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Abstract
We report the existence of entangled steady-states in bipartite quantum magnonic systems at
elevated temperatures. We consider dissipative dynamics of two magnon modes in a bipartite
antiferromagnet, subjected to interaction with a phonon mode and an external rotating magnetic
field. To quantify the bipartite magnon–magnon entanglement, we use entanglement negativity
and compute its dependence on temperature and magnetic field. We provide evidence that the
coupling between magnon and phonon modes is necessary for the entanglement, and that, for any
given phonon frequency and magnon–phonon coupling rate, there are always ranges of the
magnetic field amplitudes and frequencies for which magnon–magnon entanglement persists at
room temperature.

1. Introduction

Entanglement is a central concept of quantum physics that has developed into a key resource in quantum
technology [1]. It plays a role in quantum information processing, opens a way towards intercept-resilient
quantum communications, and enables increased sensitivity in quantum metrology. If it were possible to
overcome the thermal noise and prepare robust entangled quantum states at ambient conditions, the
corresponding implications for the future quantum devices would be significant [2–9].

Magnons exhibit quantum properties over a wide range of temperatures and offer a possibility to access
quantum phenomena at room temperature [10, 11]. Compatibility of magnonics with hybrid quantum
platforms [11–15] makes magnons potentially useful for quantum data processing. Most recently, particular
attention has been paid to antiferromagnetic (AFM) quantum magnonics due to its large equilibrium
squeezing and entanglement [11, 16–26].

Here, we report evidence for equilibrium phonon-driven magnon–magnon entanglement in bipartite
AFM materials. We compute entanglement negativity [27] of a pair of magnon modes coupled to a lattice
vibration, in the presence of an off-resonant external rotating magnetic field. Our aim is to study the stability
of bipartite entanglement between magnons to thermal noise. We search for the regime where the magnonic
degrees of freedom remain entangled with each other rather than with the environment, and hence can be
used as coherent channels in quantum information protocols. We obtain a steady-state entanglement
diagram in the temperature and magnetic field plane, which shows the possibility of having
magnon-magnon entanglement at room temperature. We analyze the magnon entanglement stability against
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dissipation caused by magnon–phonon coupling and observe that the two-mode magnon system indeed
permits high-temperature entanglement at any value of the magnetic field provided that the magnetic field
frequency is adjusted to the proper range. In turn, the existence of crystalline and synthetic AFM materials,
such as NiO [28], 2D Ising systems like MnPSe3 [29, 30], YIG-based synthetic AFMs [31], and perovskite
manganites [32, 33], particularly SrTcO3 [34], CaTcO3 [35], BiFeO3 [36] that have high Neel temperatures,
provide a space for further study of high-temperature entanglement in quantum magnonics.

2. Physical system

To pursue our analysis, we assume a pair of magnon modes in a bipartite AFM material subjected to a
vibrational mode in an off-resonant rotating magnetic field as shown in figure 1. The system Hamiltonian
reads

ˆ̃H= ˆ̃Hm + ˆ̃Hm-m + ˆ̃Hz +
ˆ̃Hph +

ˆ̃Hm-ph (1)

with each term defined as follows. ˆ̃Hm and ˆ̃Hm-m correspond to single- and two-mode magnon Hamiltonian,
respectively, at a given k-vector. To find the explicit form of these terms, we consider an AFM spin

Hamiltonian, ˆ̃Hs =
∑

<i,j> ŜiIijŜj with nearest neighbor interactions, where Ŝi is the spin vector operator at
lattice site i, and Iij is the bilinear interaction tensor matrix between sites i and j, which involves all different
types of interactions, e.g. Heisenberg interaction, Dzyaloshinskii–Moriya interaction, anisotropy [23–26]. By
using the linearized Holstein–Primakoff transformation

Sublattice A :

{
Ŝzi = S− â†i âi,
Ŝ+i = Ŝxi + iŜyi ≈

√
2Sâi,

Sublattice B :

{
Ŝzj = b̂†j b̂j − S,

Ŝ+j = Ŝxj + iŜyj ≈
√
2Sb̂†j ,

and Fourier transformation [11], one obtains ˆ̃Hs =
ˆ̃Hm + ˆ̃Hm-m with

ˆ̃Hm = h̄ωak â
†
kâk+ h̄ωb−k b̂

†
−kb̂−k

ˆ̃Hm-m = h̄g∗akb−k â
†
kb̂

†
−k+ h̄gakb−k âkb̂−k, (2)

for a given momentum k-vector. Here, the bosonic annihilation operators âk and b̂−k represent two
counter-propagating magnon modes that describe identifiable magnon modes associated with each
sublattice of the AFM.

We further assume that the prepared magnon system is subjected to an off-resonant rotating magnetic
field with frequency ω0 < ωak , ωb−k . An in-plane rotating magnetic field

B= B0 (cos(ϕ0 +ω0t) , sin(ϕ0 +ω0t) ,0) (3)

interacts with a spin system through the Zeeman term ˆ̃Hz =
∑

iµB · Si. By using the same transformations as

for ˆ̃Hs, we obtain

ˆ̃Hz = h̄

[
µB0Γk

h̄

]√
SN

2

(
e−i(ϕ0+ζk+ω0t)âk+ ei(ϕ0+ζk+ω0t)â†k

)
+ h̄

[
µB0Γk

h̄

]√
SN

2

(
ei(ϕ0+ζk+ω0t)b̂−k+ e−i(ϕ0+ζk+ω0t)b̂†−k

)
, (4)

for a given k-vector. B0 is the strength of the magnetic field, N is the number of spins in the system, S is the
total spin per site, and Γke−iζk = 2

N

∑
i∈A(B) e

−ik·ri with ri being the position vector of site i in the
corresponding sublattice. Γk and ζk come about by Fourier transforming the Hamiltonian from real space to
k-space. It is assumed that the values of Γk and ζk for sublattice A are identical to those for sublattice B.

For the magnon–phonon interaction, we consider magnetoelastic coupling, where magnetic degrees of
freedom interact with elastic displacements of atoms from their equilibrium positions. Assuming single
phonon process [37] with translational and rotational symmetries, the quantized phonon and
magnetoelastic spin-phonon coupling terms of the Hamiltonian read [28]

2
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Figure 1. Schematic illustration of bipartite collective spin waves in an antiferromagnetic material subjected to a vibrational
phonon mode in an off-resonant rotating magnetic field. The rotating magnetic field is illustrated in the lower left corner while
the coupling between magnons in sublattice A and B to the phonons are illustrated in the lower right part of the figure. The upper
figure depicts schematically the spins interacting with the lattice.

ˆ̃H ′
ph = h̄

∑
k ′

ωck ′ ĉ
†
k ′ ĉk ′ ,

ˆ̃H ′
m-ph = h̄

∑
k ′

∑
i, δ

∑
α, β

Gαβ
k ′δS

α
i S

β
i+δ

(
ĉ†k ′ + ĉ−k ′

)
eik

′·ri , (5)

where i is summed over all magnetic lattice sites and δ denotes a vector pointing from lattice site i to a
neighboring site. Gαβ

k ′δ is the coupling strength between the spins in spatial directions α, β ∈ {x, y, z} and
the elastic displacement mode at a given k ′. The operators ĉk ′ (̂c†k ′) represent annihilation (creation) of an
elastic phonon mode with frequency ωck ′ and crystal momentum k ′. Taking into account the magnetoelastic
coupling only in the transverse direction, the interacting spin-phonon coupling term of the Hamiltonian
reduces to

ˆ̃H ′
m-ph = h̄

∑
k ′

∑
i, δ

Gzz
k ′δS

z
iS

z
i+δ

(
ĉ†k ′ + ĉ−k ′

)
eik

′·ri . (6)

By applying the same transformations to the spin degrees of freedom as for the other terms in the
Hamiltonian above, the resulting magnetoelastic Hamiltonian takes the form

ˆ̃H ′
m-ph = h̄

∑
k, k ′

[
g
(k, k ′)
ac â†kâk+k ′ + g

(−k, −k ′)
bc b̂†−kb̂−k−k ′

](
ĉ†k ′ + ĉ−k ′

√
2

)
, (7)

where a term corresponding to a shift of each phonon mode is neglected. This type of magnon–phonon
interaction naturally describes the scattering of magnons with emission or absorption of phonons based on
momentum conservation [15, 38–41]. However, if a given pair of magnon modes âk and b̂−k are initially
prepared in an excited state having large occupation number, the subsequent evolution will be dominated by
interactions involving â†kâk and b̂†−kb̂−k, thereby forcing the phonon they couple with to have zero
momentum, i.e. k ′ = 0. In the light of the dominant term, the effective magnon–phonon interaction
Hamiltonian takes the form

ˆ̃Hm-ph = h̄
[
g(k, 0)ac â†kâk+ g(−k, 0)bc b̂†−kb̂−k

]( ĉ†0 + ĉ0√
2

)
. (8)

This implies that the phonon energy in the model system can be written as

ˆ̃Hph = h̄ωc0 ĉ
†
0 ĉ0, (9)

which physically corresponds to zone-center optical phonon modes. Note that phonon contributions from
non-zero k ′ are included implicitly in the dynamics of the system as dissipation and noise terms in the

3
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quantum Langevin equations (QLEs) below. It is worth noting that the type of bosonic Hamiltonian
expressed in equation (8) is commonly used in optomechanical systems [1, 42].

By collecting the above terms for a system with magnons of a specific value of k being prepared, the

relevant Hamiltonian in the rotating frame, given by applying Û(t) = eiω0t[b̂
†
−k b̂−k−â†k âk], takes the following

form

Ĥ= ih̄
dÛ

dt
Û† + Û ˆ̃HÛ†

= h̄(ωak +ω0) â
†
kâk+ h̄

(
ωb−k −ω0

)
b̂†−kb̂−k+ h̄g∗akb−k â

†
kb̂

†
−k+ h̄gakb−k âkb̂−k

+ h̄Ω
(
e−i(ϕ0+ζk)âk+ ei(ϕ0+ζk)â†k

)
+ h̄Ω

(
ei(ϕ0+ζk)b̂−k+ e−i(ϕ0+ζk)b̂†−k

)
+ h̄ωc0 ĉ

†
0 ĉ0 + h̄

[
gakc0 â

†
kâk+ gb−kc0 b̂

†
−kb̂−k

]( ĉ†0 + ĉ0√
2

)
(10)

with Ω=
[
µB0Γk

h̄

]√
SN
2 . Note that the parameters Ω and ζk can be tuned by the strength B0 and azimuthal

angle ϕ0 of the off-resonant rotating magnetic field. Thus, without loss of generality, we assume ϕ0 + ζk ≡ 0.
To summarize, the model Hamiltonian takes the form

Ĥ= h̄ωaâ
†â+ h̄ωbb̂

†b̂+ h̄ωcĉ
†ĉ+ h̄Ω

(
â+ â†

)
+ h̄Ω

(
b̂+ b̂†

)
+ h̄g∗abâ

†b̂† + h̄gabâb̂+ h̄
[
gacâ

†â+ gbcb̂
†b̂
]( ĉ+ ĉ†√

2

)
, (11)

where we drop the subscripts k,−k,0 for simplicity. We assume that the magnon modes in the AFM have
the same frequency ω that are split by an off-resonant external rotating magnetic field with frequency ω0.
Thus, we have the detuned frequencies ωa = ω+ω0 and ωb = ω−ω0 of the two magnon modes. The
magnon–magnon coupling with strength gab is known to give rise to magnon squeezing and entanglement in
each magnon eigenstate in AFMs [23–26].

Physical systems that are relevant for this investigation should have zone center (optical) phonons that
couple to magnons with finite crystal momentum (up to the zone boundary). Typically this happens when
the frequencies are of similar magnitude. There are many reports in the literature on such materials [28, 30,
38]. Thus, we pay a particular attention to the frequency ratio ωc/ω = 1, although, as figures 4 and 5 below
show, our results are valid for a wider range of ωc/ω as well.

3. Dynamics of the system

We consider the system under dissipation caused by thermal fluctuations, uncontrolled coupling to other
modes (e.g. phonons with non-zero momentum k ′), and Brownian motion. Such dissipative dynamics can
be described by nonlinear QLEs [43].

To specify the dynamics of the system, it is handy to introduce dimensionless quadratures

X̂=
(
â+ â†

)
/
√
2, Ŷ= i

(
â† − â

)
/
√
2,

x̂=
(
b̂+ b̂†

)
/
√
2, ŷ= i

(
b̂† − b̂

)
/
√
2, (12)

for the magnon modes â, b̂. The dissipative dynamics for magnon modes are described by

˙̂O=
i

h̄

[
Ĥ, Ô

]
−κoÔ+

√
2κoÔ

in, (13)

where κo is the dissipation rate, Ôin = (ôin + ôin†)/
√
2 or Ôin = i(ôin† − ôin)/

√
2 with ô= â, b̂, is the input

noise operator associated with the magnon modes Ô= X̂, x̂ or Ô= Ŷ, ŷ, respectively. The input noise
operators are characterized by the correlation functions

⟨ôin† (t) ôin (t ′)⟩= 2κoN(ωo)δ (t− t ′) ,

⟨ôin (t) ôin† (t ′)⟩= 2κo [N(ωo)+ 1]δ (t− t ′) , (14)

with the equilibrium thermal mean magnon occupation numbers N(ωo) = [exp(h̄ωo/kBT)− 1]−1.

4
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In a similar manner we may define

q̂=
(̂
c+ ĉ†

)√
2, p̂= i

(̂
c† − ĉ

)
/
√
2, (15)

to be the dimensionless quadratures associated with the mechanical phonon mode. A Markovian description
of quantum Brownian motion for a mechanical mode with large quality factor Q= ωc/γc ≫ 1 is set by [12,
43, 44]

˙̂q=
i

h̄

[
Ĥ, q̂

]
, ˙̂p=

i

h̄

[
Ĥ, p̂

]
− γcp̂+ ξ̂, (16)

where the mechanical dissipation rate γc is associated mainly with phonons of non-zero momentum k ′,
which are not considered in the Hamiltonian Ĥ. The input noise operator ξ̂ is given by the correlation
function

⟨ξ̂ (t) ξ̂ (t ′)+ ξ̂ (t ′) ξ̂ (t)⟩ ≃ 2γc [2Nc (ωc)+ 1]δ (t− t ′) , (17)

where Nc(ωc) = [exp(h̄ωc/kBT)− 1]−1 is the equilibrium thermal mean phonon occupation number.
Therefore, the corresponding nonlinear QLEs, in terms of dimensionless quadratures, take the form

˙̂X=−κaX̂+ωaŶ− Im(gab) x̂−Re(gab) ŷ+ gacŶq̂+
√
2Ω+ X̂in,

˙̂Y=−ωaX̂−κaŶ−Re(gab) x̂+ Im(gab) ŷ− gacX̂q̂+ Ŷin†,

˙̂x=−Im(gab) X̂−Re(gab) Ŷ−κbx̂+ωbŷ+ gbcŷq̂+
√
2Ω+ x̂in,

˙̂y=−Re(gab) X̂+ Im(gab) Ŷ−ωbx̂−κaŷ− gbcx̂q̂+ ŷin†,

˙̂q= ωcp̂,

˙̂p=−gac
2

(
X̂2 + Ŷ2 − 1

)
− gac

2

(
x̂2 + ŷ2 − 1

)
−ωcq̂− γcp̂+ ξ̂.

(18)

4. Results and discussion

We now show that it is possible to maintain magnon–magnon entanglement in an equilibrium setting. We
focus on the steady-state regime, where d

dt ⟨Ô⟩= 0 for Ô= X̂, Ŷ, x̂, ŷ, p̂, q̂. Any operator can then be written

as a steady-state expectation value plus an additional quantum fluctuation term, i.e. Ô= ⟨Ô⟩+ δÔ(t) [45].
Imposing the steady-state conditions on equation (18) and retaining fluctuations up to linear order, we
obtain a set of linearized QLEs

u̇(t) = Au(t)+ n(t) , (19)

where u(t) = (δX̂, δŶ, δx̂, δŷ, δq̂, δp̂)T and n(t) = (X̂in, Ŷin, x̂in, ŷin,0, ξ̂)T. Information about steady-state
expectation values and coupling constants is encoded into the drift matrix:

A=



−κa ∆ac −Im(gab) −Re(gab) MY 0
−∆ac −κa −Re(gab) Im(gab) −MX 0

−Im(gab) −Re(gab) −κb ∆bc My 0
−Re(gab) Im(gab) −∆bc −κb −Mx 0

0 0 0 0 0 ωp

−MX −MY −Mx −My −ωp −γc

 .
(20)

Here,∆ac = ωa + gac⟨q̂⟩ and∆bc = ωb + gbc⟨q̂⟩ are the effective magnon frequency detunings induced by the
magnon–phonon interaction. The effective magnon–phonon couplings are given by
MX = gac⟨X̂⟩, MY = gac⟨Ŷ⟩, andMx = gbc⟨x̂⟩, My = gbc⟨ŷ⟩. Assuming low dissipation of the magnon modes
compared to their frequencies in typical AFM structures [46, 47], i.e. κa, κb ≪∆ac,∆bc, we obtain the
steady-state solutions as

5
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Figure 2. Phonon-driven magnon–magnon entanglement EN as a function of temperature and the frequencyΩ. Note thatΩ is
associated with the strength of the off-resonant rotating magnetic field, B0 (see discussion below equation (10)). The color bar
displays a qualitative illustration of the entanglement, where the white area indicates the separable zone while the colored zones
shows non-zero magnon–magnon entanglement EN in the Ω−T plane. Double peaks are associated with the degeneracy of two
polarized magnons in AFM systems, which is broken in the presence of non-zero magnetic field frequency ω0. The gap between
the peaks is proportional to the frequency difference of the two magnons. The ratio ω0/ω with respect to the magnon frequency
at the degeneracy point, i.e. ω, allows one to control the magnon–magnon entanglement region in theΩ−T parameter space.
The lower the ratio ω0/ω, the weaker the external magnetic field required to achieve high entanglement at a given temperature
(see also figure 3). Here, the remaining parameters of the Hamiltonian in equation (11) satisfy ωc/ω = 1 and gac/gab =
gbc/gab = 0.001.

⟨X⟩ =

√
2ΩIm(gab)

∆ac∆bc− | gab |2
, ⟨Y⟩= −

√
2Ω[∆bc +Re(gab)]

∆ac∆bc− | gab |2
,

⟨x⟩ =

√
2ΩIm(gab)

∆ac∆bc− | gab |2
, ⟨y⟩= −

√
2Ω[∆ac +Re(gab)]

∆ac∆bc− | gab |2
,

ωp

Ω2
⟨q⟩+ gac (∆bc + gab)

2
+ gbc (∆ac + gab)

2

(∆ac∆bc− | gab |2)2
= 0. (21)

Once the frequencies and exchange parameters are set as parameters of the model Hamiltonian in
equation (11), the explicit form of the drift matrix Amainly depends on the steady-state value of ⟨q̂⟩, which
is given as a root of the polynomial of degree five specified by the last algebraic expression in equation (21).
As a frequency shift in magnon modes, only the real-valued roots of ⟨q̂⟩ are physically meaningful. For a
given set of parameter values, the polynomial has only one real-valued root.

The linear form of QLEs in equation (19) ensures that the dynamics of quantum fluctuations is Gaussian
and can be completely characterized by the corresponding covariance correlation matrix (CCM) [48]. By
using the fact that different components of the input noise vector n(t) are uncorrelated, the steady-state
CCM denoted by V can be obtained through the Lyapunov equation [12, 44]

A ·V+V ·AT =−D, (22)

where D= diag[κa(2Na + 1),κa(2Na + 1),κb(2Nb + 1),κb(2Nb + 1),0,γc(2Np + 1)] is the diffusion matrix.
Solving equation (22) for V, one can evaluate the bipartite magnon–magnon entanglement by computing
the logarithmic negativity of two-mode Gaussian states defined as [12, 27, 48, 49]

EN ≡max [0,− ln(2ν̃−)] , (23)

where ν̃− is the minimum symplectic eigenvalue of a matrix, V4, being the 4× 4 reduced CCM obtained by
projecting V onto the two magnon modes. This eigenvalue can be computed as ν̃− =min eig |iΥṼ4|, for the
symplectic matrixΥ=⊕2

j=1iσy (with σy being the Pauli-y matrix) and the partial transpose Ṽ4 = P1|2V4P1|2
with P1|2 = diag(1,−1,1,1).

The magnon–magnon logarithmic negativity in the steady-state limit as a function of temperature T and
external magnetic field strength Ω is shown in figure 2 for ωc/ω = 1. Note that in the following numerical
analysis, γc is taken to be 102 Hz, and κa,b ≈ 1 GHz. As can be seen, our analysis reveals magnon–magnon
entanglement at room temperature under the phonon mode effect. The high-temperature result for
magnon–magnon entanglement is reproduced across a wide range of Hamiltonian parameters through

6
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Figure 3.Magnon–magnon entanglement EN as a function of the frequency ratio ω0/ω and external magnetic field strength
Ω∝ B0 at three temperatures T= 100 K (left), T= 200 K (middle) and T= 300 K (right). The dark blue color specifies non-zero
entanglement (entangled), all the other uncolored regions depict zero-entanglement (separable). We keep gac/gab = gbc/gab
= 0.001 and ωc/ω = 1, which are the same as the parameter values used for figure 2.

complementary plots in figures 3–5. For any given rotation frequency ω0 of the magnetic field, there always
exists a certain range of the field amplitude Ω, where magnon–magnon entanglement can be realized at high
temperature. Moreover, the entangled region including the high-temperature entanglement zone in the
Ω−T parameter space can be efficiently placed around practically feasible parameter values by controlling
the frequency ratio ω0/ω. In other words, magnon–magnon entanglement can be realized for any positive
value of Ω at a given temperature T, provided the frequency ratio ω0/ω is properly adjusted. The results
depicted in figure 2 were qualitatively replicated across a range of magnon–phonon coupling ratio
gac/gab = gbc/gab ∈ [10−5,10−3]. This shows that, regardless of the strength of the magnon–phonon
interaction in the reasonable range relative to the coupling strength between the two magnon modes, a
similar outcome as presented in figure 2 can be achieved. Thus, the strength of magnon–phonon interaction,
as treated here, does not have a detrimental effect on the phase transition of the magnon–magnon
entanglement. It is instead so that, in the steady-state limit, the phonon degrees of freedom have a key role in
establishing magnon–magnon entanglement, in the sense that in the absence of phonons, the two magnon
modes are completely disentangled. We demonstrate this by noting that the Hamiltonian in equation (11)
reduces to

Ĥab = h̄ωaâ
†â+ h̄ωbb̂

†b̂+ h̄Ω
(
â+ â†

)
+ h̄Ω

(
b̂+ b̂†

)
+ h̄g∗abâ

†b̂† + h̄gabâb̂, (24)

when the phonon mode is absent. Through the similar method as shown above, we obtain the corresponding
drift matrix

Aab =


−κa ωa −Im(gab) −Re(gab)
−ωa −κa −Re(gab) Im(gab)

−Im(gab) −Re(gab) −κb ωb

−Re(gab) Im(gab) −ωb −κb

 (25)

and numerically confirm that EabN = 0, for any choice of physical parameters of the spin Hamiltonian. We
employ the drift matrix from equation (25) to solve equation (22) for the CCM, i.e. V. Subsequently, we
determine the minimum eigenvalue ν− for evaluating for evaluating the logarithmic negativity. The
procedure is repeated for a wide range of distinct parameter values within the drift matrix described in
equation (25). In all cases, ν̃− consistently exceeds 1

2 at any temperature, indicating a complete absence of
entanglement. This indicates that the nontrivial entanglement diagram obtained in figure 2 is dissipation-
and phonon-driven.

To elaborate further on this point, in figure 3 we show how some cuts of the entangled region in figure 2
at three different temperatures move along the parameter domain of Ω upon varying the control parameter
ω0/ω. The plots indicate that for a given value of Ω, there is a narrow interval for ω0/ω where
magnon-magnon entanglement is non-zero and that this interval depends on temperature. The appearance
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Figure 4. Segments of magnon–magnon entanglement EN in figure 2 are shown by the effect of two factors, the magnon–phonon
coupling ratios, gac/gab (= gbc/gab), and the phonon–magnon frequency ratio ωc/ω. The blue area marks a range in the
gac/gab −ωc/ω parameter domain, which gives the same magnon–magnon entanglement pattern as in figure 2, all the other
uncolored regions depict zero-entanglement (separable). Although the plots correspond to the non-zero magnon–magnon
entanglement at Ω= 0.1932 THz, ω0/ω = 0.07, as well as temperatures T= 100 K (left) and T= 300 K (right), the same range
of phonon–magnon frequency ratio and magnon–phonon coupling ratio is obtained for other points of the entanglement
diagram in figure 2. The higher the temperature the narrower the range of relative parameters.

of two lines in these plots at higher values of ω0/ω and temperatures corresponds to the two peaks in
figure 2. These peaks result from the detuning frequencies of the two magnon modes, where ωa = ω+ω0

and ωb = ω−ω0. As ω0 approaches zero, causing the two magnon modes to become degenerate, the two
peaks converge and coincide at ω0 = 0, as indicated in figure 3.

Figures 2 and 3 are plotted for fixed value of the frequency ratio ωc/ω = 1 and fixed ratios gac/gab and
gbc/gab, and shows segments of entanglement in a parameter space of magnetic field strength and frequency
ratio ω0/ω. In a search for a real material that can serve as an optimal host for robustly entangled magnon
modes, it is instructive to also understand the dependence of entanglement on these material parameters.
This is shown in figures 4 and 5. One can see that, in a wide range of couplings and phonon frequencies, it is
possible to have non-zero entanglement at rather large (and even ambient) temperatures if frequency and
amplitude of the rotating magnetic field are tuned to proper values. Figure 4 demonstrates that for any given
magnon–phonon coupling gac = gbc, there always exists a narrow window of phonon frequencies, where the
same magnon–magnon entanglement as shown in the figure 2 occurs.

We further examine the effect of asymmetric magnon–phonon couplings on the magnon-magnon
entanglement region. For given ωc/ω, figure 5 illustrates a wide range of different coupling strengths
gac ̸= gbc, which allows the same entanglement phase diagram as in figure 2. Figure 5 shows that, even up to
as high temperatures as T= 300 K, for different values of coupling rates varying in a wide range, there is a
value of phonon frequency ωc/ω that guarantees non-zero magnon–magnon entanglement. Besides, it
implies that a broad family of antiferromagnetic materials are likely to have a similar magnon–magnon
entanglement diagram, as shown in figure 2.

There are numerous suitable classes of AFM compounds that can maintain the steady-state entanglement
of magnon modes within the AFM structure, even up to room temperature. Among them, NiO is a concrete
example of a crystalline AFM [50–53] with high Néel temperature of TNiO

N = 523K and large magnon
lifetime. Notably, it has been shown that the zone center phonon frequency matches the magnon frequency
at finite k frequencies∼11.3 THz and∼17.3 THz [28]. The perovskite manganites also form a promising
class of materials in this regard, with many compounds of varying chemical composition that have been
synthesized (see, e.g. [31, 32]). For these systems, upon chemical modulation, both the magnetic and lattice
properties can be tuned. This has particular relevance for finding compositions that allow for finer
adjustments of the magnon and phonon frequencies relevant for the results of the present investigation.

We end our discussion with a remark that the dissipative magnon entanglement studied here is of the
mixed-state type and is achieved in the asymptotic steady-state limit. This is different from the entanglement
observed in the pure energy eigenstates of ideal closed magnon systems studied previously in [23].

8



New J. Phys. 25 (2023) 113032 Y Liu et al

Figure 5. The range of asymmetric magnon-phonon couplings, which allows for the same magnon–magnon entanglement
pattern in figure 2, for a given phonon frequency. The contour plots correspond to the non-zero magnon–magnon entanglement
segment at Ω= 0.1932 THz, ω0/ω = 0.07 and temperature T= 300 K (T= 100 K for inset) for ωc/ω = 0.75 (yellow),
ωc/ω = 1 (pink) and ωc/ω = 1.25 (blue). The uncolored regions depict zero-entanglement (separable). Similar patterns occur
for any other point in the entangling diagram of figure 2 and any other value of ωc/ω. The higher the temperature the narrower
the range of asymmetric magnon–phonon couplings for a given ωc/ω.

5. Conclusion

We have examined bipartite magnon-magnon entanglement in a general setting of an AFMmaterial
subjected to a dissipative elastic displacement (phonon) mode, thermal noise, and an external rotating
magnetic field. We have provided evidence that it is possible to observe phonon-driven entanglement
between the magnon modes of the two sublattices even at room temperature. The high-temperature
magnon–magnon entanglement for a given material and magnon–phonon coupling, can be ensured by
tuning the external magnetic field frequency and amplitude in a physically reasonable range of scales. The
presence of a non-zero magnon–phonon coupling is necessary for maintaining entanglement between
magnons in antiferromagnets in a dissipative steady-state regime, while the strength of the coupling does not
significantly affect the existence of this entanglement. It would be interesting to examine whether AFMs can
be used as a resource for different quantum information applications, for instance quantum state transfer
[54], and to study the potential role of magnon–magnon entanglement in such processes.
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