the structure dependent difference between a higher and lower level of theory. Consequently, once developed these mod-
els can be used to translate spectral shapes obtained from lower levels of theory to mimic those corresponding to higher levels of theory.
Ultimately, this achieves accurate simulations with a much reduced computational burden as only the lower level of theory is computed, while
the model can instantaneously transform this to a spectrum equivalent to a higher level of theory. Our present model, demonstrated herein,
learns the difference between TDDFT(BLYP) and TDDFT(B3LYP) spectra. Its effectiveness is illustrated using simulations of Rh L3-edge
spectra tracking the C–H activation of octane by a cyclopentadienyl rhodium carbonyl complex.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000215

I. INTRODUCTION

Driven by the rapid progress in high-brilliance third- and fourth-
generation light sources such as synchrotrons and x-ray free-electron
lasers (XFELs), the past decade has witnessed significant advances in
the theory of core-hole spectroscopies.1 However, although computa-
tional analysis of experimental observerables is increasingly common-
place, for complex systems an accurate interpretation can be
challenging, calling for computationally expensive high-level quantum
chemistry methods.2–5 This challenge is compounded during the anal-
ysis of time-resolved experiments6,7 where a larger number of calcula-
tions need to be performed to capture the time-evolution of the
observable.8–11

Supervised machine-learning/deep learning algorithms,12 i.e.,
multilayer models aimed at extracting and learning patterns repre-
sented in data, have emerged as a potential approach for overcoming
this challenge. Recently deep neural networks (DNN) capable of pre-
dicting the line shape of x-ray absorption (XAS)13–20 and emission

(XES)21,22 spectra have been developed. The key to any machine learn-
ing model is the quality of the data with which it is trained. To achieve
accurate DNNs capable of converting input structures into spectral
lineshapes, in a manner akin to quantum chemistry calculations, two
distinct approaches for generating training data have been explored.
The first approach, referred to as “Type I”, focuses on achieving gener-
ality in the sense that it is able to simulate an XAS/XES spectrum for
an arbitrary absorbing atom in any coordination environment for a
given absorption edge. On the other hand, the second approach, “Type
II”, is tailored to a specific problem and is therefore trained using data
for a single class of systems.23–26

A general Type I model is preferable, as it avoids the time-
consuming requirement to develop a new model for each specific
problem. However, the main challenge associated with developing
accurate and generalizable training sets for prediction of x-ray absorp-
tion near-edge structure (XANES) spectra is scale. Indeed, recent
DNN models for predicting XAS spectral lineshapes of transition
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metal K-edges16 have been trained using molecules from the tmQM
training set27 containing a single geometry of the mono-metallic com-
plexes harvested from the Cambridge structural database (CSD).28

While this has been shown to be accurate when used to predict spectral
shapes of compounds in a similar chemical space, large uncertainties
arise when considering complexes with multiple absorbing atoms or a
strongly distorted from their equilibrium geometry.15,29 Ultimately
achieving comprehensive coverage of the chemical space is a signifi-
cant challenge, especially when seeking to develop a training set using
a high-level theory with large computational burden for each sample.

One approach to overcome this is to use a composite strategy,
D-learning, as introduced by Ramakrishnan et al.30 The concept
behind this is to use the machine-learning models to correct the prop-
erties obtained from a computationally inexpensive approximate
quantum calculation to those corresponding to a higher-level, but ulti-
mately more computationally expensive approach. Importantly, this
approach has been demonstrated to exhibit a measurable advantage
for small and selected training sets30 and the success of this strategy
has led to a number of successful applications used across quantum
chemistry.31–33 In the present work, shown schematically in Fig. 1, we
implement and deploy a D-learning strategy for simulating x-ray spec-
tra, i.e.,

lðEÞH ¼ lðEÞL þ DðEÞML; (1)

where lðEÞH is the spectrum calculated at a high level of theory, lðEÞL
is the spectrum computed at the lower level of theory and DðEÞML is
the correction learnt by our DNN. It is noted that this approach bears
some resemblance to the spectral warping approach of Prentice and
Mostofi34 who applied a series of linear transformations to the semi-
local TDDFT spectrum, in order to obtain a good estimate of the
hybrid TDDFT spectrum. Our results, which are inherently non-linear

due to the use of the DNN, applied to the Rh L3-edge, demonstrates
that the D-learning strategy can quickly learn the difference between
TDDFT(BLYP) and TDDFT(B3LYP) computed spectra, providing an
composite method for obtaining accurate core-hole spectra at reduced
computational cost, as lðEÞH can be achieved using lðEÞL and the
predicted DðEÞML from the developed model. The accuracy of this
approach is further exemplified by simulating Rh L3-edge spectra
tracking the C–H activation of octane by a cyclopentadienyl rhodium
carbonyl complex.35 This system has received significant interest as a
model complex for transformation of saturated hydrocarbons through
C–H bond activation.36,37 Recently, Jay et al.35 used time-resolved x-ray
spectroscopy to track the charge-transfer interactions during C–H acti-
vation and revealed changes in oxidation state as well as valence-orbital
energies and character from femtosecond Rh-alkane bond formation to
nanosecond C–H bond cleavage. In the present work, we use our
D-learning model to demonstrate that it can accurately reproduce the
TDDFT(B3LYP) spectra from a TDDFT(BLYP) starting point, with the
resulting spectra closely resembling the experimental results.

II. METHODS AND COMPUTATIONAL DETAILS
A. Training data and quantum chemistry simulations

Our reference datasets comprise of 1124 x-ray absorption site
geometries of Rhodium complexes harvested from the transition metal
Quantum Machine (tmQM) dataset.27,28 This dataset was extracted
from the 2020 release of the Cambridge Structural Database (CSD)
and subsequently optimized at the GFN2-xTB level of theory. Full
details of the construction and composition of the tmQM dataset can
be found in Ref. 27.

The Rh L3-edge spectra for all of the structures in our reference
datasets were calculated using a Restricted Excitation Window

FIG. 1. Schematic of the D-learning approach adopted in this work. The featurized local geometries around the Rh complexes used in the training set (I) are inputs, while the
difference between their TDDFT(BLYP) and TDDFT(B3LYP) calculated Rh L3-edge XANES spectra are outputs (II). Once optimized, the predicted difference is added the
TDDFT(BLYP) spectrum to recreate a spectrum equivalent to TDDFT(B3LYP).
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Time-Dependent Density Functional Theory (REW-TDDFT)38 as
implemented in the ORCA quantum chemistry package.39 All spectra
were computed twice using the BLYP and B3LYP40–43 exchange and
correlation density functionals, with the difference between the two sim-
ulations used for training. It is noted that the choice of functional will
systematically influence the absolute transition energies calculations44

and therefore before taking the difference, all the spectra calculated using
BLYP and B3LYP were shifted by þ19.5 and �5.5 eV respectively to
match the absolute energy of the experimental white line. While this
constant spectral shift applied to the whole training set could be a limita-
tion to other types of spectroscopy, in the present case of x-ray spectros-
copy, because the transitions derive from core orbitals, which are not
involved in bonding and remain largely unchanged for different mole-
cules, this approach ensure consistency for each sample. Scalar relativis-
tic effects were described using a Douglas–Kroll–Hess (DKH)
Hamiltonian of 2nd order.45 In all calculations an aug-cc-pVTZ-DK
basis set was used for the Rh and all other elements used a DKH-def2-
SVP basis set.46,47 The light–matter interaction was described using the
electric dipole, magnetic dipole, and electric quadrupole transition
moments.44 After calculation, each spectrum was broadened using a
Gaussian function with a fixed width of 1.5 eV in all cases.

Figure 2 shows the mean and standard deviation of the spectra
within the training set calculated using TDDFT(BLYP) (a) and
TDDFT(B3LYP) (b), while Fig. 2(c) shows the average and standard
deviation of the D, i.e., lðEÞB3LYP � lðEÞBLYP. The mean difference
shows a distinct derivative profile, indicating that the TDDFT(B3LYP)
is generally shifted toward slightly lower energy. The positive feature at
�3009 eV is associated with more pronounced features seen above the
white line, as observed in Fig. 2(b).

B. Network details and training

Our deep neural network (DNN) is based upon the multi-layer
perceptron (MLP) model and closely follows that presented in Ref. 16.
Briefly, the model comprises an input layer, two hidden layers, and an
output layer. All layers are dense, i.e., fully connected, and each hidden
layer performs a nonlinear transformation using the hyperbolic tan-
gent (tanh) activation function. The input layer contains the feature
vector encoding the local environment around the absorbing atom
performed via dimensionality reduction using the wACSF descriptor
of Gastegger et al.48 Throughout this article, the input layer contains
49 neurons comprising a global (G1) function, 16 radial (G2) functions,
and 32 angular (G4) functions.

Both hidden layers contains 256 neurons and the output layer
comprises 250 neurons from which either the discretized Rh L3 spec-
trum or the discretized D, i.e., lðEÞB3LYP � lðEÞBLYP is retrieved after
regression. The internal weights, W, are optimized via iterative feed-
forward and backpropagation cycles to minimize the empirical loss,
JðWÞ, defined here as the mean-squared error (MSE). Gradients of the
empirical loss with respect to the internal weights, dJðWÞ=dW, were
estimated over minibatches of 32 samples and updated iteratively
according to the Adaptive Moment Estimation (ADAM)49 algorithm.
The learning rate for the ADAM algorithm was set to 1� 10�4. The
internal weights were initially set according to the He et al.50 uniform
distribution. Unless explicitly stated in this article, optimization was
carried out over 240 iterative cycles through the network commonly
termed epochs. Regularization was implemented to minimize the pro-
pensity of overfitting; batch standardization and dropout were applied

at each hidden layer. The probability, p, of dropout was set to 0.15,
unless otherwise stated.

The XANESNET DNN is programmed in Python 3 with the
TensorFlow51/Keras52 API and integrated into a Scikit-Learn53 (sklearn)
data pre- and post-processing pipeline via the KerasRegressor wrapper
for Scikit-Learn. The Atomic Simulation Environment54 (ase) API is

FIG. 2. Mean (solid black line) and standard deviation (6r; gray shaded region) of
the 1124 Rh L3 x-ray absorption spectra used in the training set calculated using
TDDFT(BLYP) (a) and TDDFT(B3LYP) (b). (c) Mean (solid black line) and standard
deviation (6r; gray shaded region) of the D between the TDDFT(BLYP) and
TDDFT(B3LYP) spectra. The dashed line represents zero intensity.

Structural Dynamics ARTICLE pubs.aip.org/aip/sdy

Struct. Dyn. 10, 064101 (2023); doi: 10.1063/4.0000215 10, 064101-3

VC Author(s) 2023

 01 D
ecem

ber 2023 14:49:18

pubs.aip.org/aip/sdy


used to handle and manipulate molecular structures. The code is pub-
licly available under the GNU Public License (GPLv3) on GitLab.55

Training of the neural network, shown schematically in Fig. 3 fol-
lows an approach inspired by curriculum learning (CL).56 CL is a strat-
egy which aims to training a machine learning model from easier data
to more complex data, which imitates the meaningful learning order
in human curricula. In the present work, the complexity arises from
the diversity in the training set. Consequently, we initially select 100
spectrum–structure pairs at random and train the DNN described
above. Once completed, another 100 spectrum–structure pairs are
added at random to the training set and the previous model used a
guess for the subsequent training cycle. This is cycle is repeated until
all the training data are included within the model. In contrast to the
random sampling, we have also assess furthest-point and closest point
sampling,57 where by the most (dis)-similar spectra were chosen. We
note that during testing this approach, we assessed four different sam-
pling methods, namely,: random sampling, furthest point sampling,
closest point sampling and uncertainty-based sampling. Both the fur-
thest and closest point sampling calculates the Euclidean distance
between the structural descriptors in the training sets and adds the
next 100 based upon the those which are either furthest or closest to
the existing samples in the training set. The uncertainty based sam-
pling, estimates the uncertainty of samples not in the training set, using
the bootstrapping approach,29 it then adds spectra exhibiting either the
largest or smallest uncertainty. During testing we found that while
each method may slightly differ at small training sets (<500 samples),
they all converge to the same performance when all training samples
are included. In addition, the method could be sensitive to the initial

100 spectra chosen. As for the sampling method, a small difference can
be observed for small training sets (<500 samples), but this difference
disappears when all training samples are included.

III. RESULTS

In the following, we demonstrate the D-learning model proposed
at the Rh L3-edge. Initially, we train the model and demonstrate its
performance on a general dataset, before applying it to time-resolved
Rh L3-edge spectra tracking the C–H activation of octane by a cyclo-
pentadienyl rhodium carbonyl complex.35

A. Performance of the D-learning model

Figure 4 shows the relative performance of our DNN (i.e., the
percentage difference between the calculated and predicted spectra rel-
ative to the best-performing model for that figure panel) as a function
of the number of training samples for the models that directly learn
the whole spectra (a) and the D-learning model. Both exhibit an ini-
tially rapid increase to �400 samples, followed by a slower decline.
The remaining slow decline indicates that convergence is not entirely
achieved and suggests that there is still scope to improve further on the
results communicated here by growing/optimizing the dataset.
However, the changes are small as chemical space (i.e., the diversity of
structures included in the training set compared to the testing set) is
well represented and therefore more targeted strategies are required to
identify the areas of improvement. The gray dashed line in both figures
indicates the performance of the model if CL is not used, and it is clear

FIG. 3. Schematic of the curriculum learning based training adopted in this work. For the latter, 100 spectrum-structure pairs are selected at random and used to train a DNN.
Once completed, another 100 spectrum-structure pairs are added at random, with the previous model used a guess for the subsequent training cycle. This is repeated until all
the training data are included within the model.
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that this approach gives rise to a substantial improvement in perfor-
mance for both models.

To assess the performance of the D-learning model, we calculate
the percentage difference between the calculated spectrum using
TDDFT(B3LYP) and the predicted spectrum using the D-learning
model for 124 held-out examples. The median percentage difference is
5.1%, with the lower and upper quartiles situated at 4.7% and 9.8%,
respectively. The tight interquartile range of 5.1% testifies to the

balanced performance of the D-learning model. To provide context to
these percentage differences, Fig. 5 show six example Rh L3-edge
XANES spectra. The upper three panels show spectra from the
0th–10th percentile, i.e., the best performers when held-out set is
ranked by MSE. The lower three panels show spectra from the
90th–100th percentile, i.e., the worst performers. The percentage dif-
ference for the upper panels are all <3.2%, comparatively close to the
median performance, while the worst performers all exhibit percentage

FIG. 4. Relative performance of the DNN at the Rh L3-edge as a function of the number of training samples. (a) The model trained on the TDDFT(B3LYP) spectra and (b) The
model trained on the D, i.e., lðEÞH � lðEÞL. Data points are averaged over 50 K-fold cross-validated evaluations; error bars indicate one standard deviation.

FIG. 5. Example Rh L3-edge XANES spectra. The upper three panels show spectra from the 0th–10th percentile, i.e., the best performers when held-out set is ranked by MSE.
The lower three panels show spectra from the 90th–100th percentile, i.e., the worst performers. The solid black line is the spectrum predicted by the D-learning model, while
the dashed line is the spectrum calculated using TDDFT(B3LYP). The structures are shown inset and correspond to (a) EFULAU (2.3%) (b) NAXLUT (2.9%) (c) POVQUP
(3.2%) (d) AQOFIX (23.3%) (e) FIBJIM (46.6%), and (f) SERTAK (61.3%), where these six-character labels correspond to the Cambridge Structural Database (CSD) codes for
the samples. The percentage in bracket refers to the percentage difference between the calculated and predicted spectra.
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differences >23%, and in these cases the main source of the error is in
the intensity of the white line transition. In the case of the worst per-
formers, the poor predictions can be rationalized by the small number
of phosphorus, fluorine and arsenic containing molecules in the train-
ing set, and therefore this can likely be improved by increasing this in
future dataset.

Overall, these results demonstrate the ability of the MLP to
operate within a D-learning strategy and facilitate accurate predic-
tions of Rh L3-edge spectra at TDDFT(B3LYP) level with the com-
putational expense of a TDDFT(BLYP) simulations. The median
percentage error for the D-learning model is lower than that found
for the direct model, using TDDFT(B3LYP) spectra, which is 6.5%
and so in Sec. III B we seek to exemplify the performance of the
model using simulations of the Rh L3-edge spectra tracking the
C–H activation of octane by a cyclopentadienyl rhodium carbonyl
complex.

B. Tracking the ligand exchange dynamics of C–H
activation

Having developed and assessed the performance of the network
in the previous section, we now apply our D-learning model to a recent
time-resolved x-ray spectroscopic study to track the ligand exchange
dynamics of C–H activation.35 In this work, the authors demonstrated
that changes in oxidation state as well as valence-orbital energies and
character, identified using changes in the Rh L3-edge spectra, could be
used to follow the metal-alkane complex stability and how metal-to-

alkane back-donation facilitates C–H bond cleavage by oxidative
addition.

The experimental ground state Rh L3-edge absorption spectrum
of CpRh(CO)2 [Fig. 6(a)] shows a main peak at �3007.5 eV, with a
shoulder at slightly lower energy, �3006 eV. This can be interpreted
using the TDDFT(B3LYP) calculation, shown in Fig. 6(c) and Ref. 35,
which provides good agreement between the experiment and theory.
The low energy shoulder, as assigned in Ref. 35, arises from excitation
of Rh 2p core electrons into the lowest unoccupied molecular orbital
(LUMO) exhibiting Rh 4d character mixed with the C¼O ligands. The
main band derives from transitions into the LUMOþ 1 and
LUMOþ 2. These exhibit similar Rh 4d mixed with the C¼O ligands,
but the latter exhibits a substantial Rh 4d and 5s character, which at
the L3-edge is dipole allowed giving rise to the larger intensity.

In contrast to TDDFT(B3LYP), the TDDFT(BLYP) calculation
of the ground state spectrum shown in Fig. 6(b) does not reproduce
the two peaks observed in the experiment. While the transitions
described above remain present, they occur at the same energy and
therefore are indistinguishable. Figure 6(d) shows the spectrum pre-
dicted using the D-learning model and in agreement with the experi-
ment this provides the double peaked structure, demonstrating that
the D-learning model is able to overcome the deficiencies of the BLYP
calculated spectra and predict a spectrum close to that calculated by
TDDFT(B3LYP).

The transient Rh L3 spectra at 250 fs (orange) and 10 ps (blue)
both exhibit a new transition below the absorption edge. This arises
from transitions into the LUMO, whose energy is significantly reduced

FIG. 6. Ground state (black) and transient Rh L3 spectra at 250 fs (orange), 10 ps (blue), and >190 ns (green) of cyclopentadienyl rhodium carbonyl, CpRh(CO)2. (a)
Experimental spectra reproduced from Ref. 35. (b) Spectra calculated using TDDFT(BLYP) (c) TDDFT(B3LYP), and (d) D-Learning model. The dashed line represents zero
intensity.
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upon loss of the strong-field C¼O. In the present work, seeking to
demonstrate the performance of the D-learning approach, we have
modeled these in these intermediates in their electronic ground state.
However, note that in Ref. 35, the authors were not able to unambigu-
ously assign the spectrum to the ground state CpRhCO, and the exper-
imental transient at 250 fs, may also contain components associated
with the excited state of CpRh(CO)2 and CpRhCO. Therefore, despite
the close agreement between experimental and theory in this case, it
remains unclear if this state of association of octane occurs in the
ground of electronically excited state of CpRhCO.

Upon association of octane (10 ps transition, blue) to form the
CpRh(CO)-octane r-complex, the spectrum shifts to slightly higher
energy but remains lower than CpRh(CO)2. As shown in Fig. 6(d), the
D-learning model clearly corrects deficiencies in the TDDFT(BLYP)
calculations to provide very good agreement between the experiment,
TDDFT(B3LYP) and the D-learning model. The two exceptions to this
are the double peaked structure in the pre-edge feature of the 250 fs
(orange) and the>190 ns transient spectrum (green trace). The former
is likely associated with the low coordination environment of the Rh
complex, which is rare within the present training set and the latter is,
as shown In the calculated spectra [Figs. 6(b) and 6(c)], a weak signal
and therefore challenges the sensitivity of the model, i.e., if the changes
are small, small errors will have a much greater impact than for larger
spectral differences. We would expect both to improve upon expansion
of the training data.

For comparison, Fig. 7 shows the Rh L3-edge XANES spectra pre-
dicted from the models trained directly to translate structures into
spectra lineshapes trained using the BLYP and B3LYP training spectra
i.e., without D-ML, as performed in Ref. 16. Both models provide very
similar predictions and fail to capture the spectral shape in either the
ground state or transient spectra. Indeed the similarity between all of
the transient spectra suggests the direct model cannot distinguish
between any of the structures during the analysis of the experimental
data in Ref. 35 which is likely due to the lack of sensitivity of the model
arising from the smaller training dataset.

To illustrative the sensitivity of the D-learning model to small
structural changes, in contrast to the direct model, Fig. 8 shows the
spectral changes (represented as a difference with respect to the start-
ing structure of the reaction coordinate) along the two potential reac-
tion coordinates namely, the dissociation of CO from CpRh(CO)2

and the transformation of CpRh(CO)-octane to CpRh(CO)-H-R.
Figures 8(a) and 8(b) show the dissociation of CO from CpRh(CO)2,
with Fig. 8(a) being the spectra calculated using TDDFT(B3LYP),
while Fig. 8(b) is predicted using our D-learning model. Overall, there
is good agreement between the two with the derivative profile consis-
tent with the generation of a pre-edge peak and it shifting to lower
energies during dissociation, proceeds. The D-learning model exhibits
a double peak in the pre-edge, but consistent with TDDFT(B3LYP),
the main band loses intensity and shifts to lower energy. Above
3006 eV in the region of the white line, the D-learning reproduces the
general double peaked shape observed in the spectra calculated using
TDDFT(B3LYP), but these are slightly too close together. In compari-
son to the changes observed below 3006 eV, this region of the spec-
trum exhibits much smaller changes which is consistently reproduced
between both models.

Figures 8(c) and 8(d) show the spectral changes associated
with the transformation of CpRh(CO)-octane to CpRh(CO)-H-R,
with Fig. 8(c) being the spectra calculated using TDDFT(B3LYP) and
Fig. 8(d) being predicted using our D-learning model. The first differ-
ence (the darkest blue line) shows excellent agreement between the
TDDFT(B3LYP) calculated and D-learning predicted spectra. For
spectral changes close to the CpRh(CO)-H-R structure (lighter blue
lines) clear deviations begin to emerge. The TDDFT(B3LYP) calcu-
lated difference shows two principle positive features at 3007 and
3009 eV, which both increase in intensity and shift to higher energies
closer to the CpRh(CO)-H-R structure. The D-learning predicted spec-
tra also shows two main features, which both shift to higher energies,
however their intensities are the wrong way round, which is expected
as the difference spectrum associated with CpRh(CO)-H-R structure is
the poorest agreement with experiment shown in Fig. 6.

IV. DISCUSSION AND CONCLUSION

In this article, we have introduced a D-learning strategy aimed at
transforming spectral lineshapes from a low-level of theory to a
higher-level of theory. This composite approach has the benefit of
combining fast calculations with a simple correction scheme based
upon our machine learning model which can achieve predictions
comparable to higher levels of theory, without the additional computa-
tional expense. We have applied the developed models to time-
resolved Rh L3-edge spectra tracking the C–H activation of octane by a

FIG. 7. Ground state (black) and transient Rh L3 spectra at 250 fs (orange), 10 ps (blue), and >190 ns (green) of cyclopentadienyl rhodium carbonyl, CpRh(CO)2. (a)
Predictions from a machine learning model trained using TDDFT(BLYP) training set (b) Predictions from a machine learning model trained using TDDFT(B3LYP) training set.
The dashed line represents zero intensity.
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cyclopentadienyl rhodium carbonyl complex35 and demonstrated the
effectiveness of the D-learning approach for translating the TDDFT
(BLYP) spectroscopic observables to those of the TDDFT(B3LYP)
level.

The proof-of-concept D-learning work has demonstrated that
one can reach the accuracy of a higher-level quantum chemistry core-
hole spectrum at lower computational burden. Future work should
focus on extending this, especially in term of the size of the training set
and the D, i.e., the difference in quality of the low and high level quan-
tum chemistry methods used. For the latter, a more significant compu-
tational advantage could be obtained using the difference between a
quasi-one-electron approach based upon Kohn–Sham orbitals58 and
the restricted open-shell configuration interaction (ROCIS) method,59

the latter of which has shown to be highly effective for simulating L3-
edge,60 without the requirement for highly bespoke system specific
inputs associated with the restricted active space methods.11 The larger
expected size of the D in this case is likely to require a larger and more
diverse training set, which will be the focus of future work.
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FIG. 8. Spectral changes along the two key reaction coordinates: (a) and (b) Dissociation of the CO from CpRh(CO)2. The data are plotted as a difference with respect to the
starting structure, i.e., CpRh(CO)2 (RRh�CCO¼ 1.90 Å). The darker the black line the shorter the Rh-CCO bond length (RRh�CCO¼ 2.75, 3.00, 4.00, and 7.00 Å). The data in panel
(a) is calculated using TDDFT(B3LYP), while the data in panel (b) is simulated using the developed D-learning model. (c,d) The transformation of CpRh(CO)-octane to CpRh
(CO)-H-R. The data are plotted as a difference with respect to the starting structure, i.e., CpRh(CO)-octane (RRh�Coctane¼ 2.55 Å). The darkest blue line represents the starting
point, i.e., CpRh(CO)-octane, while the lightest blue corresponds to CpRh(CO)-H-R (RRh�Coctane¼ 2.35, 2.17, 2.12, and 2.09 Å). The data in panel (c) is calculated using TDDFT
(B3LYP), while the data in panel, and (d) is simulated using the developed D-learning model.
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