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Defect-induced band restructuring and length scales in twisted bilayer graphene
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We investigate the effects of single, multiple, and extended defects in the form of nonmagnetic impurities and
vacancies in twisted bilayer graphene (TBG) at and away from the magic angle, using a fully atomistic model
and focusing on the behavior of the flat low-energy moiré bands. For strong impurities and vacancies in the AA
region, we find a complete removal of one of the four moiré bands, resulting in a significant depletion of the
charge density in the AA regions even at extremely low defect concentrations. We find similar results for other
defect locations, with the exception of the least coordinated sites in the AB region, where defects instead result
in a peculiar band replacement process within the moiré bands. In the vacancy limit, this process yields a band
structure misleadingly similar to the pristine case. Moreover, we show that triple-point fermions, which are the
crossing of the Dirac point by a flat band, appearing for single, periodic defects, are generally not preserved
when adding extended or multiple defects, and thus likely not experimentally relevant. We further identify two
universal length scales for defects, consisting of charge modulations on the atomic scale and on the moiré scale,
illustrating the importance of both the atomic and moiré structures for understanding TBG. We show that our
conclusions hold beyond the magic angle and for fully isolated defects. In summary, our results demonstrate
that the normal state of TBG and its moiré flat bands are extremely sensitive to both the location and strength
of nonmagnetic impurities and vacancies, which should have significant implications for any emergent ordered
state.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) has attracted considerable
attention as both a versatile tunable experimental platform
and a host of a plethora of ordered states [1–28], includ-
ing both superconductivity and correlated insulating states
[2,7,23]. Intriguingly, the wealth of ordered states in TBG is
intimately connected to its remarkable unordered normal state
electronic structure, where the Fermi velocity is suppressed
with decreasing twist angle and even vanishes at so-called
magic angles. The resulting flat dispersion has a large den-
sity of states and quenched kinetic energy that dramatically
increases the importance of interactions and favors ordered
states [29,30]. As a consequence, around the magic angle,
the ordered states of TBG depend crucially on the four spin-
degenerate, emergent, low-energy flat bands at the charge
neutrality point (CNP), the moiré bands [31–33]. Among their
distinctive properties, moiré bands have been shown to have a
topological obstruction from nonlocal symmetries that impose
a lower bound on the localization of their associated Wan-
nier orbitals [4,34]. Their unique energetics and spatial extent
across the large emergent moiré pattern naturally prompt the
question of how the moiré bands are impacted by explicitly
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local perturbations, such as atomic size lattice defects or
impurities that are always present in any material. An answer
to this question is important in itself but also as it directly
relates to the role of the moiré bands as a host of ordered states
and as a versatile experimental probe.

When it comes to atomic size defects in single-layer
graphene, vacancies have been extensively studied and known
to generate critically localized zero-energy states [35], ex-
hibiting magnetism [36,37]. Although isolated vacancies are
not thermodynamically stable due to high formation energy,
several mechanisms can still lead to their formation [38].
Focused electron beams, for example, allow for the creation
of vacancies with close to atomic precision [39]. Stone-Wales
reconstructions and double vacancy structures, on the other
hand, have lower formation energies and are therefore even
naturally ubiquitous [38]. Moreover, adatoms and substitu-
tional impurities constitute other common and well-studied
types of defects in graphene [38,40]. As such, defect studies
have become an integral part of studying graphene. Atomic-
size lattice defects have also been studied in TBG. Many of
these studies have only focused on the large-angle regime,
including both more comprehensive studies [41] and more fo-
cused studies into, for example, fluorination process [42,43],
intercalation by lithium [44], and more general charged de-
fects [45]. Other, somewhat related, works include the study
of impurity-induced Friedel oscillations [46], Raman spec-
troscopy of TBG samples with defects induced by ion beam
irradiation [47], and the study of vacancies and their migration
[48]. Moreover, vacancies in TBG have been found to gener-
ate similarly localized states as in graphene, including also
leading to Yu-Shiba-Rusinov magnetically induced subgap
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states in the superconducting phase of magic-angle TBG [49].
Studies have also considered the interplay between defects
and the pairing symmetries of the superconducting phase in
magic-angle TBG [50,51]. Finally, particularly relevant for
this paper is the finding of so-called triple point fermions
(TPFs) [52–59], characterized by a triple band crossing, and
associated valley polarization induced by single, weak, peri-
odic impurities in TBG [60].

In this paper, we go beyond previous studies by providing
a comprehensive investigation of the changes induced in the
low-energy electronic structure of TBG by single, multiple,
and extended atomic-size lattice defects. By explicitly focus-
ing on the impact low-energy electronic structure, we both
extract the inherent behavior of defects in TBG, which is
likely notably different from graphene, and form a basis for
understanding the implication of defects for emergent ordered
states. To achieve this, we study TBG both near and away
from the magic angle regime for both weak and strong im-
purity strengths and for both periodic and isolated defects. We
primarily consider two types of lattice defects: nonmagnetic
potential impurities and vacancies, which model adsorbates,
atomic replacements, and true vacancies, and therefore ef-
fectively capture a wide range of different impurities and
defects. We do so by employing fully atomistic tight-binding
calculations including all carbon atoms and establish both the
evolution of the band structure and the accompanied changes
in the charge density as a function of impurity strength.

In the case of periodic defects, we introduce one or more
defects to the moiré unit cell, the emergent unit cell of TBG,
thus preserving the translational invariance such that the band
structure is still well-defined. To access instead the effects of
isolated defects, we effectively separate the defects by using
supercells comprised of many moiré unit cells, still within
a fully atomistic approach. The analysis of the periodic and
isolated defects therefore complement each other with differ-
ent experimental relevance. While understanding the isolated
defect case is important in itself and, for example, for quasi-
particle interference studies which can probe symmetries of
ordered states [61–63], the periodic case has particular ex-
perimental and practical relevance based on contemporary
impurity deposition techniques which enable the engineer-
ing of defect patterns [64,65], as has been also recently
illustrated by the synthesis of periodic molecular arrays on
graphene with both atomic precision and tunable periodicity
[66]. Additionally, the moiré unit cell itself defines an emer-
gent periodic structure with a corresponding energy landscape
that should intrinsically favor certain defect lattices, produce
self-assembly of defects, or aid in the engineering of defect
patterns. For instance, atomic hydrogen has been shown to
preferentially adsorb following the moiré pattern produced be-
tween graphene and an Ir(111) substrate [67]. The same moiré
pattern has similarly been shown to produce regular Ir and Pt
clusters [68–70]. For TBG, ab initio methods have already
shown that atomic hydrogen preferentially absorbs with a
higher binding energy to the AA regions of the TBG moiré lat-
tice [71]. This suggests the possibility of structured patterning
also of TBG and the engineering of periodic lattices of defects.

Our results show that atomic size impurities and vacancies
have a profound and special effect on the low-energy moiré
band structure and thus directly on the properties of TBG.

This is best illustrated by defects in the AA region, where we
find a complete removal of one entire moiré band from the
low-energy band structure, even for only a single defect per
moiré unit cell. At the magic angle, this corresponds to an im-
purity concentration of only ∼0.01%, thus highlighting how
extremely sensitive the low-energy electronic structure is to
defects. This band removal results in a concomitant depletion
of the AA lattice regions, where the moiré bands are primarily
concentrated [72,73]. With any interacting many-body ground
state heavily dependent on the normal-state low-energy moiré
band structure, this defect-induced band removal will have
severe consequences for the physics of TBG. We also observe
an important dependence on the defect location. The defect-
induced band removal also occurs for defects in the domain
wall (DW) region and for the higher coordinated (HC) sites
of the AB region, while we instead find a band replacement
occurring for defects in the least coordinated sites of the AB
region. Thus, even if the degeneracy of the low-energy moiré
band structure is preserved in the last case, the properties of
the bands are still completely altered. Moreover, we establish
that the impurity strength necessary for an impurity to start
behaving as a vacancy varies substantially for different impu-
rity locations. Beyond the strong effect on the moiré bands,
we also find a localized defect state manifesting on the atomic
length scale, which we trace back to the well-established
defect state in monolayer graphene [35,37]. The presence of
this localized defect state is, however, easily obscured by the
depletion of the AA region if the defect is also in this region.
Thus, there exist two length scales for defects in TBG: the
atomic scale hosts a graphenelike defect state and the moiré
scale controls the low-energy band structure and the change of
charge density of the AA regions. Furthermore, we find that the
defect-induced triple degeneracy at the Dirac point, generating
TPFs [52–59], earlier found for single defects in TBG [60], is
fundamentally not stable, but the degeneracy is easily lifted
with the introduction of either extended or multiple defects
in the unit cell. We use degenerate perturbation theory to
attribute this sensitivity of TPFs to an assumption of rank-1
perturbations, while more complex defect configurations gen-
erally violate such an assumption.

Our results establish that the low-energy electronic struc-
ture of normal-state TBG changes drastically with the
introduction of nonmagnetic defects, changes that should be
taken into account when considering the influence of the
moiré bands on any electronic ordering achieved at low
temperatures. As we report both band structure and charge
density, our results are experimentally easily verified us-
ing, for example, angle-resolved photoemission spectroscopy
(ARPES) or scanning tunneling spectroscopy and transport
measurements, and they can also be directly extended to
quasiparticle interference experiments. Our results can also
be straightforwardly used to engineer altered band structures,
including changing the number of moiré bands, even com-
pletely removing all moiré bands, or introducing flat bands at
the Dirac point, and thereby possibly generating very different
electronic orders at low temperatures.

This paper is organized in the following way. In Sec. II,
we explain how we model TBG and its defects, including the
observables used to examine the resulting electronic structure.
Our results are presented in Sec. III. In Sec. III A, we show
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FIG. 1. Charge density and band structure of pristine magic-
angle TBG. (a) Charge density of the moiré bands of TBG, nm(x),
with contributions from both layers shown. The AA, AB, and DW
regions of the moiré unit cell are schematically highlighted and the
moiré length Lm is marked. (b) Low-energy band structure of TBG,
along high-symmetry points: K , �, M. Horizontal dashed purple
lines mark the moiré bandwidth, W . Moiré, conduction, and valence
bands are labeled by mi, c and v, respectively. Here θ ≈ 1.2◦ and
we use a 12 × 12 k-point grid to compute (a).

that the electronic structure of magic-angle TBG is generally
extremely sensitive to the presence of periodic defects. We
then classify the defect locations into two distinct cases in
Sec. III B. In Sec. III C, we complement earlier results by
showing how the TPFs of TBG are broken by most realistic
defects. In Sec. III D, we consider isolated defects, which
allows us to identify two distinct length scales of defect behav-
ior. We subsequently show how this behavior is not restricted
to the magic angle and hence showcases universal physics of
TBG. Finally, in Sec. IV we draw our conclusions and propose
ways in which our results could be tested experimentally. We
also suggest implications of our paper and pose questions for
future investigation.

II. MODEL AND METHOD

TBG consists of two sheets of graphene stacked and ro-
tated with respect to one another by a twist angle θ . As a
consequence, the lattice is modulated by an emerging length
scale, creating a moiré pattern. For small twist angles and
if the rotation axis goes through a graphene lattice site in
both layers, then the relative alignment between the layers
around this site remains, locally and approximately, as AA
layer stacking. Away from this site, the alignment transforms
into AB or BA stacking, depending on spatial direction. In
between these directions, there is a transition region forming
a DW, where the stacking does not belong to either of these
classifications. These regions are schematically depicted in
Fig. 1(a) where we plot one moiré unit cell. Note that because
of periodic boundary conditions, the four corners in Fig. 1(a)
are connected and thus the AA region is split into the four
corners of the moiré unit cell. The moiré unit cell forms

a triangular lattice with lattice constant Lm = a/(2 sin(θ/2))
[74], also called the moiré length, where a is the graphene
lattice constant and θ is the twist angle. This lattice can be
used to study the infinite system with atomic resolution, as-
suming appropriate commensuration conditions [74]. We do
this through a fully atomistic tight-binding model given by
the Hamiltonian [75,76]

H0(k) =
∑

i, j∈M
ti j (k)c†

ikc jk, (1)

where ti j are hopping matrix elements under Bloch boundary
conditions and the sum is taken over the sites of the moiré
unit cell, M. Near the magic angle, θm ≈ 1.1◦, this amounts
to considering the order of 104 individual atoms. The operator
c†

ik creates an electron on a site i of the moiré unit cell. The
layer, sublattice, and unit cell position of such a site are given
by li, si, and ρi, respectively. With δli as the vector connect-
ing A and B sites of layer li and d0 = 3.35Å the interlayer
distance, the site positions are given by

ri = ρi + δsi,Bδli + δli,1d0ẑ, (2)

where δa,b is the Kronecker delta. We thus opt to use a rigid
lattice model, ignoring lattice relaxation effects. In terms of
lattice effects, this relaxation has been shown to cause the
AA region to shrink, while in terms of the band structure it
mainly rescales the magic angle and increases the gap between
the moiré and the remote, conduction, and valence bands
[77–79]. But, because the AA area still remains a significant
portion of the unit cell and, as we show, our main results are
independent of twist angle, we do not expect lattice relaxation
to strongly impact the effects of defects in TBG. Moreover,
our implementation of the band structure, see below, achieves
a finite gap isolating the moiré bands, which is within experi-
mentally measured bounds at the magic angle [33], leading to
a quantitatively correct capturing of the pristine moiré bands.

Using the above-stated position vectors, the hopping ele-
ments of Eq. (1) can be explicitly calculated. For intralayer
hopping, we only include next-neighbor processes with ti j

equal to the graphene hopping tπ . This is an approximation
made to preserve the sparsity of the Hamiltonian matrix for
computational efficiently. The result, compared to the full
hopping model, is a rescaling of the twist angle, which we can
simply compensate for to still achieve the magic angle, and
an enhanced band gap isolating the moiré bands at the magic
angle, which is beneficial when ignoring lattice relaxation as
stated above. For the interlayer elements, we use the Slater-
Koster form [75,80]

ti j (k) = −
∑

R

eiR·k[tπe(ac−ri j )/λ(1 − (r̂i j · ẑ)2)

+ tσ e(d0−ri j )/λ(r̂i j · ẑ)2], (3)

where ri j = ri − r j − R is the displacement between the
carbon sites i and j of unit cells connected by the lattice
vector R of the moiré lattice. The sum over the lattice vec-
tors R is important for sites near the edge of the unit cell,
where the hopping occurs between different unit cells. The
parameters ac = a/

√
3 is the intralayer carbon to carbon dis-

tance. Other parameters are fixed according to the electronic
structure of single and AB-stacked bilayer graphene [75], with
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tπ = 2.7 eV, out-of-plane hopping amplitude tσ = 0.48 eV
and overlap decay length λ = 0.184ac, which was shown to
reproduce well the pristine band structure of TBG [27]. Be-
cause of the exponential form of the Slater-Koster terms, they
become negligible for distant sites and we introduce a cutoff
for d > 6a to preserve the sparsity of the Hamiltonian matrix,
with no notable impact on the results. We also remark here
that because there are no spin active terms in the problem,
we consider spinless fermions throughout the whole paper.
Hence, all observables can be thought of as a single spin
species and a multiplicative factor of 2 leads to the values for
the physical, spinful electrons.

From Eq. (1), we obtain the energy spectrum and eigen-
vectors of the system by diagonalization of the sparse
Hamiltonian matrix using the eigenvalue solver PRIMME
[81], focusing on the relevant energy regions near the CNP.
The CNP, or half filling, of the pristine system lies at the same
energy as the Dirac point. The low-energy band structure is
shown in Fig. 1(b) at a twist angle θ ≈ 1.2◦, approximat-
ing the magic angle for our Hamiltonian. The four central
low-energy bands are the so-called moiré bands, separated
from the valence and conduction bands by a finite band gap
and also with completely flat regions in the Brillouin zone
at the magic angle [31,32,74,82]. Most of our calculations
are done for θ ≈ 1.2◦, modeling the magic angle regime,
including the important finite band gap and flat-band regions.
More precisely, for the magic angle calculations, we use the
parameters (p, q) = (1, 55) in the commensuration condition
cos(θ ) = (3q2 − p2)/(3q2 + p2) [74], such that the moiré unit
cell contains 9076 atoms and the moiré length is Lm ≈ 47.6a.
However, as we later show, our findings hold for a much
wider range of angles. We label the moiré bands from top
to bottom as m1, m2, m3, and m4, and label the conduction
and valence bands as c and v, respectively. The energy range
spanned by the moiré bands, from E0 to E0 + W , where W is
the moiré bandwidth, is from here on referred to as the moiré
energy range, Em. The boundaries of this range are outlined by
horizontal dashed purple lines in Fig. 1(b), and in all later band
structure plots, to create an explicit reference to the pristine
case. By integrating the local density of states (LDOS) over
the moiré energy range, we obtain the charge density of the
moiré bands,

nm(x) = e
∫ E0+W

E0

LDOS(x, ε)dε

= e

Nk

∑
En,k∈Em

|ψn,k(x)|2, (4)

where e is the electron charge, Nk a normalization factor
equal to the number of k points sampled, and ψn,k are the
eigenstates with energies En,k. In each case, we choose a grid
density for reciprocal space sampling such that we observe a
convergence of the main features in the charge densities. We
show the moiré charge density for pristine TBG at θ ≈ 1.2◦
in Fig. 1(a), where we see clearly that the moiré bands are
primarily localized in the AA regions.

With the pristine tight-binding model established above,
we now introduce defects into the lattice. Specifically, the
defects we consider are nonmagnetic potential impurities
and vacancies. To introduce potential impurities we define

a perturbing potential v which enters the Hamiltonian as an
on-site energy term on the affected sites

HI (k) =
∑
i∈M

vic
†
ikcik. (5)

For most of this paper, we focus on the simplest type of
perturbing potential, which is that of a perfectly localized
impurity with vi = EIδi,d , where EI is the impurity strength
and d is the impurity site. In Sec. III C, we additionally
consider v having a Gaussian profile around a central site to
investigate extended impurities. A vacancy can be introduced
on site i by letting vi → ∞, such that this site effectively
decouples from the rest of the lattice. For numerical stability,
however, we use an equivalent approach of simply restricting
the sum of Eq. (1) such that no hopping is allowed into or out
of the vacancy sites V :

HV (k) =
∑

i, j /∈V
ti j (k)c†

ikc jk. (6)

For a perturbing potential v or a set of vacancies V ,
we obtain the energy spectrum of the total Hamiltonian
H̃ (k) = HV (k) + HI (k) near the CNP, where the moiré bands
are located. Note that in the absence of vacancies, HV simply
reduces to the pristine Hamiltonian H0. These perturbing
terms are effective models of both actual vacancies and
chemisorbed adatoms in the case of HV and physisorbed
adatoms in the case of HI . By allowing the potential vi to have
a finite spatial extent in HI and thereby creating extended
impurities, we can even model larger physisorbed adatoms or
even small molecules.

Because the creation and annihilation operators of Eq. (1)
are of Bloch electrons, we effectively model a periodic lattice
of defects, repeated in each moiré unit cell when solving
H̃ (k), even though the defect concentration is only 1 in 104 for
a single defect per unit moiré unit cell. We are also interested
in the case of completely isolated defects. To study these
within an atomistic model, we turn to the use of supercells.
In this approach, we enlarge the unit cell of our lattice by
considering a supercell consisting of an m × n array of moiré
unit cells, with only a single defect per such supercell. The pe-
riodicity of the defect is then that of the supercell and thus by
choosing large enough supercells we can completely isolate
the Bloch copies of the defects from one another, enabling us
to study the isolated defect limit.

III. RESULTS

To perform an analysis of the effects that defects have
on the low-energy electronic structure of TBG, we begin
with the most simple type of defect: a single-site impurity
at site d , with the impurity potential given by vi = EIδ,id .
In Secs. III A and III B, we explore both the influence of
the impurity strength, including the vacancy limit, and the
defect location. We choose the defects to always be in the top
layer since for single defects both layers are equivalent due
to symmetry. Because of the sheer number of possible defect
sites, we choose representative sites in the AA, AB, and DW
regions as candidates for the defect location. For the more
computationally intensive calculations of the charge density,
we focus on the vacancy limit and use the band-structure
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FIG. 2. Effects on the low-energy spectrum of magic-angle TBG
from a defect in the AA region. (a)–(d) Band structure for potential
impurities with strengths of 0.1t , 1t , 6t , and a vacancy, respectively.
Around 1t , the moiré band m1 leaves the moiré energy range, while
the vacancy limit for the potential impurity is achieved around 6t .
Red arrows in (d) highlight the TPF. Here θ ≈ 1.2◦.

results to guide our interpretations. Then, in Sec. III C we
turn our attention to putative TPFs at the Dirac point created
by defects, and also extend our study to multiple defects per
unit cell as well as defects with extended spread. Finally, in
Sec. III D we study the length scale behavior of the effects
of defects. In Secs. III A–III C, we stay approximately at the
magic angle using θ ≈ 1.2, while in Sec. III D we study the
behavior away from this regime.

A. Extreme electronic structure
sensitivity to atomic size lattice defects

Starting with a single defect per moiré unit cell, we find
that for most defect locations the overall effect of an impurity
or vacancy on the band structure is similar. The main features
are most easily seen for the case of a defect in the AA region,
illustrated in Fig. 2. For an impurity strength up to EI = 0.1t ,
see Fig. 2(a), we find that the band structure changes very
little even at the small energy scale of the moiré energy range.
The most significant change seen is a breaking of the exact
fourfold degeneracy of the Dirac point at K . However, as EI

increases, the topmost of the four moiré bands, m1, detaches
from the others, except at the � point, and lifts in energy.
This band lifting is significant already at EI = 1t , see Fig. 2(b)
where the m1 band has already been removed almost entirely
from the moiré energy range. This result shows how extremely
sensitive the low-energy spectrum of TBG is with respect
to defects, especially since the defect concentration here is
only of the order of ∼0.01%. We note that this band removal
behavior can be captured by band structure measurements,
such as ARPES, or measurements of the density of states, such
as STM or transport measurements, which would show a high
peak from the relatively flat band m1 at a much higher energy
than the peaks due to the moiré bands in the pristine system.
We also briefly note that m1 never fully disconnects from the

FIG. 3. Change in moiré charge density 
nm from pristine
magic-angle TBG due to a vacancy. (a) Vacancy in the AA region,
showing a strong charge depletion of the AA region, due to the
removal of one of the moiré bands. (b) Vacancy in an AB-LC site
(defined in main text), where the main change in charge density is
instead the graphenelike localized defect state. Pink circles mark the
vacancy site and k points were sampled in a 12 × 12 grid. In each
panel, the contributions from both layers are shown. Here θ ≈ 1.2◦.

other moiré bands at �, while one of the valence bands v lifts
in energy just enough to touch m4, closing the energy gap also
from below and allowing m3 to detach from m4 at this point in
the process. These degeneracies are discussed in more detail
in Sec. III B.

By further increasing the impurity strength, we reach
around EI = 6t , a behavior asymptotic in impurity strength,
see Figs. 2(c) and 2(d) for a single vacancy. The resulting band
structure contains three bands (m2, m3, m4) within the moiré
energy range, with the missing band (m1) having acquired
a parabolic character and joined the conduction bands. This
results in a three-band moiré band structure that is not gapped
either from below or above. However, because m1 and the
highest lying valence band have both a very strong curvature,
this band touching still results in a very small density of states
when compared to the one from the leftover moiré bands.
Beyond the moiré bands only containing three bands, we also
find that the middle band (originally m3) becomes much flatter
compared to pristine TBG and lies essentially at the CNP.
This directly exemplifies the possibility to engineer unique
flat band structures in magic-angle TBG by using impurities
or vacancies.

In Fig. 3(a), we show the accompanying change in the
moiré charge density, 
nm, induced by the same vacancy
as in Fig. 2(d). Each site in the unit cell is represented by
colored dots, with the intensity of the color representing the
magnitude of 
nm. Blue (red) represents a decrease (increase)
in charge density due to the vacancy, with the vacancy site
encircled in magenta. Here the contributions from each layer
are superimposed, with a finite transparency of the dots
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allowing for better visualization since the dots representing
different sites often overlap, with the sites with greater
magnitude in 
nm brought to the foreground. We see that a
vacancy in the AA region induces a strong depletion of the
charge density in the AA region of the unit cell. This might at
first seem counterintuitive with respect to what is known about
vacancies in graphene, where a vacancy is known to induce
a zero-energy state centered on the vacancy, which causes
a positive and localized change in charge density [35,37].
Instead, the AA depletion observed here has to be understood
from the band structure of Fig. 2(d). Because one of the moiré
bands, m1, has been removed from the moiré energy range,
and because these bands are localized in the AA regions, see
Fig. 1(a), the vacancy must cause a depletion of states over
the entire AA region, not just locally around the vacancy.
A similar effect occurs for impurities with strengths above
1t , since m1 is already then removed from the moiré energy
range, see Fig. 2(b). This extended effect of just single-site
defects in TBG is in sharp contrast with how the same defect
behaves in monolayer graphene, where the defect-induced
state affects a much smaller region, and only locally around
the defect. The connection between the depleted AA regions
and the lifting of m1 can be further verified by integrating 
nm

over the whole unit cell, where we find that there is 1e less
charge in the integrated energy range, exactly corresponding
to the removed moiré band. This overall charge depletion in
the AA region easily overshadows the monolayer graphene
defect state in Fig. 3(a), which we discuss in Sec. III B.

B. Role of defect location

The results in Sec. III A were for a particular choice of a
defect site in the AA region. Now we also explore how the
band structure and LDOS change for different defect loca-
tions. First, we find that different sites in each region within
the same sublattice and in the same layer behave similarly
to each other. Moreover, we find that the AA and DW re-
gions show a sublattice symmetry with respect to the defect
site, such that single defects in different sublattices lead to
approximately the same band structure and charge density,
assuming the sublattice components of the charge density are
also switched: (nm)A ↔ (nm)B. In all these cases, we observe
the removal of the m1 band from the moiré energy range and
the consequent depletion of the DOS in the AA regions, as
well as a migration of the m3 band towards the CNP, where it
becomes very flat in the vacancy limit. We note, however, that
a larger impurity strength is needed to observe band-structure
changes for defects outside the AA region, as expected since
the moiré bands have much smaller presence outside the AA
region. In the DW case, we also observe that a valence band v

becomes flatter and rises in energy and, for some defect sites,
even partially enters the moiré energy range. In this case, the
m1 band detaches at �, leading to an energy gap above the
moiré bands.

We next point out an observation we did not comment on
in the last subsection. In the charge density for AA defects,
we observe that the charge depletion of the AA region is
reduced for sites immediately surrounding the defect that sit
on the opposite sublattice to the defect site. This is a local
effect, which we attribute to an induced, localized defect state

akin to the one of monolayer graphene which appears on
the sublattice opposite to the defect [35,37]. In TBG, this
state ends up partially canceling the change in charge density
due to the removal of the m1 band from the moiré energy
range. Technically, for this defect location and at the magic
angle, we cannot isolate the localized graphenelike defect
behavior from the moiré depletion because the two effects are
occurring in the same spatial location. However, this localized
graphenelike defect state can be directly observed when the
defect is in regions other than the AA region. We find that
it possesses a C3 symmetry and decays almost within a few
atomic sites, just as in monolayer graphene [35,37]. For a
DW defect, in addition to the important AA region depletion
and the graphenelike localized defect state, we also observe a
slight depletion of states within the DW region itself, but it is
contained to sites within the same sublattice as the defect site.
For more details, refer to the Appendix.

Moving on to single-site defects in the AB region, we
observe a behavior very similar to that of a DW defect for
half the sites of the AB region. More precisely, these are sites
that have a neighboring site in the same position in the other
layer. For this reason, we call these sites HC sites, while the
other sites, which lie at the center of the carbon rings of the
other layer, we refer to as the lower-coordinated (LC) sites.
While a vacancy in an AB-HC site leads to a very clear charge
depletion of the AA region, very similar to the behavior so
far discussed (see Appendix for details), the introduction of a
vacancy in an AB-LC site leads to a drastically different charge
density, as illustrated in Fig. 3(b). In this case, we find a much
smaller 
nm in the AA regions. Instead, the most pronounced
feature is the graphenelike localized defect state with its C3

rotational symmetry. A calculation of the band structure in this
case yields a moiré structure with four bands, which explains
why the charge density is similar to the pristine case.

At first, it might look as if TBG is thus insensitive to
a vacancy on an AB-LC site, given the largely unmodified
charge density in AA regions and the same number of bands,
but this is not true. This precarious pitfall is revealed by the
more careful analysis in Fig. 4, where we interpolate between
the pristine case and the vacancy limit by tuning the impurity
strength EI . In Fig. 4(a), we show that even at the large value
of EI = 20t very little change from the pristine band structure
is present among the moiré bands. The main difference is
the attachment of a valence band v to the moiré bands at �,
closing the band gap. By further increasing EI up to 40t , see
Fig. 4(b), we find that this valence band v starts a process of
inverting its curvature. In this process, v is initially outside of
the moiré energy range, except at �, but as EI increases, the
energy of v, especially around the M point, is brought into the
moiré energy range, see Fig. 4(c). Then, finally, with further
increasing EI , v becomes less dispersive and completely joins
the moiré bands, see Figs. 4(d) and 4(e). At the same time,
we observe the detaching and removal of the m1 band from
the moiré energy range. Thus, the similarity of the vacancy
band structure to the pristine band structure is deceiving and
the system has, in fact, undergone a band replacement process
in between: one band joins from the valence bands, while one
of the pristine moiré bands is lost to the conduction band in
the vacancy limit. We notice here that the impurity strength
necessary to drive this band replacement process is quite large,
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FIG. 4. Band-replacement process induced by a single-site im-
purity in an AB-LC site. (a)–(e) Band structure for impurities with
strengths 20t , 40t , 60t , 100t , and a vacancy, respectively. The va-
cancy limit is achieved for an impurity strength of around 500t .
Although initial and final band structures and their corresponding
density of states are very similar, they do not contain the same bands,
but a band replacement process takes place for increasing EI , where
the valence band v enters the moiré energy range as the m1 band is
removed. Here θ ≈ 1.2◦.

with the vacancy limit only being reached at around EI =
500t , to be compared to defects in the AA region, where the
vacancy limit is achieved already around EI = 6t . We further
point out that the AB-LC sites correspond to half of the sites
in the AB regions, which gives experimental relevance to these
results.

Another interesting observation to be made about the role
of the defect location is what happens to the degeneracies of
the moiré bands at the � point. In the pristine system, the m1

(m3) and m2 (m4) bands are degenerate along the path from K
to � (see Fig. 1). As defects are introduced, the degeneracy
along this path is lifted as m1 rises in energy. However, in
the cases of AA and AB-LC defects shown in Figs. 2 and
4, the degeneracy remains at the � point for all impurity
strengths. This is because the wave functions of the moiré
states at � have nodes at these atomic sites. These nodes
must be present because these states each constitute nontrivial
irreducible representations (IRREPs) of the C3 symmetries of
the lattice with rotation axes at the center of the AA, AB, or BA
regions. These IRREPs have eigenvalues exp(±i2π/3) for the
generator of C3 and show a phase winding around the rotation
axis. This leaves the phase at the central site undetermined
and hence the wave-function amplitude must exactly vanish
there. As a consequence, the moiré states at � are completely
insensitive to perturbations added to these lattice sites, so
the observed degeneracy is in these cases protected by the
lattice symmetry. As the defect site is moved away from the
center site of these regions, the �-point degeneracy is lifted,
as illustrated by the cases of defects in DW and AB-HC sites
(see Appendix. We also note that in the AB-LC case of Fig. 4,
the m3 and m4 bands separate at �, but only after the latter
is joined by a valence band such that a twofold degeneracy is

always present, although after this process the degeneracy is
between m4 and v.

Finally, we also point out that pristine TBG has an
approximate valley symmetry, such that its bands can be
classified according to a valley quantum number. Atomic
size defects, however, lead, in general, to intervalley mixing,
such that valley is no longer a good quantum number. In
Ref. [60], the authors have shown that defects in different
positions couple to the valleys in different ways. Defects
in the AB and BA regions preserve valley polarization such
that the TPF structure shows an intact Dirac cone from
one valley and a split Dirac cone from the other valley.
On the other hand, defects in the AA and DW regions lead
to valley-unpolarized states, which can be understood as a
consequence of intervalley mixing due to the defect. Due to
these extensive intervalley processes, we refrain from further
discussions regarding the valley quantum number.

C. Destroying triple point fermions

For all the defects we considered so far, a triple degeneracy
of the moiré bands exists at the Dirac points K, K′, see, e.g.,
red arrows in Fig. 2(d). This gives rise to a TPF [52–60],
since there is a Dirac spectrum crossed by a flat band, giving
rise to a triply degenerate Dirac point. This is in contrast to
the pristine TBG case, where, because of the valley degree
of freedom, there are two degenerate Dirac cones at K, K′,
leading to a fourfold degeneracy of the Dirac point. Hence, the
TPF scenario represents a reduction of the degeneracy of the
Dirac point. The presence of TPFs in TBG has already been
discussed in Ref. [60], where their robustness with respect
to the impurity strength has been highlighted. Here we extend
these results by showing that this robustness actually relies on
the assumption of a single-site perturbing potential. In fact,
we show that the TPF is split upon the introduction of either
multiple defects or an extended impurity.

Let us begin by investigating the threefold degeneracy in
more detail, focusing on the spectrum near K, as a similar ar-
gument holds for the other inequivalent Brillouin zone corner
K′. In the pristine case, there is an exact fourfold degeneracy
at this point due to Dirac cones from the two so-called val-
leys of TBG, which originate from the two layers. Moreover,
because the conduction and valence bands are strongly dis-
persive in comparison with the moiré bands, there is a sizable
gap 
EK in this region of reciprocal space, much larger than
the energy splitting of the moiré bands Em1 (k) − Em4 (k) =
2vF |k − K| near K, where k is a lattice wave vector near K
and vF is the Fermi velocity corresponding to the slope of the
Dirac cones of TBG. Because of this, it is possible to treat
the effect of a weak perturbation on the moiré bands around
K by projecting it into the moiré band subspace. Particularly
at the Dirac point, k = K, because of its fourfold degeneracy,
we need to use degenerate perturbation theory.

With the above considerations, the energies of the moiré
bands can be approximated by projecting the perturbed single
particle Hamiltonian h = h0 + hI into the moiré subspace,
where h0 and hI are the single-particle versions of Eqs. (1) and
(5) evaluated at K. Letting Pm ≡ ∑

i |mi〉〈mi| be the projector
into this subspace, where |mi〉 are the degenerate eigenstates
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of the moiré bands at K, the projected Hamiltonian becomes

h̃ = PmhPm

= Pmh0Pm + PmhI Pm

= EKPm + h̃I , (7)

where we use the fact that the pristine moiré bands are four-
fold degenerate at the Dirac point, with energy EK, and further
define h̃I ≡ PmhI Pm. We next recall that a rank-1 operator
O has only one nonzero eigenvalue ε and can be written as
an outer product O = ε|ε〉〈ε|. Using this, we note that for a
single-site impurity at site x0, hI = EI |x0〉〈x0|, both hI and h̃I

are rank-1 operators. The proof for hI follows directly from its
definition. For h̃I , we have

h̃I = EI

∑
i j

|mi〉〈mi|x0〉〈x0|mj〉〈mj |

= EI

∑
i j

ψ∗
mi

(x0)ψmj (x0)|mi〉〈mj |

= EI

(∑
i

ψ∗
mi

(x0)|mi〉
)⎛

⎝∑
j

ψmj (x0)〈mj |
⎞
⎠

= EI |EI〉〈EI |, (8)

where ψmi (x) = 〈x|ψmi〉 is the wave function of the moiré
band mi at K and in the last line we simply defined |EI〉 ≡∑

i ψ
∗
mi

(x0)|mi〉. Thus the operator h̃I has a single nonzero
eigenvalue EI and is a rank-1 operator. As a consequence, h̃
has three degenerate eigenvalues EK and another eigenvalue
EK + EI . This means that a single-site impurity reduces the
degeneracy at the Dirac point from fourfold to threefold, lead-
ing to the formation of a TPF, exactly as earlier predicted [60].

Next, let us consider two distinct, but still weak and
perfectly localized impurities, h(1)

I and h(2)
I . What we are inter-

ested in is whether the TPF found above remains for the total
perturbation h(t )

I = h(1)
I + h(2)

I . To do this, we again investigate
the rank of the projected total perturbation, h̃(t )

I = Pmh(t )
I Pm.

We can quickly verify that the unprojected perturbation h(t )
I

must be of a higher rank. One way to do this is to tentatively
assume that h̃(t )

I is rank-1. This means that it can be expanded
as an outer product. By definition, this requires that there exist
αi such that

h̃(t )
I =

∑
i, j

|mi〉〈mi|
(
h(1)

I + h(2)
I

)|mj〉〈mj |

=
∑
i, j

[(
h(1)

I

)
i j + (

h(2)
I

)
i j

]|mi〉〈mj |

=
∑
i, j

α∗
i α j |mi〉〈mj |, (9)

where hi j = 〈mi|h|mj〉 are the matrix elements of an operator
h in the basis of the moiré bands |mj〉 and in the last line we
used the definition of an outer product. For this last equality
to hold, h̃(t )

I must be separable, that is, there must exist αi such
that

E (1)
I ψ∗

mi
(x1)ψmj (x1) + E (2)

I ψ∗
mi

(x2)ψmj (x2) = α∗
i α j . (10)

FIG. 5. Removal of the TPF of TBG. (a), (b) Two vacancies per
unit cell in the AA (a) and DW (b) regions. (c), (d) Extended Gaussian
impurity centered in the DW (c) and AA (d) regions. Gaussian spread
of σ = 0.8a (c) and σ = 0.5a (d) with a cutoff of 2.5a. In all cases
(a)–(d), the TPF is split. Here θ ≈ 1.2◦.

This constraint is, however, too restrictive and is, in the gen-
eral case, not satisfied by any αi. Thus, in general, h(t )

I cannot
be rank-1 and thus the introduction of a second weak impurity
in the unit cell leads to a further change in the degree of
degeneracy at the Dirac point and a subsequent splitting of the
TPF. Moreover, although the argument above does not hold
for arbitrarily large impurity strengths EI , since we assumed
EI � 
EK at the start, we verify through extensive numerical
calculations that the conclusion that h(t )

I is not rank-1 and
thus that multiple defects further reduce the degeneracy of
the Dirac point still holds even in the vacancy limit. As an
example, in Fig. 5(a) we show the band structure for the
simple case of two nearby vacancies in the AA region at sites
of opposite sublattices in the same layer. In this case, we
observe the removal of another moiré band from the moiré
energy range as compared to the single vacancy case. This
clearly splits the TPF by lifting the needed degeneracy, as
there are now only two bands degenerate at K. We verify that
this splitting occurs for many other defect locations, including
for vacancies in different parts of the unit cell, such as one
in the AA region and the other in the DW region. The only
exception we find so far, where the TPF survives the inclusion
of more than one single-site impurity, is tied to the LC sites
in the AB region, AB-LC, where the band replacement process
discussed in see Sec. III B can in fact restore the TPF.

Figure 5(a) also illustrates another interesting feature,
namely, that the effect of introducing two vacancies in the
AA region is an additive process of the effects of the single
vacancies, in the sense that each vacancy is responsible for
removing a single band from the moiré energy range and
thus, with two vacancies, only two moiré bands are left. In
exploring the possible combinations of two vacancies, we
find that this is a common pattern. However, we find that it
is not quite universal. For example, the combination of two
vacancies in the DW region results in four bands in the moiré
energy range, as shown in Fig. 5(b). The same result is also
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FIG. 6. Change in moiré charge density 
nm for a single DW
vacancy in a 3 × 3 supercell. Depletion of the AA regions neighbor-
ing the vacancy. Pink circle marks the vacancy location and green
lines mark the individual moiré unit cells. The contributions from
both layers are shown. Here 12 × 12 k-point sampling was used and
θ ≈ 1.2◦.

obtained when having two vacancies in the AB region or one
in each type of the HC/LC site (not shown). Still, in all of
these cases, the TPF is split. This nonadditivity of the effects
of defects leads us to investigate the range of influence of each
defect later in Sec. III D.

To further corroborate that the origin of TPFs in TBG
is tied to a rank-1 perturbation, we next consider the case
of a single but extended impurity. We model this by giving
the impurity potential a Gaussian profile with a spread of σ

centered around the impurity site. We here set the strength of
the Gaussian profile such that the perturbing potential is 1t
in the central site. This can be regarded as a simple model
for an impurity that affects multiple sites around its binding
center, realistic for molecule adsorbates or for an adatom
absorbed in the honeycomb lattice hollow site. For simplicity,
we cut off the Gaussian at a distance of 2.5a away from
the binding center, where a is the graphene lattice constant,
which we verify does not influence the results. In Fig. 5(c),
we show the band structure resulting from such Gaussian
impurity perturbation with the impurity center located in the
DW region, using σ = 0.8a. We see that four bands remain
mostly in the moiré energy range but, notably, the triple band
crossing at K is clearly no longer present, meaning the TPF
is split. We also verify that the splitting of the TPF holds for
other impurity locations. In fact, when the extended impurity
is centered in the AA region, we find that all degeneracies of
the moiré bands at K are lifted, see Fig. 5(d). We also observe
in this case a lifting of all four moiré bands, here illustrated
for σ = 0.5a. For a larger spread σ = 0.8a, we find an even
larger depletion as the moiré bands, which are lifted further
in energy such that they leave behind only strongly dispersing
states near � (not shown). This is a fascinating result showing
how the entire moiré band structure can be destroyed by a
single weak extended impurity. Taken together, our results in
this subsection show that if the defects are not simple rank-1
perturbations, but, instead, for example, multiple defects or
extended impurities, then the TPF at K and K′ is generally

split. Based on these results, we do not expect TPF to be likely
observed in TBG.

D. Isolated defects and length scales

In the previous subsections, we explored the effects of a
defect lattice with same periodicity as the pristine system, a
model which can be implemented in practice by defect engi-
neering. We now turn to the limit of an isolated defect. In the
fully atomistic framework we use, this amounts to reducing
the periodicity of the defect lattice such that the distance
between the different Bloch copies of the same defect become
large enough as to not influence each other. We explore dif-
ferent supercell sizes and defect locations, with the constraint
that all defects are within a single moiré unit cell inside the
supercell, which we refer to as the defective moiré unit cell. In
all defect configurations we explore, we find that an asymp-
totic behavior is reached in a specific spatial direction when
the two defects are separated by three or more moiré unit cells
along that particular direction. This means that for 3 × 3 or
larger supercells, single defects are effectively isolated from
each other.

We illustrate the result for a single isolated vacancy in
Fig. 6, where we plot the change in the moiré charge density

nm for a 3 × 3 supercell with a vacancy in a DW region. As a
guide to the eye, we mark the boundaries between the individ-
ual moiré unit cells outlined by green lines. In the defective
moiré unit cell (bottom left), we observe a similar charge
density redistribution as in the 1 × 1 supercell case discussed
in Sec. III B, with a clear depletion in the AA regions closest
to the vacancy. This can again be understood as one of the
moiré bands associated with this unit cell leaving the moiré
energy range. However, for a 3 × 3 supercell, the band folding
caused by the reduced periodicity results in (3 × 3) × 4 = 36
bands in the moiré energy range in the pristine case. Thus,
out of these 36 bands, only one exits in this energy range
when the vacancy is introduced, causing a depletion of 1e
distributed through the AA region of the defective moiré unit
cell. Away from the defective moiré unit cell, we observe
that the charge density quickly recovers to its pristine value,
even in the AA regions. We verify that a similar behavior is
present also for larger supercells, which shows that we use
a system size capable of modeling the asymptotic isolated
defect limit.

We find that the separation required between vacancies for
reaching the isolated defect limit is reduced when the vacancy
is in the AA region. In this case, we find that even supercells
as small as 2 × 2 give results converged to the isolated defect
limit. We illustrate this in Figs. 7(a) and 7(b), where we plot
the contribution to 
nm on the sites of the top layer in sub-
lattices A and B, respectively, with the vacancy being on an A
sublattice site. Note how only the AA region with the vacancy
has an altered charge density and thus the isolated defect
limit is achieved already for 2 × 2 supercells. Moreover, it
is clear that the charge density depletion is primarily in the
same sublattice as the vacancy. For the vacancy-free layer, we
find a similar but smaller change in charge density in the AA
regions. Taken together, Figs. 6, 7(a), and 7(b) illustrate that a
single vacancy generally influences the moiré pattern up to a
distance of the moiré length Lm.
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FIG. 7. Two length scales associated with defects in TBG. (a),
(b) Change in moiré charge density 
nm for a single AA vacancy
in the top layer in sublattice A at θ ≈ 1.2◦, i.e., near the magic
angle, for the A (a) and B (b) sublattice of the top layer. Green lines
mark the individual moiré unit cells. (c), (d) Change in moiré charge
density 
nm along the line cuts in (a), (b) marked by the yellow line,
for different twist angles, for the A (c) and B (d) sublattices of the
top layer. The x axis is scaled with respect to the moiré length Lm

(c) and atomic length a (d), respectively. Here 6 × 6 k-point sampling
was used.

To further corroborate that the vacancies affect a region
with radius of the order of Lm, we vary this length by changing
the twist angle away from the magic angle, up to θ ≈ 6◦.
We then study 
nm along a line cut passing through a va-
cancy using a 3 × 3 supercell, depicted by the yellow lines
in Figs. 7(a) and 7(b). This way, the vacancy concentration
per unit area changes with twist angle, but the vacancy con-
centration per unit cell stays the same and can easily be
compared. Also, the vacancies always stay isolated from each
other and thus we stay within the isolated defect limit. We
particularly choose a line-cut direction that goes through a
nearest-neighbor site of the vacancy in the vacancy layer to
also probe the graphenelike localized defect state that exists in
this layer. The depletion of the AA regions is, however, visible
for any line-cut direction. We further choose a vacancy loca-
tion in the centermost site of the AA region because this site is
always present for all twist angles. This site is in sublattice A,
while the layer index does not matter.

In Fig. 7(c), we plot the change in charge density for the
A sublattice sites along the line cut, where we know that the
graphenelike localized defect state does not contribute be-
cause it is primarily located in the opposite sublattice [35,37].
Here we scale the x axis with respect to the moiré length Lm,
which is dependent on the varying twist angle. We observe

a clear trend where the depletion in the AA region recovers
away from the vacancy with a length scale that approaches Lm

but is smaller, especially for smaller angles approaching the
magic angle. In contrast, in Fig. 7(d) we show 
nm for the
B sublattice sites along the line cut. Here we let the x axis
be normalized with the atomic scale a, corresponding to the
graphene lattice constant, as we find that the dominant con-
tribution comes from the graphenelike localized defect state,
giving a positive change in charge density on the atomic scale.
This graphenelike localized defect state decays over a similar
length scale, set by a, for all twist angles, further corroborating
that its origin is due to graphene physics and not the moiré
pattern. We thus conclude that isolated defects affect TBG on
two different length scales. On the atomic length scale, a, it
induces a localized defect state similar to that of in monolayer
graphene. On the angle-dependent moiré length scale, Lm, it
induces a strong charge depletion in the AA regions, which
near the magic angle can be understood from the removal of an
entire moiré band from the low-energy region. We note that at
larger angles, the moiré bands are not energetically separated
from the conduction and valence bands, which means that the
simple picture that one of the moiré bands leaves the moiré
energy range breaks down. However, we verify the presence
of a flat defect-induced band at the energy of the Dirac point
in the vacancy limit, similar to the magic angle case, for
all angles up to 6◦. The one exception we find to the latter
behavior is for defects in AB-LC sites, since in this case there
is a moiré band replacement instead of a band removal.

IV. CONCLUDING REMARKS

To summarize, in this paper we showed that the low-energy
band structure of TBG is extremely sensitive to atomic size
lattice defects even at very low concentrations. In particular,
we showed that a single weak nonmagnetic impurity in each
AA region is able to cause a large depletion of charge in the
low-energy regime and in the whole AA region of the order of
1e per spin species due to the lifting of one of the low-energy
moiré bands into the conduction bands. We investigated dif-
ferent defect locations and verified that this behavior is quite
general and thus illustrates a direct way to manipulate the
low-energy moiré band structure using impurities. The only
notable exception we found is for a special set of defect sites
in the AB region, where a band replacement process happens
instead, where one moiré band is lifted to the conduction
band while another joins from the valence band, resulting in a
reconstruction of the original low-energy band structure in the
vacancy limit. We strongly suspect that this band replacement
directly influences the topology of the moiré band structure,
although that remains to be verified.

We further found that the previously reported defect-
induced TPFs in TBG [60], which represent a triple de-
generacy at the Dirac point, rely on the rank-1 perturbation
characteristic of single-site defects, and is thus not generally
present. In fact, we showed that the introduction of multiple
defects or more realistic extended impurities easily split the
TPF by lifting the degeneracy at the Dirac point, in some cases
even completely removing the Dirac point. Finally, we used
supercells to reach the isolated defect limit, where we found
the previous results to hold locally in the moiré unit cells

125141-10



DEFECT-INDUCED BAND RESTRUCTURING AND LENGTH … PHYSICAL REVIEW B 108, 125141 (2023)

FIG. 8. Change in moiré charge density 
nm from pristine
magic-angle TBG due to a vacancy in the DW region (a) and in an
AB-HC site (defined in main text) (b), highlighting the strong charge
depletion of the AA region due to the removal of one of the moiré
bands, and also a smaller depletion in the larger vicinity of the defect.
Pink circles mark the vacancy site and k points were sampled in a
12 × 12 grid. In each panel, the contributions from both layers are
shown. Here θ ≈ 1.2◦.

surrounding the defect. By varying the twist angle, we were
further able to identify two length scales, with the atomic scale
displaying a graphenelike localized defect state, and the twist
angle-dependent moiré length controlling the charge depletion
of the AA region and accompanied moiré band restructuring.

Our results establish how nonmagnetic impurities and
vacancies drastically change the band structure and charge
density of TBG at and near the magic angle, which can

FIG. 9. Band removal process for a defect in the DW region.
(a)–(d) Band structure for potential impurities with strengths of 1t ,
10t , 100t , and a vacancy, respectively. Here θ ≈ 1.2◦.

FIG. 10. Band removal process for a defect in an AB-HC site.
(a)–(d) Band structure for potential impurities with strengths of 1t ,
10t , 100t , and a vacancy, respectively. Here θ ≈ 1.2◦.

be experimentally verified with ARPES, STM, or transport
measurements. Incorporating these profound changes of the
moiré bands will further be important for analyses of quasi-
particle interference patterns. These measurements should be
performed at low enough temperatures for good energy res-
olution (we estimate around ∼10K), but above the critical
temperatures of any emerging electronic orders of TBG. We
expect that the changes induced by defects will also have
a profound impact on these electronic orders, including the
superconducting and correlated insulator orders, since these
orders depend not only on the interactions but also heavily on
the underlying normal-state band structure.

This impact will be particularly large on any mechanism
relying on the symmetries of the system or number of moiré
bands, as defects strongly modify the low-energy moiré band
structure through band lifting and band replacement pro-
cesses. In fact, we showed that the number of moiré bands can
easily change from the pristine case of four to three or two, or
even be completely annihilated, with only strongly dispersive
bands left in the low-energy region. This sensitivity of TBG
with respect to impurities and vacancies demonstrates the
need to understand the disorder level before further analyzing
any electronic ordered state. It also opens the possibility of
using defects to engineer the low-energy electronic structure
of TBG to produce a desired number of flat bands and thereby
possibly other electronic orders.
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APPENDIX: DEFECTS IN DW AND AB-HC SITES

In the main text, we discussed the effects of defects in AA
and AB-LC sites extensively, while focusing less on defects
in the DW and AB-HC. The reason for this is that these latter
sites show a behavior quite similar to that of AA sites. Still,
for completeness, we here provide relevant data for defects
in the DW and AB-HC sites, supporting the conclusions in
the main text. In Figs. 8(a) and 8(b), we show the change
in moiré charge density 
nm induced by a vacancy in DW
and AB-HC sites, respectively, using a 1 × 1 supercell at
θ ≈ 1.2◦ and with the vacancy highlighted by a pink circle.
Most importantly, and as mentioned in the main text, we find
that the introduction of a defect induces a strong depletion of
the AA region even in these cases where the defect is located
far away from it. We additionally find a slight depletion of

states in an extended region between the defect and the nearest
AA regions. This provides further evidence of the effect that
atomic size defects have on the moiré scale.

Once again, the depletion of the AA regions can be un-
derstood from the evolution of the band structure as we
interpolate between the pristine and vacancy limits with an
impurity of finite strength, as we illustrate in Figs. 9 and 10
for DW and AB-HC impurities, respectively. In both cases, we
observe a band removal process akin to the the one discussed
in the main text, with the m1 band leaving the moiré energy
range and joining the conduction bands. The impurity energies
required to trigger the removal process is higher than for an
AA impurity, with over 10t being required to remove the m1

band from the moiré energy range. Just as in the AA defect
case, this explains the charge depletion of the AA region, since
it is there the moiré bands are located. We also note that the
degeneracy of the moiré bands at the � point, discussed in
Sec. III B, is lifted, since the defect site in these cases is not
on the rotation axis of a C3 symmetry.
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