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Abstract
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Aberration correctors, improved monochromators, and better detectors have enabled exciting
research with nanometer- and Angstrom-scale resolution in the Scanning Transmission Electron
Microscope (STEM). However the interaction of high-energy electrons with the many-body
system of the sample is quite complex and hinders interpretation of experiments. Therefore
measurements often need to be informed by extensive modeling of the beam-sample interaction.

In this thesis, we report the development of a model for the computer simulation of vibrational
Electron Energy Loss Spectroscopy (EELS) in the STEM, which we call the Frequency
Resolved Frozen Phonon Multislice (FRFPMS) method. We motivate the development of the
method by reviewing the field of vibrational EELS from the instrumental advances, which
enabled it, over experimental progress to a detailed consideration of other theories of vibrational
EELS. In the process, we identify the need for a method, which is able to take into account many
of the complicating factors of the scattering process, such as multiple elastic interactions, and
is computationally feasible today, even for extended structure models.

After a brief overview of necessary computational methods, we showcase that the FRFPMS
method satisfies this need by discussing several papers we have published on the method. We
demonstrate that the FRFPMS method produces results, which agree very well with published
experimental and also theoretical results, both for momentum-resolved as well as high spatial
resolution vibrational EELS. Furthermore we compare the FRFPMS method with the Quantum
Excitations of Phonons model and the first-order Born approximation for a simple model system.
The FRFPMS method matches the predictions of the other theories provided that two small
modifications are introduced, which modify the temperature and energy-loss dependent scaling
as well as the large momentum-transfer behavior of the modelled cross section.

We then apply such revised FRFPMS method to simulations of shifts of optical phonon
frequencies in hBN as a function of isotopic composition. The FRFPMS results are in very good
agreement with experiments performed by collaborators, demonstrating that vibrational EELS is
capable of detecting such isotopic shift of phonon frequencies in a momentum-resolved fashion.
In another application of our method we focus on simulating atomically-resolved STEM-EELS
experiments on SrTiO;, which allow to interpret a subtle asymmetry in experimental large
detector off-axis vibrational STEM-EELS maps as result of sensitivity to the direction of the
phonon eigenvector. This enables imaging of anisotropic displacements of atoms as a function
of vibrational frequency.
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1. Introduction

In this dissertation, we contribute a simulation method for vibrational Elec-
tron Energy Loss Spectroscopy (EELS) in the Scanning Transmission Elec-
tron Microscope (STEM), a relatively recent field within the broader elec-
tron microscopy research community. The main scientific work is thereby
found in the attached papers I-V and the purpose of this text is not to reit-
erate those results in detail, but to reflect on the work that has been done
and give additional insight and background information in an attempt to
tell a complete and coherent story of the development of the Frequency-
Resolved Frozen Phonon Multislice (FRFPMS) method. This dissertation
is also intended to provide an introduction to any student or researcher,
who wants to pick the FRFPMS method up for their own work.

To that end we have organized the text in the following way: we intro-
duce basic concepts of STEM and the field of vibrational EELS in this chap-
ter, chapter 1. In chapter 2, we give an overview of vibrational EELS the-
ories and identify a need for the FRFPMS method. Chapter 3 deals with
an explanation of the computational methods we have used to carry out
FRFPMS calculations. Chapter 4 is then dedicated to the summary of what
we have achieved and learnt about the FRFPMS method in each of the pa-
pers I-VI. We draw conclusions from this learning process in chapter 5 and
outline possible future directions of research with and about the FRFPMS
method. Last but not least, we summarize our work in a manner amiable
to a general audience in chapters 6-8.

As hinted at above, we give in this chapter a theorist’s overview of the
basic principles of STEM in section 1.1, the instrumental developments,
which enabled the field of vibrational EELS, in section 1.2, and a review of
recent state-of-the-art experimental work in section 1.3.

1.1 Basics of Electron Microscopy

The Transmission Electron Microscope (TEM) was invented by Ernst Ruska
and Max Knoll in 1931 in pursuit of greater spatial resolution than it is pos-
sible with light-based microscopies [1]. This came after the electron was
shown to have wave character with De Broglie wavelength [2-5]

h
A==, 1.1
> (1.1)
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Figure 1.1. Schematic showing the main components of a STEM. Figure reprinted
from Ref. [6].

where h is the Planck constant and p the momentum of the electron. The
TEM leverages high-energy electrons through an intricate arrangement of
electron optical elements to produce diffraction patterns or images of the
specimen. Figure 1.1 displays a schematic of a TEM with many compo-
nents explicitly labeled.

Adding the functionality of scanning the beam to build a STEM required
more time to fully develop. In 1935 Max Knoll was the first to operate a
machine using a scanning electron beam with a beam diameter of around
100 um [7]. The first functional STEM was introduced by Manfred von
Ardenne in 1938 [8, 9], which was, however, at the time vastly inferior
to contemporary TEMs in terms of resolution. Later Albert V. Crewe im-
proved the STEM with the invention of the cold field-emission gun [10, 11]
and a better objective lens, enabling to discriminate between single heavy
atoms in a molecule [12]. Modern TEMs can often be operated in both,
TEM and STEM mode. The main difference between these modes is that
the incident beam is static in the TEM mode, while it is scanned over the
specimen in STEM mode using deflection scan coils.

The electron beam produced by the electron gun, can be shaped in two
different ways by the electron lenses located before the specimen in beam
direction: it can consist of essentially a single plane wave in beam direction
and illuminate the sample homogeneously over a comparably large area,
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which is also called parallel illumination, or it can be focused on a spot and
form a so-called convergent beam. In the convergent case, the beam can be
visualized as a cone and the angle describing the cone of possible incident
wavevectors is known as the convergence semi-angle cr!. Spatial resolution
is fundamentally limited in the STEM by the diffraction-limited diameter
of the convergent beam [13]

1222
~ sin(a)’

(1.2)

which shows that the resolution improves with a larger convergence semi-
angle a and that parallel illumination produces no image contrast in the
STEM. In the following, we will focus on the STEM as most modern EELS
capabilities are used in this mode.

Once the initial beam has been shaped by the electron optics behind the
electron gun, it interacts with the specimen in a multitude of ways, all of
which are some form of scattering. We will come back to this point in the
following paragraph and focus here on a brief description of the remaining
components of the STEM. After the interaction with the specimen, fur-
ther electron lenses guide the beam to the analysis stage marked as Image
recording system in Fig. 1.1, which is comprised of one or more detectors in
a modern STEM. Examples of such detectors are pixelated detectors such
as a Charge-Coupled Device (CCD) camera or direct-electron detectors (we
will return to this point below), and Annular Dark Field (ADF) and High
Angle Annular Dark Field (HAADF) detectors, which cover a certain an-
nular range of scattering angles. Furthermore the kinetic energy of elec-
trons in the beam can be analysed with an Electron Energy Loss (EEL)
spectrometer in many STEMs.

A pixelated detector can be used to capture diffraction patterns in TEM
and STEM, and images in TEM mode. Atomically resolved STEM images
are often formed using ADF or HAADF detectors, which allow for the si-
multaneous acquisition of on-axis EELS using the EEL spectrometer. Of-
ten the acceptance angle of imaging detectors and EEL spectrometers is de-
scribed in terms of the so-called collection semi-angle (3, the angle between
the direct beam and the beams accepted by the analyzer.

In a so-called on-axis scattering geometry, all beams scattered under an-
gles 8’, which satisfy 0 < 8’ < § mrad, are collected.

In an off-axis geometry, one typically distinguishes two cases: ADF and
HAADF detectors accept all beams scattered under a angles ', which sat-
ity Binner < B’ < Pouter» Where Binqer i the inner detector angle and e, is
the outer angle of the detector. Alternatively, one can also create an off-axis
geometry with a detector, which is physically placed in the same spot as an

IThe convergence angle is usually measured in milli-radian (mrad) and we have & ~ 0 mrad
for parallel illumination and o > 0 mrad for a convergent beam.
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Figure 1.2. Schematic of a full EEL spectrum with the major energy loss regimes
indicated. The zero-loss peak constitutes elastic scattering, whereas plasmon scat-
tering originates from collective excitations of the electron gas. Core-loss peaks
are due to beam electrons loosing energy to electrons in the sample, which are
promoted to higher energy levels from electronic states closely bound to the nu-
cleus. Not indicated is the recently opened up phonon loss region on the flank of
the zero-loss peak (see section 1.2 for further information). Figure reprinted from
Ref. [14].

on-axis detector by deflecting the diffraction pattern by an angle 8, with
respect to the detector. Under such conditions only those beams, which
were scattered under angles B, which satisfy |8, — B’| < 8 are collected?2.

We distinguish the interaction between beam and specimen as elastic
and inelastic scattering. In elastic scattering the energy of the beam elec-
trons is unchanged, while the beam electrons loose energy in inelastic scat-
tering processes. We display a typical EEL spectrum in Fig. 1.2, where the
primary feature of the spectrum, the so-called Zero-loss Peak (ZLP) has his-
torically been regarded as elastically scattered electrons. The predominant
source of elastic scattering in the STEM is Rutherford scattering off of the
(screened) atomic nuclei of the specimen. The energy transfer is thereby
near zero, due to the large difference in mass between both objects, while
considerable momentum transfer can occur. Elastic scattering gives thus
information about the atomic structure of matter and is primarily used for
high resolution imaging and diffraction.

The primary origin of inelastic scattering on the other hand are interac-
tions between the beam electron and the electronic structure of the speci-
men, which give rise to the plasmon peaks and core-loss edges in Fig. 1.2.
Historically inelastic scattering has therefore enabled to study the elec-

2Note here the use of vector notation By = (Box,Boy) and B’ = (Bx. ).
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tronic structure of matter and provides, among others, elemental identifi-
cation, information about atomic bonding and also more recently magnetic
information [15].

Figure 1.2 shows that the elastic interaction of electrons with matter is
very strong, much stronger, than the inelastic interactions and it is this cir-
cumstance, which complicates the theoretical treatment of inelastic scat-
tering in the STEM considerably. Furthermore we will see in section1.2,
that the tails of the zero-loss peak also contain information about inelastic
scattering processes. It is this regime, that we will be mainly concerned
with in this thesis.

1.2 Instrumental Advances

Since the times of Ernst Ruska, the quest for better spatial resolution has
been one of the main drivers in the design of new microscopes. Richard
Feynman famously challenged the microscopy community more than 60
years ago to make the electron microscope 100 times better and STEMs
have since come very close to completing the challenge [16, 17].

According to eq. (1.2), the fundamental diffraction-limit to spatial reso-
lution can be improved in one of two ways in the STEM: by reducing the
wavelength A4 or by increasing the convergence semi-angle a. The former
is tantamount to an increase of the momentum and thus the kinetic energy
of the electrons according to equation (1.1) and can be achieved by increas-
ing the accelerating voltage of the microscope. However, with increasing
acceleration voltage, the issue of beam damage becomes aggravated and
the size of the microscope increases, too, which both limit the practice.
Increasing the convergence angle is limited by the strong aberrations of
electron lenses and spatial resolution had to be eventually improved by de-
creasing the lens aberrations.

Around the turn of the last millenium, aberration correctors were de-
veloped for both the TEM and the STEM [18, 19]. These allow for routine
atomic resolution imaging in STEMs and today’s records in spatial resolu-
tion are at the sub-A scale in both the TEM and STEM [17, 20-23]. A great
review on the topic is Ref. [24].

Aberration correction fundamentally enabled also the design of a new
electron beam monochromator [25], which essentially consists of two EEL
spectrometers run back-to-back. The first spectrometer disperses the beam
using electron optical elements and creates an intermediate EELS, which
is projected onto a slit. In this way the slit lets only electrons pass, whose
kinetic energies is within a certain range given by the width of the slit. The
second spectrometer undisperses the beam such that a monochromated,
convergent beam interacts with the sample. This monochromator has very
recently enabled to resolve peaks in EELS corresponding to excitations of
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few tens of meV [25]. Routinely an energy resolution of 10-20 meV is
achieved while the record stands at about 4.2 meV at 30 keV beam energy
and 2.9 meV at 20 keV [26, 27]. These new capabilities allow spectroscopy
of vibrational excitations, known as phonons in crystals, and perhaps soon
also magnons [28-31], the quasi-particles associated with collective excita-
tions of magnetic structures.

We use in this thesis the term High Energy Resolution Electron Energy
Loss Spectroscopy (HERE) to refer to EELS performed with high energy
resolution for the study of low energy excitations. It should be noted, that
the energy resolution alone is not unprecedented in EELS, but has already
been achieved in the 1960s and 1970s for high-energy electrons [32-36].
However, the setup used in these experiments had no spatial resolution and
it is the combination of high spatial resolution with high energy resolution,
which enables today’s amazing possibilities in the STEM and promise a
bright future for localized vibrational spectroscopy [37].

Aberration correction and better monochromators are not the only tools
the most technologically advanced STEMs for EELS sport today. Recently
a direct electron detector was introduced, which has much improved noise
levels, is resistant to beam damage, and has a wide dynamic range [38].
This detector simplifies and enables new experimental designs, since it al-
lows to capture weak signals with a sufficient Signal-to-Noise Ratio (SNR)
in the presence of strong signals at different energies.

We have set in this section the stage for experiments in the fields of vi-
brational spectroscopy in the STEM. We will review key results of these
experiments in the following section.

1.3 Key Experiments in Vibrational EELS

Most vibrational EELS experiments have been performed on organic com-
pounds and single layer as well as multi-layer van der Waals materials ow-
ing to their relatively large vibrational frequencies, which enhances SNR in
HERE and facilitates experiments. Of such materials hexagonal Boron Ni-
tride (hBN) is the most popular, likely because it exhibits strong anisotropy
between out-of-plane and in-plane components of many properties, which
is of interest for functional applications. The bonds making up hBN are
furthermore highly polar and the material features therefore significant
charge transfer between B and N atoms.

Recent work has paid close attention to the spatial resolution of vibra-
tional STEM-EELS and it was shown, that the beam electrons interact via
two scattering mechanisms with the specimen, whose signals have very
different characteristics [39]: The electron can excite vibrational modes in
materials containing polarizable bonds via a long-range Coulomb interac-
tion or through a large momentum transfer, small impact parameter in-
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teraction near the atom’s nucleus. The first mode of scattering is called
dipole scattering or dipolar scattering and is largely delocalized, since very
little momentum is transferred in the process, but its contribution to vi-
brational EELS is significant in the forward direction. It requires vibra-
tions involving bond polarization such that a macroscopic polarization can
arise, which limits dipolar scattering to long wavelength (short momentum
q — 0) optical phonons in crystals [40]. The second scattering mechanism,
called impact scattering, is associated with highly localized large angle scat-
tering, due to the large momentum transferred. Impact scattering is also
the mechanism behind atomic-resolution HAADF-STEM images [41, 42].
These two scattering mechanisms are exploited in vibrational EELS in dif-
ferent ways and have enabled a multitude of exciting measurement tech-
niques, which can be broadly categorized by the scattering geometry in the
following way: damage-free aloof vibrational EELS of beam-sensitive ma-
terials, vibrational EELS at high spatial resolution and vibrational EELS
with high momentum resolution.

In aloof vibrational EELS experiments the delocalized, long-range dipo-
lar interaction is exploited, which allows the electron beam to pass through
vacuum tens of nanometers outside of the specimen in an effort to avoid
beam damage [43]. Biological molecules and crystals are the prime can-
didates for such experiments and it is thus no surprise, that the technique
was demonstrated by measuring the vibrational EELS of guanine crystals
[44], but it was also proposed as an ideal tool for characterization of nano-
particle surfaces [45]. Other applications include the detection of water
and oxygen-hydrogen bonds [46], nano-scale temperature measurement
based on the principle of detailed balance [47, 48], determining the pres-
ence of water at the nanometer-scale and its isotopic composition [49], as
well as the identification of isotopic composition of molecules [50].

In crystals and in the context of vibrational EELS, dipolar scattering is
often cast in the language of Phonon Polaritons (PhPs), which are quasi-
particles due to the hybridization between an optical phonon and a photon.
Fundamentally a small wavevector (long wavelength) optical phonon pro-
duces an electric field in a polar material, giving rise to the hybridization
with photons forming the PhPs. In materials with an isotropic dielectric
function e(w), such as cubic materials, the PhPs are purely transverse ex-
citations, so only coupling between Transverse Optical (TO)-phonons and
photons is possible [51]. In bulk crystals of such materials lower and up-
per PhP branches are observed below and above the so-called Reststrahlen
band, which is the region forbidden for light propagation between the fre-
quency wrq of the TO phonon and the frequency wy o of the Longitudinal
Optical (LO) phonon[52, 53]. In layered van der Waals (vdW) materials,
such as hBN, the strong anisotropy of the dielectric permittivity leads to
the appearance of so-called Hyperbolic Phonon Polaritons (HPhPs), which
exhibit a hyperbolic dispersion [53]. Furthermore, polaritonic modes are
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sensitive to shape and size effects [54] and in materials of finite thickness,
guided and surface PhP modes are observed in addition to bulk modes.
HERE has developed into an extremely useful tool to study these polari-
tonic excitations at the nano-scale [55-58]. We will not go into further de-
tail here, since we will focus on larger momentum transfers and impact
scattering for most parts of this thesis. The main fact to keep in mind for
our purposes is, that EELS is dominated by the excitation of PhPs or HPhPs
at small momentum transfers in polar materials rather than by bulk pho-
nons [55].

Vibrational EELS at high spatial resolution requires a highly focused
electron beam, i.e., a large convergence angle «, similar to conventional
HAADF-STEM imaging. In this mode, the trademark feature of the STEM,
high spatial resolution, is really combined with the new capability of high
energy resolution. Under these conditions, but without the newest mono-
chromators, it was shown, that localized atomic-scale spectroscopic infor-
mation could be extracted by careful analysis of the flanks of the zero-loss
peak (ZLP), which was attributed to phonon scattering, at an energy res-
olution of only around 100 meV [59]. Using the new monochromators,
impact scattering vibrational EELS exhibits atomic resolution in on- and
off-axis geometries for large collection angle 8 [60, 61].

In polar materials one needs to overcome the aforementioned delocal-
ized dipolar scattering when pushing for spatial resolution. Since dipolar
scattering involves small scattering angles, elastic scattering will distribute
the dipolar signal to all angles, permitted by elastic scattering, i.e., the posi-
tions of Bragg spots in the diffraction plane for a sufficiently small conver-
gence angle. Under these conditions it was demonstrated that the impact
signal, located in between Bragg spots and collected in such a way as to
avoid the Bragg spots entirely, permits for nanometer resolution in vibra-
tional EELS [62]. For a large convergence angle, Bragg spots overlap in
the diffraction plane and the dipolar signal is distributed throughout the
diffraction plane. Under these conditions it was shown that on-axis vibra-
tional EELS contains no atomic-scale contrast [63]. However, shifting the
EEL spectrometer entrance aperture to a large-angle off-axis position al-
lows for an atomic-scale contrast in phonon spectrum images [60]. This
demonstrates that dipolar scattering is strongly reduced in the high-angle
off-axis spectra in comparison with impact scattering. It is furthermore
possible to spectroscopically separate impact and dipolar scattering under
certain conditions due to the selection rules of dipolar scattering [40, 61].

Furthermore both optical and acoustical modes contribute to high-angle
off-axis vibrational EELS and spectrum images formed by either of these
modes show essentially identical contrast [60]. Additionally, in the on-
axis geometry, significant spectral changes were observed as the beam is
scanned across neighboring atomic columns for 8 < « [61]. On-axis im-
pact scattering is prone to contrast reversal, which can be explained by elec-
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tron channeling effects and can be mitigated by an appropriate underfocus
of the probe or avoided entirely by using high-angle detectors [63]. Spatial
resolution was pushed to the limit by demonstrating, that it is possible to
distinguish a single Silicon impurity in a graphene sheet by its localized
vibrational signature [64]. More recently also chemical-bonding sensitiv-
ity has been demonstrated on the same system [65]. Defect systems are of
large interest for technological applications, since these control many im-
portant thermal properties at the nanoscale. Vibrational EELS at high spa-
tial resolution is a powerful technique for this purpose due to the unique
combination of high spatial resolution and sufficient energy resolution. It
has been shown to allow spatial mapping of the modifications of phonons
induced by a planar defect, interfaces, superlattices, and grain boundaries
[66-70], thus enabling engineering of heat management at the nanoscale.
Another interesting application of vibrational EELS at high spatial resolu-
tion is the imaging of isotope diffusion during annealing in a monolayer of
graphene [71].

However, the large convergence angle used for high spatial resolution
experiments prohibits the extraction of momentum information, since in-
dividual Bragg disks due to elastic scattering overlap in the diffraction pat-
tern and prevent therefore an unambiguous mapping of certain scattering
angles to a certain momentum transfer. Instead, the large convergence an-
gle should effectively integrate the vibrational EELS signal over reciprocal
space at individual points in the diffraction plane in a single inelastic scat-
tering picture. The collection angle has a similar effect, yet the relative ex-
citation of different modes depends strongly on the choice of convergence
and collection angles in on-axis vibrational EELS [40], which suggests, that
the on-axis spectrum is not a simple function of the total range of contribut-
ing momentum transfers.

Therefore experiments requiring momentum resolution in the diffrac-
tion plane necessarily need to reduce the convergence angle o as well as the
collection angle . Initial high momentum resolution experiments adopted
a strategy to form the diffraction pattern in such a way, that only a small
range of momentum transfers (scattering angles) is accepted by the EEL
spectrometer. By shifting the diffraction pattern relative to the EELS aper-
ture, one can select the momentum transfer, at which the HERE should
be obtained. Then, the vibrational EELS recorded at different momentum
transfers reveals the phonon dispersion, when individual measurements
are stitched together in a so-called (q, E) map [72-74]. Using newly de-
veloped hybrid-pixel detectors and a slit aperture, however, it is now also
possible to record the phonon dispersion along a certain direction in the
diffraction plane in a single measurement instead of a series of measure-
ments at different momentum transfers [38]. These capabilities have al-
ready been used to measure the phonon dispersion in Boron Nitride (BN)
nanotubes [75] and at interfaces [76]. It is also possible to obtain a spatially
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localized signal of defects in momentum-resolved measurements by allow-
ing only momentum transfers to contribute to the spectra, for which strong
spectral modifications are observed as a function of beam position [66].
Furthermore imaging of phonon dynamics using momentum-resolved vi-
brational EELS near a quantum dot was reported [77].

Exciting experiments combining several of these techniques have also
been reported. For example, vibrational surface states were mapped us-
ing both dipolar scattering as well as high resolution off-axis vibrational
EELS [78]. Large, temperature-dependent energy shifts in phonon modes
were observed in on-axis EELS as well as dipolar scattering, which allows
for temperature measurement and in the case of high spatial resolution
on-axis vibrational EELS also mapping of temperature in a nanoparticle
[79]. Furthermore it was reported, that on-axis vibrational EELS allows
to extract nanometer-scale vibrational information from interfaces, even if
dipolar scattering dominates [80]. In a similar geometry, but using a larger
collection angle, mapping of functional groups of molecules was demon-
strated with a spatial resolution of better than 15 nm [81]. The origin of
the spatial resolution in these results is still not entirely understood due to
alack of theories treating dipolar and impact scattering on an equal footing
for a penetrating beam geometry [81].

After reviewing current experimental techniques and results in vibra-
tional EELS, we proceed in the following chapter with an overview of vi-
brational EELS theories and make the case why there is a space for another
model.
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2. Theories of Phonon scattering for
High-Energy Electrons

In this chapter we describe the theoretical underpinnings of the theory of
high-energy electron scattering by vibrational excitations. Historically, re-
search has mostly focused on the effect of so-called Thermal Diffuse Scatter-
ing (TDS) on images and diffraction patterns, since vibrational losses were
not accessible to EELS [82-84]. TDS is the total inelastic scattering asso-
ciated with all possible vibrational losses throughout the diffraction plane.
This has changed with the advent of monochromators capable of reducing
the width of the zero-loss peak to around or below 10 meV (c.f. section 1.2).
Today vibrational EELS experiments are interpreted using a variety of ap-
proaches, which we will briefly review here. We will see that all of these
approaches are partial solutions to the general problem of describing vi-
brational EELS and there is to this date no tractable simulation method,
which can fully describe all regimes and experiments, for the challenges
are immense: vibrational EELS experiments are sensitive to properties over
a large range of length scales, from dipole scattering on macroscopic fields
to impact scattering at the atomic scale. Therefore multi-scale modelling
approaches are likely required to treat both modes of scattering on a more
equal footing. Furthermore we will see that the large number of possible
initial and final states, the requirement of thermally averaging over initial
states, and the possibility of the electron undergoing multiple elastic and
inelastic events complicate the modelling of vibrational EELS in the impact
scattering regime.

2.1 Dielectric formalism

Vibrational EELS can be modeled using a semi-classical electrodynamics
based description, in which the EEL probability 'y g(w) is related to the
work performed by the electron against the induced electrical field along a
straight trajectory [85, 86], i.e., the total energy loss is written as

AE = ef dt v E;q (x(t), 1)
= f dw hiw Fggps(w)
0
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where E;,4 is the field induced by the electron moving along a straight
trajectory r(t) with velocity v, which is usually obtained from a solution
of Maxwell’s equations with a spatially local dielectric function e(w) :=
€(q = 0,w) in the long wave length limit and appropriate boundary con-
ditions. This approach works well for small angle dipolar scattering pro-
cesses, especially in aloof geometries, and allows to interpret dipolar scat-
tering experiments with great success [55, 57, 87-90]. However when the
beam gets close to atomic columns in intersecting geometries and electrons
are scattered towards large angles, i.e., in the impact scattering regime, the
description of the sample in terms of the local dielectric function in the
long wavelength limit is not satisfactory [91]. Therefore we need to em-
ploy other theories for transmission geometries and impact scattering. In
Refs. [78, 91] a step towards this goal is achieved within the semi-classical
picture conveyed by eq. (2.1) by essentially improving the description of
the induced fields to include short wavelength modes by means of lattice
dynamics and molecular dynamics calculations. The resulting spectra in-
clude then losses to phonon modes, which are absent if one considers only
the local dielectric function e(w) in the long wave length limit [91].

2.2 The first-order Born approximation

In order to describe impact scattering, we need to consider atomic-level
details of the variation of the beam-sample interaction and we enter thus
the domain of quantum mechanics. We consider some central results of
time-independent scattering theory in appendix A. The main result is that
the Double Differential Scattering Cross Section (DDSCS) for the transition
li) — |f) is written as (c.f. egs. (A.5)) and C.2

oy Qo)*mik

A 2

where k and k' are the initial and final wave vector of the scattering parti-
cle, |®;)and |®) are the initial and final states of the sample, and the Dirac-
d signifies overall energy conservation between beam and sample. In the
first-order Born approximation, we replace the operator transition opera-
tor T' by the interaction operator H,,,,, i.€., we consider that electrons are
scattered only once by the potential. The derivation of the first-order Born
approximation for phonon scattering of electrons [92] is very analogous to
the derivation for the scattering of neutrons and X-rays on phonons [93-
98]. We present in this thesis a lengthy, yet mostly complete, derivation of
the DDSCS for electrons.

We start with the interaction of an electron with the full many-body
system of the sample and split the sample in an electronic and a nuclear
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subsystem by virtue of the Born-Oppenheimer (BO) approximation in ap-
pendix B. In this appendix, we limit ourselves to the first-order Born ap-
proximation, i.e., we replace T by Hi,.,, and arrive at an expression for
the DDSCS associated with the transition |i) — |f), which depends on the
Fourier transform of the electronic and nuclear charge densities. We then
average the DDSCS in eq. (2.1) over initial states and sum over final states
in appendix D, since the sample will generally be in thermal equilibrium
and we have no control over the final state of the sample. Following van
Hove [99], these considerations lead to the definition of the Dynamic Form
Factor (DFF)
inf dt
5(q,AE) := f 5 eTIAEIR (o1 (a, (R por(@ {R(DD)r,  (22)
—inf

where (0,0/(q, IR, }) prot(q, {R(£)})) 1 is the density-density correlation func-
tion. Using eq. (2.2) the DDSCS can be written as [92, 99]

d’c  _ miet K1
dQw dAE — (27m)2h4e? k q*

S(q, AE). (2.3)

We consider then a crystal in the harmonic approximation! as the target
in appendix E and proceed further by describing the total charge density
within the Independent Atom Model (IAM) in appendix F. The correlation
function of the charge density appearing in eq.(2.2) reduces to thermal av-
erages of exponentials of displacement operators in the IAM and we show
in appendix G how these averages are computed.

We find that the DDSCS in first-order Born approximation and using the
IAM can be written as a series

d%o > d2gm

= ; (2.4)
dQq dAE =0 dQq dAE
where the leading two terms 7 = 0,
(0) N, 2
d?ct0 RO L
To,aar = N Do | L ¢TI @ ET sam), @9
G j:l

andn =1,

Nba . .e .
Z e—lG-Rj?fej(q) e~ Wi(a.T) (q-€jg,)

j=1 VM
<nq0v>T

qo?

2
X

d2e® AN k'
dQ,dAE ~ 2 k PILINE

G,v
n +1
% [%5(;&%& — AE) + 8(hwq,, + AE)] .
qoV

(2.6)

IThe harmonic approximation and phonon calculations are also the topic of sec. 3.3.

23



correspond to the DDSCS associated with elastic (0-phonon) and single in-
elastic (1-phonon) scattering, respectively. The energy-gain term is propor-
tional to 6(fiwg,,, +AE), while 6(hw, ,,—AE) corresponds to the energy-loss
part of the DDSCS. We refer the interested reader to the derivations in the
relevant appendices for a definition of all quantities in these expressions
and also to sec. 3.3 for more details on phonon properties and calculations.

Equations (2.5) and (2.6) present a more suitable approach for intersect-
ing beam geometries as they explicitly include interactions with all phonon
modes up to large momentum transfers q. We can understand a few impor-
tant properties from these expressions. For example the dot product q-€ g,
leads to a selective enhancement of modes, whose phonon polarization has
a component along q. It is therefore argued in the supplementary material
of Ref. [64] that the main features of impact scattering vibrational EELS
measured with a large off-axis detector can be understood in terms of the
Phonon Density of States (PDOS) projected along the direction of the con-
sidered momentum-transfer q (c.f. sec. 3.3). We will return to this point
in the discussion of paper II and continue here by briefly considering the
geometry of the momentum transfer at different scattering angles 6 and
energy losses AE.

We show in Fig. 2.1 how the ratio of the absolute value of the compo-
nents of momentum transfer q = (q,,q,) perpendicular and parallel to
the initial wave vector k varies over a wide range of the scattering angles
and energy losses (c.f. appendix H, especially eq. (H.6)). The inset depicts
the range of these quantities, which are commonly studied in vibrational
EELS. We note that in this range, |q, | > q, and, together with the momen-
tum transfer selectivity described above, the vibrational EELS is therefore
mainly sensitive to modes, whose polarization has components perpendic-
ular to the incident wave vector and parallel to the momentum transfer q.

The first-order Born approximation has seen wide adoption in calcu-
lations of momentum-resolved scattering cross sections of thin materials
consisting of light atom species [73, 74, 92] and it has been used as a the-
oretical tool to understand some properties of the inelastic impact scatter-
ing scattering cross section [64, 77, 100]. It should also be noted that the
first-order Born approximation includes in principle dipolar scattering on
optical phonons at small q as long as the charge transfer in polar materials
is included in the modeled charge density. This can be achieved by con-
sidering perturbations to the electron density due to atomic displacements
within Density Functional Perturbation Theory (DFPT) [74] or appropri-
ately scaled (ionic) scattering factors [63, 92].

We note that the first-order Born approximation as we have laid it out
here considers only a single plane wave component |k) of the incident
beam. For a convergent beam in e.g. STEM, we would need to take the
initial state to be a sum over the incident momentum transfers compatible
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Figure 2.1. Color map plot of the ratio of |q,|/|q,| computed using eq. (H.6) as a
function of scattering angle 6 and energy loss AE. We consider thereby an initial
kinetic energy E, = 60 keV. Note the logarithmic axes in the main plot and the
linear axes scale in the inset, which shows the typical regime of vibrational EELS.

with the probe-forming aperture A(«), i.e.,

Yo D) |k, @) (2.7)

k, €A(a)

in eq. (A.3a). This leads effectively to an integration of the scattering am-
plitude f;_, r(k,Kk’) over a range of values of k. For a large enough con-
vergence angle «, it would give rise to the appearance of the Mixed Dy-
namic Formfactor (MDFF) S(q, q’, w) instead of the DFF in the expression
of the DDSCS [101]. A similar effect would be observed for the case of a
finite detector entrance aperture, which would require to sum over the ac-
cepted range of final momenta k’. No systematic studies on the impact of
the convergence and collection semi-angles on calculated vibrational EELS
have been reported yet to the best of our knowledge, but it is a commonly
accepted view in the literature, that for large enough convergence and/or
collection angles, the EELS is comparable with the projected PDOS along
q, as we have described above. It should be mentioned here that Kone¢na
et al. have developed a single inelastic scattering theory for atomic-scale

25



mapping, which takes the incident beam shape explicitly into account and
which was applied to isotope mapping in a h-BN type molecule [102].

Opening the convergence angle has another implication in the treat-
ment of scattering theory as we have laid it out here, which is worth men-
tioning: we note in appendix A that the conventional definition of the
DDSCS according to eq. (2.1) does not predict the correct number of counts
in the forward direction at zero energy loss. In the Bright Field (BF) in
STEM, this issue gets aggravated, since Bragg spots broaden into Bragg
disks for finite convergence angles. Consequently the observed intensities
on the detector deviate for larger convergence angle over a larger range of
momentum transfers from the DDSCS of eq. (2.1). Thus for the correct de-
scription of the elastic cross section, we cannot apply the DDSCS as derived
here alone, but we need to consider also the initial wave. We will see below
that for this reason, we work usually with scattered wave function for the
purpose of TEM and STEM.

Despite all these successes in describing momentum resolved experi-
ments and in allowing to understand some of the functional dependencies
of vibrational EELS, the first-order Born approximation has some major
shortcomings [103]. First of all the criterion for its range of validity is com-
monly stated as [104, 105]

Az H, inter
hv

where Az is a characteristic range of the potential. Even for high-energy
electrons this criterion can not be fulfilled for thick specimen, especially
not for infinite crystals as in our derivation. The reason for this is, that for
thick specimen Az > 0, a “characteristic” value of the interaction poten-
tial H,.; can approach very large values for the Coulomb potential near
the nucleus. Furthermore the electron speed v is limited by the speed of
light ¢, so even electrons with very high energy will not be able to satisfy
equation (2.8) [104-106]. Furthermore, for scattering on a single atom, the
first-order Born approximation leads to a purely real scattering amplitude
for elastic scattering, which is incompatible with the conservation of prob-
ability [106, 107], an issue, which adds to the forward scattering issue of the
elastic cross section discussed above. In order to obtain more physical scat-
tering amplitudes for electrons, higher-order terms need to be taken into
account in the Born series [104, 106, 108], i.e., multiple elastic scattering
needs to be included even for scattering on single atoms.

<1, (2.8)

2.3 Elastic scattering of high-energy electrons

We have argued in the previous section, that the Born approximation is not
sufficient for treating elastic scattering in the context of TEM and STEM.
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If we return then to appendix A and limit ourselves to elastic interactions
with a potential

.27k [T dq
inter me (271.)3

daty R £ (q), (2.9)
K

where RE{O) are the equilibrium positions of nuclei and we have assumed
the IAM of appendix F. We take the initial and final states to be just plane
wave states, i.e.,

=1k,  (fl=(K]. (2.10)

Time-independent scattering theory allows then only elastic scattering for
this problem, since the DDSCS reduces to

o Qa)'m?
dQq dAE At

KK'|TIK)*8(AE) = |f(k, K)’S(AE),  (2.11)

where k = k" and k L Z. For high-energy electrons and small angle scat-
tering, the scattering amplitude f(k,k’) = (k’|T|k) can be approximated
as [104]

flkK) = —% / dry el [1— ¢(ry)], (2.12)

wherer = (r;,z) and q = k' — k = (q,q,) and we have introduced the
Phase Object Approximation (POA) wave ¢(r, ), an interaction parameter
o and the projected potential V},.,;(r, )

p(r)) = e'Vmmilr) (2.13a)

m
0=k (2.13b)
Vproj(rl) = _f dz Hinter(r)- (2.13c)

The projected potential reads

Qmon? [T dq,
me J)_. 2m)?

) i RO
Voroj(r1) = — ey TRy £ (q)),  (2.14)
X

where we have carried out the integration over z, which yields 275(q,).
Eq. 2.12 is a more appropriate approximation to the scattering ampli-
tude of a thin sample than the first-order Born approximation for electrons.
However, this scattering amplitude still suffers from the neglect of the con-
tributions of the unscattered wave, while the POA wave function ¢(r) and
its intensity explicitly include the unscattered wave as it can be seen from

27



eq. (2.12): the difference between one and the POA wave effectively re-
moves the initial plane wave

$o(r) =1 (2.15)

from the equation for the scattering amplitude. Thus, if we carry out the
spatial Fourier Transform (FT) in eq. (2.12), we see that the DDSCS be-
comes

dzO’i—»f k2 5 . e
dQ, dAE  (2m)? 1(6(q) — ¢(qL)l", (2.16)
so we can define a quantity
dzﬁ'i_,f k2 2
dQq, dAE ~ 2n)y CCI (2.17)

which is proportional to the measured counts also for q; = 0, contrary to
the DDSCS. Since k is just a scaling constant in elastic scattering under
small angles, independent of q,, we can use the intensity |$(q l)l2 of the
POA for most purposes, such as estimates of the relative scattering proba-
bility. The POA wave is often used in the context of TEM and STEM if a
simple model of elastic scattering is required for thin enough specimen.

If the initial wave function ¢(r,) is different from a plane wave, the
POA becomes simply

$(r)) = eV (r) ) (2.18)

and |¢(q ¢)|2 can still be used to quantify the scattering probability at mo-
mentum transfer q,. Furthermore the Weak Phase Object Approxima-
tion (WPOA)

$(r)) & [1+ 10V )] o(ry) (2.19)

is also a widely used further approximation for weak projected potentials.
The DDSCS becomes for a plane initial wave in WPOA

dZO'i_,f k2

— 2 2
dQ. dAE ~ (2m)? |02Vproj(qL)'
q.
2 (2.20)

_iq, R
=D e R fo(qu)|
X

which has the same functional dependence as eq. (2.5), except that we have
not assumed a periodic arrangement of atoms here and the Debye Waller
Factor (DWF) is missing due to neglecting thermal vibrations here.

The POA as we have developed it here is a better approximation for scat-
tering on not too thick samples and motivates why we are usually con-
cerned with the scattered waves rather than the DDSCS in the context of
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TEM and STEM. However, the POA is still incapable of describing multi-
ple elastic interactions at different thicknesses in the sample. In the usual
language of electron microscopy, this multiple elastic scattering leads to
so-called dynamical diffraction and channeling. The former is the dynamic,
thickness-dependent reshuffling of elastic intensity between waves of dif-
ferent final wave vector k’. Channeling on the other hand describes the
tendency of electrons to stay close to an atomic column in STEM.

These effects are usually accounted for in quantitative simulations by the
so-called Bloch wave method or the multislice method. Both approaches al-
low to calculate the scattered wave ¢(q , z) at some thickness z in the sam-
ple. In the former approach, the wave function of the beam electrons is ex-
panded in terms of Bloch waves and the thickness-dependent interference
of these Bloch waves shifts intensity back and forth between different plane
wave states, which manifests itself as dynamical diffraction as the electron
beam passes the specimen [109]. For perfect crystals, a small number of
Bloch waves is typically sufficient for converged results, but defects with
large unit cells or large super cells, become prohibitively expensive to sim-
ulate: the Bloch coefficients, which describe the partial intensity of specific
Bloch waves, are solutions to an eigenvalue problem, whose computational
complexity scales with the third power of the considered number of Bloch
waves.

In multislice simulations on the other hand, the high energy beam elec-
tron wave function is numerically propagated through a super cell of the
studied structure. The scattering potential is thereby divided into thin slices
and the computational scheme consists of a series of transmission and prop-
agation steps [110]. The scattering potential acts thereby as a phase grating
in exactly the same way as it does in the POA in eq. (2.13a), effectively
creating diffraction of the wave function, and the propagation step evolves
the wave function through free space over the slice thickness. Compared
to Bloch waves, the simulation time scales only with the total size of the
system, but is not strongly affected by compositional details of the struc-
ture, which makes it ideal for studies of disordered systems, defects, nano-
particles, interfaces etc. We will explain the multislice method in detail in
sec. 3.1 in connection with the description of computational methods in
chapter 3.

2.4 The Frozen Phonon Multislice Method

The effect of atomic vibrations on the angular distribution of scattered elec-
trons, i.e., the diffraction pattern |¢(q, z)|2, is two-fold: the elastic scatter-
ing potential becomes thermally smeared and inelastic scattering occurs.
The former leads to an exponential dampening of high-angle elastic scat-
tering, the so-called DWF, while the latter leads to an absorption of elastic
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intensity into inelastic channels. This manifests itself in a reduction of to-
tal (elastic) intensity at energy loss AE = 0 and the missing intensity is
simultaneously scattered towards angles, which do not necessarily need
to coincide with Bragg angles. The inelastically scattered electrons form
then a diffuse background to the elastic Bragg spots, the so-called Thermal
Diffuse Scattering (TDS). Within the first-order Born approximation, the ef-
fects of thermal smearing and TDS are encapsulated in the 0-phonon and
1-phonon DDSCS of eq. (2.5) and (2.6), respectively?.

In purely elastic imaging and diffraction calculations, the thermal smear-
ing and absorption effects on the elastic wave can be included by applying
the DWF to atomic scattering factors and considering absorptive scattering
potentials [82, 83, 109]. If also the inelastic intensity, i.e., TDS, is of interest,
more elaborate simulations need to be carried out. For example TDS can
in principle be modeled for thick samples via the single inelastic theories
outlined in sec. 2.6 below and integrating over energy loss, but the resulting
calculations would require large amount of computational resources. Here
we will focus on the so-called Frozen Phonon Multislice (FPMS) method
[84].

The FPMS method is motivated in a semi-classical picture3 by the large
difference in time scales at which the thermally averaged diffraction pat-
tern or image is formed [109]: on one hand the time it takes a high-energy
electron of 60 keV to pass a specimen of thickness 20 nm is of the order
10716 s, while the typical time scale of atomic motion in the specimen due
to thermal vibrations is on the order of about 10712 to 10713 s. Therefore the
electron “sees” only one static configuration of the atomic displacements in
the specimen. On the other hand, the time between two consecutive beam
electrons pass the specimen is around 10~° s for a beam current of 100 pA
and thus much longer than the characteristic time of atomic oscillations.
Each electron “sees” therefore a different, uncorrelated configuration of
atomic positions of the vibrating structure, a so-called snapshot.

In this picture, the diffraction pattern Ippys(qy, 2, Tp) is frxpressed as the

incoherent average over N, (independent) snapshots {R,,}, *,,i.e.,
1 2
Iepms(Q, 2, Tp) = N z |¢(ql,z, rp,Rn)| , (2.21)
¢ n=1

where ¢ (q 152, Tp, Rn) is the beam exit wave function calculated using the

multislice method at thickness z, with the probe centered at position ry,
and atoms located at positions R,,. Thus the FPMS method reduces the

2Higher-order terms with 7 > 1 also contribute to the TDS at any momentum transfer
throughout the diffraction plane.

3Spectral modifications in Energy-Loss Near Edge Structure (ELNES) were simulated using
arguments similar to the ones presented here by averaging over snapshots of molecular
vibrations [111].
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complexities associated with phonon scattering to a Monte-Carlo sampling
of the thermally averaged intensity of elastic waves over different distorted
lattice configurations. It is important to note that the frozen phonon pic-
ture has been justified on quantum mechanical grounds [109, 112-114].

Different approaches can be used to generate the snapshots {Rn}lr\l]:l, the
most widely used of which is a model of uncorrelated atomic motion, also
called an Einstein model [84]. Correlated motion, i.e., the notion of lattice
modes or phonons, can be included either by considering a detailed pho-
non dispersion in the Monte-Carlo sampling [115, 116], or via Molecular
Dynamics (MD) simulations [117-124]. It was shown that the total single
inelastically scattered intensity is the same for the Einstein model and a
more sophisticated correlated model [125]. However, diffraction patterns
simulated with the FPMS method considering structure snapshots sam-
pled from MD simulations exhibit subtle intensity variations, which are
attributable to correlated atomic motion [116, 118].

The FPMS allows therefore for a great freedom in modeling atomic vi-
brations and the computational effort to include the effect of phonon scat-
tering is given by the number of configurations necessary to reach con-
vergence of the intensity Irpys(q,, 2, Tp). We have observed that typically
about 100-200 independent snapshots of atomic configurations give well
converged averages. For the purpose of vibrational EELS, however, the
FPMS method can only give estimates of the total inelastic intensity and it
is not applicable to spectroscopy, since it does not provide energy resolu-
tion.

2.5 The QEP model

The Quantum Excitations of Phonons (QEP) model is derived from the
many-body Schrédinger equation of the beam-sample system using an ap-
proximation akin to the BO approximation for the beam electron. The total
intensity in the diffraction plane is expressed as a (incoherent) configura-
tional average of multislice wave functions ¢(q, , z, 1, R) over atomic dis-
placements R,

2
Ineon(@1,2.T,) = / @R @z R PR).  (222)

This integral is evaluated by the Monte-Carlo average in eq. (2.21) if R
is drawn from the probability distribution P(R). Thus the QEP model is
mathematically equivalent to the FPMS method. P(R) is within the QEP
model given in terms of the crystal states |n), which could be simple har-
monic oscillator states (Einstein model) or the phonon number states in
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the harmonic approximation (c.f. appendix E), as
_6En
e 2
P(R) = ), ——|(Rin)|". (2.23)
n
Within the QEP model it is possible to define a coherently averaged wave

lﬁcoh(ql’ Z, rp) = f dR ¢(‘h’ Z, rp’ R) P(R)a (224)

which carries the notion of the elastically scattered wave [126]. Using this
definition, we can extract the inelastic intensity

- 2
Iinel(qJ_’Z’ rp) = Iinoch(qJ_’ Z, rp) - |77bcoh(qJ_’Z’ rp)| ’ (2-25)

which is the variance of multislice exit wave functions ¢(q, z, r,, R). The
inelastic intensity gives the distribution of TDS in the diffraction plane.
Furthermore an “inelastic wave“ associated with a transition |m) — |n)
can be defined as

ban(@2T,) = f dR (n[R)(Rjm) $(@.R.z,r,).  (2.26)

The QEP model has been used to support interpretation of experiments
showing atomic-scale contrast in vibrational EELS and to explain contrast
reversal in on-axis vibrational EELS [60, 63]. Dipolar scattering was in-
cluded in Ref. [63] in an approximate way by modifying the atomic scat-
tering factor. However, in all of these calculations only a simple Einstein
model of atomic displacements was considered. Furthermore, the inelastic
wave in eq. (2.26) has not been considered in literature, except analytically
in our paper IV, which we discuss in sec. 4.4.

Similar to the FPMS method, the QEP model offers a tractable way to ob-
tain the total inelastic intensity, but spectroscopic calculations via eq. (2.26)
requires explicit knowledge of phonon modes and is computationally ex-
pensive to evaluate due to the large number of states |[m) and |n).

2.6 Single inelastic scattering theories including
multiple elastic scattering

After considering how vibrational scattering can be treated in a statistical
sense, we turn our attention here towards explicit spectroscopic calcula-
tions in a single inelastic scattering approximation. In order to include the
multiple elastic interactions mentioned in sec. 2.3 in such simulation, one
needs to compute how elastic scattering changes the wave function of the
beam electrons from the initial wave function to the wave function at the
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position of the inelastic interaction, and subsequently how the inelastically
scattered electron wave function changes until it reaches the detector.

Such simulations have been used to study the origin of lattice resolu-
tion in on-axis vibrational EELS [127]. Bloch waves were thereby used to
describe the elastic propagation and a transition potential accounts for sin-
gle inelastic scattering [128], which has a similar functional dependence as
the single phonon first-order Born approximation. Furthermore Dwyer has
used an inelastic multislice theory including dipolar scattering to consider
the prospects of spatial resolution in vibrational EELS in several works
[39, 62, 129].

Both methods, inelastic Bloch wave and inelastic multislice simulations,
include the effect of dynamical diffraction, are conceptually transparent,
yet both require the explicit knowledge of the phonon modes of the system
under study. Similar to the Bloch coefficients, the phonon modes are the
solutions of an eigenvalue problem, whose numerical complexity scales as
the third power of the system size, here the number of atoms. This unfa-
vorable scaling becomes problematic for defects or other systems requiring
large super cells, especially if a thermal average over the initial states of the
target is to be carried out.

2.7 Towards a new method for vibrational EELS

We have reviewed in this chapter the main approaches to phonon scatter-
ing in the context of TEM and STEM, which are presently available for in-
terpreting vibrational EELS experiments. We have considered their realm
of feasible applicability and recognize, that there is an opportunity for a
new approach, which combines the computational advantages of the FPMS
method with frequency resolution (an energy dimension). The idea is to
develop such an extension of the FPMS method, which can deal efficiently
with large structures, such as defect systems, is versatile in the scattering
geometries it can describe, and includes multiple elastic interaction, such
that the thickness dependence of vibrational EELS can be modeled. We call
this method the Frequency Resolved Frozen Phonon Multislice (FRFPMS)
method and this dissertation is its story. In chapter 3, we will explain more
of the methods on which the FRFPMS method is built and which we have
used in papers I-VI. A summary and discussion of these papers is the topic
of chapter 4, which includes also a detailed description of the FRFPMS
method itself.
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3. Simulation Methods

Consistent with the core-idea of this dissertation to develop a Frequency-
Resolved Frozen Phonon Multislice (FRFPMS) method, which we have
formulated at the end of chapter 2, we present in this section the com-
putational details necessary to compute and understand the results pre-
sented in chapter 4. Starting with the multislice method we first describe
in section 3.1 how the electron beam exit wave function is computed from a
structure model of the specimen and an initial wave function. We proceed
then with a consideration of MD simulations, specifically MD simulations
based on the Generalized Langevin Equation (GLE), which allows to con-
struct thermostats providing frequency-dependent heating of modes. In
the last section, section 3.3, we describe some of the theory of phonons in
the harmonic approximation and how to calculate phonon properties from
first-principles.

3.1 The Multislice Method

The multislice method allows to compute the elastic scattering of a high
energy electron on an assembly of atoms characterized by their scattering
potential V(r). Quantum mechanically this is commensurate to solving the
Schrodinger equation

h2
—%V%T(r) + V(0)¥(r) = E¥(1), (3.1)

where r = (x, y, z) is the position, ¥(r) is the wave function, and E the en-
ergy of the beam electrons. The multislice solution is based on the paraxial
approximation to eq. (3.1) for high energy electrons [130], which reads

dp(r) [iA
9z  |4an

2m,
h2

(Viy +6V @) |¢ @), G = (3.2)

with the initial wave vector k of the wave function assumed to be parallel
to the z axis and the wave function factorized as

Y(r) = ¢(r) exp(2miz/A). (3.3)

2 2
Here V)ch = % + ;—yz is the Laplacian in xy directions and A the electron
wave length. In this way, the quick oscillation in z-direction is split off and
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the object of principal concern is the wave function ¢(r), which is modified
by the interaction with the potential. It is worth pointing out, that in the
derivation of the paraxial approximation, eq. (3.2), all backscattered elec-
trons are neglected. Since the electron speed is a significant fraction of the
speed of light at acceleration voltages of 60 to 300 keV1, relativistic effects
need to be taken into account in eq. (3.1). This can be achieved to a satis-
factory degree by correcting the mass and electron wave length [130, 131]
according to

A= he (3.42)
\/(moc2 + E)?2 — mict
_ . my E
m=ymg = —U2 =my (1 + mocz) (3.4b)

c2

where m, and m are the electron rest and relativistic electron mass, re-
spectively. Furthermore A and v are the relativistic electron wave length
and velocity, respectively, and y is the relativistic factor, and c the speed of
light in vacuum.

We can find a solution to the paraxial Schrédinger equation, eq. (3.2), by
considering the formal operator solution [130]

Z+Az
P(r;,z+ Az) = exp [f (A+B) dz’l o(r,2) (3.5a)
il v2

A= 2= Vi (3.5b)
i1
B=_—6V(r) (3.5¢)

wherer = (r,z) and r; = (x,y). Equation (3.5) describes that the wave
function ¢(r,, z + Az) at a certain depth z + Az can be computed by acting
with the exponential operator of A and B on the (known) wave function
¢(r,, z) atdepth z. For small enough Az one may factorize the exponential
of the operators according to

1
exp (AAz + BAz) = exp (AAz) exp (BAz) + 3 [B,A] (Az)?, (3.6)
where [B,A] = BA— AB is the commutator. Then eq. (3.5) can be rewritten

as

¢(r,,z+ Az) = exp (%AZVJZW) X
(3.7)

il _
X exp (HO’Vproj(l‘l, z, Az)) d(r,2)

IThe relativistic speed of 60 keV electrons is about 0.45¢, while 300 keV electrons travel at
a speed of about 0.78c.
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up to an error of order (Az)? for a sufficiently small value of the projected
potential

z+Az
Voroi(¥ 1, 2, AZ) =f V(r,,z") dz'. (3.8)
zZ

Note that the product of the exponential of the projected potential and the
wave after the previous slice in the second row of eq. (3.7) is equivalent to
the POA, c.f. eq. (2.13a), albeit with the projected slice potential instead of
the projected potential of the entire crystal. Equation (3.7) is the solution
to the scattering problem and exposes the core of the method: the scatter-
ing potential of the specimen is divided into Ny thin slices of thicknesses
Az,,n =1, ... Ng2. Within these slices, it is assumed, that the projected po-
tential is sufficiently small and the wave function is then propagated in an
iterative process from the crystal entrance surface at z = 0 to the crystal exit
surface at z = Z]:il Az, by repeated application of eq. (3.7). The propaga-
tion itself is thereby represented as an alternating sequence of scattering at
the interface of the slices and free-space propagation between slices.

We will now see how the multislice method is implemented in practice
and discuss thereby two different evaluation algorithms. The first one is
the so-called Conventional Multislice (CMS) method [110] and its solution
reads

Pn1 (x1) = p(r1,AZp41) @ [t (X )P (X 1)1, (3.9)

where ® denotes the convolution operation. It follows from considering
the Fourier transform of eq. (3.7) and realizing via application of the convo-
lution theorem, that it describes a convolution of the real space propagator
function [130]

_ 1 T2
p(rL,Azn)—MAZ ep(/1A ) (3.10)

with the product of the transmission function

il
tpa(rL) = EXP[ GVI:HI(I'J_)] (3.11)
with the wave function ¢, (r;) of the previous slice. We have used the

notation
¢n (rJ_) = ¢ (rJ_’ Zn)

Vn+1(rL) = Vproj(ri: Zp, Azy)
n
= Z Az,
m=1
ZO == 0

and ¢ (r,) is taken to be the initial wave function. Equation (3.10) ex-
presses, that the CMS solution is obtained by repeatedly multiplying the

2The slices do not necessarily need to have the same thickness.
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wave function by the transmission function and convolving the result with
the propagator function. The convolution is conventionally implemented
by Fourier transforming the term, multiplying by the Fourier transform of
the propagator function

FT [p(r,,Az,)] = exp (—inAk3 Az,) (3.12)

and applying the inverse FT. The Fast Fourier Transform (FFT) makes
this procedure an efficient algorithm [105, 132]. Furthermore it should
be noted, that the factorization in eq. (3.6) is only one of many possible.
There exists in fact a whole hierarchy of multislice methods derived from
expansions of the operator exponential in orders of A, which differ in com-
putational complexity as well as accuracy [133, 134].

Such expansion of the exponential in eq. (3.2) in powers of 1 together
with an exclusive evaluation of all expressions in real space is the defining
feature of the Real Space Multislice (RSMS) method [134-137]. We follow
the derivation in Cai et al. [138] and start with the iterative form of eq. (3.2),
ie.,

¢n+1 (rJ_) = exp [% {Azn+lv>2cy +4 AVn+1(rJ_)}] ¢n(rj_)- (3-13)

The RSMS solution is obtained by computing

¢n+1 (rJ_) Z ! [1/1 {V)ch + O'Wq+l ]) ] ¢n(rJ_) (3~14)

Om' 4

The derivatives in eq. (3.14) can be evaluated by finite difference methods
and within one slice the following iteration is carried out

Sl (r) = & [ ]vz F O ()T ). (315)

where ¢, (1) = ¢,(ry) and ¢, (1)) = Zzﬂ) $ns1(rL). Note, that in
order for this expansion to converge for finite m, the potential still needs to
be divided into slices Az; in the RSMS method, since the size of the product
AV (rj) depends on the slice thickness, especially near nuclei, and the
series may not converge for too thick slices.

From a practical point of view the wave functions are represented on a
two dimensional numerical grid of size N X Ny, in multislice methods. An
initial wave function ¢,(r;) determined by the details of the experiment
and instrument is required in both methods, CMS and RSMS. In this thesis
we consider two choices for ¢(r, ) (excluding aberrations):

1

VNN, (3.16)

convergent beam: ¢,(r,) « FT ! [exp(ik-1,)A(K)]

parallel illumination: ¢y(r,) =
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where vector quantities in bold face are defined in the xy plane, i.e., the
wave vector k = (ky, k) and the probe position r, = (r,x, 1)) A(K) is the
aperture function determined by the convergence angle o i.e.,

1 if k| < 27a

3.17
0 else ( )

A(K) = {

We see that the RSMS method requires a double iteration, one over slices
similar to the CMS method and one within each slice, unlike the CMS
method. The RSMS is more accurate than the CMS method for the same
slice thickness and may be faster than the CMS method if slice thickness
is reduced [138]. The RSMS method offers an additional advantage for
large, disordered structures, as its computational complexity scales with
the number of pixels N = N, X N, instead of the N'log, N scaling of the
CMS method [139].

The last topic to be considered in this section is the scattering potential
V(r) or rather its projection according to eq. (3.8). Usually the Independent
Atom Model (IAM) is assumed (c.f. appendix F), with which the projected
potential reads

27Th2 z+Az oo dq .
Vproj(rl,Z,AZ) = — m, L dZ/;oo (271’)3 elqr X

X Yl emRe £ (q).

(3.18)

If the projected potential is calculated from the contributions of all atoms
within z and z + Az, it is often called a 3D-potential approach in the con-
text of multislice calculations. However more often the so-called projec-
tion approximation is assumed and the entire potential of a single atom is
projected into its associated slice at thickness z. The projected scattering
potential reads then

2?7 dq,
me ) (27m)?
X Z eiql.(rL_RlK) fe,x(CIJ_),

K
z,.€[z,z+Az]

Viroi(¥ 1, 2,Az) = —

X
(3.19)

where the sum goes only over those atoms, that are part of the slice (c.f.
eq. (2.14)). We explain in appendix F, that the TAM assumes, that the
charge density associated with atom x, is the charge density of the corre-
sponding free atom and bonding effects are therefore neglected.

The electron atomic scattering factors f.,(q,) can be obtained from X-
ray scattering factors via the Mott-Bethe formula in eq. (F.10) or interpo-
lated from first principles relativistic electronic structure calculations [130,

38



140-142]. For ionic materials, in which charge transfer between atoms is
significant, ionic scattering potentials should be used [143-145]. More gen-
erally, all bonding effects can be included in the scattering potential V(r) by
abandoning the IAM and using DFT calculations to compute V(r) directly
[146-154].

In this section we have considered how to compute the electron beam
exit wave function for a static specimen. In reality atoms oscillate around
their equilibrium positions and we have described in sec. 2.4 and 2.5 that
the FPMS and QEP methods can be used to include the effects of ther-
mal motion using multislice wave functions computed for distorted atomic
structure “snapshots”. In the following section, we will consider MD simu-
lations, which can be used to model correlated atomic motion and generate
snapshots for FPMS/QEP simulations.

3.2 Molecular Dynamics Simulations

In classical MD simulations the classical equations of motion3

;= %, (3.202)
p=-V'(), (3.20b)

are integrated in time for atoms inside a virtual so-called simulation box.
r is thereby the position, p is the momentum and V'(r) the gradient of
the Interatomic Potential (IAP). The potential V(r) is the BO surface (c.f.
appendix E), which can be approximated to varying degree. In so-called
ab-initio MD simulations, V(r) is directly obtained from first-principles
calculations of the electronic structure such as Density Functional The-
ory (DFT). Ab-initio MD requires a large amount of computational re-
sources and for large-scale simulations one usually defers to an empiri-
cal form of the IAP, which has been fit to material properties. Examples
of such potentials for hBN are the Tersoff, extended Tersoff, and diverse
interlayer potentials [156-160]. Advances in machine learning have also
swept into the field of IAP development and there is an ever growing num-
ber of so-called Machine Learned Interatomic Potentials (MLIPs) available
today, which are designed to faithfully reproduce the BO surface calcu-
lated by DFT or other electronic structure methods [161]. One of the main
problems in applying MD simulations to solids is, that one conventionally
requires a potential, which is specifically trained for the material under
study. To address this issue so-called universal MLIPs are being developed,
which are trained on large amounts of electronic structure calculations of

3In this chapter, we will change the style of notation in accordance with the notation in
Ref. [155]. In particular, we will write the equations of motion in a 1D form for one atom,
but the generalization to 3D and N atoms is straightforward.
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many different materials and promise to be applicable to any combination
of a range of elements with good accuracy [162-164].

The result of MD simulations are trajectories (r(t), p(t)), which repre-
sent the time evolution of the system and which can be viewed as sequences
of samples of phase space (r, p) via the ergodic hypothesis [165]. The sim-
ulation box satisfies certain boundary conditions, usually periodic bound-
ary conditions, and is required in order to ascribe a volume and pressure
to the system. By default, equations (3.20) produce dynamics consistent
with a so-called micro-canonical or NVE ensemble4, since the total energy
E is conserved in the system for a conservative potential V(r). In order to
simulate thermodynamical ensembles involving a constant temperature T,
so-called thermostats need to be used, which are effectively modifications
of the equations of motion in eq. (3.20).

Dynamics producing a canonical (NV T) ensemble>, can be achieved, for
example, by introducing additional artificial degrees of freedom in eq. (3.20),
an approach developed by Nosé and Hoover [166, 167]. Temperature regu-
lation can, however, also be achieved by introducing friction and stochastic
noise forces acting on the atoms in the simulation. A popular thermostat
of this kind is the so-called Langevin thermostat based on the Langevin
equation [168]

F=p/m

p=-V'(r)— Qpp P+ bpp &),

where £ is a time-dependent, Gaussian-distributed random noise, App IS the
friction coefficient, and b p 1S the strength of the random force term. The
random noise is delta-correlated (£(¢)£(0)) = &(t), has mean value (§) = 0
and the system is Markovian, thus fully determined by the state (r(¢), p(t))
at time ¢. Setting

(3.21)

bpp = 2 ap, kyT, (3.22)

where kj is the Boltzmann constant, the Langevin equation fulfills the clas-
sical Fluctuation Dissipation Theorem (FDT) and samples the NVT en-
semble of classical statistical mechanics [169, 170]. In the calculations for
the papers included in this thesis, a Langevin thermostat as implemented
in LAMMPS is used for all NV T simulations [171, 172].

But one can take a step further and use the non-Markovian GLE [155]
p

=
m

‘ (3.23)
p=— V() f K(t - $)p(s) ds + ¢(0)

4NVE: constant number of particles N, constant volume V, and constant total energy E
SNVT: constant number of particles N, constant volume V, and constant temperature T
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where K(t—s) is a memory kernel, which governs the history dependence of
the friction force and {(t) is a colored-noise force. Non-Markovian systems
are not easily implemented in simulations, since their state depends on the
history of the system and is not uniquely determined by the current values
of (r(t), p(t)). It can, however, be shown that the non-Markovian system
described by equation (3.23) is equivalent to the Markovian system [155]

F=

(- O 206 Yo
$ 0 a, A/\s/ \b, B

where s = {s;} are n auxiliary momenta and § is a vector of n + 1 uncorre-
lated Gaussian random numbers. The parameters a,,, ag, a,, A, by, bg,
Bp, and B are related to the memory kernel K(¢ — s) of the non-Markovian
system and provide the flexibility to adapt the GLE for a wide array of ther-
mostatting applications [168]. Not all applications require the same num-
ber of auxiliary variables n, as different memory kernels are only well ap-

proximated for an appropriate choice of n. We define the following matri-
ces in order to simplify the notation in the remainder of this section

T
A = (%p ¥
P~ \a, A

b,. b\
— | PP p
5= %)

S

(3.25)

Furthermore Ap and B, are related via the static covariance matrix Cp
T _ T
A,C, + C,Al = B,B! (3.26)

and it can be shown that the GLE satisfies the classical FDT for Cp =kgT1,
where 1 is the identity matrix [168].

We have described that the idea of the FRFPMS method is to develop a
frequency-resolved FPMS method. We will see in chapter 4, that one way
to implement the frequency-resolution requires the ability to obtain snap-
shots of the vibrating structure at different frequencies. This idea of us-
ing snapshots of the vibrating structure at different frequencies to model
vibrational EELS was actually the starting point for the work presented
in this dissertation. It originally stems from the coincidental finding of
the so-called §-thermostat in the literature [173] while researching a so-
called quantum thermostat for a different work [121, 174]. The idea of the
d-thermostat can be motivated as follows: consider the following choice of
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matrices

0 r r
27 27
A, =|—- L Aw Wq

27 (3.27)

—,/L —wy Aw
27

B,B] = kT (A, +A7),

which produces a §-like memory kernel but still samples the canonical en-
semble due to it fulfilling the classical FDT [175]. If the a,, element in the
leftmost column of the top row of matrix A,, is replaced by a finite friction
parameter y’, without applying the change to the matrix BPB;, however,
the FDT is broken. Therefore the resulting thermostat does not sample
an equilibrium ensemble, but the thermostat will affect mostly vibrational
modes with frequencies close to w,. The finite friction ¥’ will on the other
hand dissipate energy from all modes equally, effectively freezing those
modes, whose frequencies are not close to w,. This is the idea of the §-
thermostat. It should be noted, that the final matrices A, and B, of the
d-thermostat cannot be written in the form of eq. (3.27) [175]. Rather they
are obtained by a fitting procedure and can be downloaded from an online
repository 6. We have used the §-thermostat in paper I and discussed its
advantages and disadvantages for our purposes in paper II.

Another frequency-dependent thermostat, the so-called hotspot thermo-
stat, is provided by the choice

y eal a) eal
Vbase % 0
Ap = _ ypca;:pcak ACO a)peak )
0 —peak 0 (3.28)
T 2Tbaseybase 0 0
B,B] = 0 2Tpear A 0
0 0 0

This thermostat equilibrates effectively all modes at a temperature T,
and injects also kinetic energy corresponding to a temperature Ty, into
modes, whose frequency lies (at least approximately) within an interval of
Aw around wpe,i- The selectable frequency-width Aw provides advantages
for our purposes as detailed in paper II.

In order to judge the frequency profile of thermostats and in order to
calculate the PDOS from MD simulations, we need to extract the relative
contribution of different frequencies to the motion encoded in a MD tra-
jectory. In the methods section of paper II, we consider the topic of deter-
mining the vibrational spectrum from MD simulations in detail. The basic

bhttp://gledmd.org/index.html ?page=matrix, accessed: 2023-12-06
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equation reads

% Na
g(w) = f dt Zinz1 M Vn(OVa(O)y exp(iwt), (3.29)

YNy V() (0))y

which is the normalized FT of the velocity-velocity autocorrelation func-
tion (v, (t)v,(0));, and m,, is the mass of the n-th atom. It can be shown
that the procedure described by eq. (3.29) yields the PDOS for NVE dy-
namics [176, 177]. We call eq. (3.29) without normalization the Vibrational
Power Spectrum (VPS)

o0 Na
VPS(w) = / dt Z m,, (v,,(£)v,,(0)) exp(iwt) (3.30)

n=1

and if the sum in eq. (3.29) is only extended over a certain subset of the
atoms, we speak of the Local Phonon Density of States (LPDOS) at those
atoms. In practice eq. (3.30) and for that matter also eq. (3.29) is most easily
evaluated using the FT v,,(w) of the velocity trajectory v,,(t)

VES@) = 3" mylva(@)l (331)

In the following section, we will see how we can obtain phonon disper-
sions and the PDOS from the MD force field or any other model of the BO
surface.

3.3 Phonon theory and calculations

Phonons are the quasi-particles of vibrational excitations in solids. They
are characterized by the phonon branch v and the wave vector in the first
Brillouin zone k. Generally, the Hamiltonian of the nuclei in a crystal can
be written as (c.f. appendix B and E)

Nba’Nuc il
: J
Hyye = Z m. +EBO({le})
jl=1 J
(3.32)
Nba’Nuc f’il uc Nba ll’ A
~ Y ET +EBO({R(;I})+ =Y U Ujy,
J.l=1 J LI'=1j,j'=1

where we assume the harmonic approximation [93], i.e., we expand the
BO surface Ezo({R j1}) in powers of the displacements U j1 of the j-th basis
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atoms in the I-th unit cells around their equilibrium positions R?l and ter-
minate after the harmonic term. The constant term EBO({R‘;I}) is an addi-

tive constant, which can be safely set to zero in the following” and the term
linear in the displacements vanishes due to vanishing forces on atoms at
their equilibrium positions. We have assumed here a crystal of N, unit
cells with Ny, atoms in the basis. Furthermore the Hessian of the BO sur-
face evaluated with all atoms in their equilibrium positions, i.e.,

o azEBO({R]l})
= (3.33)
aRﬂ aRj/l/ RO}
1

is a 33 matrix for each combination (j, j', 1, I'), which is usually called the
force constant matrix. It describes essentially the direction and magnitude
of the change in force felt by an atom jl due to a displacement of atom j'I’.

The equation of motion for the atoms in one unit cell I = 1 becomes via
Newton’s second law

N, basis

mj COIZ(OV e{(oV = Z D]]/(kO) E{(OV (334)
=

where the D, (k) is a 3 X 3 matrix, the so-called dynamical matrix, which
reads

1 10 ; 0 0

N

Equation (3.34) defines an eigenvalue problem, which can be solved by
diagonalization. Therefore the phonon polarization vectors €y, are the
eigenvectors and the phonon frequencies wy , are the eigenvalues of the
dynamical matrix. The phonon polarization vector is chosen to satisfy the
orthonormalization conditions

Nba
Z ejko‘l/.e}:kov’ = 5,,7,/ (3363)
Jj=1
3Ny,
D Cajkov €B gy = St (3.36b)
v=1
where €y, denotes the a-th cartesian component of the phonon polar-
ization vector.

7Note: as a constant energy shift, EBO({R?Z } does not influence the calculation of thermo-

— 0
dynamic averages of the form % e B(E“+EB°({RJ'1})), due to cancellation with part of the
partition function Z.
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The displacements are expanded in normal modes (kqv) [178, 179]

n

Uj () = m

iky-RY N
D0 €y T (), (3.37)

ko,v

where the phonon wave vectors k, are defined in the first Brillouin zone,
v is the band index, and m; is the mass and €, the phonon polariza-
tion vector of the j-th basis atom. Furthermore 4y ,,(¢) is a time dependent
“displacement” operator of the normal mode (k,v)8, which reads in the
language of second quantisation

Ty, (1) = Gy ot 4 afy el@ort] (3.38)

The phonon creation and annihilation operators gy, and dliov, respec-
tively, satisfy

0 ov/ = 0 oV .
Ay |Micgv) AV Miov gy — 1) (3.39a)
af ,nig,) = Mgy + Ll + 1) (3.39b)
[dko”’ dlzgv’] = 5k0k65vv’ (3.39¢)
dlzovdkovlnkov> = nko‘y|nk0v> (3.39d)
CAlkovdl-ioV|nk07’> = (nkov + 1)|nk0y>, (3.39¢)

where |ny,) is a Fock-state, which is occupied by ny ,, phonons. We can
express the total eigenstate of the system in harmonic approximation as

. 1 A1\ oy
m) =] — (af,,) " l0) (3.40)
kov kov

where |0) is the vacuum state and n = (M, 15 Py 25 ---) 18 @ vector of the
3NNy, phonon occupation numbers ny ,,. The Hamiltonian can then be
rewritten in terms of the phonon creation and annihilation operators as

N A A 1
Hpye = Z hwkov (aliovakov + 5) ) (3.41)

kov

and the state |n) is an energy eigenstate of the Hamiltonian, which satisfies

H,,.[n) = E, |n), (3.42a)
1
Ep = ) hay, (nko,, + 5). (3.42b)
ko'V

8 fy,»(t) does not have the unit of length, so it is not a measure of a physical displacement
of an atom, but rather how much the oscillator of mode (kyv) is displaced.
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We note some further properties of the quantities we have introduced
here. The displacement operator needs to be hermitian, since it is an ob-
servable of the system. This condition

Ut = ijl(t) (3.43)
implies that the phonon polarization vectors need to satisfy

€jkov = €j_ky> (3.44)

i.e., the phonon polarization vector at reciprocal lattice point k is the com-
plex conjugate of the polarization vector at —k,. The phonon frequencies
satisty furthermore

wko‘l/ = w—kOV' (345)

Other important quantities for our purposes are thermal averages (...)r,
which become

1
(D= > > e PEn(n|...|n), (3.46)
n
where the partition function reads

Z=>Y eFh (3.47)

Examples of these are the phonon occupation number

1

(Nigv)T = Bralkgn) — 1’ (3.48)
the Mean-Square Displacement (MSD)
A ) 1+ 2(ny )
T ) _ h koV T . 2
(0 00,0) = N kz ol (3.49)
0,Y 0
and the projected MSD

A A 1+ 2(n
(U0 @) =y It o s

T 2Nucmj Ko CUkov
where e is a unit vector denoting the projection direction.

We have seen in the introduction, that vibrational EELS provides access
to a variety of phonon properties, among others, the (projected) PDOS and
the phonon dispersion. We consider briefly how these quantities are de-
fined. The atom-projected PDOS reads

1 2
gj(w,e) = N D 8(w— ) e €| - (3.51)

uc kv
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The local projected PDOS is a measure of how much the j-th basis atom
partakes in vibrational modes along the direction of unit vector e as a func-
tion of frequency. The sum of the local projected PDOS along the three
spatial dimensions and over all basis atoms is the total PDOS

g@)= Y Yg@e = Ndw@-a). (52
: ue oy

e=Xy,2 j

After briefly considering the theory surrounding phonons, we see, that
the phonon frequencies and polarizations are the only quantities, which
we will need to determine for a material in order to evaluate any of the
expressions in this section. Therefore the main job in a phonon calcula-
tion is to diagonalize the dynamical matrix. In turn this requires to cal-
culate the force constant matrix. One of two approaches is commonly
employed in the literature: either the dynamical matrix is obtained using
DFPT, where one perturbatively considers the effect displacements on the
electronic structure, or one can use a finite displacement method, which
works with any calculation method able to provide a model of the BO sur-
face. We will focus here on the finite displacement method as it is this
method we use in connection with MD IAPs.

The basic idea of the finite displacement method is to assemble the force
constant matrix dDj-l]f, atom pair by atom pair. The j-th atom in the basis
is thereby displaced by a small distance AR j; and the change in the force
AFj,; on all other atoms j'l' caused by the displacement is calculated. For
a small enough displacement the force constants can then be obtained by
the finite difference®

”, o AFJII/
ol ~ AR, (3.53)
This procedure requires generally a sufficiently large super cell for con-
verged results, since several orders of nearest-neighbor interactions need
to be included. Once all force constants are known, the dynamical matrix
can be assembled and diagonalized, which yields the phonon frequencies
and polarizations. This approach is used by the phonopy software [180],
which we use together with the phonolammps!9 package.

L s AF
9The division of vector quantities is here to be understood as @,z = A—r’3, where a and
a

denote the spatial coordinates.
Ohttps://github.com/abelcarreras/phonolammps, accessed 2023-12-04.
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4. Summary of Papers

We are going to summarize and discuss the FRFPMS method in this chap-
ter. The overarching story line of the papers included in this thesis is as
follows: in paper I we introduce the FRFPMS method and report our first
atomic-scale vibrational EELS simulations. Paper II deals with simulations
of momentum-resolved vibrational EELS, and some technical details and
aspects to consider regarding the practical implementation of the method.
Furthermore we motivate reasons for choosing the hotspot over the o-ther-
mostat. In paper III, we report angle- and spatially-resolved FRFPMS sim-
ulations for a model system containing a planar defect. After these three
papers focused more on computational aspects, we change our angle of
investigation in paper IV and compare the elastic and inelastic signals in
the FRFPMS method analytically with the QEP model and the first-order
Born approximation for a target modeled as a simple harmonic oscillator.
This comparison enables us to revise the FRFPMS method. We then apply
such revised FRFPMS method in papers V and VI in calculations of two
systems, which we compare directly to experiments performed by collabo-
rators. We observe excellent agreement with experimental results and our
simulations enable insights, which would not have been possible from ex-
periment alone. The following sections are dedicated to a more in-depth
summary and reflection of each paper.

4.1 Paper I: Proposal of the FRFPMS Method

In our first paper we outline the idea of the FRFPMS method, without yet
naming it the FRFPMS method. As mentioned at in the summary of chap-
ter 2 in sec. 2.7, the FPMS method does not allow for spectroscopy, but
considers only the effect of all atomic vibrations on the diffraction pattern
or image. In paper I we extend the FPMS method and add energy resolu-
tion to the method by choosing an equidistant grid of N;, frequencies w;,
i =1,..., Ny, in the range of frequencies for which the PDOS of the spec-

imen is appreciable. For each bin, we perform essentially one full FPMS
simulation using snapshots {Rn(coi)]}]:;l, which were sampled from a MD
simulation, in which a §-thermostat, c.f. sec. 3.2, was used to predomi-

nantly excite vibrational modes in a narrow interval around the bin fre-
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quency w;. Equation (2.21) is then replaced by

N,

1 S 2

Iincoh(qJ.’ Z, rp’ C‘)i) :ﬁ Z |¢ (qJ_’ Z, rp’ Rn(wl))|
¢ n=1

4.1)
=(I¢ (aw 2 R@))
and we also compute the average
1 & i
Ieon(qy, 2, 1p, ;) = N, nz=:1 ¢ (q.,2,1,, Ry(w))) “42)

- ‘<¢ (CTREA R(“’i)»Nc )2 '

Equation (4.1) is the incoherently and equation (4.2) the coherently averaged
intensity. These expressions were inspired by the QEP model, which we
have introduced in sec. 2.5, but similar averages were already used by Hall
and Hirsch for the estimation of mean-free paths of TDS [83]. It is worth
reiterating, that the coherent average is the elastic intensity corresponding
to the ZLP within the QEP models [63], but its meaning was less obvious
in the context of the FRFPMS method, since every energy bin gives rise to
one coherent average.

The vibrational EELS associated with frequency w; is then the difference

IVib(qJ_’ 2, rp’ wi) = Iincoh(qj_’ 2, rp’ wi) - Icoh(qJ_’ Z, rp’ wi)

4.3
= ((@znR@)) - |@@znre), [ Y

Thus the inelastic vibrational scattering at energy loss AE is within the
FRFPMS method assumed to be equivalent to the TDS generated by scat-
tering of an elastic wave on the specimen, which vibrates predominantly
with frequency w = AE/h. The energy loss AE is not explicitly considered,
but it is in some sense encoded in the (frequency-resolved) displacements
of the structure snapshots. We will return to this point in the summary
of paper IV in sec. 4.4 and visualize in Fig. 4.1, how these displacements
translate into an inelastic signal in the diffraction plane. We also compare
the inelastic signal in the diffraction plane with the z-projection of the pho-
non dispersion and all non-trivial intensity features can be correlated to the
phonon dispersion. This demonstrates, that the FRFPMS method is capa-
ble of simulating features of vibrational EELS.

We consider hBN as a model material in paper I due to its popularity
in vibrational EELS measurements and also because we wanted to com-
pare our results to the results of Ref. [60]. As mentioned above, we used
initially a §-thermostat for frequency-dependent structure snapshot gen-
eration. The beam exit wave functions were simulated using an in-house
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() w; = 14 THz (b) w; =19 THz
Figure 4.1. Comparison of the z-projection of the phonon dispersion of hBN (thin
orange to red lines) with the inelastic signal calculated with the FRFPMS method
for two different frequencies w; of the §-thermostat.

implementation of the RSMS method. We consider pure impact scattering
in a large detector on-axis and off-axis geometry, which are called Bright
Field (BF) and dark field Dark Field (DF) in the paper, respectively. For
both geometries, we show spectra and spectrum images.

We observe good agreement of the predicted contrast in both on-axis
and off-axis spectrum images with atomic scale maps of phonon losses pub-
lished in Ref. [60]. Also, off-axis spectrum imaging using only lower energy
losses or higher energy losses exhibits atomic scale contrast, in agreement
with results in the supplementary material to Ref. [60]. We observe con-
trast at the positions of atomic columns in on-axis images in good agree-
ment with Ref. [63], where the contrast reversal is explained in terms of
the channeling of the electron probe. Furthermore the on-axis spectra and
spectrum images turn out to be difficult to converge, since the coherent in-
tensity in the diffraction plane is a considerable fraction of the incoherent
intensity for larger convergence angles, and the brightness streaks, which
are visible in our on-axis spectrum images serve as a reminder of this cir-
cumstance.

Based on these results, we conclude, that the FRFPMS method leads to
spectrum images, which are in good agreement with experimental results
and simulations of atomic resolution impact scattering phonon EELS. We
note, however, that our method calls for deeper theoretical investigations
regarding the approximations, which are necessary to derive the FRFPMS
method from first principles or from other established theories. Further-
more we note that the FRFPMS method can only be correct for single in-
elastic scattering, since we would associate an incorrect energy-loss to mul-
tiple inelastic processes. We know, however, that some multiple inelas-
tic processes must inherently be captured by our model, since the FPMS
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method includes such processes and we are still doing FPMS, just on a sub-
set of all possible modes.

Paper I is overall rather short due to the page limit imposed by the jour-
nal, which calls for a follow-up work, in which more details of the method
are explored and explained. This is the main purpose of paper II, which is
summarized in the following section.

4.2 Paper II: Details about the FRFPMS Method and
Momentum-Resolved Simulations

In paper II we give a detailed account of the FRFPMS method, explore the
influence of the thermostat on the VPS of the MD simulation, and consider
results for momentum-resolved vibrational EELS. Additionally, we com-
pare a high-angle off-axis spectrum for a large collection angle with the
total VPS and the in-plane VPS.

The material of choice is thereby again hBN, but the shape of the sim-
ulation box is different than in paper I, since we could make use of the
same MD trajectories as for the defect-free system calculated for paper III
in an effort to save computational resources. We furthermore continue to
neglect dipolar scattering and we use the CMS method with the projection
approximation according to eq. (3.19) as implemented in DrProbe [181].
In this way, we reduce the much fewer computational resources than our
in-house implementation based on the RSMS method (c.f. sec. 3.1 for more
details on these methods and why the CMS method is faster).

We show in paper II, that the §-thermostat can lead to difficult to in-
terpret spectra due to finite size effects, if only a sparse grid of such ther-
mostats is used. The reason for this circumstance is the smoothing ef-
fect, which thermostats have on the VPS of a MD simulation, and the &
thermostat provides very little of such smoothing of the VPS. There are
three thinkable solutions to this problem: we could use a much denser
grid of -thermostats, a much larger simulation box or a different thermo-
stat, which has a larger frequency-width and provides thus larger smooth-
ing. The first solution is computationally expensive, since the total com-
putational effort increases linearly with the number of thermostats. The
same holds even more so for the second solution, since computational ef-
fort scales with the volume of the simulation box. This leaves the third
solution, which has the potential to not increase computational costs com-
pared with a §-thermostat simulation, if the same number of trajectories is
required. Therefore we adopt the third strategy and use a hotspot thermo-
stat in the MD simulations for paper II. This thermostat has a much wider
frequency profile and smooths the VPS sufficiently. All further results in
this paper are calculated with the hotspot thermostat.
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Layered van der Waals materials, such as hBN, exhibit a strong anisotro-
py of the PDOS between in-plane and out-of-plane directions, which can
be discerned in Fig. 1 of paper II. Furthermore one can consider wy ,, as a
function of k, along different paths in the Brillouin zone, which leads to
characteristic plots of the phonon dispersion. One such plot is depicted in
above-mentioned Fig. 1 of paper II for a selection of high symmetry direc-
tions.

We proceed by exploring the vibrational EELS predicted by the FRFPMS
method. In Figure 4 of paper II we consider the EEL spectrum for a large
off-axis detector. We have mentioned in sec. 2.2, that it is expected, that
such spectra mimic the projected PDOS, here the in-plane PDOS or VPS.
The FRFPMS EEL spectrum decreases rapidly as a function of energy, so
we multiply the spectrum by energy in order to reveal more of the spectral
features and compare it to the total VPS as well as the in-plane projected
VPS. The energy multiplied FRFPMS spectrum exhibits all features ob-
served in the in-plane VPS and incidentally, multiplying the raw spectrum
by the square of the energy results in a shape very close to the in-plane
VPS. At the time of writing of paper II, this observation confused us a lit-
tle, since the DDSCS in first-order Born approximation in eq. 2.6 does not
have the same energy-scaling at first sight, but we will see in the summary
of paper IV, that one can find a simple explanation for the observed scaling.

Furthermore, we considered momentum-resolved vibrational EELS in
Figs. 5-7 of paper II. All spectra exhibit a dependence on the momentum
transfer q and phonon polarization €, which is consistent with a depen-
dence of the spectra on the scalar product q-€. Our results are in this point
consistent with single inelastic scattering theory in the first Born approx-
imation (c.f. eq. (2.6)). A careful comparison of the spectra in Figs. 5 and
6 reveals, however, thickness variations in the relative weighing of modes,
which cannot be explained within the first Born approximation, but could
be caused by dynamical diffraction effects.

In Fig. 7 of paper II we compare the FRFPMS vibrational EELS along
two symmetrically distinct paths in the diffraction plane with the phonon
dispersion along the corresponding paths in reciprocal space. The agree-
ment between the dispersion and the inelastic intensity of the FRFPMS
calculation is very good and the visibility of modes agrees for the most part
with the results of Refs. [74, 92]. There are some subtle details, however, in
which the simulations differ: hBN is a polar material and the optical modes
can cause strong dipolar scattering as ¢ — 0. In Fig. 7 the vibrational EELS
vanishes for optical modes as g — 0, which is a consequence of our neglect
of dipolar scattering and it is not observed when dipolar scattering is in-
cluded as in Refs. [74, 92]. This interpretation is further supported by the
comparison with the results for graphene in Ref. [74]. Graphene is not po-
larizable and does not give rise to dipolar scattering from optical modes
as g — 0. Dipolar scattering could be included in our FRFPMS calcula-

52



tions via ionic electron scattering factors as in Refs. [63, 92] and in paper V
discussed below.

The longitudinal modes deserve some extra attention at small scattering
angles. The DFPT treatment in Ref. [74] predicts for hBN a vanishing cross
section for longitudinal modes as g — 0 for both directions in reciprocal
space, i.e., '-K as well as '-M, which is neither observed in the results for
graphene of the same reference, nor in Fig. 7 of paper II, nor in Ref. [92].
It remains to be seen how these predictions can be harmonized.

We additionally observe strong intensity at all I'-points in Fig. 7 of pa-
per II, which is not observed in Refs. [74, 92]. The spectra exhibit a strong
inverse energy-scaling and complicating matters further, statistical effects
in our simulation could play a large role at T" points, since convergence of
the vibrational signal is difficult to achieve due to the vibrational intensity
being the difference of two almost equally large numbers. Additionally the
frequency profile of the hotspot thermostat exhibits non-zero tails at very
low frequencies, which could cause motion in small or zero wave vector
acoustic modes, which is enhanced by the strong 1/w?-scaling of spectra.
We will see in the discussion of paper VI, that this issue is indeed connected
to our use of frequency-resolved thermostats, since a different snapshot
sampling strategy removes this artefact at I'-points.

These results demonstrate the capabilities of the FRFPMS method to
capture details of the phonon scattering process in vibrational EELS as a
function of momentum-transfer and energy-loss. In the following section,
we consider momentum- and spatially-resolved FRFPMS simulations for
a defect system.

4.3 Paper III: Defect Calculation with Nano- and
Atomic-Size Beams

In paper III, we consider a system with a planar defect and model spatially-
resolved vibrational spectroscopy using either a nanobeam or an atomic-
sized beam of convergence semiangles 3 mrad and 25 mrad, respectively.
The structure we consider for these simulations is hBN and contains two
so-called Anti-Phase Boundaries (APBs). Fig. 1 of the paper displays the
structure. In order to conserve computational resources, we use here a
hotspot thermostat of width 2.5 THz.

We consider first the changes in the LPDOS induced by the defect in
Figs. 2 and 3. The defect is found to induce significant changes in the
LPDOS at different frequencies, which are localized to a varying degree
near the APB. These changes can be detected in the simulated vibrational
EELS for a nanobeam, depicted in Figs. 5-8. The localization of the spectral
modifications is thereby probed at nanometer resolution by scanning the
nanobeam along a line over the structure and plotting the signal integrated
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over a small energy range as a function of beam position. It is interesting to
note that spectral modifications are enhanced, if a small detector is placed
at specific high-symmetry points, here the K- or M-point, corroborating
similar findings in Ref. [66].

Using an atomic-sized beam, the FRFPMS simulations predict that the
location of the APB can be pinpointed with atomic-column precision in
an off-axis geometry for an appropriate normalization of the spectra, de-
picted in Figs. 11 and 12. These findings agree with experimental evidence
of spatial modifications of vibrational EELS near defects [64, 66]. Further-
more it is worth pointing out, that the APB should be invisible to HAADF
imaging, since it is generally thought, that the HAADF intensity is purely a
function of atomic column composition. As displayed in Fig. 1 of paper III
the atomic columns involved in the APB have all the same composition.
We have explained above that the APB is not invisible to vibrational EELS,
but we also observe small intensity variations in the HAADF signal as the
beam is scanned over the APB, suggesting that some of the modifications
of the phonon scattering impact also the HAADF signal. This observation
could have implications for atomic counting techniques, which rely on the
HAADF image being purely determined by the atomic composition [182].

Overall paper III highlights the capabilities of the FRFPMS method to
simulate spatially resolved vibrational EELS for an extended structure con-
taining a defect. Paper III marks also the end of our preliminary compu-
tational investigations with the FRFPMS method as we will turn towards
more theoretical considerations in the summary of paper IV.

4.4 Paper IV: Lessons from the harmonic oscillator

The idea of paper IV is to consider a simple situation and compare the vi-
brational EELS predicted by the first-order Born approximation and by the
QEP model to the FRFPMS method. We radically simplify our consider-
ations by assuming that the target is a single atom, which is modeled as
a 2 dimensional Anisotropic Quantum Harmonic Oscillator (AQHO) with
Hamiltonian

An) = [hcux (% + nx) + ho, (% + ny)] In), (4.4)

=E,

where [n) = |n,, ny) and w, # w,. We have chosen to work in the language
of the DDSCS in order to compare with the formulation of scattering in the
first-order Born approximation.

We are then interested in the inelastic DDSCS associated with a tran-
sition n, — n, + 1, i.e., single inelastic scattering on the x-mode of the
AQHO. We show that the inelastic DDSCS reads in first-order Born ap-
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proximation
d’c  27m’h 1+ (nor y
dQq, do M Wy (4.5)

X ¢% fiqu) e+ @M BIs(0 - w,),

where (n,)r is the phonon occupation number in thermal equilibrium and
M is the mass of the target atom. The exponential terms e~2"x(4x) and
e=2"¥(@y) are DWFs associated with the x- and y-motion, respectively.

The QEP model and FRFPMS method work with scattered wave func-
tions instead of the DDSCS. In order to be comparable with the Born ap-
proximation, we used the WPOA for the scattered wave functions, which is
described in sec. 2.3. Using eq. (2.20), we can formulate the DDSCS using
the WPOA scattered waved. The QEP model leads to the same inelastic
DDSCS as the first-order Born approximation under relevant conditions
(small q, low temperature T, high frequency w,).

The DDSCS predicted by the FRFPMS method and the scattered waves
in WPOA reads!

d2o 2m2h 2n)r+1 , o,
dQq do M W, qx fe(q1) 6(w — wy)

= ar?q? (12), F(qL) 8w — ),

where (u3),. = (2(ne)r + 1) 1/(2Mwy) is the so-called MSD of the x-mode
of the AQHO (c.f. eq. (3.49)).

Comparing egs. (4.5) and (4.6), we recognize that both expressions have
a similar dependence on g2 f2(q), but differ in two aspects: their frequency-
and temperature-dependent scaling and the appearance of DWF factors.
In first-order Born approximation, the single-phonon DDSCS scales with
(ny)r +1, while the FRFPMS expression scales with the MSD, i.e., 2(n, )7+
1. We explain this difference as an inherent addition of energy-loss and
-gain in the FRFPMS method (c.f. eq. (2.6)). We propose that these dif-
ferences can be remedied by a straight-forward energy- and temperature-
dependent rescaling of the vibrational EELS as computed by the FREFPMS
method. Furthermore the momentum-transfer dependence can be cor-
rected for large angles by including an explicit DWF factor in the calcu-
lation.

We proceed in the simulations part of paper IV to show that the FRFPMS
method revised in such way matches the elastic and inelastic DDSCS in
first-order Born approximation for a small enough mode MSD <u§>T. The
requirement of a reduced MSD is actually fulfilled in real-world FRFPMS
simulations by virtue of the frequency-selectivity, since only a subset of all
possible modes contribute in any given bin. The AQHO is in comparison

(4.6)

IWe neglect here the relativistic factor y appearing in the paper.
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Figure 4.2. Comparison of the inelastic signal along I'-M-TI" (top panels) and I'-K-
M-K-T directions in hBN for (a) the original FRFPMS and (b) the revised FRFPMS
method. The color scale corresponds to the decadic logarithm of the inelastic in-
tensity.
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a rather artificial model system, since all motion along x would contribute
to the same frequency-bin in the FRFPMS method.

Another interesting outcome of this paper is, that we can actually ex-
plain the frequency-scaling of large detector off-axis spectra, which we have
observed in connection with paper II. Contrary to what we have written
in eq. (4.6), our MD simulations do not generate quantum dynamics, but
atoms follow classical equations of motion. Thus thermodynamic averages
sampled by MD simulations satisfy by default classical statistical mechan-
ics. We show in appendix I, that the classical MSD of a 2D harmonic oscil-

lators reads
kgT
(ufc)T = Mo 4.7)

i.e., the classical MSD of a harmonic oscillator scales as 1/w?. Together
with the last line of eq. (4.6), we can explain the 1/w?-scaling observed in
paper II with the classical statistics of displacements in our simulations.

The calculations in paper II show that by selecting only certain modes
to contribute to displacements of atoms, one can indeed account for the
inelastic scattering generated by those modes in a single inelastic scatter-
ing picture. Certain corrections regarding the scaling with frequency, tem-
perature as well as large momentum-transfer should be applied, but these
are expected to predominantly affect the “quantitativeness” of the inelastic
scattering. Qualitatively the original FRFPMS method gives similar result
as we showcase in Fig. 4.2. The main difference in terms of momentum-
transfer dependence between the calculations is found at large momentum
transfers, where the revised FRFPMS method shows less intensity com-
pared with the original FRFPMS method. Overall we have made an impor-
tant step forward in understanding the FRFPMS method and its inherent
approximations in paper IV.

4.5 Paper V: Isotope Effects in Momentum-Resolved
Vibrational EELS

Paper V focuses on the isotopic shift of optical phonon frequencies in hBN
as the isotopic mass of boron is changed from 1°B to 'B. We compare the
simulated vibrational EELS to experiments performed by Jordan Hachtel
from Oak Ridge National Laboratory (TN, USA). Apart from the scaling
corrections outlined in sec. 4.4, we have made a number of additional im-
provements to our calculations in order to account better for momentum-
resolved vibrational EELS on hBN.

The most notable improvement is showcased in Fig. 4.2, where we ob-
tain an inelastic signal for optical modes near q; = 0, which was not ob-
served in the calculations for paper II. Here we use ionic electron scattering
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factors, which account better for dipolar scattering near q, = 0. We also
note that all three optical modes have the same frequency at I'-points, even
though LO- and TO-modes should be split in a polar material such as hBN.
This is a consequence of periodic boundary conditions and a finite super
cell, which is used in the MD simulations. Actually also DFT and DFPT
phonon calculations do not include this splitting by default either, but it is
added “by hand” using a so-called non-analytic term correction to the dy-
namical matrix [183]. Since we use the trajectories generated by MD simu-
lations directly in the FRFPMS method, such correction cannot be applied
and the FRFPMS does not include LO/TO splitting.

Another improvement regards the IAP in the MD simulations. We use
a machine-learned so-called GAP potential [184]. This potential is trained
on DFT calculations and allows therefore for near-DFT accuracy of inter-
atomic forces at much lower computational cost. The improved accuracy
is visible in the vibrational frequencies of optical modes, which are about
4 THz lower than in our simulations for paper II as a comparison of rel-
evant Figs. 1 and 2 of paper V with Figs. 1 and 7 of paper II reveals. The
GAP potential is, however, still much more computationally demanding
than the empirical force fields used in papers II and III, and the compu-
tations for paper V have been among the most demanding of the whole
dissertation.

We show in Figs. 2 and 3 of paper V, how the computed and experimen-
tally measured momentum-resolved vibrational EELS changes as a func-
tion of the ratio of '°B to 'B. The main change is thereby a softening of
the optical modes by about 7 meV when going from hBN with 1°B to 'B
as depicted in Fig. 1 of paper V. This is in qualitative agreement with ex-
pectations based on the dispersion of a linear chain of masses m; and m,
connected by harmonic springs [93]

2

11 11 4sin” 2
W2 (k) = K(W + —) + K\l <— + —> 2 4s)

1 My m  m, mym,

where K is the spring constant, k the wave vector, and a the lattice param-
eter. At the Brillouin zone boundary k = 7/a and if we assume without
loss of generality m; > m,, we find

Aw=w,(k=r/a)—w_(k=mn/a) =, | #I’f’lz (Vm —ymy).  (4.9)

In this simple model, the “gap” Aw between the acoustic and the optical
branch is a function of the difference of the square roots of masses between
the two basis atoms. Since Nitrogen has atomic mass of 14, the difference
in mass to !B is smaller than to '°B and a smaller “gap” is thus expected.
In summary, we have demonstrated that momentum-resolved vibrational
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EELS can be used to detect the small isotopic shift in phonon frequencies
in a momentum-resolved way.

4.6 Paper VI: Imaging Vibrational Anisotropy

The last paper included in this dissertation is another collaboration with
experimental colleagues, predominantly Xingxu Yan from University of
California in Irvine (CA, USA). Xingxu approached us with the question
to simulate atomic-resolution vibrational STEM-EELS for Strontium Ti-
tanate (STO). He had done some measurements, which showed that it is
possible to do elemental mapping using vibrational EELS in a large detector
off-axis geometry. Initially we resorted to simulations using an empirical
IAP [185], which we had used in an old project published in Ref. [122], but
changed quickly to a machine-learned, so-called DeePMD IAP [186, 187].
This IAP provided a much better description of the phonon dispersion,
which was deemed crucial for this project.

The DeePMD IAP is able to describe the structural phase transition from
the low temperature tetragonal to the high temperature cubic phase in
STO. At room temperature, STO is in the cubic phase. This advanced po-
tential brought some issues for the FRFPMS method as we have applied
it thus far. We have used frequency-dependent thermostats thus far and
these thermostats do not work well for phase transitions driven by tempera-
ture, since they enforce a non-equilibrium situation, in which not all modes
are thermalized, but only a subset of modes is maintained at a kinetic en-
ergy corresponding to the desired temperature. Therefore the structural
phase transition would not happen in these non-equilibrium simulations,
which would consequently lead to inaccurate vibrational EELS within the
FRFPMS method.

In order to circumvent this issue and to improve the FRFPMS method
further, we have implemented a new snapshot sampling strategy for pa-
per VI. The starting point for the idea was learning about the relation be-
tween the VPS and the PDOS introduced in secs. 3.2 and 3.3. Inspired by
the procedure of the FT of the velocity trajectory, we came up with the
idea that one could obtain trajectories, in which arbitrary ranges of fre-
quencies contribute, by band-pass filtering the position trajectory. We can
then sample snapshots for FRFPMS calculations from these band-pass fil-
tered trajectories. We compare this method compares to simulations with
a hotspot thermostat in Fig. 4.3. The band-pass method faithfully repro-
duces features of the phonon dispersion, similar to the hotspot thermostat.
However, we observe much lower background between the bands in com-
parison with the hotspot thermostat, suggesting that band-pass filtering
leads to a cleaner frequency-selectivity. Furthermore the strong artefacts at
I'-points are removed by the band-pass filtering method. We attribute the
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Figure 4.3. Comparison of simulated vibrational EELS along the I'-X-T" direction
in STO for snapshots sampled with a hotspot thermostat (top panel) and using the
band-pass filtering method developed in connection with paper VI (bottom panel).
These results were obtained using the IAP of Ref. [185]. We have overlaid the
phonon dispersion calculated without applying the non-analytic term correction.
The decadic logarithm of the inelastic intensity is represented by the color map.

removal of these artefacts to the better frequency-selectivity, which does
not lead to low-frequency tails, which might be the cause of the artefacts
in the case of the hotspot thermostat simulations.

After these preliminary considerations of computational advances in the
calculations of vibrational EELS with the FRFPMS method, we turn our at-
tention now to a brief discussion of the main results of paper VI. Our collab-
orators have measured vibrational EELS in a large detector off-axis geome-
try with careful consideration of the displacement direction of the detector
with respect to the sample. We show in Fig. 2 of paper VI that it is possible
to map the location of Strontium (Sr), Titanium (Ti), and Oxygen (O) atoms
in STO at the atomic scale via spectrum imaging using appropriate energy-
loss windows. Our simulated maps are in excellent agreement with the
experimental maps of the vibrational EELS. Furthermore and even more
interestingly, the visibility of O columns depends on the displacement di-
rection of the detector with respect to the sample. Maps of the vibrational
energies < 60 meV, predominantly associated with O vibrations, show a
signal at only one of the two O columns for a detector aligned with the
[100] direction in STO. Shifting the detector, such that it is displaced by
the same angle with respect to the direct beam along the [010] direction,
the other O column of STO is visible, while we observe less intensity at the
previous O column.
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Analyzing this directional selectivity in more detail in Fig. 3, we find that
the reason for it is the anisotropic motion of O atoms in STO, which is char-
acterized by a so-called thermal ellipsoids. This anisotropy is long known
and has recently also been studied using core-loss EELS [188]. However,
we are able to image the evolution of the thermal ellipsoids as a function
of vibrational frequency for the first time. At low frequencies, the thermal
ellipsoids of O atoms are extended along the plane with Sr atoms, while
they are extended along the direction of bonds with the closest Ti atoms at
high frequencies. We find then that the vibrational EELS is enhanced, if
the detector is displaced parallel to the direction of one of the major axes
of the frequency-dependent thermal ellipsoid. In Fig. 2 this dependence
is mainly visible in the directionality of the “haze” around the intense Ti
columns at low energy-loss, but at high energies it leads to the visibility of
only one of the two pure O columns. Overall our simulations are in ex-
cellent agreement with experimentally obtained data, demonstrating the
predictive and interpretative power of the FRFPMS method.

Within the DDSCS in first-order Born approximation, we can rationalize
the origin of the observed directional selectivity. According to Eq. 2.6, the
inelastic DDSCS depends on the square of the scalar product q, €, 4,, and
we have seen that the momentum transfer q; in the diffraction plane can
be uniquely decomposed into a lattice vector G, and a vector qq; in the
first Brillouin zone, i.e.,

q. =G, +qo. (4.10)

In our geometry, the momentum transfer in the diffraction plane q, is rel-
atively large, since we have displaced the center of the EEL spectrometer
entrance aperture by about five primitive reciprocal lattice vectors b, or b,
along the [100] or [010] directions, respectively. Neglecting that the detec-
tor covers more than one Brillouin-zone and aligning b; with the x- and b,
with the y-axis, we can write the scalar product as

5b1€xqey + Qo1€1q,y along[100]

(4.11)
5by€yq,y + QoL€1q,» along [010].

qi€iqy = {
Thus we see, that the scalar product leads to a directional dependence
due to the detector displacement, which is given by the larger first term
in eq. (4.11). This selectivity is further enhanced by the circumstance, that
it is the square of the absolute value of this scalar product, which enters the
actual expression of the DDSCS. Thus our results here show, that the large-
angle off-axis spectrum is not simply proportional to the in-plane PDOS,
but rather to the PDOS projected along the reciprocal lattice vector com-
ponent G, of momentum transfer q,, which is also formulated in the sup-
plementary material of Ref. [64].
This project really showcases the importance of modeling and compu-
tation for the interpretation of vibrational EELS measurements. Initially,
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the goal of this project was “just” to demonstrate atomic resolution spec-
trum imaging using vibrational EELS, but thanks to our simulations, we
could show that it is possible to extract a lot more information in the form
of imaging vibrational anisotropies from large detector off-axis vibrational
EELS spectra.
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5. Conclusions and Outlook

We have introduced the FRFPMS method in this dissertation and applied
it to momentum- and spatially-resolved simulations of vibrational spec-
troscopy in the STEM. We have shown that simulation results are in good
agreement with other published results, both experimental and theoreti-
cal. We have demonstrated in paper I, that the FRFPMS approach can be
used to simulate spectra as well as spectrum images in vibrational EELS.
In paper II, we have applied the method to simulations of momentum-
resolved EELS, for which our method correctly predicts the visibility of
phonon modes along high-symmetry directions in the diffraction plane.
We have also considered simulations of momentum- and spatially-resolved
vibrational EELS for an extended planar defect in paper III, for which our
method corroborates experimental observation of other studies.

Furthermore our method enabled the interpretation of state-of-the-art
experiments in papers V and VI, in which we observe excellent agreement
of our simulations with measurements. Specifically in paper VI, our sim-
ulations guided the refinement of the experimental conditions until we
could confidently demonstrate the ability to image the frequency-depen-
dent vibrational anisotropy of O atoms in STO. We have thereby added in
principle the direction and magnitude of the phonon polarization vector to
the growing list of properties, which can be investigated using vibrational
EELS.

Parallel to these simulation studies, we have also continued to develop
the calculation techniques of the FRFPMS method. We switched from the
o-thermostat to the hotspot thermostat and, more recently, to band-pass
filtered MD trajectories. With this evolution our understanding of what
the essence of the FRFPMS method is has also changed: we assumed ini-
tially that frequency-resolved MD simulations were strictly necessary and
really at the core of our method. But gradually this view developed fur-
ther and we have now that the core or essence of the FRFPMS method is
to approximate the single inelastic scattering of high-energy electrons on
a range of vibrational modes by averaging elastic multislice calculations
over snapshots of the atomic structure, in which only the selected range
of vibrational modes contributes to the displacements of atoms. The way
these snapshots are generated does not matter in principlel. We have also

1Every snapshot generation strategy will, of course, have its benefits and drawbacks as we
have shown in this thesis. The point we are trying to make is rather, that the FRFPMS idea
works with any snapshot generation technique able to provide frequency resolution.
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introduced a revision of our original method in paper IV by including the
DWEF and an energy- and temperature-dependent rescaling of spectra in
our procedure. With these modifications dynamical diffraction effects and
the quantitativeness of single inelastic phonon scattering should be mod-
eled much more accurately as a function of momentum transfer and cal-
culated spectra should match experimentally measured spectra better as a
function of energy-loss.

Considering these results, we have demonstrated that our method sat-
isfies the need for a method to simulate vibrational EELS including dy-
namical diffraction effects and capable of dealing with large structures at
reasonable computational cost, which we have identified in section 2.

But this dissertation is in the end not the end of the story of the FREPMS
method, but rather a preliminary status report on its state at the end of
2023. There are some areas, where further research and development is
necessary. The most obvious one, and one that we are still investigating,
is, that we have yet to demonstrate proper inclusion of dynamical diffrac-
tion effects. This is a difficult topic, since we do not have many results
to compare with. That dynamical diffraction happens in our simulations
in some form is clear, since we use multislice calculations and we have
observed in paper II variations in the spectral shape as a function of thick-
ness. We believe at the time of writing, that with proper inclusion of the
DWF and of an absorptive potential, the revised FRFPMS method approx-
imates the effect of dynamical diffraction very well. Once the question of
correct dynamical diffraction has been settled, careful investigations of the
thickness-dependence of vibrational EELS spectra can be made, which are
of great interest for the design and interpretation of experiments and quan-
titative measurements of vibrational properties.

Another avenue of future research, which is already under way, is to un-
derstand the FRFPMS method within a correlated model of atomic motion
beyond the AQHO. Furthermore, it will also be instructive to consider the
FRFPMS method beyond the single slice and weak projected potential limit
investigated in paper IV. Here the formalism and observations of Ref. [114]
might provide a suitable starting point. There it was shown that the FPMS
method and QEP model are approximating the full Green’s function of the
beam-sample system by the “static” Green’s function of the beam electron
for a “snapshot” of the sample. Within the FRFPMS method, we are very
likely doing the same approximation, but the exact details remain to be
seen.
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6. Popular Science Summary

The topic of this dissertation is the development of a computational method
for the simulation of vibrational Electron Energy Loss Spectroscopy (EELS)
in the Scanning Transmission Electron Microscope (STEM). The purpose
of this chapter is to enable an understanding of the context and main re-
sults of this work for a general audience.

Scientific progress often relies on the development of new imaging tech-
niques, which allow us to see the previously unseen: the history of electron
microscopy is deeply intertwined with scientists seeing more and more of
the microscopic world. Today we are able to routinely see atoms in the
STEM. The image is thereby assembled in a pixel-by-pixel fashion by scan-
ning an electron beam over the sample. At each beam position, the number
of electrons which have reached a detector is recorded and the final image
is a map of these numbers.

The origin of these images are interactions of the beam electrons with
the sample. Interactions can either change the direction of travel, or the
speed (energy) of the beam electrons. Those interactions that change the
direction of travel are called elastic, while those that instead change the
speed are called inelastic. Conventional STEM images look at the more
likely elastic interactions and are captured by placing an electron detector
behind the sample. The detector captures all electrons, which move in a
certain direction after interaction with the sample.

One can, however, extract more information about the sample by com-
bining the STEM with a so-called Electron Energy Loss (EEL) spectrome-
ter. The EEL spectrometer is essentially a “speed-cam” for electrons, which
is placed behind the sample in the direction of the beam. The combination
of the STEM technique with EELS, enables us to study variations in the
speed of electrons after interaction with the sample as the beam is scanned
over the sample. We can extract very useful information with this tech-
nique such as the elemental composition of the sample and information
about atomic bonding.

In materials, vibrations are intimately connected with thermal proper-
ties and temperature. Almost ten years ago the EELS technique received
a major upgrade. Using an improved so-called monochromator the energy
resolution was massively improved, meaning that it is now possible to mea-
sure smaller differences in the speed of electrons. Similar to how the elec-
tron microscope opened the door to the nano-world, the monochromator
opened the gate to the world of nano-scale measurements of vibrational
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properties in the STEM. Vibrational EELS has therefore great potential for
advancing our understanding of the flow of heat at the nano- and atomic-
scale, which could help to better manage heat in microchips, to invent new
heating or refrigeration techniques, and design materials for energy appli-
cations.

The interaction of the beam electrons with the sample is rather com-
plicated in a STEM. The electrons interact often not only once, but sev-
eral times with the sample, especially for thicker samples. This possibility
of multiple interaction makes experiments difficult to interpret and often
validation of the results with a computational model of the beam-sample
interaction is required. This dissertation presents a new way of modeling
that complicated interaction between the sample and the beam electrons.

In a series of papers, we have introduced a new model of vibrational
EELS called FRFPMS. Apart from modeling the inelastic interaction, our
model allows to take multiple elastic interactions with the sample into ac-
count. It is also computationally tractable and works for systems, which
require large computations such as samples containing defects and inter-
faces.

The name of our model, the Frequency-Resolved Frozen Phonon Multi-
slice (FRFPMS) method, is a rather unforgiving name to the uninitiated,
so we will briefly unravel it here. A so-called multislice calculation is, sim-
ply said, a calculation of the probability of the beam electron to move in
a certain direction after elastic interaction with a sample. The outcome of
the calculation depends predominantly on the position of the atoms. The
Frozen Phonon Multislice (FPMS) method, which is a standard method for
calculating the effect of thermal vibrations on STEM images, uses many
multislice calculations for different thermal displacements of atomic posi-
tions. The average over such calculations allows to extract the probability
of inelastic interaction of the beam electrons with vibrational excitations of
the sample in the whole range of vibrational energies. Our model extends
the FPMS with frequency-resolution.

We take a moment to unravel this concpet: the conventional models of
atomic motion used in connection with the FPMS method take the whole
range of possible vibrations into account. However, for the purpose of
vibrational EELS, we want to know how many electrons have interacted
within a certain range of energies. This is where the aforementioned fre-
quency-resolution added with the FRFPMS method comes.

The core idea of the FRFPMS method is then straightforward: in order
to model the probability of exchanging a certain amount of energy, we just
need to reduce the range of vibrations in the model for the atomic motion.
We can then apply the same machinery of multislice calculations and av-
eraging as one does within the FPMS method. By repeating this procedure
for every range of frequencies we are interested in, we can assemble the full
picture of the probability of exchanging a certain amount of energy with vi-
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brations in the sample, thus contributing to an increased understanding of
atomic motion and the flow of heat at these small scales.

Paper I introduces this idea. We apply the idea and compare its predic-
tions to other experimental and theoretical results in papers II and III. The
main message of these papers is that our model agrees with other research
whenever comparable conditions are found, but it offers something extra
compared to other models of vibrational EELS in the form of being able
to account for multiple elastic scattering and being able to treat systems
requiring large models of the atomic positions.

However, despite the success in modeling, we asked ourselves questions
about what kind of simplifications the FRFPMS method makes. So we
compare the FRFPMS method in paper IV to other established theoreti-
cal approaches for a very simple situation. We assume that the beam elec-
trons interact only with a single carbon atom, which is modelled as a so-
called Quantum Harmonic Oscillator (QHO), the simplest possible model
of how an atom is bound in a crystal. We show that the procedure of the
FRFPMS method gives identical results to other theories, provided we ap-
ply two small modifications. These modifications regard changes to the
scaling of the computed probabilities with exchanged energy and temper-
ature as well as a reduction of the probability of electrons to be deflected
under a large angle from their initial direction of travel. We refer to this
modified FRFPMS method as the revised FRFPMS method.

The last two papers are the result of collaborations with experimental
colleagues and we model explicit experiments. In paper V we consider
the effect of different isotopic compositions in hBN. Isotopes are atoms
of the same element with different mass. As such they share much of the
same chemical properties, but the atomic mass influences the vibrational
frequencies. In agreement with expectation, experiment and other works
on this topic, we find that the highest vibrational energies in hBN are af-
fected by the isotopic composition and shift to lower values for larger iso-
tope mass. We show that it is possible to detect this shift using vibrational
EELS depending on the direction of travel of electrons after interaction. In
the last paper, paper VI, our calculations enabled us to interpret an inter-
esting effect, which was not anticipated at the start of our collaboration.
We observe in both experiment and theory, that maps of the inelastic in-
teraction probability near Oxygen atoms in a material called Strontium Ti-
tanate (STO) are sensitive to the direction in which the inelastic electrons
travel after the interaction. We explain this sensitivity with the anisotropy
of the motion of oxygen atoms in STO, which means simply said, that Oxy-
gen atoms move more along one axis than along another. This anisotropy
is long known, but we could image it here for the first time as a function
of vibrational frequency and show that the direction of atomic motion of
Oxygen changes from low to high vibrational frequencies.
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In summary, we contribute with this thesis an efficient and versatile
computational model for the simulation and interpretation of vibrational
EELS, which is an important tool for the study of heat at the nano- and
atomic-scale with many potential applications in areas of materials science
and nano-engineering.
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7. Populdrvetenskaplig Sammanfattning

Amnet for denna avhandling ir utvecklingen av en berikningsmetod for
simulering av vibrationell Elektronenergiforlustspektroskopi (EELS) i Ras-
teroverforingselektronmikroskopet (STEM). Syftet med detta kapitel dr att
ge en forstaelse for sammanhanget och de huvudsakliga resultaten av detta
arbete for en bredare publik.

Vetenskapens framsteg forlitar sig ofta pa utvecklingen av nya avbild-
ningstekniker, vilka mojliggor att vi kan se det tidigare osedda. Historien
om elektronmikroskopi dr djupt forknippad med forskare som ser allt mer
av den mikroskopiska virlden. Idag kan vi rutinmissigt se atomer i STEM.
Bilden sitts samman pixel for pixel genom att skanna en elektronstrale
over provet. Vid varje stralldgesposition registreras antalet elektroner som
har natt en detektor, och den slutliga bilden dr en karta 6ver dessa nummer.

Ursprunget till dessa bilder dr interaktioner mellan strilelektronerna
och provet. Interaktioner kan antingen dndra riktningen eller hastigheten
(energin) hos stralelektronerna. De interaktioner som &ndrar riktningen
kallas elastiska, medan de som istédllet &ndrar hastigheten kallas inelastis-
ka. Konventionella STEM-bilder fokuserar pa de mer sannolika elastiska
interaktionerna och tas genom att placera en elektrondetektor bakom pro-
vet. Detektorn fingar alla elektroner som ror sig i en viss riktning efter att
ha interagerat med provet.

Man kan dock extrahera mer information om provet genom att kom-
binera STEM med en sa kallad Electron Energy Loss (EEL)-spektrometer.
EEL-spektrometern dr i huvudsak en "fartkamera” for elektroner, som pla-
ceras bakom provet i riktning mot strlen. Kombinationen av STEM-tek-
niken med EELS mojliggor studier av variationer i elektronernas hastighet
efter interaktion med provet, dir stralen skannar 6ver det. Vi kan extrahera
mycket anvindbar information med denna teknik, s som provets grund-
laggande sammansittning och information om atomira bindningar.

I material dr vibrationer intimt kopplade till termiska egenskaper och
temperatur. For ndstan tio ar sedan fick EELS-tekniken en betydande upp-
gradering. Genom en forbdttrad s.k. monokromator forbittrades energi-
upplosningen kraftigt, vilket innebdr att det nu dr mgjligt att méita mind-
re skillnader i elektronernas hastighet. Liknande till hur elektronmikro-
skopet 6ppnade dorren till nanovirlden, 6ppnade monokromatoren porten
till métningar av vibrerande egenskaper pa nanoskala i STEM. Vibratorisk
EELS har dérfor stor potential att frimja var forstaelse for vairmedverforing
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pa nano- och atomskala, vilket kan hjilpa till med att béttre hantera vir-
me i mikrochip, uppfinna nya uppvarmnings- eller kylningstekniker och
designa material for energiapplikationer.

Interaktionen mellan strilelektronerna och provet dr ganska komplice-
rad i STEM. Elektronerna interagerar ofta inte bara en ging, utan flera
ganger med provet, sdrskilt for tjockare prover. Denna mdjlighet till fle-
ra interaktioner gor experiment svara att tolka och ofta krdvs validering av
resultaten med en berdkningsmodell av strale-prov-interaktionen. Denna
avhandling presenterar ett nytt sétt att modellera denna komplicerade in-
teraktion mellan provet och strélelektronerna.

I en serie av artiklar har vi introducerat en ny modell f6r vibrationell
EELS kallad FRFPMS. Forutom att modellera den inelastiska interaktio-
nen gor var modell det majligt att ta hdnsyn till flera elastiska interaktio-
ner med provet. Den dr ocksa berdkningsmassigt hanterbar och fungerar
for system som kréver stora berdkningar, sa som prover innehéllande de-
fekter och gransskikt.

Vi kallar var modell for Frequency-Resolved Frozen Phonon Multislice
(FRFPMS), ett namn som kan upplevas frimmande for oinvigda, sa vi kom-
mer kort att forklara det hér. En sa kallad multislice-berdkning dr helt en-
kelt en berdkning av sannolikheten for att strélelektronen ror sig i en viss
riktning efter en elastisk interaktion med ett prov. Resultatet av berdikning-
en beror huvudsakligen pa positionen hos atomerna. Frozen Phonon Mul-
tislice (FPMS)-metoden, som dr en standardmetod for att berdkna effek-
terna av termiska vibrationer pd STEM-bilder, anvinder ménga multislice-
berdkningar for olika termiska forflyttningar av atompositioner. Medelvér-
det over dessa berdkningar gor det majligt att extrahera sannolikheten for
inelastiska interaktioner mellan stralelektroner och vibrationella excitatio-
ner i hela spektrat av vibrationsenergier. Var modell utvidgar FPMS med
frekvensupplosning.

Vi tar en stund for att forklara detta begrepp: de konventionella model-
lerna for atomrorelse som anvidnds i samband med FPMS-metoden tar hin-
syn till hela spektrat av mdjliga vibrationer. Men for vibrationell EELS vill
vi veta hur manga elektroner som har interagerat inom ett visst energiom-
rade. Detta dr ddr den tidigare nimnda frekvensuppldsningen tillsammans
med FRFPMS-metoden kommer in.

Kédrnidéen med FRFPMS-metoden dr da rittfram: for att modellera san-
nolikheten att utbyta en viss mangd energi behover vi bara minska vibra-
tionsomradet i modellen for atomrorelsen. Sedan kan vi tillimpa samma
metod med multislice-berdkningar och medelvardesberdkning som inom
FPMS-metoden. Genom att upprepa detta forfarande for varje frekvensom-
rdde som vi dr intresserade av kan vi sammanstilla den fullstindiga bilden
av sannolikheten att utbyta en viss mangd energi med vibrationer i provet,
vilket bidrar till en 6kad forstielse for atomrorelse och virmetransport pa
dessa sma skala.
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Artikel I introducerar denna idé. Vi tillimpar idén och jamfor dess for-
utsidgelser med andra experimentella och teoretiska resultat i artikel II och
II1. Det huvudsakliga budskapet i dessa artiklar dr att var modell 6verens-
stimmer med annan forskning ndr jimforbara forhdllanden finns, men
den erbjuder ndgot extra jimfort med andra modeller for vibrationell EELS
genom att den kan ta hédnsyn till flera elastiska spridningar ochbehandla
system som kréver stora modeller for atompositionerna.

Trots framgangen i modellering stéllde vi oss fragor om vilka forenkling-
ar FRFPMS-metoden gor. Vi jimfor FRFPMS-metoden i artikel IV med
andra etablerade teoretiska metoder for en mycket avskalad situation. Vi
antar att stralelektronerna bara interagerar med en enda kolatom, som mo-
delleras som en s.k. Quantum Harmonic Oscillator (QHO), den enklast
mojliga modellen for hur en atom &r bunden i en kristall. Vi visar att var
metod ger identiska resultat som andra teorier, forutsatt att vi applicerar
tvad sma modifieringar. Dessa géller fordndringar av skalningen hos berdk-
nade sannolikheter med utbytt energi och temperatur, samt en minskning
avsannolikheten att elektroner avviker i en stor vinkel frdn deras ursprung-
liga fardriktning. Vi hdnvisar till denna modifierade FRFPMS-metod som
reviderad FREPMS-metod.

De tva sista artiklarna &r resultatet av samarbeten med kollegor inom
det experimentella filtet och vi modellerar vildefinierade experiment. I ar-
tikel V overviger vi effekten av olika isotopsammansittningar i hBN. Iso-
toper dr atomer av samma element men med olika massa. Aven om de de-
lar ménga kemiska egenskaper si paverkar den atomédra massan de vibra-
tionella frekvenserna. I 6verensstimmelse med férvintningar, experiment
och andra arbeten inom detta @mne finner vi att de hogsta vibrationsener-
gierna i hBN péverkas av isotopsammansittningen och forskjuts till lagre
varden for storre isotopmassa. Vi visar att det dr mojligt att detektera den-
na forskjutning med hjdlp av vibrationell EELS beroende pd elektronernas
fardriktning efter interaktion. I den sista artikeln, artikel VI, mdjliggjorde
vara berdkningar tolkningen av en intressant effekt som inte hade forviintat
oss i borjan av vart samarbete. Vi observerar bide i experiment och teori att
kartor over sannolikheten for inelastisk interaktion nédra syreatomer i ett
material kallat Strontium Titanate (STO) dr kénsliga for riktningen i vilken
de inelastiska elektronerna firdas efter interaktionen. Vi forklarar denna
kédnslighet med anisotropin i rorelsen hos syreatomer i STO, vilket helt en-
kelt betyder att syreatomer ror sig mer lidngs en specifik axel dn lidngs en
annan. Denna anisotropi har ldnge varit kdnd, men hir kunde vi for fors-
ta gingen avbilda den som en funktion av vibrationsfrekvensen och visa
att riktningen for atomrorelsen hos syreatomer dndras frn 14ga till hoga
vibrationsfrekvenser.

Sammanfattningsvis bidrar vii och med denna avhandling till en effektiv
och méangsidig berdkningsmodell f6r simulering och tolkning av vibratio-
nell EELS, vilket dr ett viktigt verktyg for studier av virme pa nano- och
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atomskala med manga potentiella tillimpningar inom materialvetenskap
och nanoingenjorsvetenskap.
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8. Populdarwissenschaftliche
Zusammenfassung

Das Thema dieser Dissertation ist die Entwicklung eines Berechnungsver-
fahrens zur Simulation von Elektronenenergieverlustspektroskopie (EELS)
von Atomschwingungen und Gitterschwingungen im Rastertransmissions-
elektronenmikroskop (STEM). Das Ziel dieses Kapitels ist es, der Allge-
meinheit ein Verstindnis fiir den Kontext und die Hauptergebnisse dieser
Arbeit zu erméglichen.

Wissenschaftlicher Fortschritt baut oft auf der Entwicklung neuer bild-
gebender Verfahren auf, die es uns ermdglichen, das zuvor Unsichtbare
sichtbar zu machen: Die Geschichte der Elektronenmikroskopie ist tief da-
mit verbunden, dass wir immer mehr von der mikroskopischen Welt sehen
konnen. Heutzutage konnen wir routineméfig Atome im STEM sehen. Ein
Elektronenstrahl wird dabei iiber die Probe gescannt (gerastert) und das
Bild Pixel fiir Pixel aufgebaut. An jeder Position des Strahls wird die An-
zahl der Elektronen, die einen Detektor erreicht haben, aufgezeichnet, und
das endgiiltige Bild ist eine Art “Karte” dieser Zahlen.

Der Ursprung dieser Bilder liegt in den Wechselwirkungen der Strahl-
elektronen mit der Probe. Wechselwirkungen kénnen entweder die Rich-
tung der Bewegung oder die Energie der Strahlelektronen dndern, was sich
in einer Verdnderung ihrer Geschwindigkeit dufiert. Wechselwirkungen,
die die Richtung der Bewegung dndern, werden als elastisch bezeichnet,
wihrend solche, die stattdessen die Geschwindigkeit &ndern, als inelastisch
bezeichnet werden. Konventionelle STEM-Bilder werden mittels der wahr-
scheinlicheren elastischen Wechselwirkungen und mit Hilfe eines Elektro-
nendetektors erstellt, der in Strahlrichtung hinter der Probe platziert wird.
Der Detektor erfasst dabei alle Elektronen, die sich nach der Wechselwir-
kung mit der Probe in eine bestimmte Richtung bewegen.

Es ist jedoch moglich, mehr Informationen {iber die Probe zu gewinnen,
indem man das STEM mit einem sogenannten Elektronenenergieverlust-
spektrometer (EEL-Spektrometer) kombiniert. Das EEL-Spektrometer ist
im Wesentlichen ein “Blitzer” fiir Elektronen, der in Richtung des Elek-
tronenstrahls hinter der Probe platziert ist. Die Kombination der STEM-
Technik mit EELS ermdglicht es uns, Unterschiede in der Geschwindigkeit
der Elektronen nach der Wechselwirkung mit der Probe zu untersuchen,
wahrend der Strahl tiber die Probe gescannt wird. Wir konnen mit dieser
Technik sehr niitzliche Informationen extrahieren, wie etwa die elementa-
re Zusammensetzung der Probe und Informationen {iber die atomare Bin-
dung.
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In atomare Schwingungen sind eng mit den thermischen Eigenschaf-
ten und der Temperatur eines Materials verbunden. Vor fast zehn Jahren
machte die EELS-Technik einen grofien Fortschritt. Durch einen verbes-
serten, sogenannten Monochromator wurde die Energieauflosung der Me-
thode erheblich verbessert. Dies bedeutet, dass es jetzt moglich ist, kleine-
re Unterschiede in der Geschwindigkeit der Elektronen nach der Wech-
selwirkung mit der Probe zu messen. Ahnlich wie das Elektronenmikro-
skop die Tiir zur Nanowelt Offnete, 6ffnete der Monochromator das Tor
zur Welt der Messung von atomschwingungsbezogenen Eigenschaften im
STEM auf der Nano- und Atomebene. EELS von atomaren Schwingung-
nen hat daher grofies Potenzial, unser Verstindnis des Warmeflusses auf
Nano- und Atomskala voranzutreiben, was dazu beitragen konnte, Warme
in Mikrochips besser zu steuern, neue Heiz- oder Kiihltechniken zu erfin-
den und Materialien fiir Energieanwendungen zu entwickeln.

Allerdings ist die Wechselwirkung der Strahlelektronen mit der Probe
recht kompliziert. Elektronen interagieren oftmals nicht nur einmal, son-
dern mehrmals mit der Probe, insbesondere bei dickeren Proben. Diese
Moglichkeit mehrfacher Interaktionen erwschwert die Interpretation von
Experimenten und daher ist es oft erforderlich, die experimentellen Er-
gebnisse mit einem Modell der Wechselwirkung zwischen Strahl und Pro-
be zu verifizieren. Diese Dissertation prisentiert eine Ubersicht iiber ei-
ne neue Methode zur Modellierung dieser komplizierten Wechselwirkung
zwischen Probe und Strahlelektronen fiir EELS von Atomschwingungen.

Wir haben dieses Modell namens FRFPMS-Methode in einer Reihe von
Artikeln vorgestellt. Unser Modell ermdglicht neben der Modellierung der
inelastischen Wechselwirkung auch die Beriicksichtigung mehrfacher elas-
tischer Wechselwirkungen mit der Probe. Auf3erdem ist es auch fiir Syste-
me, die grof3e Berechnungen erfordern, wie etwa Proben mit Defekten und
Grenzfldchen, mit endlichem Zeitaufwand berechenbar.

Der Name unseres Modells, die Frequency-Resolved Frozen Phonon Mul-
tislice (FRFPMS) Methode, erscheint Nichteingeweihten eher ungnidig.
Daher werden wir ihn hier kurz erldutern. Eine sogenannte Multislice-Be-
rechnung ist, einfach gesagt, eine Berechnung der Wahrscheinlichkeit, dass
sich ein Strahlelektron nach der (mehrfachen) elastischen Wechselwirkung
mit der Probe in eine bestimmte Richtung bewegt. Das Ergebnis der Be-
rechnung héangt hauptsdchlich von der Position der Atome in der Probe
ab. Die Frozen Phonon Multislice (FPMS) Methode ist eine Standardmetho-
de zur Berechnung des Effekts thermischer Vibrationen auf STEM-Bilder.
Dabei werden viele Multislice-Berechnungen fiir verschiedene thermische
Verschiebungen der Atompositionen durchgefiihrt. Die Mittelung dieser
Berechnungen ermdoglicht es uns, die Wahrscheinlichkeit der inelastischen
Wechselwirkung der Strahlelektronen mit den Schwingungsanregungen
der Atome in der Probe iiber alle Schwingungsenergien hinweg zu extra-
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hieren. Unser Modell erweitert die FPMS Methode um eine Frequenzauf-
losung.

Wir erldutern dieses Konzept kurz: Herkommlichen Modelle der Atom-
Bewegung, die in Verbindung mit der FPMS-Methode verwendet werden,
beriicksichtigen die gesamte Bandbreite moglicher Vibrationen. Mit Hin-
blick auf EELS von Atomschwingungen mdchten wir jedoch wissen, wie
viele Elektronen innerhalb eines bestimmten Energiebereichs interagiert
haben. Hier kommt die zuvor erwihnte Frequenzauflosung der FRFPMS-
Methode ins Spiel.

Die Kernidee der FRFPMS-Methode ist dann einfach: Um die Wahr-
scheinlichkeit des Austauschs einer bestimmten Energiemenge zu model-
lieren, miissen wir einfach die Bandbreite der moglichen Atomschwingun-
gen reduzieren. Wir konnen dann die gleiche Mittelung wie innerhalb der
FPMS-Methode anwenden, um die Wahrscheinlichkeit der inelastichen
Wechselwirkung zu berechnen. Indem wir dieses Verfahren fiir jeden Fre-
quenzbereich wiederholen, an dem wir interessiert sind, konnen wir das
vollstindige Bild der Wahrscheinlichkeit des Energieaustauschs mit Vibra-
tionen in der Probe aufbauen und so helfen, das Verstindnis der Atombe-
wegung und des Wirmeflusses auf kleinster Ebene zu erweitern.

Artikel I stellt diese Idee der FRFPMS Methode vor. In den Artikeln II
und III setzen wir die Idee weiter in die Praxis um und vergleichen ih-
re Vorhersagen mit anderen experimentellen und theoretischen Ergebnis-
sen. Die Hauptbotschaft dieser Artikel ist, dass unser Modell mit anderen
Forschungsergebnissen iibereinstimmt, wenn vergleichbare Bedingungen
vorliegen, aber dass unser Modell auch ein gewisses Extra im Vergleich
zu anderen Modellen bietet. Es ist beispielsweise in der Lage, mehrfache
elastische Streuung zu beriicksichtigen und ist au3erdem fiir Systeme be-
rechenbar, die grofie Modelle der Atompositionen benétigen.

Trotz dieser Erfolge in der praktischen Modellierung haben wir uns Fra-
gen dariiber gestellt, welche Art von Vereinfachungen die FRFPMS-Me-
thode macht. Daher vergleichen wir die FRFPMS-Methode in Artikel IV
mit anderen etablierten theoretischen Anséitzen fiir eine stark vereinfach-
te Situation. Wir nehmen an, dass die Strahlelektronen nur mit einem ein-
zigen Kohlenstoffatom wechselwirken, das als sogenannter quantenme-
chanischer harmonischer Oszillator (QHO) modelliert wird, dem einfachs-
ten Modell fiir ein gebundenes Atom. Wir zeigen, dass das Verfahren der
FRFPMS-Methode identische Ergebnisse zu anderen Theorien liefert, vor-
ausgesetzt, wir modifizieren unsere Methode in zwei Punkten. Die Modi-
fikationen betreffen eine Anderung der Skalierung der berechneten Wahr-
scheinlichkeiten mit der Temperature und der ausgetauschten Energie so-
wie eine Reduzierung der Wahrscheinlichkeit, dass Elektronen unter ei-
nem grof3en Winkel von ihrer urspriinglichen Bewegungsrichtung abge-
lenkt werden. Wir bezeichnen diese modifizierte FRFPMS-Methode als die
iiberarbeitete FRFPMS-Methode.
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Die letzten beiden Artikel sind das Ergebnis von Zusammenarbeit mit
experimentellen Kollegen, und wir modellieren explizite Experimente mit
der modifizierten FRFPMS-Methode. In Artikel V betrachten wir den Ef-
fekt unterschiedlicher Isotopenzusammensetzungen in hBN. Isotope sind
Atome des gleichen Elements mit unterschiedlicher Masse. Sie teilen da-
her viele chemische Eigenschaften, aber die atomare Masse beeinflusst die
atomaren Schwingungsfrequenzen. Im Einklang mit Erwartungen, Expe-
rimenten und anderen Arbeiten zu diesem Thema stellen wir fest, dass
die hochsten Schwingungsenergien in hBN von der Isotopenzusammen-
setzung beeinflusst werden und fiir grof3ere Isotopenmasse zu niedrigeren
Werten verschoben werden. Wir zeigen, dass es moglich ist, diese Verschie-
bung mittels EELS in Abhéngigkeit von der Richtung zu messen, in der
sich die Elektronen nach der Wechselwirkung bewegen. Im letzten Artikel,
Artikel VI, ermoglichten uns unsere Berechnungen es, einen interessan-
ten Effekt zu interpretieren, der zu Beginn unserer Zusammenarbeit nicht
erwartet wurde. Wir beobachten sowohl im Experiment als auch in der
Theorie anhand eines Materials namens Strontiumtitanat (STO), dass Bil-
der der Wahrscheinlichkeit der inelastischen Wechselwirkung in der Nédhe
von Sauerstoffatomen empfindlich auf die Richtung reagieren, in der sich
die inelastischen Elektronen nach ihrer Wechselwirkung mit der Probe be-
wegen. Wir erkldren dieses Phdanomen mit der Anisotropie der Bewegung
von Sauerstoffatomen in STO, was einfach gesagt bedeutet, dass sich Sau-
erstoffatome entlang einer Achse mehr bewegen als entlang einer ande-
ren. Diese Anisotropie ist seit langem bekannt, aber wir konnten sie hier
zum ersten Mal als Funktion der Schwingungsfrequenz abbilden und zei-
gen, dass sich die Richtung der atomaren Bewegung der Sauerstoffatome
in STO von niedrigen hin zu hohen Schwingungsfrequenzen dndert.

Zusammenfassend tragen wir mit dieser Arbeit ein effizientes und viel-
seitiges rechnerisches Modell zur Simulation und Interpretation von EELS
fiir Atomschwingungen bei. EELS ist heutzutage ein wichtiges Werkzeug
fiir die Untersuchung von Wirme auf kleinsten Lingenskalen im Nano-
und Atombereich, mit vielen potenziellen Anwendungen in der Material-
wissenschaft und dem Nanoingenieurwesen.
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c
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T
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Appendix A.
Inelastic quantum mechanical scattering
theory

We consider in this appendix, how time-independent scattering theory as
developed in the classic text book Modern Quantum Mechanics by J. J. Saku-
rai [189] is applied to the problem of inelastic electron scattering on a sam-
ple. The basic principle is thereby fully analogous to the treatment of in-
elastic scattering of an electron on an atom, but instead of a single atom,
we consider a target made of a collection of atoms.

Within time-independent scattering theory, the interaction is treated as
a perturbation of the (time-independent) free or non-interacting system de-
scribed by a Hamiltonian H,, by a (time-independent) interaction Hj,.
Thus the total Hamiltonian of the system reads

H = HO + I:Iinter' (Al)

The experimental reality of scattering experiments is that a particle is shot
at a target/sample and a detector measures the state of the particle after in-
teraction. Thus the setup of scattering experiments requires that the system
is at large distances and at times long before the interaction in an (initial)
energy eigenstate |i) of H,, meaning that the interaction H,, is sufficiently
localized in space. Furthermore measurement of the state of the scatter-
ing particle happens at times long after the interaction and the system will
again be subject to only H,. Thus one is interested in the transition rate
of an (asymptotic) initial state |i) scattering into an (asymptotic) final state
|f), which are both taken to be solutions to the free-particle Schrodinger
equation, i.e.,

Hy |iy = E; |i) (A.2a)
Hy|fy=Ef|f). (A.2b)

Note that |i) and |f) are not necessarily states of only the scattering parti-
cle, but they are in general composite (many-body) states of the scattering
particle and the target. This raises the question of distinguishability and
we assume here that the scattering particle is distinguishable from the tar-
get/sample. Furthermore one has in general control over the moment of
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the incident particles, which are subject to only the free space Hamiltonian
Hyear, before interaction. For these reasons, we write

i) = k@) =: k) ® |D;) (A.3a)
I:IO = I:Ibeam + Hsample (A.3b)
where
A h’k?
Hyeam |k> = m |k> =:! Ex |k> (A.4a)
Hsample |CI)1~> = ECDi |q)i> . (A.4b)

Here Flsample is the Hamiltonian governing the sample states |®;).

The DDSCS for the transition |i) — |f), i.e., the ratio of the incom-
ing probability current j; to the outgoing probability current j; through a
spherical surface element k'r2dQ,, /k’ in direction k', can with these pre-
liminary considerations be written in the form [189, 190]

dZO'i_,f

k' 2
dO dAE — E'f i~ (& K)[ 6B, — Eq, — AE) (A.5)

where the energy loss reads AE = Ej, — Ej and the scattering amplitude

reads

) 27)’m, ., .

which is the (in general complex) amplitude of a spherically outgoing wave
e!K'r /r far away from the scatterer

1 ik'r

(27)3/2

e 4 £k, K')2

Yin @)~ (A7)

r b
where 9;_, ¢(r) is the scattering particle wave function associated with the
transition |i) — |f) and the first term e*'" is the incoming wave in normal-
ization

1 )
r|k) = elkr, A.8
(i) = (A8)
Furthermore the so-called T-matrix satisfies the recursive definition !
N N N 1 N
T =H, +H ..———T, A9
inter inter El _ HO + lE ( )

where ¢ is a small real quantity, whose limit needs to be taken to zero at the
end of a calculation.

IWe limit ourselves here to the case of scattering from the infinite past to the infinite future
(+ig). One could equivalently use —ie and consider the scattering process happening from
the infinite future to the infinite past.
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Note that the form of the DDSCS in eq. (A.5) takes only the ratio of the
scattered probability current to the incident probability current into ac-
count and totally neglects the probability current associated with the inter-
ference of the incident wave and the scattered wave [190]. Said differently,
this form of the DDSCS considers only scattered waves, but totally neglects
unscattered waves. As such this form of the DDSCS is not adequate for de-
scribing the number of counts detected in a scattering experiment in the
forward direction k = k' for zero energy loss AE = 0, since the particle
beam contains in this case unscattered particles.

Before we conclude this appendix, we write down some further results
from time-independent scattering theory, which will prove useful to the

discussion in the main text. One can define the scattered state |1,b§+)>, which
satisfies 2 -
A + A
Hinter W)z > =T |l> (AlO)

and also the recursive Lippmann-Schwinger equation

1

mginter |¢E+)> : (A11)
i — Hy

) = i) +

The state |z,b§+)> encodes the entire solution of the scattering problem and
is equivalent to the initial state |i) in the absence of interaction (Hi, e, = 0).

2Consistent with the previous footnote, we consider here only the case of +ig, i.e., scattering
from the infinite past to the infinite future.
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Appendix B.
Inelastic electron-matter scattering

We continue ion this appendix the discussion of the DDSCS associated with
a transition |i) — |f) of appendix A. We explicilty limit ourselves here to
the interaction of an electron with the full many-body system of the sam-
ple. The Hamiltonian of this combined beam electron-sample system un-
der study can be written as

H = Hbeam + Helec + I:Inuc + Hinter = HO + Hinter’ (B'l)
where
, n?k?
e = o (B.2a)
N N..N N,,N
. o p/l 62 1 eriVe 1 e’ ZK
Hge. = = et & D | (B.2b)
;::1 2m, 4meg | 2 ATl B2 — Eu] ;;1 |#1 — Ry
A#X A=1
Py x R
_ X 1B, (R (B.2¢)
nuc Z=: 877:60 Zl:l 'RK — RK’l o *
x#x
N 2
= 2 3+ EnoiRe) (B.2d)
k=1
2 | Ne N
. e 1 Zx
A = - 2 (B.2e)
T 47re /;1 |t — ;] ,;1 £ — Ry

are the Hamiltonian operators of the beam electron, the electronic struc-
ture of the sample, the nuclei of the sample, and the interaction between
the beam and the sample, respectively. Here {R,} are the N position op-
erators of the nuclei, {f;} are the N, position operators of the electrons in
the sample. We have tacitly assumed the BO approximation [191], which
allows to separate the nuclear and electronic degrees of freedom, such that
we have the following eigenvalue equations

21,2
Ay 1 = 2 1) =2 By ) (B.32)
Flaee o (R}) = XO<{R,<}) Zo(RD) (B.3b)
Hnuc |¢> = E¢ |¢> (B3C)
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for the electron beam, the electronic structure and the nuclei. The so-called
BO surface Ego({R,}) is the potential hyper surface, on which the dynamics
of the nuclei unfolds. Following appendix A, the initial state, the final state,
and the energy difference between initial and final states read then

D) = |k, xo({ReD), ¢1) = [K') ® [ xo({Re ) ® [$1) (B.4a)
(fl = K, xo(Rich), o] = (K| ® (ro({Ric})| ® (s (B.4b)
Ef_Ei:Ek’_Ek+Eqbf_Eqbi:Eqbf_Eqbi_AE’ (B4C)

since we are interested in vibrational excitations, i.e., excitations in which
the beam looses energy AE to the nuclei of the sample. We neglect here
electronic transitions and assume that the electronic structure follows the
motion of nuclei adiabatically according to the BO approximation. Note
that this is good approximation for insulators and semiconductors, which
do not host electronic transitions at vibrational energies, but is a bad as-
sumption for metals, in which a continuum of electronic states exists close
to the Fermi-level, which gives rise to electronic transitions, which overlap
with the energies of vibrational transitions.

The DDSCS for transition |i) — |f) becomes then for our combined sys-
tem of beam electron and sample

dZO'l'_,f

K 2
30, daE = T ims K[ 6By, - By, — AF) (B.5)

where the scattering amplitude reads

2
Frope k) = BT G (R D, 81Tk, 20(Re. 6. (BS)

We evaluate the DDSCS for transition |i) — |f) in appendix C.
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Appendix C.
First order Born approximation

In first-order Born approximation, the T-matrix becomes simply
T= Hinter (C.1)
and we then need to solve for

<k,’ XO({RK}) ¢’f|H1nter|k XO({RK}) ¢ > (C-Z)
and the quantity of interest reads thus

(K, xo((R D), @ | Hinter s xo({R,e), 61)
d3r

oy C3
= | @@ e~ IR (o ({R €3

1nter(r) | XO({RK}) ¢ >

i.e., we have the Fourier transform of a matrix element of the interaction
potential. Let’s consider first the matrix element

<X0({RK})’ ¢f | Hinter(r) ' XO({RK})’ ¢l>

)|

e2
=i [Z (b s | =
ey ’
Z < ' - RKI
since the operator of the nuclear positions R, does not operate on the elec-
tronic state | yo({R,})). We now consider the first term:

|rotep. g > o

N,

> (xR gy | — =

A1=1

%zj ¢f’fd3rl fd -
- (o] [ ¢t>’

| o, ¢>

— i (R Do) (R, \ b >

(C.5)
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where we have used the fact that the integrals over {r; } evaluate to the same
value for each 4, since the electrons of the sample are indistinguishable,
and that the definition of the electron density reads

Pe(E, {R,})

] o (o
N, f &r, .. f Frn, 23 b R0 e, (R,

Note that {r;},4; is here only a short hand notation for the set of electron
coordinates for 4 = 2, ..., N.. Thus we find

(X0(R}), b5 | Hiner () | Xo({Rc), $1)

¢? f pe® (R < Z (€.7)
_ 43¢ Lo xS) KA )
47e, <¢f l v — | 1;1 Ir—R,| b
Equation (C.2) becomes then
fir(k, k’)

o [ e otar PR >_
2(27r)2h2€ [<¢f U ar f Pre Ty |2 (C.8)

. Z
_ d3 —iq-r KA ; ,
Z<¢f‘f T Ry ¢>]

where we have defined the momentum transfer
q=k' -k (C.9)

We compute the FT of the Coulomb potential using
L

lim [/ d3r e—e_lq'r] = 4_7;, (C.10)
x| q

where we have defined g = |q|. We obtain

fisr(k k) = ZZI;;E P ¢f‘/d3r e~iarp (r, {Rx})‘¢>
_ZZK<¢f|e_' Ry ¢>]
N (C.11)
B 2::;11 ? <¢f [Pe(q, {Ry}) —KZI Z, e iRy ] ¢l>

me

st 7 (9 | Pu@ R 49,
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where p.(q,{R,}) is the spatial FT of the electronic charge density and
Piot(q, {R,}) the spatial FT of the total charge density for a certain configu-
ration of the nuclei R,.. The cross section for transition i — f reads then

d?o;. m2e* k' 1 . 2
dQq dAE - (2m)2h4e? ?FK% | Po(@: (R [ 44)] 6(Eg, — Eg, _(AE)' |
C.12

This DDSCS is associated with a specific transition |i) — |f), but that does
not really represent the experimental situation in most cases as we will see
in appendix D.
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Appendix D.
Thermal averaging of the DDSCS

We have generally no control over the final state |f) of the target, but all
transitions, which are permitted by energy conservation and the consid-
ered scattering geometry will contribute. Thus we need to sum the DDSCS
in eq. (C.12) over final states |f). Furthermore the crystal is in thermal
equilibrium with the environment, which means that we also need to take
the thermal average of eq. (C.12) over initial states i. We will consider there-
fore in the following

e met K1 o
dQg,dAE (zﬂ)2h4€2 k q4

R | ¢ >| 8(Eg, — Eg, — AE)

(D.1)

¢l ¢j

where the partition function reads

Z=Y e P (D.2)

Following van Hove [99], we can rewrite 3

Z e

R Db 8(Ey, — Ey, — AE)

i.Pr
2mh o
dt e iEg t/h —iE,. t/h
- j2nhe . qbqu e 1 prore A )
bPf

_ f . —lAEf/hz " Bilel P DI

- f zi_th e BB (5] (0. (R pror(@ (R (D)7
(D.3)

3We suppress the argument q, {R,.} in some lines to save space.
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where we have defined the inverse temperature 8 = (kgT)~!, used the
completeness of the basis ) . l¢7)(¢sl = 1, and used that the action of

the time evolution operator U(t,0) is

U(t,0)|9;) = e et/ |g) = &= FaM |gy) (D.42)
(b7 UH(t,0) = (By] eifmetlh = (g [P (D.4b)
Iotot(q’ {ﬁk(t)}) = ﬁT(ta 0) ptot(q’ {RK}) ﬁ(t’ 0) (D4C)

Equation (D.3) is a key relation within the first order Born treatment of
inelastic scattering by electrons. It relates the DDSCS to the FT of a space
and time correlation function

S(e. 1) = f J‘quel‘q* (Oh(@ R po@ ReODr.  (D.5)

of the total charge density. We note that a similar expression would arise
for electronic excitations, but considering different initial and final states of
the electronic structure instead of the nuclei [192]. Overall we have man-
aged to formally consider all possible final states and to thermally average
the DDSCS over initial states in this section. The final DDSCS can thus be
written as (c.f. Ref. [92])

d’c mie*t k'1

= 2~ 5(q,AE), D.6
qu dAE (27T)2h4€(2) k q4 (q ) ( )

where we define the DFF
e _; . N
S@A8) i= [ S e (ol (@ (ReD P ROy (D)
We will limit ourselves to crystals in appendix E, but it is worthwhile to
point out that we have made minimal assumptions about the sample up to

this point. Furthermore we will evaluate the thermal average of the inter-
action in appendix G within the IAM, which we describe in appendix F.
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Appendix E.
The DDSCS for a crystal

We assume now that the nuclei have periodically arranged equilibrium po-
sitions and write
R, >R = R?l +0j, (E.1)

where R?Z is a vector to the equilibrium position of the j-th basisatom in the

I-th unit cell of the lattice and U j1isthe displacement from equilibrium. We
furthermore assume the harmonic approximation as described in sec. 3.3,
i.e., we expand the BO surface Ezo({R j1}) in powers of the displacement U il
and terminate after the harmonic term. Using the definitions in sec. 3.3,
we can write the thermal average in eq. (D.7) as

(ot (@, 1R 1)) pror(@ IR (ON)T

= %Ze‘““ (]l (q, (R;1)) pror(@, (R (H)}m) . (E.2)

Thus we need to evaluate terms of the form

(ol (@ {R 1) peor(@ (Ru(ODIM). (E3)
In the crystal, the total charge density becomes

Nuc’Nba

Prot(@ IR (DD = [ pel@, RO = ] Zye i aRi(p)|. (E4)
J.l=1

The electron density p.(q, {R j1(H)}) has without further assumptions a non-
trivial dependence on the nuclear coordinates, so it is not straightforward
to proceed with the evaluation from here. We introduce in appendix F the
IAM in order to simplify the electron density and continue with the evalu-
ation of the thermal average in equation (E.2) in appendix G.
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Appendix F.
The Independent Atom Model

One classic approximation, the so-called Independent Atom Model (IAM),
to circumvent the difficulties associated with the dependence of the elec-
tron density on the nuclear positions {R,} at the cost of neglecting details
of the bonding is to assume that the electronic state | y,) can be written as
a product of electronic states of each atom, i.e.,

N
o(RD) = [ ] o) (F.1)
x=1

where |y, ) is the solution to the atomic problem

Helec,x |XO,K> = Ee(:)lec,x |X0,K> . (F.2)

The atomic Hamiltonian reads here

Ne,x I")i e Ne,x Z e2 Ne,K’Ne,x 1
Hotec e = + ——— + —. (F.3)
o /121 2me - 4meg ,1;1 £z —Ry|  87€g /1,/12=1 |#7 — £y
AN

The electron density can then be written as a simple sum of the electron
densities of all atoms, i.e.,

N
Pe(q. {R, ) = D" e Rep,  (q), (F.4)
x=1
where
Per(@) = f Bt %0, (1) = f(@) (F.5)

is the spatial FT of the electron density

Per(®) = Nox f &, .. / Fry, 2o E Do l)  (F6)

associated with the x-th atom, also known as the atomic X-ray scattering
factor fx ,(q). Since a free atom is spherically symmetric, the ground state
electron density satisfies

Pe,x(r) = Pe,x(r) = fX,x(q) = fX,x(q)- (F7)
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We note that p, ,(r) is real and even, which implies that fy ,(q) is real and
even, i.e.

f;k(,K(Q) = fX,K(q)' (F8)

Returning to appendix D, we can write the thermal average in eq. (D.7)
within the IAM as

(Pioe(@ (R} Prot(@ (R (D)) 1
N
= —ig-(Ry ()—Ryr) (@) — Z, o (Q) — Zy
<2 [Frn@ — Ze] [ (@ ]>T o

(271)2 h*e2
m2e*

()" ep q* Z Fea(@f e (@) < —iq-(Ry(t)— RK,> ’

T
x,x'=1
where we have used eq. (F.8) and the Mott-Bethe formula4 [194, 195]

mee* (Zx — fx, K(Q)
27h2e q>

fex(q) = (F.10)

fex(q) is the so-called electron atomic scattering factor. Thus the DFF in
equation (D.6) reads in the IAM

S(q,AE) =

( )2 4 2
%4*S(q, AE), (F.11)
m e

where

S(a,AB) := f S g S fur@f @) (¢ R

x,x'=1
(F.12)
and the DDSCS becomes simply
d%o k' 4
a0, daF = ES(q, AE). (F.13)

Before concluding this appendix, we will consider as a last step the limit
of ¢ — 0. For a charge neutral atom, i.e.,

Z, = f (4712 p (1)) dr, (F.14)
0

4One should be careful when using the Mott formula to derive electron scattering factors
from X-ray scattering factors for practical calculations, since numerical errors can lead to
incorrect small q behavior [193].
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we have [196]

lim f.,(q) = lim
q—0

ZK - fX,K(CI))
qz

 lim Z, — f0°° dr e™" (47tr%p, 1, (r))
q—0 2mh2¢ q?

(o)

Zy— fy dr (1 —iqr— %qzrz) (471’}’2,06,,{(1’)))

q2

/ dr r? (47rr2pe,x(r)))
0

(F.15)
where

B S (42 p o (r)) dr o

e = jg)oo (47r2p, . (r)) dr

(F.16)

and -
Jo r*(47r?pe (1)) dr

f0°° (47r2p, (1)) dr '

For an ion, the electron scattering factor becomes strictly speaking di-
vergent in the limit of ¢ — 0, since

<r2>1< =

(F.17)

Z, # f (470120 1 (r)) dr. (F.18)
0

In practice numerical ionic scattering factors are not truly divergent, but
one has a rather different small g behavior of the ionic electron scattering
factor compared with the neutral electron scattering factor for the same nu-
clear charge. See also the related discussion in Refs. [74, 92]. In appendix G
we will see how the thermodynamic average in equation (F.12) is evaluated
within the IAM.
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Appendix G.
The DDSCS of a crystal in the IAM

We start with eq. (F.12) expressed for the crystal, i.e.,

N
S dt i —iq-(R; Ry
S@.A8) = [ S P D) fo (@)@ (0 BOR)

£ T
J,j'=1
(G.1)
Using relation (E.1), the thermal average becomes
<e—iq-[le(t)—Rj/lr(O)]> _lq [ R ’l’] <e—iq'[ﬁﬂ(l’)—ﬁj/lr(0)]> . (G.2)
T T
Within the harmonic approximation it can be shown that [93, 197]
1 . . 2
<e—iq-[ﬁjl(t)—ﬁj/l/(0)]> _ e—;([q-(Uﬂ(t)—UW(O))] >T
T
— e—%<(q-ﬁﬂ(t))2>T e_%<(q'ﬁjlll(0))z>T X
s sl o)), 63

which simplifies our calculation to the computation of the three factors
above. Using the conventions laid out in section 3.3, we start with realizing
that

<(qul(t) > <Z(I<x%’ Jz(t)Uﬁjl(t)>

T

ilko—k 0 Jl * € r X
2Nucmj 2, 9as kozl:(, [ Fakov Ak (G4)

VV

X (i1, (8) g (). |

where we have used that only the mode displacement operators act on Fock
states |n) inside the thermal average. We will see that the average is actually
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time-independent in the following, but let’s first boil the expressions a bit
further down and write

(8,,(0) g (1), = ——

1/ Pkov C‘)k(’)v’
—iCUk/ v’t iwk/ u’t

- AT
X[aké)v’e 0 +a—k(’)v’e 0 ]>T (G.5)

. . %k
<[dkov9_mk°”t + dikovelwkovt] X

We thus see that we need to evaluate the expression

N i A i R —iw, s st n iw,r ,t
<[al't0velwk0vt + a0 lwko,,t] [ak(’)v’e k! v! +aTk6v’e 8% ]>T

e PEn AT A
= Z 7 <l‘l| [akoyakgvl e
n

i(wkov_wk(l)v/ )t

R K =iy =0y s 0 )t
+ e L ° o7 | m)

_BE ,
e BEn (k=@ )t
= 5k0k6 57”)/ Z —Z [nko,, e o’ 4

n

+ (n_g,y + e . (G.6)

_i(wkov—wkév, )t]
where we have neglected terms of two phonon creation or annihilation op-
erators, since their contribution would vanish between states (n| ... |n). We
have furthermore used eq. (3.39) to obtain the phonon occupation num-
bers. The sum ), runs over all possible occupation numbers, particularly
all possible values of ny , and n_y ,. Thus we can write the average of the
phonon mode displacements as

L F N
(e (1) g (1))
5kok(’) Sy i(wkou—wkév; )t

=————|(n e
\ Pkov wk(’)v’ [< k0v>T (G.7)

_i(wkov—wkav, it ]

+ ((ng)r + De

b

where we have used that ny ,, = n_y,, which follows from eq. (3.45). We
then find

. 5 h 2 (nk >T +1
(@O07), = gy 5908 T s eomor e |
(24

ko,V wko'l/
— n [2<nk0v>T +1 |q c |2]
= € ik ,
2Nucmj ko,v @y T

(G.8)
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which is independent of [ and independent of time, implying
. 2 . 2
(@0u0)"), =((@0p)), =: 2w j(a. 7). (G.9)

Here we have defined the exponent W ;(q, T) of the DWF e~ 2Wi(@T) of the
j-th basis atom.

It is enlightening to recognize the resemblance between egs. (G.8) and
(3.50). Returning to eq. (G.3), we are left with computing the average

<[q'ﬁjl(t)] [q'ﬁj’l'(O)DT

<Z dadp Uocjl(t)Uﬁj’l’(O)>
af T

2Nuc ap ko,k(’) m]m]/

v,V

h i(ky-R% +Kk’-R?, ) Cajkov €Bj'k)v/
L S g 3 [ S B

X (fy (D) gy (@), | (G.10)

and analogously to the previous calculation, we need to evaluate

(N | PR

—BE
e~ BEn o »
= E Z (n| [akovaik,v, e Provt 4
0
n

T

+ @y, €| )
e_BE“ iy, pt
= 5k0,—k(’)5vv’ Z —Z [nkov e kvt +

n

+ (Mg + 1) 70! |

— iy,
= i),k vy [<nk0v>Te kvt +

+ (niegy)r + D et (G.11)
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which allows us to obtain the result
<[q-ﬁﬂ(t>] [0 (0)]),

i(ko-R% +k’ -R®

q q jl 0

2Nuc Z aip ko% [
‘V‘V

y Cajkov €Bj'K) V! 5k0,—k65m}’

\/mjmj' \/a)kov Wi v/

ay

X [(igyw)1 €907 + ((Miepy)r + 1) €02 | ]

— €qi €gir_
anqﬁ Z lkO'(R?l R?,l,) ajkov ﬁ.] kov 1

m]m]/ a)kOV

ko,v
o »
X [("lkov>T ek’ + ((ngp)r + e m“"”t] ]
__h eiko-(R?z—R%z,) (q’ejkOV)(q'e;’kov) 1
2Nuc Ko,V mjmj, C()kov

X [(ngo)1 €507 + (g ) + 1) €7 %0 | ] (G.12)

where we have used thateg;_g , = e’g, kv Overall we find that the thermal
average of the exponential operator in eq. (G.1) reads

(e a2y )]

T
Nba’Nuc —i [ R
Y fei@fey@e ™ ] e W@ g=Wjr(al)
jajl=1
LI'=1
n » ei(kO.Rgl—kO-R?,l,) (q~ejk0v)(q‘e;f/kov) (o) kvt
% eZNuc ko,V mjmj, @Ky (G.13)

i(ko-RO —kg-RO € €% .
el(ko RS ko Rj,l,)(q ko (@ J’koV) <nk0,,>T+1e_mk0v,

X eZNuc Zko’v mjm; Dkgv

Note that this expression is correct to all orders in phonon scattering within
the Born approximation. We will consider in the following an expansion
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of the exponentials. To that end we write

S(q, AE) =_/2(7jr_th e~ IAELR %" S0)(q, 1), (G.14)
n
where
o) sz —ia [RYRY, |
S (q,t) = fei@fej(@) e R
21 NGet 5,

LI'=1

. (G.15)
y { z ei(kO.R(J?l_kO.R?,l/)(q-ejkov)(q-ejfkov) %
Ko,V mjmi:
n
<nk0v>Teiwk0Vt N (Migw)T + 1e_i‘”kovt]
C‘)kov C‘)kov
We consider the zero-th order
Nba’Nuc .
0@ = 9 fu@fep@ e ] i@ e
j,j/’:l
Nbd’NLlC 2
=| X fejl@e e @D
J,l=1

The sum over the lattice positions I can then be evaluated according to
_ia.RO i RO . RO
Z e IR = 71K Z ek = Nye Z e 'O 84,65 (G.17)
1 1 G

where §4 ¢ is the Kronecker-6 and q is not restricted to the first Brillouin
zZone, i.e.,

q=G+q,. (G.18)

Here G is a reciprocal lattice vector and q is a vector in the first Brillouin
zone. We then see that the zero-th order is only non-zero at momentum
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transfers corresponding to a reciprocal lattice vector:

2

Nba .
S(O)(q, t) = N‘%C Z Z e_lG.R;) 5q,G fej(Q) e~ Wi@T)
j=1G
A ’
=N D 8|2 e fej(G)eMiGD (G.19)

The corresponding zero-th order scattering cross section reads then accord-
ing to egs. (F.13) and (G.14) ®

2

dzo'(o) Nba —'G-Rq ~ .
d0, dAE =Nﬁc§5q,6 _Zle O8] £,(G)e"ICD| §AE).  (G.20)
]:

We realize that the zero-th order corresponds to elastic scattering on the
target, since no energy-loss or -gain is associated with it.

As the last consideration for this appendix, we consider the first order of
the expansion, i.e.,

S(l)(q’ t) =

h [(nko,)T oot + <”lk0v>T + 1e_iwkoyt_
wkov C‘)kov J

G.21
NbasNuc —l(q—ko)RO _W( T) (qejkov) 2 ( )
Z e i fej(Q) e” "I

=t VM

Using eq. (G.17), we can again carry out the lattice sums and obtain

$W(q,1) = MZ 2 )T gty ST e

Ko,V wko v wko‘ll

2
Mg _iG-R° (q-€jk,»)
Z Z e % Oq—ky,6 Jej(@) e WilaD) = T2¥”

e VM

which can be rewritten as

X

b

2
N,
~ hN ba —‘G-RQ . (q'e )
$(a.0) = zuCZ%—qO,G e fei(@ e Wi D) = _J0% |
G,v j=1 1/mj
CQ‘]oV Wqqv
(G.22)

5Note here that AE = 0 and thus kK’ = k.
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since only one unique decomposition of q of the form of eq. (G.18) exists
and the Kronecker-6 §_y, ¢ forces qo = ky. The corresponding first order
DDSCS reads then according to eqgs. (F.13) and (G.14)
2 (1) 2
d“c AN, k'
= - Z 0q-q0.G X

Nba
—iG-R° —Wi( T)(q'ejqov)
= Ml O £, () e Witan) Lo dar)
d0 dAE = 2 k4 2 J

j=1 m]

,V

8(hwg,, — AE) +

y [(nq0v>T +1 <nq0v>T
w‘lov qo?

8(hawg,» + AE)] .

(G.23)
This expression makes it clear, that the first-order DDSCS corresponds to
single phonon excitations, in which a single quantum of energy fiwg ,, is
gained or lost. Furthermore the momentum also needs to be conserved up
to the crystal momentum G as we have the requirement, that

q—qo=0G. (G.24)
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Appendix H.
Momentum transfer in z-direction

The momentum transfer is defined as
q=k' -k, (H.1)

where k is the initial and k’ final wave vector of the electron. We take k || z
and write then

q=(q:,9;) = (K|,k; — k), (H.2)

where we have separated out the component in the plane orthogonal to the
incident wave vector in all vectors. Furthermore the scattering angle 6 is
defined via the relation

Kk K,

cos(0) = k- (H.3)
and

k' |Ex—AE

¥\ T B (D

where we have written the initial and final energies of the electron as

n2k?

Ek = 2me (H.Sa)
hzk'z

Ep = o = Ex — AE (H.5b)

and defined the energy loss AE. Using these relations, we can work out
the ratio of the absolute value of the z component to the absolute value
of the in-plane component of the momentum transfer depending on the
scattering angle 0

aul _ Isino)

121 cos(6) —

(H.6)
Ex

E—AE

We plot this expression in Fig. 2.1 for an initial kinetic energy of 60 keV,
and a large range of energy losses and scattering angles.
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Appendix L.
Derivation of MSD in classical statistical
mechanics

We note first the integrals

.[m exp(—ax?)dx = % (1.1)
and
” V7
.[m x? exp(—ax?)dx = a3l (1.2)

for a > 0. We then consider a classical 2D anisotropic harmonic oscillator
with Hamiltonian

2 2 2,2 24,2
p p Maow?u Mwsu
Hpoppx) =gyt t— +— - @

and we define the displacementu, = (u,,u,). The classical partition func-
tion reads

h

Ao o
f P55 ] U duy fﬁmfu%] (14)
-+ 5 [l

R VB VEVMe | | VBYMe,
-l

where 8§ = 1/(kgT) and h is the conventional normalization constant of
classical statistical mechanics. We want to compute the MSD (u?)  in the

Z = i4 f dpydpydu,du, e PHPxPy-ttuy)

X

X
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following and start with
(up)p = h4 fdpxdpyduxduy (ux + uy) e~ BH(Dx,Dy tx,1ty)

1
d d du du uz _ﬁH(pxrpyyux uy) +
h4f e (L5)

1 -
gt [ dpadpy gy o PP e

= () + (W)

where we recognize that both quadruple integrals are essentially the same
up to the name of the letter of the component of the displacement, so it suf-
fices to compute the expectation value for a single displacement direction,
ie.,

11
(8, = i35 [ dpadpydgdy o PPt
11 _pPbx _ i
:EW [fdp e ’BzM]['/‘dpyeﬁzi; %
prod. of 2 integrals of form of eq. (I.1) (1_6)

Mco,zcu,zc Mw$u}
X [fduxuie_ﬁ 2 ][fduye_ﬁ zyy]x

prod. of 1 integrals of form of eq. (I.1)
and 1 integral of form of eq. (1.2)

Thus we find for the MSD
o - [ (B | 2|
w 2(BMw3)3/2
N e w
VB ILVBAMw}
1
=6Mcu§'

We see that the MSD along one cartesian coordinate scales as 1/w?. The

full 2D-MSD reads "
T/(1 1
PANN -l R
<uJ_>T - M <CO)2¢ + CU%)) (18)
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