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a b s t r a c t

The pure time delay operator is considered in continuous and discrete time under the assumption
of the input signal being integrable (summable) with square. Then the input and the output signals
are uniquely given by their Laguerre spectra. It is shown that a discrete convolution operator
with polynomial Markov parameters constitutes a common description of the delay operator in the
continuous and discrete case. Closed-form expressions for the delay value in terms of the output
and input Laguerre spectra are derived. The expressions hold for any feasible value of the Laguerre
parameter and can be utilized for e.g. building time-delay estimators that allow for non-persistent
input. A simulation example is provided to illustrate the principle of Laguerre-domain time-delay
modeling and analysis with perfect disturbance rejection.

© 2023 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Describing signals as functions of time is a natural option
ince time domain is the most common and easily interpretable
bservation framework. Yet, it does not necessarily yield the
est setup for system analysis, estimation, and design when the
nvolved signals are known to possess a certain property. For
nstance, continuous periodic signals are efficiently represented
y Fourier series whose description has led to the development
f frequency-domain methods (Zadeh, 1953). The sine waves of a
ourier series are defined on an infinite time interval whereas a
hysical signal has often a finite support or vanishes in time.
Signals integrable (summable) with square are ubiquitous

n systems theory and are equivalently represented as infinite
ourier series of Laguerre functions (Clement, 1982). This is com-
only termed as the Laguerre-domain approach. In Nurges and
aaksoo (1982), the role of Laguerre functions as a versatile analy-
is tool of discrete linear time-invariant systems was convincingly
emonstrated. In fact, the Laguerre shift operator applied to
enerate a Laguerre basis (Mäkilä & Partington, 1999a) is, in a
ell-defined sense, equivalent to the forward shift (q) operator
nd can be generally employed for describing signals and systems
n both continuous and discrete time. As argued in Medvedev,

✩ The author was partially supported the Swedish Research Council, Sweden
under grant 2019-04451. The material in this paper was not presented at
any conference. This paper was recommended for publication in revised form
by Associate Editor Raphaël M. Jungers under the direction of Editor Sophie
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005-1098/© 2023 The Author. Published by Elsevier Ltd. This is an open access arti
Bro, and Ushirobira (2022), the Laguerre shift is one of the
bilinear operators, along with δ-operator, γ -operator, Tustin’s
operator, proposed in systems theory, primarily to gain, through
tuning the Laguerre parameter, beneficial numerical properties
of the manipulated objects and unify continuous and discrete
frameworks.

Over the years, an ample evidence for the usefulness of La-
guerre function techniques in model predictive control (Wang,
2009), system identification (Heuberger, van den Hof, &Wahlberg,
2005), signal processing (Oliveira e Silva, 1995), model reduc-
tion (Amghayrir, Tanguy, Bréhonnet, & Vilbé, Pierre Calvez, 2005)
have been accumulated. A promising but underdeveloped ap-
plication area of Laguerre functions is time-delay systems. In
contrast with the solid results available regarding approximation
of time-delay systems by means of orthogonal functional bases,
see e.g. Mäkilä and Partington (1999a) and Mäkilä and Partington
(1999b), publications on time-delay systems in Laguerre domain
are scarce. References to relevant papers along this avenue of
research that originates from Fischer and Medvedev (1999) are
provided in the next section.

Time-of-flight estimation of signals with finite energy (pulses)
that constitutes the core of radar, sonar, ultrasound, and li-
dar technology (Minkoff, 1992) is essentially the estimation of
the delay between an emitted and reflected pulse. Even though
Laguerre-domain delay estimation methods were numerically
benchmarked against conventional techniques in Björklund and
Ljung (2003), lack of system theoretical grounds still hinders their
analysis and practical applications.

This paper focuses on the mathematical description of the
time-delay operator in Laguerre domain. The main contributions

of this work are as stated below.

cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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• A common Laguerre-domain modeling framework for pure
continuous and discrete time-delay operators in the form of
a convolution operator with polynomial Markov parameters
is introduced.

• Based on the proposed convolution description, closed-form
expressions for the time-delay value as a function of the
input and output Laguerre spectra of the delay block are
derived.

Examples of how the closed-form expressions for the delay in
Laguerre domain can be exploited in delay value estimation in the
face of heavily correlated and non-stationary additive measure-
ment disturbances are provided in Abdalmoaty and Medvedev
(2022) and Abdalmoaty and Medvedev (2023).

The paper is organized as follows. First necessary notions of
Laguerre domain are introduced. Then, the Laguerre domain rep-
resentations of the continuous and discrete pure delay operators
are revisited and cast in a common framework. Making use of
the latter, the delay value is analytically related to the input
and output Laguerre spectra of the delay block. The presented
concepts are illustrated by simulation.

2. Laguerre domain

Continuous time: The Laplace transform of the kth continuous
Laguerre function is given by

ℓk(s) =

√
2pc

s + pc
T k
c (s), Tc(s) ≜

s − pc
s + pc

,

or k ∈ N, where pc > 0 represents the Laguerre parameter, and
c is the continuous Laguerre shift operator.
Let H2

c be the Hardy space of functions analytic in the open
eft half-plane. The set {ℓk}k∈N is an orthonormal complete basis
n H2

c with respect to the inner product

W , V ⟩c ≜
1

2π i

∫
∞

−∞

W (s)V (−s) ds. (1)

Any function W ∈ H2
c can be represented as a series

W (s) =

∞∑
k=0

wkℓk(s), wj = ⟨W , ℓj⟩c,

and the set {wj}j∈N is then referred to as the continuous La-
guerre spectrum of W . Equivalently to (1), the Laguerre spec-
trum is defined in time domain via Parseval–Plancherel iden-
tity, see Abdalmoaty and Medvedev (2023) for a sampled-data
implementation.

Discrete time: The discrete Laguerre functions are specified in
Z -domain by

Lj(z) =

√
1 − pd

z −
√
pd

T j
d(z), Td(z) ≜

1 −
√
pdz

z −
√
pd

, (2)

for all j ∈ N, where the constant 0 < pd < 1 is the discrete
aguerre parameter, and Td(z) is the discrete shift operator.
Let H2

d be the Hardy space of analytic functions on the com-
lement of the unit disk that are square-integrable on the unit
ircle and equipped with the inner product

W , V ⟩d =
1

2π i

∮
D

W (z)V (z−1)
dz
z

, (3)

here D is the unit circle. Then, {Lk(z)}k∈N is an orthonormal
omplete basis in H2

d . Any function W ∈ H2
d can be represented

s a series

(z) =

∞∑
wkLk(z), wj = ⟨W , Lj⟩d,
k=0

2

and the set {wj}j∈N is referred to as the discrete Laguerre spectrum
f W .

efinition 1. A system is said to be represented in Laguerre
omain when the involved in the system model signals are given
y their Laguerre spectra.

Further on, both the continuous and discrete case are pre-
ented in a uniform manner and no notational difference is made
hen the framework is clearly stated.

. Time delay in Laguerre domain

ontinuous time: The well-known associated Laguerre polynomi-
ls (see e.g. Szegő, 1939) are explicitly given by

m(ξ ; α)=
m∑

n=0

1
n!

(
m + α

m − n

)
(−ξ )n, ∀m ∈ N, ξ ∈ R. (4)

In what follows, only the polynomials with a particular value of α
are utilized and the shorthand notation Lm(ξ ) ≜ Lm(−ξ ; α)|α=−1
is introduced.

Consider the signal u(t) ∈ L2[0, ∞) given by its Laguerre
spectrum {uj}j∈N0 , N0 = {N, 0}. Being passed through a delay
block with u(θ ) ≡ 0, θ ∈ [−τ , 0]

y(t) = u(t − τ ), τ ≥ 0, t ∈ [0, ∞), (5)

the input u(t) results in the output y(t) ∈ L2[0, ∞) with the spec-
trum {yj}j∈N0 . Then, according to Hidayat and Medvedev (2012,
Lemma 2), the following relationship holds

yj =

j−1∑
k=0

hj−k(κ)uk + h0(κ)uj, ∀j ∈ N0, (6)

where hk(κ) = e−
κ
2 Lk(κ), and κ = 2pτ . Notice that L0(κ) = 1 and,

herefore, h0(κ) = e−
κ
2 .

Discrete time: Introduce the polynomials

L(τ )m (ξ ) = (−ξ )m−τ

τ−1∑
n=0

(
m + n

n

)(
m − 1

τ − n − 1

)
(−ξ 2)n,

where it is agreed that k > n :
(n
k

)
= 0 by definition. For the

discrete delay operator in time domain, it holds

y(t) = u(t − τ ), t, τ ∈ N0. (7)

Assuming u(t) ∈ I2[0, ∞) and with the same notation for the
nput and output Laguerre spectra, it is shown in Medvedev et al.
2022, Proposition 1) that

j =

j−1∑
k=0

hj−k(ξ )uk + h0(ξ )uj, ∀j ∈ N0, (8)

here h0(ξ )=ξ τ , hj = (1 − p)L(τ )j (ξ ), j ≥ 1, and ξ =
√
p.

A readily observed difference between the continuous and
iscrete time cases is that the argument of the polynomials Lk(κ)

carries information about τ whereas the argument of L(τ )m (ξ ) is
solely defined by the Laguerre parameter p. In the continuous-
time case of (6), the delay value appears only in a product with
the Laguerre parameter thus highlighting the role of the latter as
a time scale degree of freedom. On the contrary, in the discrete
case of (6), τ influences the order of L(τ )m (ξ ) as the time scale is
fixed by the discrete time variable t .

The common convolution form of the continuous and discrete
delay operators, i.e. (6) and (8), implies that these descriptions
exhibit some kind of ‘‘causality’’. Indeed, the output coefficient yk
depends only on the input coefficients u , u , . . . , u . Naturally,
k k−1 0
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his is not a temporal casualty since each Laguerre coefficient is
valuated on the time interval t ∈ [0, ∞). Assuming that the
nput signal is formed so that ui = 0, i = 0, . . . ,m − 1, for
ome m ∈ N+, the first m coefficients of the output, i.e. yi, i =

, . . . ,m−1, are independent of the input and constitute instead
he first m coefficients of the Laguerre spectrum of an additive
isturbance. Thus, the signal shape of the realization can be
econstructed (see Section 5) and utilized, e.g. for noise reduction.

Despite the identical form of Laguerre-domain representations
f the continuous and discrete delay in (5) and (7), the continuous
perator is an infinite-dimensional system and the discrete op-
rator admits a minimal state–space realization of order τ . The
ifference roots in the properties of the polynomials Lm(·) and
(τ )
m (·).
Recalling that the output of a discrete linear time-varying

ystem under zero initial conditions is given by the convolution
f the input sequence with the system’s Markov parameters,
0, h1, . . . are further referred to as the Laguerre-domain Markov
arameters of delay operators (5), (7).
Consider now a Hankel matrix composed of the Markov pa-

ameters

n =

⎡⎢⎢⎣
h0 h1 . . . hn−1
h1 h2 . . . hn
...

...
. . .

...

hn−1 hn . . . h2n−2

⎤⎥⎥⎦ .

roposition 2. For the Markov parameters in (6)

ankHn = n, ∀n.

or the Markov parameters in (8)

ankHn =

{
n if n < τ,

τ if τ ≤ n.

roof. The Ho–Kalman algorithm (Ho & Kalman, 1966) relates
he rank of Hn to the order of the minimal (continuous or dis-
rete) state–space realization (McMillan degree) that yields the
arkov parameters.
Continuous time: In view of the definition of the Markov

arameters in (6), it suffices to show that the polynomials Lm
onstitute an orthogonal functional basis on the positive real axis.
A proof for orthogonality of the associated Laguerre polynomi-

ls Lm(ξ ; α) (as defined in (4)) is given in Rainville (1960, p. 205)
or α > −1. However, the case of α = −1 is not covered there,
hile it is exactly the type of Laguerre polynomials that are en-
ountered in time-delay systems. Notably, for α < −1, Laguerre
olynomials are no longer orthogonal on the positive real axis but
ather satisfy a non-Hermitian orthogonality on certain contours
n the complex plane, cf. Kuijlaars and McLaughlin (2001). Some
onfusion yet arises with respect to what notion of orthogonality
pplies in case of α = −1, cf. Kuijlaars and McLaughlin (2001,
. 205 and p. 209). Therefore, orthogonality of the polynomials
m is proven in Appendix B thus securing the fact that the matrix
n is always full rank for the continuous time delay case.
Discrete time: As shown in Medvedev (2022), a minimal real-

zation of order τ satisfying (8) is given by the Laguerre-domain
tate–space equations

j+1 = Fxj + Guj, (9)
yj = Hxj + Juj,

here

F =

⎡⎢⎢⎢⎣
−

√
p 1 − p . . .

√
pτ−2(1 − p)

0 −
√
p . . .

√
pτ−3(1 − p)

...
...

...
...
√

⎤⎥⎥⎥⎦ ,
0 0 . . . − p
3

G⊺
= (1 − p)

[√
pτ−1 √

pτ−2
. . . 1

]
,

H =
[
1

√
p . . .

√
pτ−1] , J =

√
pτ

. ■

The realization in (9) reveals that the delay τ plays in the
discrete-time case the role of both the system order and system
parameter. This is in a sharp contrast with the time-domain
description, where τ is the order of the system and not a pa-
rameter. System order estimation techniques (Bauer, 2001) are
less elaborate compared to those of parameter estimation. Thus,
the representation of the pure time-delay operator in Laguerre
enables applying the well-developed technology of parameter
estimation (Abdalmoaty & Medvedev, 2022). The next section
demonstrates that the delay value can be obtained both in con-
tinuous and discrete time without an intermediate Markov pa-
rameter representation and directly from the input and output
spectra.

4. Main result

Proposition 3. Consider a system given by the Markov parameters
{h0, h1, . . .}, hi ∈ R, i = 0, 1, . . . , driven by the input sequence
{u0, u1, . . .}, ui ∈ R, i = 0, 1, . . . , u0 ̸= 0, and producing the output
sequence {y0, y1, . . .}, yi ∈ R, i = 0, 1, . . . according to

yj =

j−1∑
k=0

hkuj−k + h0uj. (10)

Then, it applies that

hk =

k∑
j=0

gk−jyj, (11)

and

g0 =
1
u0

, gk = −
1
u0

k−1∑
j=0

uk−jgj, k ≥ 1.

Proof. Introduce the following notation

YN=

⎡⎢⎢⎣
y0
y1
...

yN

⎤⎥⎥⎦ ; T (UN )=

⎡⎢⎢⎣
u0 0 . . . 0
u1 u0 . . . 0
...

...
. . . 0

uN uN−1 . . . u0

⎤⎥⎥⎦ ; HN=

⎡⎢⎢⎣
h0
h1
...

hN

⎤⎥⎥⎦ .

hen, (10) implies that

N = T (UN )HN . (12)

The assumption u0 ̸= 0 secures non-singularity of T (UN ) and the
Markov coefficients can be uniquely recovered from the Laguerre
spectra of the input and output

HN = T−1(UN )YN .

The result now follows by a direct application of Lemma 5 in
Appendix A ■

The assumption of u0 ̸= 0 is not restrictive. The leading zero
coefficients can be skipped thus implying that corresponding co-
efficients of the output are also zero, according to the ‘‘causality’’
property in Laguerre domain.

Now the main results of the paper can be formulated stating
that the value of τ in (7) or (5) can be analytically evaluated from
the input and the output spectra.

Proposition 4. Consider three subsequent Laguerre-domain Markov
parameters hm−1, hm, hm+1 evaluated for any m ≥ 1 from the
Laguerre spectra of the input and output signals of either (5) or (7)
{u0, u1, . . .}, {y0, y1, . . .} according to (11). The following relation-
ships hold then for any admissible value of the Laguerre parameter
p:
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ontinuous time:

κ = −
(m + 1)hm+1 + (m − 1)hm−1 − 2mhm

hm
, (13)

where κ = 2pτ .

iscrete time:

τ = −
(m + 1)hm+1 + (m − 1)hm−1 + m(ξ + ξ−1)hm

(ξ − ξ−1)hm
, (14)

where ξ =
√
p.

roof. From (6) and (8), it is readily observed that the Markov pa-
ameters h0, h1, . . . are proportional to the corresponding poly-
nomials Lm and L(τ )m . Then it suffices to show that identities (13)
and (14) apply to the polynomials.

Continuous time Recall that the Markov parameters of the
continuous delay are defined as

hm(κ) = e−
κ
2 Lm(κ) = e−

κ
2 Lm(−κ; α)α=−1.

It is well known, see e.g. Rainville (1960, Theorem 68), that
the zeros of Lm(x; α), α > −1 are positive and distinct, which
excludes the case at hand. Yet, in view of Proposition 6, the poly-
nomials Lm(κ) possess orthogonality on [0, ∞). Then, in virtue
of Rainville (1960, Theorem 55), all the zeros of Lm(κ) are distinct
nd negative. Therefore, it is guaranteed that hm(κ) ̸= 0,m =

0, 1, . . . for all feasible values of κ and the denominator of (13)
does not turn to zero.

The associated Laguerre polynomials obey the following three-
term relationship (Rainville, 1960)

Lm+1(κ) =
1

m + 1
(κ + 2 m)Lm(κ) −

m − 1
m + 1

Lm−1(κ). (15)

olving (15) with respect to κ and substituting the Markov pa-
ameters in it gives (13). Notice that the term corresponding to
m−1(κ) becomes zero for m = 1. Therefore, the value of L2(κ)
s completely defined by that of L1(κ). Consequently, L0(κ) and,
hus, h0 are immaterial to the recursion.

Discrete time To secure that hm ̸= 0 in (14), it is sufficient
o recall that the discrete delay operator in Laguerre domain
dmits a finite-dimensional minimal realization given by (9).
hen, none of the Markov parameters of it turn to zero due to
he eigenvalue-revealing structure of the matrix F .

Similarly to the continuous case, for (7), the Markov param-
ters are proportional to the polynomials L(τ )m that are subject to
he following recursion (Medvedev et al., 2022)
(τ )
m+1(ξ ) = a(τ )m (ξ )L(τ )m (ξ ) + bmL

(τ )
m−1(ξ ) (16)

olds with
(τ )
m (ξ ) ≜ a(τ )m,1ξ + a(τ )m,2ξ

−1

(τ )
m,1 =−

m + τ

m + 1
, a(τ )m,2 = −

m − τ

m + 1
, bm = −

m − 1
m + 1

. (17)

xactly as in the continuous case, since b1 = 0, the polynomial
L(τ )0 (ξ ) is not included in the recursion and L(τ )2 (ξ ) is completely
defined by L(τ )1 (ξ ) ■

The fact that the discrete Markov parameters hm are always
nonzero has consequences for the zeros of the polynomials L(τ )m .
The polynomials are definitely not orthogonal, as Proposition 2
implies. However, one can prove that all the roots of the equation
L(τ )m (ξ ) = 0 are real and distinct. Further, they are symmetric
with respect to origin and located outside of the interval (−1, 1)
where the admissible values of ±

√
p lie. These are the properties
 d

4

of zeros that one would otherwise expect from an orthogonal
polynomial family.

In view of the recursive relationships appearing in the proof
above, it is instructive to recall Favard’s theorem (Chihara, 1978).
It secures the orthogonality of a polynomial sequence φn, n =

, 1, . . . with respect to some positive weight function if they
satisfy

ηφn(η) = anφn+1(η) + cnφn(η) + dnφn−1(η) (18)

for some numbers an, bn, cn where an ̸= 0, cn ̸= 0. Then, it readily
follows that the polynomials L(τ )m (ξ ) in (15) form an orthogonal
basis. Yet, Favard’s theorem does not say how to find the weight
function, whose problem is resolved in Proposition 6.

On the contrary, the three-term relationship in (16) does not
comply with the conditions of Favard’s theorem since a(τ )m (ξ ) is
not a first-order polynomial in ξ . In fact, the polynomials L(τ )m (ξ )
do not even build a polynomial family since order of the poly-
nomials is defined by both m and τ . The question of whether
or not the polynomials in the discrete case are orthogonal is
negatively answered by the existence of finite-dimensional real-
ization (9) reproducing the sequence of the Markov parameters,
see Proposition 2.

Notice also that there exist much simpler relations between
the delay value and some of the Markov parameters than those
specified by Proposition 4, see Medvedev (2022). For instance, in
continuous time, it applies that

τ = −(ln h0)/p,

and the corresponding identity in discrete time is

τ = 2 ln h0/ln p.

5. Numerical example

Noise-free case: To illustrate the analytical results presented
above, consider continuous delay (5) with τ = 5. The input signal
is selected to be a linear combination of the first four Laguerre
functions

U(s) = 6ℓ0(s) − 3ℓ1(s) + 2ℓ2(s) − ℓ3(s).

he time evolution of the input as well as the output y(t) are
shown in Fig. 1. The Laguerre spectra of u(t) and y(t) are pre-
sented in Fig. 2.

Consider now the identity in (15) with m = 2, i.e.

κ = −(3h3 + h1 − 4h2)/h2,

ith h1 = −0.7318, h2 = −0.0732, h3 = 0.1903 (see Fig. 2)
nd p = 0.08. It holds for the numerical values of the example.
he same is true for any other feasible m. One should although
otice here that the numerical procedures for evaluating Laguerre
pectra are not sufficiently developed and the estimates of the
oefficients of order over 30 are usually unreliable.

easurement disturbance case: As discussed in Section 3, both
he continuous and discrete descriptions of the time-delay op-
rator exhibit ‘‘casuality’’ in Laguerre domain. To illustrate the
tility of this property in perfect disturbance rejection, consider
continuous time-delay block with a measurement disturbance

(t) = u(t − τ ) + d(t),

here d(t) ∈ L2[0, ∞) is a random signal. A disturbance model
onstituting a linear combination of certain Laguerre functions
ith random variables as weights is introduced in Abdalmoaty
nd Medvedev (2022). Time-domain realizations of the model
(t) = d1ℓ0(t) + d2ℓ1(t) + d3ℓ2(t) + d4ℓ3(t),
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Fig. 1. The input signal u(t) of the continuous time-delay operator, the output
y(t) (dashed line) as well as its approximation of by the first 25 Laguerre
functions with p = 0.08.

Fig. 2. First 25 coefficients of the Laguerre spectra (p = 0.08) of u(t) and y(t).
Only the four first coefficients of the input spectrum are non-zero. The first 25
Markov coefficients hk × 10 calculated from the input and the output spectra
are as well shown.

Fig. 3. Ten realizations of the disturbance model representing linear combi-
nation of the first four Laguerre functions, p = 0.18. The coefficients of the
disturbance model are uniformly distributed random variables in [−15, 15].
n

5

Fig. 4. Input signal u(t) = 6ℓ4(t) − 3ℓ5(t) + 2ℓ6(t) − ℓ7(t), p = 0.18. The delay
block output y(t), τ = 5. The output is corrupted with a disturbance realization
in Fig. 3. The L2 signal-to-noise ratio is ∥y∥2/∥d∥2 = 0.3703.

Fig. 5. Laguerre spectrum of the disturbed output. The disturbance does not
influence the Laguerre coefficients that belong to the delayed input signal (the
delay block output).

where di, i = 1, . . . , 4 are random numbers uniformly distributed
in the interval [−15, 15] are given in Fig. 3. Now shape the input
of the delay block as

u(t) = 6ℓ4(t) − 3ℓ5(t) + 2ℓ6(t) − ℓ7(t),

so that all the spectral components of d(t) are of lower order
compared to those of u(t). Then, in the Laguerre spectrum of
he output signal (see Fig. 5), the disturbance components are
eparated from the components of the delayed input which im-
lies that the delay value can be recovered exactly as in the
isturbance-free case treated above. The invariance property fol-
ows due to the orthogonality of the Laguerre function basis
nd is similar to what is utilized in Fourier (series) domain to
eparate periodical signals with disjoint frequency spectra. The
nly information required to cancel the effect of the disturbance
n the measured signal is which Laguerre components belong to
he disturbance. Notably, the disturbance completely dominates
he output in time domain, Fig. 4. Indeed, the disturbance energy
s almost three times higher than the energy of the input signal,
.e. ∥d∥2 = 19.0958 and ∥u∥2 = 7.0711. A detailed explanation
f how the Laguerre spectral decomposition can be exploited in
oise reduction is provided in Abdalmoaty and Medvedev (2022).
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. Conclusions

This paper gives closed-form expressions for the delay in
erms of the Laguerre spectra of the input and output. Both
iscrete and continuous time cases are treated. Similarities and
ifferences arising due the infinite-dimensional nature of the
ontinuous delay and a finite-dimensional realization of it in
iscrete time are highlighted. The derived expressions exhibit
he inherent connections between the continuous and discrete
elay pure operators by providing a common Laguerre-domain
odeling framework exploiting convolution representations with
olynomial Markov parameters.
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ppendix A. Inverse of lower triangular Toeplitz matrix

emma 5. If u0 ̸= 0, the inverse of T (UN ) is given by

T−1(UN ) ≜ G(UN ) =

⎡⎢⎢⎣
g0 0 . . . 0
g1 g0 . . . 0
...

...
. . . 0

gN gN−1 . . . g0

⎤⎥⎥⎦ ,

here

0 =
1
u0

gk = −
1
u0

k−1∑
j=0

uk−jgj, k ≥ 1.

roof. Introduce the matrix EN ∈ RN×N

N =

⎡⎢⎢⎣
0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

... 0
0 0 . . . 1 0

⎤⎥⎥⎦ .

Then the low-triangular Toeplitz matrix T (UN ) can be written as
a matrix-valued polynomial in EN

T (UN ) =

N−1∑
k=0

ukEk
N .

Since T−1(UN ) is also a low-triangular Toeplitz matrix, it follows

T−1(UN ) =

N−1∑
k=0

gkEk
N .

Observing that EN is nilpotent

T (UN )G(UN ) = G(UN )T (UN ) =

N−1∑
k=0

ukEk
N

N−1∑
k=0

gkEk
N

=

N−1∑
k=0

∑
i+j=k

uigjEk
N = I. (A.1)

The inner sum is taken over all partitions of k into two parts,
i.e. the indices i and j. For the equality to hold, one has to ensure
that u0g0 = 1 and∑

uigj = 0, k ≥ 1.

i+j=k

6

Singling out the term with gk results in

u0gk = −(u1gk−1 + · · · + ukg0).

Solving the equation with respect to gk completes the proof. ■

Appendix B. Orthogonality of Lm

Proposition 6. Laguerre polynomials Ln(·), n ∈ N0 are orthogonal
on the positive real axis in the sense that∫

∞

0

e−x

x
Ln(x)Lm(x) dx =

{
0, n ̸= m
1
n! , n = m.

(B.1)

Proof. In Rainville (1960), it is shown that

(m − n)
∫ b

a
xαe−xLn(x; α)Lm(x; α) dx =

k+1e−x (
Lm(x; α)L̇n(x; α) − Ln(x; α)L̇m(x; α)

) ⏐⏐⏐⏐b
a

pecialized to α = −1, the integration result reads

m,n(x) = e−x (
Lm(x)L̇n(x) − Ln(x)L̇m(x)

)
learly, due to the exponential factor

lim
x→∞

ϕm,n(x) → 0. (B.2)

urthermore, the least order term in Lm(x), m > 0 is always x.
herefore, the least order term in L̇m(x), m > 0 is always 1. The
east order term in the product Lm(x)L̇n(x), n ̸= 0,m ̸= 0,m ̸= n
s, once again, x. Then ϕm,n(0) = 0 which fact, together with (B.2)
mplies orthogonality of Ln(·) and Lm(·) for m ̸= n, i.e. (B.1). It can
lso be shown that for m = n

∞

0

e−x

x
Ln(x)Ln(x) dx =

1
n!

. ■
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