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Structural and magnetic properties of amorphous CoxZr100−x films
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Magnetometry and first-principles density functional theory-based calculations were used to investigate the
concentration dependence of magnetic properties of amorphous CoxZr100−x alloys. A linear increase in saturation
magnetization (Ms) is observed in both the experiments and calculations. Samples with Co content of at least
62 at.% are inferred to be ferromagnetic at 5 K. The experimentally determined ordering temperature is found
to scale quadratically with Co concentration indicating a complex interplay between local structural motifs and
magnetic parameters such as exchange interaction and anisotropy.
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I. INTRODUCTION

The combination of two or more elements, forming alloys,
is a classical route to control material properties. This is, e.g.,
exemplified in amorphous alloys, within which the absence of
crystalline order, as well as control of other physical prop-
erties, can be obtained through the choice of composition
[1,2]. Amorphous alloys lack long-range periodicity, however,
hierarchical correlations can be observed at different length
scales [3–5]. Variation in local composition results in changes
in the atomic interactions, influencing the degree of short-
to-medium range structural order, emerging during growth
[6]. The distributions in coordination number and changes in
the interatomic distances, therefore, pose a considerable chal-
lenge, since standard scattering techniques rely on the period-
icity and are therefore of limited use [4,5,7]. However, elec-
tron, neutron, and x-ray scattering techniques are widely used
to determine atomic pair distribution functions, providing a
foundation for the development of structural models describ-
ing amorphous materials [4,5,8]. In recent years, significant
progress has been made in the pursuit of detailed structural
characterization of metallic glasses. For example, nanobeam
electron diffraction [9] and atomic electron tomography [2]
have been used to investigate local compositions as well as
atomic configurations. The experimentally observed local or-
derings in amorphous materials can be reproduced through
molecular dynamics simulations within good agreement [10].
Consequently, although amorphous alloys do not have a
unique set of parameters defining the lack of atomic order, the
use of statistical methods provides a good basis for comparing
the results obtained in both experiments and modeling.

Amorphous Fe [11–14] and Co-based [15,16] magnetic
alloys are widely investigated, as are the Co-early transition
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metals [17–20] and Co metalloids [21]. In many cases, an
amorphous alloy has been used as a precursor for produc-
ing a magnetically soft nanocrystalline material for various
applications [22,23]. The saturation magnetization Ms and
magnetic ordering temperature Tc of amorphous Co-Zr-based
alloys typically increase linearly with Co content, starting
from zero at a critical concentration, which is usually in
the range 40–60 at.% [6,22], in stark contrast to Fe-Zr al-
loys which show a nonlinear relation between composition
and magnetic ordering temperature. Both Ms and Tc can
be captured by atomistic models involving nearest-neighbor
spin-spin interactions, which account for many of the defining
characteristics of ferromagnetic ordering [6]. A question of
interest is whether extrapolating the Co content to 100 at.% for
this system gives magnetic properties which could be identi-
fied as those of pure amorphous Co. Furthermore, magnetic
nanolaminates composed of alloy layers have been shown
to exhibit large proximity effects arising at least partially
from variation in composition at the nanoscale [24–26]. The
composition variation at the nanoscale is argued to influence
the material properties at that length scale, thereby causing a
spatial dependence of, e.g., the magnetic moment, local mag-
netic anisotropy, and effective interactions. Here we present
results from investigations of the influence of composition on
the magnetic moment, ordering temperature and the effective
interaction strength in amorphous CoxZr100−x thin films in the
composition range 60 � x � 70 at.%. The interpretation of
the experimental observations is developed using calculations
based on density functional theory, in an attempt to obtain an
understanding of the impact of the local order and composi-
tion on macroscopic properties of amorphous alloys.

II. EXPERIMENTAL DETAILS

Co-Zr films of thickness 40 nm were deposited on Si(100)
at room temperature by DC magnetron co-sputtering in an
ultra-high-vacuum (UHV) chamber. The base pressure was
∼10−10 Torr and the sputtering gas (Argon) pressure was
2.0 × 10−3 Torr. The targets (three-inch diameter) were pure
Co, Zr, and Al70Zr30. The Si(100) substrates were annealed in
UHV conditions at 150 ◦C for 60 minutes to remove adsorbed
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water and other surface impurities. During deposition, the
substrate was rotated at 6 rpm for obtaining homogeneous
growth. The Co content x was decreased from 70 at.% to 65
at.%, in steps of 1 at.% between subsequent samples, by the
choice of Zr magnetron power, from 45 W to 57 W, while
the Co magnetron power was fixed at 60 W. Beside these
films, an additional sample with 60 at.% Co was deposited.
Amorphous ∼5 nm thick Al70Zr30 layers were used as seed
and capping layers, preventing formation of nanocrystals at
the interface to the substrate and oxidation of the surface, as
described by Korelis et al. [11]. The procedure for cosput-
tering amorphous TM-Zr films has been described in detail
previously [11,27,28].

Structural properties of the films were investigated using
grazing incidence x-ray diffraction (GIXRD) and x-ray reflec-
tivity (XRR) in a D-8 diffractometer with Cu Kα radiation
(wavelength λ = 0.15418 nm). For the GIXRD measure-
ments, the incident angle was fixed at ω = 1.0◦ and the de-
tector angle was scanned through the range 2θ = 10◦ − 80◦.
XRR was recorded using θ–2θ scans up to 2θ = 4.0◦. The
composition was confirmed by Rutherford backscattering
spectrometry (RBS).

Magnetization was measured in the temperature range 5–
390 K using a Quantum Design MPMS XL superconducting
quantum interference device (SQUID) magnetometer. The
magnetic field was applied in-plane in all the measurements.
In zero-field-cooled measurements, the samples were cooled
from 300 K to 5 K in zero field. Once the sample temperature
reached 5 K, a constant magnetic field of 2 mT was applied,
and the total magnetic moment of the sample was recorded
with increasing temperature. In field-cooled measurements,
the total moment in a 2 mT applied field was recorded while
decreasing the temperature. When measuring hysteresis loops
at a constant temperature, the moment of the sample was
recorded while varying the magnetic field. The magnetization
of each sample was obtained by dividing the measured mo-
ment with the Co-Zr volume.

III. COMPUTATIONAL DETAILS

The local structure of the material was not measured di-
rectly, but could be reproduced through molecular dynamics
simulations [10]. In our case, amorphous structures were
generated by classical molecular dynamics (CMD) simula-
tions with the open-source LAMMPS package [30] employing
the embedded atom method (EAM) potential [31]. The total
number of atoms (N = 432) in the cells was kept constant.
We placed the Co and Zr atoms randomly in a cubic lat-
tice using the experimental densities as a reference value.
The amorphous structures were produced using the Berend-
sen thermostat [32] by the following procedure: Heating at
5000 K; fast quenching to 2000 K with a 51.28 × 1014 K/s
cooling rate; applying short equilibration at 2000 K for 135 fs;
quenching to 300 K with a 49.71 × 1013 K/s cooling rate and
the final equilibrating step at 300 K for 3420 fs.

The quality of the metallic glass structure was checked
by considering the Co65Zr35 alloy in first-principles
molecular dynamics (FPMD) simulations based on the
Born-Oppenheimer approximation, following the same
thermostating steps with temperature rescaling at every 45 fs

FIG. 1. Normalized GIXRD patterns, offset for clarity, of
CoxZr100−x thin films with 65 � x � 70 at.%, as indicated by the
labels. The absence of sharp peaks indicates that the films are x-ray
amorphous. The solid lines are Gaussian fits used to extract the center
position of the broad feature at approximately 42◦. This hump is
characteristic of a disordered material.

where the time step was set to 1 fs, using the Vienna ab initio
simulation package (VASP) [33,34] within density functional
theory (DFT). We employed the projector-augmented-wave
(PAW) [35] formalism to describe the electron-ion interaction.
The electron exchange and correlation (XC) potential was
described by the Perdew-Burke-Ernzerhof (PBE) form within
the generalized gradient approximation (GGA) [36]. For the
Brillouin zone integration, we used the � point. The kinetic
energy cut-off for the plane-wave basis set was 350 eV, and
total energies were minimized with an energy tolerance of
10−4 eV. All atomic positions and lattice constants were
optimized within the conjugate gradient method. We found a
good agreement between the structures generated by CMD
and FPMD simulations. To make a further stability test of our
structures, we applied thermostating at 300 K by increasing
the relaxation and simulation time in the following steps: 1 fs
for 100 ps; 5 fs for 200 ps; 10 fs for 300 ps; and 1 ps for 1 ns.

IV. RESULTS AND DISCUSSION

A. Structural properties

Figure 1 shows the GIXRD measurements for the six
CoxZr100−x films with 65 � x � 70 at.%. No diffraction peaks
are observed in the measurements which allows us to define
the samples as x-ray amorphous [12,13]. A hump is observed
at 2θ ≈ 42◦, and its width and position was fitted using a
Gaussian model, also shown in Fig. 1. The centroid of the
hump shifts toward higher angles with an increasing x, which
can be understood as a decrease of interatomic distances with
increasing Co content. The results from XRR measurements
and the subsequent fits using GenX [29] are shown in Fig. 2.
Fitting with a model including four layers was used to ob-
tain interface roughness, thickness, as well as density of the
Al70Zr30 and Co-Zr layers. A thin oxide layer is included in
this model to account for the oxidation of the capping layer.
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FIG. 2. XRR scans, offset for clarity, for the different 40 nm
thick CoxZr100−x films with 65 � x � 70 at.%. The solid red lines
show the GenX [29] fits of the reflectivity data.

The results are consistent with well-defined layer thicknesses
closely resembling the nominal values.

Analysis of the CMD simulated structures was done by
studying the radial distribution function g(r) (not shown) and
Voronoi polyhedra. In g(r) calculations, we used a 0.09 Å
bin size. A shift in g(r) toward smaller distances is observed
with increasing Co content, in agreement with the GIXRD
result. This shift also makes the double-peak character in
g(r) more visible, which is a fingerprint of Zr-based metallic
glasses. These local structures do not have long-range trans-
lational symmetry but medium-range order (MRO). The most
well-known SRO structures in Zr-based metallic glasses are
icosahedra [37]. Specifically, these local structures exhibit a
fivefold rotational symmetry and can be seen in two forms,
perfect icosahedra (〈0, 0, 12, 0〉) and distorted icosahedra
(〈0, 2, 8, 2〉; 〈0, 1, 10, 2〉; 〈0, 1, 10, 4〉; etc.). There are also
fcc-types (〈0, 2, 8, 4〉, etc.) and bcc-types (〈0, 3, 6, 4〉, etc.) of
SROs. The Voronoi indices for crystalline fcc/hcp and bcc
are 〈0, 12, 0, 0〉 and 〈0, 6, 0, 8〉, respectively. Large variations
are observed in the presence of different motifs at different
Co concentrations, as seen in Fig. 3, where x = 40 at.% is
deviating distinctively from x = 65 and x = 70 at.%. Hence,
changes in the local configuration can considerably contribute
to changes in the physical properties of the material. However,
it should be noted that a systematic change in local structural
motifs as a function of Co concentration may not be achieved
clearly here, partially due to the magnetic degrees of freedom
and partially due to the limited size (N = 432 atoms) of our
samples used in simulations.

B. Magnetic properties

In-plane magnetization data, measured by SQUID magne-
tometry at T = 5 K, are shown in Fig. 4. The samples were
first cooled to 5 K in zero field and thereafter M(H ) loops
were recorded. Smaller steps were used in the low-field re-
gion, shown in the figure inset, in order to accurately measure
the coercivity, Hc, of the samples. For x = 65 at.%, the coer-
civity and the saturation magnetization are μ0Hc = 4.7 mT

FIG. 3. Analysis of Voronoi polyhedra of selected compositions
from the structures obtained from CMD simulations.

and Ms = 0.24μB/Co atom, respectively. The loop shapes
reveal that all these samples are ferromagnetic, and all Co
moments are fully aligned well below the maximum applied
field (500 mT). Magnetization measurements at 5 K on the
Co60Zr40 film showed no detectable ferromagnetic response.

Figure 5 shows both the experimental (SQUID) and the
calculated (DFT) saturation magnetization, Ms, versus Co
content, x. The difference between theory and experiment may
come from the choice of exchange and correlation functional
in DFT and/or the limited size of the simulated structures.
However, in both data sets, Ms increases linearly with x in the
investigated composition range. When the linear dependence
is extrapolated to pure Co (x = 100 at.%), the effective mo-
ment per Co atom is 2.5 μB from experiments and 2.0 μB from
the DFT calculations. These values are higher than the hcp
Co moment (1.55μB) [38]. The linear fit of the experimental
data crosses Ms = 0 for x = 61.5 at.% (x = 50.6 at.% for
calculated Ms), which is in agreement with the experimental
result that the x = 60 at.% sample is nonmagnetic at T = 5 K.

FIG. 4. In-plane hysteresis loops measured at 5 K for amorphous
CoxZr100−x thin films. Inset: Magnified low-field region, showing the
coercivities of all samples.
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FIG. 5. Saturation magnetization, displayed as moment per Co
atom versus Co content. Stars (calculated by DFT, T = 0 K) and
circles (measured by SQUID, T = 5 K) are the data points, and the
dashed red lines show linear fits.

The coercivity of the samples is observed to increase with
increasing Zr content. This could be caused by an increase
in spin orbit coupling or, more likely, a decrease in magnetic
leverage [39] with decreasing Co moments.

In order to determine changes in the ordering temperature
(Tc), we measured the temperature dependence of the mag-
netization in an applied magnetic field of 2 mT. The choice of
nonzero field conditions was motivated by the minimization of
random errors associated to measurements in zero field. Prior
to the measurements, the samples were cooled in the absence
of field. The results are displayed in Fig. 6. For estimating Tc,
the M(T ) data were fitted by minimizing the expression [14]

ξ 2 = 1

n − 2

it max∑
it min

log10 Mi −
[

log10 k + β log10

(
1 − T

Tc

)]2

.

(1)

Here n is the number of data points included in the
fit, t = T/Tc is the reduced temperature, tmax and tmin are

maximum and minimum t values included, M is the
normalized magnetization, k is a constant, and β is
an effective exponent. In this context, β is not consid-
ered a critical exponent, since amorphous alloy systems
have random atomic distributions and therefore compo-
sition inhomogeneities at the nanometer scale [2]. The
minimization of ξ 2 in Eq. (1) was performed with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [40].
The experimental M(T ) data and fitting results of M ver-
sus t are shown in Fig. 6(a). For the x = 65 at.% sample,
Tc ≈ 39.5 K is observed. All M(T ) curves have a simi-
lar shape, and Tc increases with increasing Co content x,
as shown in Fig. 6(b). The magnetization just above Tc ex-
hibits significant tailing. The tail arises partially from the
applied field (2 mT), while significant contributions can be
argued to originate from inhomogeneities in the random Co
concentration distribution, as discussed in Refs. [2,6,14]. The
tailing becomes more apparent when plotting the changes
in magnetization using normalized temperatures, as seen in
the inset in Fig. 6(a). The precision of the determined Curie
temperatures is substantially better than the accuracy of the
measurements. The increase in Tc with x [Fig. 6(b)] appears
to include a quadratic term, which opens up for questions
concerning the role of coordination numbers for the effective
interaction in the alloy. More detailed investigations are re-
quired for answering these questions, for example comparing
the changes in the Curie temperature and moment in a wider
concentration span.

V. CONCLUSIONS

The experimentally and theoretically determined saturation
moments of CoxZr100−x alloys are found to scale linearly with
the Co concentration, in the concentration range explored
(65 � x � 70 at.%). In contrast to this, the experimentally
determined ordering temperature is found to increase quadrat-
ically with Co concentration within this range. Assuming the
ordering temperature to scale with the effective coupling, we
have an indication of an increase in the effective coupling
with increasing Co concentration in CoxZr100−x alloys. The
coordination numbers of Co atoms are inferred to change

(a) (b)

FIG. 6. (a) Raw data from all samples, 65 � x � 70 at.%, of field-cooled magnetization versus temperature at 2 mT. The inset shows the
normalized magnetization as a function of the reduced temperature t = T/Tc together with the fits (solid red lines) to Eq. (1). The accuracy in
the determination of the ordering temperature is affected by the tailing. (b) The Curie temperature as a function of Co content, with a quadratic
fit (dashed line). The precision in the determination of the Curie temperature is provided as error bars. The shaded area marks the uncertainty
range when performing linear fit.
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with concentration using Voronoi polyhedra analysis of the
simulated structures. We therefore have a correlation of the
nontrivial changes in the effective coupling and the effective
coordination number of Co with composition. However, it is
not possible to relate these observations in a causal manner.
More investigations are required to explore these nontrivial
effects, linking the structural changes in disordered materials
with variations in, e.g., magnetic exchange coupling with con-
centration.
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