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A B S T R A C T

The Iterative Filtering method is a technique aimed at the decomposition of non-stationary and non-linear signals into simple oscillatory 
components. This method, proposed a decade ago as an alternative technique to the Empirical Mode Decomposition, has been used extensively in 
many applied fields of research and studied, from a mathematical point of view, in several papers published in the last few years. However, even if 
its convergence and stability are now established both in the continuous and discrete setting, it is still an open problem to understand up to what 
extent this approach can separate two close-by frequencies contained in a signal.

In this paper, first we recall previously discovered theoretical results about Iterative Filtering. Afterward, we prove a few new theorems regarding 
the ability of this method in separating two nearby frequencies both in the case of continuously and discrete sampled signals. Among them, we 
prove a theorem which allows to construct filters which captures, up to machine precision, a specific frequency. We run numerical tests to confirm 
our findings and to compare the performance of Iterative Filtering with the one of Empirical Mode Decomposition and Synchrosqueezing methods. 
All the results presented confirm the ability of the technique under investigation in addressing the fundamental “one or two frequencies” question.

1. Introduction

Signals consisting of multiple oscillatory components, that are changing their amplitude and frequency while propagating in 
time, are generated in a great variety of experiments. The analysis of such signals requires a good methodological approach and 
mathematical apparatus, which allows to find out the main features of the signal by a signal transformation. The most general 
methods used for the study of stationary signals are wavelet and Fourier transforms analysis. However these methods proved to be 
limited in identifying the main features when the signals are of non-stationary type. The representation of non-stationary signals 
in both time and frequency domain is very important for signal analysis in various applications such as, for instance, speech signal 
analysis and processing [1], biomedical signal processing [2], telecommunication engineering [3], mechanical engineering [4], 
seismic signal processing [5], intrinsic predictability of a time series [6], and many more. Indeed, the signals studied in the previously 
mentioned areas are non-stationary: their amplitude and frequency parameters vary with respect to time [9].

Given the need to study and analyze non-stationary signals, various techniques have been developed over the decades to improve 
the behavior and performance of wavelet and Fourier transform based methods in dealing with such kind of signals. We can think, 
for instance, to the reassignment method [16], and the Synchrosqueezed wavelet transform [19].
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In 1998 a completely new kind of method was introduced by Huang et al. in [15], the so called Empirical mode decomposition 
(EMD). This is an iterative method which allows to analyze non-stationary signals stemming from nonlinear systems. By using the 
EMD we decompose a given signal into simple components. At the end, the original signal can be expressed as a sum of amplitude and 
frequency modulated (AM-FM) functions called “intrinsic mode functions” (IMFs), plus a final monotonic trend. Over the years, EMD 
proved to be a powerful method which had a broad impact in many applied field of research, see e.g. [22,21,20,23] and references 
there in. However, its convergence analysis is still an open problem, e.g. [30,29,28].

Iterative Filtering (IF) method is an iterative algorithm alternative to the EMD, that has been introduced by Lin et al. in 2009 
[8]. It uses the same algorithm framework as the original EMD, but the moving average of a signal 𝑠(𝑥), 𝑥 ∈ 𝑅, is derived by the 
convolution of 𝑠(𝑥) with low pass filters. To construct smooth low pass filters, we can employ a Fokker-Planck equation, a second 
order partial differential equation. The derived filters have compact support and we call them FP filters. The IF, even if published 
only few years ago, already had an impact in many applied fields of research, e.g. [26,25,27,24,23]. Furthermore, this algorithm 
has been extensively studied in recent years, and its mathematical convergence and stability can be guaranteed a priori both in 
the continuous and the discrete setting [12,10,13]. Nevertheless, its ability in separating two close-by frequencies has not yet been 
studied systematically.

In this work, taking a cue from the study conducted on the EMD first [17], and on the Synchrosqueezed wavelet transform 
afterward [18], we analyze what kind of separation can (or cannot) be achieved for two-tones composite signals when using the IF 
method.

The outline of the paper is as follows. In Section 2 we introduce basic definitions and we present a brief explanation regarding 
the Iterative Filtering (IF) method in both continuous and discrete settings. We provide theoretical results related to convergence 
analysis of this technique, when applied to the separation of two stationary frequencies, and show related numerical results. Section 3

concludes the paper.

2. IF basics

Let us start by quickly reviewing the algorithm and its features. For a more detailed presentation we refer the interested reader 
to the paper [13].

One of the fundamental ingredients needed in the following is the definition of window/filter function.

Definition 1. A filter/window 𝑤 is a nonnegative and even continuous function compactly supported in [−𝐿, 𝐿], 𝐿 > 0, such that 
∫ℝ𝑤(𝑧)d𝑧 = ∫ 𝐿

−𝐿 𝑤(𝑧)d𝑧 = 1. 𝐿 is called filter length and represents the half support length of 𝑤.

Furthermore, from now on, the notation 𝑓 (𝜉) will be used to represent the Fourier transform of a function 𝑓 computed at the 
frequency 𝜉. The IF pseudocode is given in Algorithm 1, where 𝑤𝑚(𝑡) is a given filter, like one of the Fokker-Plank filters proposed in 
[12].

Algorithm 1 Iterative Filtering IMF = IF(𝑠).
IMF = {}
while the number of extrema of 𝑠 ⩾ 2 do

𝑠1 = 𝑠

while the stopping criterion is not satisfied do

compute the filter length 𝐿𝑚 for 𝑠𝑚(𝑥)
𝑠𝑚+1(𝑥) = 𝑠𝑚(𝑥) − ∫ 𝐿𝑚

−𝐿𝑚
𝑠𝑚(𝑥 + 𝑡)𝑤𝑚(𝑡)d𝑡

𝑚 =𝑚 + 1
end while

IMF = IMF∪ {𝑠𝑚}
𝑠 = 𝑠 − 𝑠𝑚

end while

IMF = IMF∪ {𝑠}

The algorithm contains two loops: an inner and an outer loop, the second and first while loop in the pseudocode, respectively. 
The former captures a single IMF, while the latter produces all the IMFs embedded in a signal.

Assuming 𝑠1 = 𝑠, the key step in the algorithm is the moving average computation of 𝑠𝑚 performed as

𝑚(𝑠𝑚)(𝑥) =

𝐿𝑚

∫
−𝐿𝑚

𝑠𝑚(𝑥+ 𝑡)𝑤𝑚(𝑡)d𝑡, (1)

which represents the convolution of the signal itself with the window/filter 𝑤𝑚(𝑡).
The moving average is then subtracted from 𝑠𝑚 to obtain its fluctuation part

𝑚(𝑠𝑚) = 𝑠𝑚 −𝑚(𝑠𝑚) = 𝑠𝑚+1. (2)
2

IMF1 is computed by repeating iteratively this procedure on the signal 𝑠𝑚, 𝑚 ∈ℕ, until a stopping criterion is satisfied [12].
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In order to produce the subsequent IMFs we apply the same procedure to the remainder signal 𝑟 = 𝑠 −∑𝑘
𝑖=1 IMF𝑖, where 𝑘 is the 

number of previously extracted IMFs.

The algorithm stops when 𝑟 becomes a trend signal, meaning it has at most one local extremum. Regarding the filter length 𝐿𝑚, 
its selection is performed at the first step of each inner loop and then it is kept constant throughout the entire inner loop. Hence 
𝐿𝑚 =𝐿1 =𝐿 for every 𝑚 ⩾ 1.

From now on we assume that the algorithm is making always an exact filter length selection. However it is important to remind 
that the mask length selection is a problem per se. In [8,12,13] the authors suggest different approaches to its computation. Further-

more, we remind that the computation of the filter length has to be based on the signal itself, in order to make the method nonlinear 
[13].

In this work we want to study the ability of the IF algorithm to resolve frequencies of a given signal especially when they are 
close each other. In order to address this question Flandrin and Rilling in [17] propose to study the signal

𝑠(𝑥, 𝑎, 𝑓 ) = cos(2𝜋𝑥) + 𝑎 cos(2𝜋𝑓𝑥+ 𝜙) 𝑥 ∈ℝ and 𝑓 ∈ (0,1). (3)

The term cos(2𝜋𝑥) is referred to in the following as the high frequency component (HF) and the second term as the low frequency 
one (LF).

2.1. The continuous setting

The goal of this section is to study the ability of the IF method to decompose properly the signal (3) into two pure tones.

We start by recalling the following theorem which regards the convergence analysis of the Iterative Filtering inner loop.

Theorem 1 (Convergence of the Iterative Filtering method Theorem [12,30]). Given the filter function 𝑤(𝑡) in 𝐿2 ([−𝐿,𝐿]), and let 𝑠(𝑥) ∈
𝐿2(ℝ).
If ‖1 − �̂�(𝜉)‖ < 1 or �̂�(𝜉) = 0.

Then {𝑚(𝑠)} converges and

IMF1 = lim
𝑚→∞

𝑚(𝑠)(𝑥) =

∞

∫
−∞

�̂�(𝜉)𝜒{�̂�(𝜉)=0}𝑒
2𝜋𝑖𝜉𝑥d𝜉. (4)

We observe that given ℎ ∶ [−𝐿

4 , 
𝐿

4 ] → ℝ, 𝑧 ↦ ℎ(𝑧), nonnegative, symmetric, with ∫ℝ ℎ(𝑧)d𝑧 = ∫ 𝐿
4

− 𝐿
4
ℎ(𝑧)d𝑧 = 1, it is sufficient to 

construct the window 𝑤 as convolution of ℎ with itself to ensure the method convergence to the limit function (4), which depends 
only on the shape of the filter function itself and the support length selected by the method [12,11].

In general we can assume that the filter function 𝑤𝐿 supported on [−𝐿, 𝐿] is defined a certain scaling of an a priori fixed filter 
shape 𝑤 ∶ [−1, 1] →ℝ.

For simplicity, from now on, we consider the linear scaling

𝑤𝐿(𝑥) =
1
𝐿
𝑤
(
𝑥

𝐿

)
. (5)

We are now ready to state the following theorem.

Theorem 2. Given the signal 𝑠 defined in (3), assuming that the IF method is selecting accurately the mask length of the doubly convolved 
filter 𝑤𝐿 so that the lowest positive frequency of the 𝑤𝐿 function with zero value corresponds to frequency 1.

Then IF algorithm in the continuous setting can always resolve the signal (3) into two components no matter how close the frequency 𝑓 of 
the LF component is to 1.

Proof 1. We start by recalling that, if we define �̂�(𝜉) = ∫ +∞
−∞ 𝑤(𝑥)𝑒−𝑖𝜉𝑥2𝜋d𝑥, then

𝑤𝐿(𝜉) =

+∞

∫
−∞

1
𝐿
𝑤
(
𝑥

𝐿

)
𝑒−𝑖𝜉

𝑥
𝐿
𝐿2𝜋d𝑥 = �̂�(𝐿𝜉). (6)

Therefore, if 𝜉0 is a root of �̂�(𝜉) = 0, then 𝜉0
𝐿

is a root of 𝑤𝐿(𝜉) = 0 because 𝑤𝐿

(
𝜉0
𝐿

)
= �̂�

(
𝐿

𝜉0
𝐿

)
= �̂�(𝜉0) = 0.

Furthermore, we assume that the IF method selects properly the mask length 𝐿 so that the lowest positive frequency of the 𝑤𝐿

function with zero value corresponds to frequency 1. Hence, based on (4), the only component that is captured in the first IMF by 
the IF algorithm corresponds to the HF component contained in 𝑠.

Finally, since 𝑤 are compactly supported functions, �̂� are defined on ℝ and they have zeros which are isolated points.

Then, from the previous observations, it follows that IF algorithm is able to separate exactly the two components of 𝑠, no matter 
3

how close the frequency 𝑓 of the LF component is to 1.
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2.2. The continuous setting with a stopping criterion

It is reasonable to introduce a stopping criterion [12,13] in order to achieve a decomposition in finite time.

In particular we assume to use the following stopping criterion.

Problem 1. Fixed 𝛿 > 0 we want to find the minimum value 𝑁0 ∈ℕ such that

‖𝑁 (𝑠) −𝑁+1(𝑠)‖𝐿2 < 𝛿 ∀𝑁 ⩾𝑁0.

If we do so, Algorithm 1 converges in finite steps to an IMF whose explicit form is given in the following theorem.

Theorem 3 (Convergence of the Iterative Filtering method with stopping criterion [13]). Given 𝑠 ∈𝐿2(ℝ) and 𝑤 obtained as the convolution 
ℎ ∗ ℎ, where ℎ is a filter/window, and fixed 𝛿 > 0.

Then, for the minimum 𝑁0 ∈ℕ such that ‖‖‖𝑁 (𝑠)(𝑥) −𝑁+1(𝑠)(𝑥)‖‖‖𝐿2 < 𝛿, ∀𝑁 ⩾𝑁0, the first IMF is given by

IMFSC
1 =𝑁 (𝑠)(𝑥) = ∫

ℝ

(1 − �̂�(𝜉))𝑁 �̂�(𝜉)𝑒2𝜋𝑖𝜉𝑥d𝜉 ∀𝑁 ⩾𝑁0. (7)

Theorem 4. Given the signal 𝑠 defined in (3), assuming that the IF method is selecting accurately the mask length of the filter 𝑤𝐿 so that the 
lowest positive frequency of the 𝑤𝐿 function with zero value corresponds to the frequency 1, and fixed 𝛿, 𝜂 > 0.

Then, there exists 𝑁2 ∈ℕ such that ‖𝑁 (𝑠)(𝑥) − cos(2𝜋𝑥)‖𝐿2 < 𝜂, ∀𝑁 ⩾𝑁2.

Proof 2. From (7) it is clear that to obtain a perfect separation we need to have 𝑁 →∞. In fact for any 𝑓 ∈ (0, 1) and any 𝑁 ∈ ℕ, 
assuming always that the mask length selection is done in the right way so that the lowest positive frequency of the �̂� function with 
zero value corresponds to the frequency 1, the term (1 − �̂�(𝜉))𝑁 �̂�(𝑓 ) it will be always different from zero since (1 − �̂�(𝜉)) > 0 for any 
filter produced as convolution of symmetric and nonnegative filters with themselves [12].

It follows from Theorem 3 that there exists 𝑁0 ∈ ℕ such that IF is converging to the HF component contained in the signal (3). 
Furthermore, (1 − �̂�(𝜉)) → 0 as 𝑁 →∞, therefore there exists 𝑁1 ∈ ℕ such that ‖(1 − �̂�(𝑓 ))𝑁 �̂�(𝑓 )𝑒2𝜋𝑖𝑓𝑥‖𝐿2 < 𝜂, ∀𝑁 ⩾𝑁1. Hence for 
𝑁2 = max(𝑁0, 𝑁1) it follows the conclusion.

We point out here that the filter 𝑤 shape can be chosen in order to make the value of (1 − �̂�(𝑓 ))𝑁 small as we like for a fixed 
𝑁 ∈ℕ.

2.3. The discrete setting

We consider now the case of discrete signals, which can be either aperiodical or periodical discrete signals supported on ℝ. In the 
case of periodical signals we can focus on the analysis of a single period and consider it as a vector in ℝ𝑛 , 𝑛 ∈ℕ.

Let us start from the case of aperiodical discrete signals supported on ℝ.

2.3.1. Aperiodical discrete signals on ℝ
We assume that the signal (3) is sampled at discrete and uniformly spaced points 𝑥𝑘 ∈ ℝ. For simplicity, and without loosing 

generality, we assume that

𝑠(𝑥𝑘, 𝑎, 𝑓 ) = cos(2𝜋𝑥𝑘) + 𝑎 cos(2𝜋𝑓𝑥𝑘 + 𝜙) (8)

∀𝑘 ∈ℤ and 𝑓 ∈ (ℝ∖ℚ) ∩ (0, 1), where 𝑥𝑘 = 𝑘𝑇 , 𝑇 ≪ 1 and 𝑘 ∈ℤ, so that 𝑥 is sampled with the rate of Fs = 1
𝑇
= 𝑓𝑠 ≫ 1 samples/seconds 

which allows to capture all its fine details.

The term cos(2𝜋𝑥𝑘) is referred to in the following as the high frequency component (HF) and the second term as the low frequency 
one (LF).

We observe that, since 𝑓 is irrational, the HF and LF components together form an aperiodical signal 𝑠.
Assuming 𝑠1 = 𝑠, the main step of the IF method becomes

𝑠𝑚+1(𝑥𝑘) ≈ 𝑠𝑚(𝑥𝑘) −
𝑥𝑘+𝐿𝑚∑

𝑥𝑗=𝑥𝑘−𝐿𝑚

𝑠𝑚(𝑥𝑗 )𝑤𝑚(𝑥𝑘 − 𝑥𝑗 )
1
𝑛
, 𝑘 ∈ℤ. (9)

Given the Continuous Fourier Transform (CFT) �̂�(𝜉) of the original signal (3), then the Discrete Time Fourier Transform (DTFT) 
of the uniformly sampled signal (8) and its inverse are equal to

∞∑ (
ℎ
)

4

�̂�1∕𝑇 (𝜉) =
ℎ=−∞

�̂� 𝜉 −
𝑇

, (10)



Applied Mathematics and Computation 462 (2024) 128322A. Cicone, S. Serra-Capizzano and H. Zhou

𝑠(𝑥𝑘) = 𝑇 ∫
1
𝑇

�̂�1∕𝑇 (𝜉)𝑒𝑖2𝜋𝜉𝑘𝑇 d𝜉, (11)

for any 𝜉 ∈ℝ and 𝑘 ∈ℤ.

The integer ℎ in (10) has units of cycles/sample, and 1∕𝑇 = 𝑓𝑠 is the sample rate in samples/seconds. So �̂�1∕𝑇 (𝜉) comprises exact 
copies of �̂�(𝜉) that are shifted by multiples of 𝑓𝑠 hertz and added together. Assuming we are dealing with a compactly supported 
filter 𝑤, for sufficiently large 𝑓𝑠 the ℎ = 0 term in the DTFT of 𝑤 can be observed in the region [−𝑓𝑠∕2, 𝑓𝑠∕2] with little contribution 
(aliasing) from the other terms.

We are now ready to state the following.

Proposition 1 (Convergence of the Iterative Filtering method applied to aperiodical discrete signals on ℝ). Given the filter function 𝑤(𝑡) and 
an aperiodical discrete signal 𝑠(𝑘𝑇 ), 𝑘 ∈ℤ.

If ‖1 − �̂�1∕𝑇 (𝜉)‖ < 1 or �̂�1∕𝑇 (𝜉) = 0.

Then IF converges and the first IMF equals

IMF1 = 𝑇 ∫
1
𝑇

�̂�1∕𝑇 (𝜉)𝜒{�̂�1∕𝑇 (𝜉)=0}𝑒
𝑖2𝜋𝜉𝑘𝑇 d𝜉. (12)

The proof follows directly from the one of Theorem 1 and the properties of the DTFT.

Corollary 1. Given the signal 𝑠 defined in (8), given a filter 𝑤 and assuming its DTFT �̂�1∕𝑇 contains at least one zero value. If we further 
assume that the IF method is selecting accurately the linear scaling 𝑝 of the doubly convolved filter such that its DTFT, 𝑤𝑝1∕(𝑝𝑇 ), has its lowest 
positive frequency with zero value at frequency 1.

Then IF algorithm can resolve exactly 𝑠 into the two components HF and LF.

Proof 3. From the hypotheses it follows that the filter used in IF algorithm will be 𝑤𝑝 , whose DTFT, 𝑤𝑝1∕(𝑝𝑇 ), has its lowest positive 
frequency with zero value at frequency 1. Therefore, from Proposition 1 it follows that the first IMF produced by IF will contain all 
and only the HF component of the given signal 𝑠, no matter how close the frequency 𝑓 of the LF component is to 1.

From an intuitive point of view it may seem pretty hard to guarantee that the assumptions of this Corollary hold true. In particular, 
having a filter 𝑤(𝑥) which has at least one zero in its DTFT is clearly not common in general. In fact, the DTFT of 𝑤 is, as suggested 
in (10), the summation of infinitely many repetitions of a properly shifted CFT of the continuous version of 𝑤. In order to have a 
zero in 𝑤 DTFT, we need the 𝑤 CFT zero frequencies positions to align in at least in one frequency position when we compute the 
DTFT. However it could be tricky to build such a filter. Furthermore, at every scaling of the filter, this alignment of the zeros may be 
lost.

The following theorem provides an easy way to construct a filter which is guaranteed to have an actual zero in the DTFT domain.

Theorem 5. Given a compactly supported filter ℎ𝑝(𝑘𝑇 ), 𝑘 ∈ ℤ, assuming the smallest positive minimum in its DTFT is at frequency 𝑓1 and 
has value 𝜀.

Then the function

𝑤𝑝 = iDTFT
((

DTFT(ℎ𝑝) − 𝜀
)2)

(13)

is a doubly convolved real filter with zero at frequency 𝑓1 in the DTFT domain.

Proof 4. First of all, we observe that from (11) it follows that 𝑇 ∫ 1
𝑇

𝜀𝑒𝑖2𝜋𝜉𝑘𝑇 d𝜉 = 𝑇 𝜀𝛿[𝑘𝑇 ], where 𝛿(𝑘𝑇 ) is a Dirac delta function in 
discrete time for 𝑘 ∈ℤ.

Hence, by the DTFT properties, from (13) it follows that 𝑤𝑝 is a filter doubly convolved with itself. In particular, 𝑤𝑝 is even, 
nonnegative and compactly supported function such that ∑∞

𝑘=−∞𝑤𝑝(𝑘𝑇 ) = 1. Furthermore, by construction, 𝑤𝑝 has a zero at frequency 
𝑓1.

2.3.2. Periodical discrete signals on ℝ
We consider now the case of vectorial signals defined in ℝ𝑝, 𝑝 ∈ℕ.

𝑠(𝑥𝑘, 𝑎, 𝑓 ) = cos(2𝜋𝑥𝑘) + 𝑎 cos(2𝜋𝑓𝑥𝑘 + 𝜙), (14)

∀𝑘 = 1, … , 𝑛

𝑇
= 𝑝 and 𝑓 ∈

(
1
𝑛
,1
)

, where 𝑛 and 1
𝑇
∈ ℕ, 𝑥𝑘 = 𝑘𝑇 , 𝑇 ≪ 1, so that 𝑥 is sampled with the rate of Fs = 1

𝑇
≫ 1 samples/sec 

which allows to capture all its fine details.[ ] 𝑛
5

We want to decompose the vector 𝐬 = 𝑠(𝑥𝑘) 𝑇
−1

𝑘=0 into two vectorial IMFs. Without loosing generality we can assume that ‖𝐬‖2 = 1.
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We assume that a filter function 𝑤 has been selected a priori, for instance one of the Fokker-Planck filters [12] convolved with 
itself, and that 𝑤𝑚 is computed by linear scaling, as described in (5), such that its support becomes 2𝐿𝑚 + 1, 𝐿𝑚 ∈ℕ.

Assuming 𝑠1 = 𝑠, the main step of the IF method becomes

𝑠𝑚+1(𝑥𝑖) ≈ 𝑠𝑚(𝑥𝑖) −
𝑥𝑖+𝐿𝑚∑

𝑥𝑗=𝑥𝑖−𝐿𝑚

𝑠𝑚(𝑥𝑗 )𝑤𝑚(𝑥𝑖 − 𝑥𝑗 )
1
𝑛
, 𝑖 = 0,… ,

𝑛

𝑇
− 1, (15)

where 𝑥 is sampled at a rate which allows to capture all the fine details of 𝑠, so that aliasing will not play any role. In particular, given 
the sampling rate of Fs = 1

𝑇
, from Shannon–Hartley theorem [7] we know that the highest frequency that can be properly captured is 

1
2𝑇 Hz. Whereas, given that the signal is assumed to be of length 𝑛 seconds, the lowest frequency that can be fully represented equals 
1
𝑛

Hz.

Algorithm 2 provides the discrete version of IF Algorithm 1

Algorithm 2 Discrete Iterative Filtering IMF = DIF(𝑠).
IMF = {}
while the number of extrema of 𝑠 ⩾ 2 do

𝑠1 = 𝑠

while the stopping criterion is not satisfied do

compute the function 𝑤𝑚(𝜉), whose half support length 𝐿𝑚 is based on the signal [𝑠𝑚(𝑥𝑖)
] 𝑛

𝑇
−1

𝑖=0
𝑠𝑚+1(𝑥𝑖) = 𝑠𝑚(𝑥𝑖) −

∑𝑝−1
𝑗=0 𝑠𝑚(𝑥𝑗 )𝑤𝑚(|𝑥𝑖 − 𝑥𝑗 |) 1𝑝 , 𝑖 = 0, … , 𝑝 − 1

𝑚 =𝑚 + 1
end while

IMF = IMF∪ {𝑠𝑚}
𝑠 = 𝑠 − 𝑠𝑚

end while

IMF = IMF∪ {𝑠}

In matrix form we have

𝑠𝑚+1 = (𝐼 −𝑊𝑚)𝑠𝑚, (16)

where

𝑊𝑚 =
[
𝑤𝑚(𝑥𝑖 − 𝑥𝑗 ) ⋅

𝑇

𝑛

] 𝑛
𝑇
−1

𝑖, 𝑗=0
=
⎡⎢⎢⎢⎣
𝑤
(

𝑥𝑖−𝑥𝑗
𝐿𝑚

)
𝐿𝑚

⋅
𝑇

𝑛

⎤⎥⎥⎥⎦

𝑛
𝑇
−1

𝑖, 𝑗=0

=
⎡⎢⎢⎢⎣
𝑤
(

𝑖−𝑗
(𝑛−1)𝐿𝑚

)
𝐿𝑚

⋅
𝑇

𝑛

⎤⎥⎥⎥⎦

𝑛
𝑇
−1

𝑖, 𝑗=0

. (17)

The first IMF is given by IMF1 = lim𝑚→∞(𝐼 −𝑊𝑚)𝑠𝑚.

We point out that the matrix 𝑊𝑚 depends on the half support length 𝐿𝑚 at every step 𝑚. However, in the implemented code the 
value 𝐿𝑚 is usually computed only in the first iteration of each inner while loop and then kept constant to 𝐿𝑚 = 𝐿1 = 𝐿 value in the 
subsequent steps, so that the matrix 𝑊𝑚 is equal to 𝑊1 for every 𝑚 ∈ ℕ. Thus, the first IMF is given by

IMF1 = lim
𝑚→∞

(𝐼 −𝑊1)𝑚𝑠. (18)

Theorem 6 (Convergence of the Discrete Iterative Filtering [13]). Given a signal 𝑠 ∈ℝ𝑝, assuming that we are considering a doubly convolved 
filter 𝑤𝐿 whose half filter support length 𝐿𝑚 is constant and equal to 𝐿 throughout all the steps of an inner loop, assuming that 𝐿 is big enough 
so that the convolution matrix 𝑊1 associated with the scaled filter 𝑤𝐿 is different from an identity matrix 𝐼 , assuming that 

{
𝜆𝑗
}
𝑗=0,…,𝑝−1 are 

the eigenvalues of 𝑊 such that 𝑘 of them, 𝑘 ∈ {0, 1, … , 𝑝 − 1}, are equal to zero.

Then 𝑊1 is diagonalizable as 𝑊1 =𝑈𝐷𝑈𝑇 , where 𝑈 is a unitary matrix having as columns the eigenvectors 𝑢𝑝 of 𝑊1, and the first outer 
loop step of the DIF method converges to

IMF1 = lim
𝑚→∞

(𝐼 −𝑊1)𝑚𝑠 =𝑈𝑍𝑈𝑇 𝑠, (19)

where 𝑍 = 𝐼 −𝐷 is a diagonal matrix with entries all zero except 𝑘 elements in the diagonal which are equal to one.

We recall here that the eigenvalues of the 𝑊1 circulant matrix are given by

𝜆𝑗 =
𝑝−1∑
𝑞=0

𝑤𝐿

(
𝑞

𝑝− 1

)
𝑒
−2𝜋𝑖𝑗 𝑞

𝑝 𝑗 = 0,… , 𝑝− 1, (20)

which is equivalent to the Discrete Fourier Transform (DFT) of 𝑤𝐿 at frequencies 𝑗 = 0, … , 𝑝 − 1. The corresponding eigenvectors 
6

are
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𝑢𝑗 = 1√
𝑝

[
1, 𝑒−2𝜋𝑖𝑗

1
𝑝 ,… , 𝑒

−2𝜋𝑖𝑗 𝑝−1
𝑝

]𝑇
, 𝑗 = 0,… , 𝑝− 1, (21)

which form a Fourier basis [13]. These observations led to a fast implementation of the IF method, the so called Fast Iterative 
Filtering (FIF) [13,10].

Regarding the filter length 2𝐿 + 1, i.e. the filter support length, measured in sample points, we assume in this work that it can 
only achieve integer values. We recall that it is always possible to go beyond this limit by numerical approximation as described in 
[12] Section 4. We are now ready to prove the following

Corollary 2. Given the signal 𝑠 ∈ℝ𝑝 defined in (14), sampled at Fs = 1
𝑇

sampling rate such that 𝑝 = 𝑛 1
𝑇

, assuming 𝑤𝐿 is a doubly convolved 
filter, whose filter length, measured in sample points, equals 2𝐿 + 1, such that the smallest positive zero in the DFT of 𝑤𝐿 corresponds to 
frequency 1.

Then DIF algorithm can always resolve 𝑠 into the two components HF and LF as far as the LF component has a frequency 𝑓 ⩽ 1 − 1
𝑛
.

The proof follows directly from Theorem 6 and the properties of the DFT. In particular, the frequency resolution of the DFT is 
given by the ratio 𝐹𝑠

𝑝
= 1

𝑇

𝑇

𝑛
= 1

𝑛
, which represents the reciprocal of the number of seconds contained in the signal 𝑠.

We point out that the very same result holds true also for the FIF implementation of DIF method proposed in [13,10].

Another important observation regards the ability of DIF and FIF methods to exactly separate the HF from the LF components. 
Clearly there are two scenarios: the frequency 𝑓 of the LF component belongs to the set 

{
1
𝑛
, 2

𝑛
,… , 1 − 1

𝑛

}
, i.e. can be exactly 

represented by the DFT in the Fourier domain, or it does not. In the first case the method can separate exactly the two components. 
In the second case the algorithm can still identify two components and separate the two with a certain degree of accuracy.

This second scenario includes the case of frequencies 𝑓 not being rational numbers. Clearly we cannot have a perfect separation, 
but the algorithm is still able to address the fundamental question “one or two frequencies?”.

2.4. The discrete setting with a stopping criterion

In the implemented algorithm we do not let 𝑚 to go to infinity. Instead, we use some kind of stopping criterion and discontinue 
the calculations when a pre-fixed threshold value has been reached [12].

We recall the following known theorem.

Theorem 7 (Convergence of the Discrete Iterative Filtering with a stopping criterion [13]). Given 𝑠 ∈ℝ𝑝, we consider the convolution matrix 
𝑊 , associated with a filter vector 𝑤 given as a symmetric filter ℎ convolved with itself. Assuming that 𝑊 has 𝑘 zero eigenvalues, where 𝑘 is 
a number in the set ∈ {0, 1, … , 𝑝 − 1}, and fixed 𝛿 > 0.

Then, calling ̃𝑠 =𝑈𝑇 𝑠, for the minimum 𝑁0 ∈ℕ such that it holds true the inequality

𝑁
𝑁0
0(

𝑁0 + 1
)𝑁0+1

<
𝛿‖�̃�‖∞√
𝑝− 1 − 𝑘

we have that ‖‖𝑠𝑚+1 − 𝑠𝑚
‖‖2 < 𝛿 ∀𝑚 ⩾𝑁0 and the first IMF is given by

IMF1 =𝑈 (𝐼 −𝐷)𝑁0𝑈𝑇 𝑠 =𝑈𝑃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
(1 − 𝜆1)𝑁0

⋱
(1 − 𝜆𝑝−1−𝑘)𝑁0

1
⋱

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑃𝑇 𝑈𝑇 𝑠, (22)

where 𝑃 is a permutation matrix which allows to reorder the columns of 𝑈 , which correspond to eigenvectors of 𝑊 , so that the corresponding 
eigenvalues {𝜆𝑗}𝑗=1,…, 𝑝−1 are in decreasing order.

From Theorem 7 we deduce the following result.

Corollary 3. Given the signal 𝑠 ∈ ℝ𝑝 defined in (14), sampled at Fs = 1
𝑇

sampling rate such that 𝑝 = 𝑛 1
𝑇

, assuming the LF component has 
a frequency 𝑓 belonging to the set 

{
1
𝑛
, 2

𝑛
,… , 1 − 1

𝑛

}
. Assuming also that 𝑤𝐿 is a doubly convolved filter, whose filter length, measured 

in sample points, equals 2𝐿 + 1, such that the smallest positive zero in the DFT of 𝑤𝐿 corresponds to frequency 1, and fixed 𝜂 > 0 and the 
stopping criterion 𝛿 > 0.

Then, there exists an 𝑁0 > 0 such that the stopping criterion is satisfied, and IMF1 =𝑈 (𝐼 −𝐷)𝑁0𝑈𝑇 𝑠 and the ground truth HF component 
7

differ in norm less than 𝜂.
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Fig. 1. Left panel, IF performance in separating two-tones with rational frequencies from the signal (14), measured using the criterion (23) averaged over 𝜙. We 
assume that the algorithm selects always the ideal mask length 𝐿. Right panel, we show the same plot reported on the left, but with vertical axis in log scale to 
highlight the performance of the technique. In this case the algorithm can separate, up to machine precision, the two components for any combination of amplitude 
𝑎 and frequency 𝑓 < 1 − 1

𝑛
of the LF component, as predicted by Corollaries 2 and 3.

The proof follows from Theorem 7 and the properties of the DFT. In particular, from (22) it follows that the norm of the difference 
between the ground truth HF component and IMF1 = 𝑈 (𝐼 −𝐷)𝑁0𝑈𝑇 𝑠 is equal to the norm of (1 − 𝜆𝑘)𝑁0𝑢𝑘, where 𝑢𝑘 equals the LF 
component. No matter the value of 𝜂 > 0 and 𝜆𝑘 ∈ (0, 1), there will always be a 𝑁0 > 0 such that the conclusion of the theorem 
follows.

We point out that similar results can be derived also when the frequency 𝑓 ∈ (0, 1) of the LF component do not belong to the 
set 

{
1
𝑛
, 2

𝑛
,… , 1 − 1

𝑛

}
. The calculations become more involved, but also in this case the algorithm can identify two components and 

separate them with a prefixed degree of accuracy. The results obtained applying the IF algorithm to the case of frequency 𝑓 irrational 
are shown in Figs. 5 and 6 in the following numerical results section.

2.5. Numerical results

We test now the performance of the Iterative Filtering (IF) Matlab code1 in separating two frequencies and we compare the 
outcome with the EMD and Synchrosqueezing performance, when applied to periodical discrete signals.

We recall the formula proposed by Flandrin et al. in [17] which we use in this work to measure the performance in separating 
two pure tone components.

𝑐1(𝑎, 𝑓 , 𝜙) ≐
‖IMF1 (𝑥, 𝑎, 𝑓 ) − cos (2𝜋𝑥)‖L2(𝑇 )‖𝑎 cos (2𝜋𝑓𝑥+𝜙)‖L2(𝑇 )

. (23)

In all the following tests we let the IF algorithm iterating for 10 millions times and we set the 𝛿 parameter for the stopping 
criterion to 10−20. Same results, in terms of the algorithm decomposition performance, can be obtained by setting the 𝛿 to the 
standard value of 10−3 and letting the algorithm to run for just a few iterations. In this work, we opt to put under stress the algorithm 
and show its ability to converge to a steady solution, which remains unchanged even after a high number of iterations.

We point out that, when we apply a decomposition method to a discrete and compactly supported signal, boundary errors will 
show up in most cases. In [14] the authors estimated in a rigorous way the propagation of the error inside the decomposition due to 
the boundaries. In the following tests we apply the approach proposed in [23] to mitigate these errors.

We start assuming that the IF method is combined with an ideal way of selecting the mask length 𝐿. From Fig. 1, where the 
performance of this ideal version of the algorithm is shown, we see that in this case the algorithm can separate, up to machine 
precision, the two components for any combination of amplitude 𝑎 and frequency 𝑓 < 1 − 1

𝑛
of the LF component, as predicted by 

Corollaries 2 and 3.

If, instead, we use the mask length selection approach currently implemented in IF, we obtain the performance shown in Fig. 2, 
which can be perfectly explained using the analysis made by Flandrin et al. in [17], that regards the actual extrema of the signal 𝑠
defined in (14). In fact, when the amplitude 𝑎 of the LF component becomes big enough, in particular when 𝑎 ⩾ 1

𝑓
, the HF component 

contributes just to defining the local change in the concavity of the signal and no more to the local extrema of 𝑠. Therefore, unless 
properly guided, the IF method is no more able in this case to identify and separate two frequencies in the given signal. If we compare 
these last performances with the ones of EMD and Synchrosqueezing methods, we can see how IF algorithm, even with the currently 
implemented mask length selection approach, outperforms both EMD and Synchrosqueezing in separating close by frequencies for 
values of the amplitude 𝑎 < 1

𝑓
. We observe that the Synchrosqueezing plot, reported in [18] and shown, for readers convenience, in 

the right panel of Fig. 3, does not include the range of amplitudes [100.4, 102].
In order to improve the IF method mask length selection abilities, we can use the first, second or higher order derivatives of the 

signal. In doing so, we can enlarge the region in which the IF method, with its implemented mask length selection approach, can 
perfectly separate, up to machine precision, the two frequencies, Fig. 4.
8

1 The Matlab code of the results reported in this work is available at https://github .com /Acicone /FIF _1 _or _2 _freq.

https://github.com/Acicone/FIF_1_or_2_freq
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Fig. 2. Left panel, IF performance in separating two-tones with rational frequencies from the signal (14), measured using the criterion (23) averaged over 𝜙, when 
the currently implemented mask length selection is used. Right panel, the projection onto the (𝑎, 𝑓 )-plane. The critical curves 𝑎𝑓 = 1 and 𝑎𝑓 2 = 1 are plotted in solid 
red and black, respectively. From the plots we see that when the amplitude 𝑎 of the LF component becomes big enough, in particular when 𝑎 ⩾ 1

𝑓
, the IF method is 

not able to identify and separate two frequencies in the given signal. Whereas, when 𝑎 < 1
𝑓

, IF can perfectly separate the signal into a LF and HF component.

Fig. 3. EMD, left, and Synchrosqueezing, right, performance measure of separation for two-tones original images shown in [17] and [18].

This result is explained in the following theorem.

Theorem 8. Given the signal 𝑠 defined in (14), there exists 𝑑 ∈ℕ big enough such that, by computing the DIF mask length based on the 𝑑–th 
derivative of 𝑠 signal, DIF algorithm can address the one or two frequencies question.

Proof 5. Given 𝑠 defined in (14), for any 𝑎 ∈ ℝ, there exists 𝑑 ∈ ℕ big enough such that 𝑎𝑓𝑑 ⩽ 1 and the LF component of the 𝑑–th 
derivative of the signal 𝑠 will be comparable or negligible with respect to the HF component. Therefore any mask length selection 
process based on the extrema relative distance applied to 𝑠(𝑑) will be able to identify the mask length required by DIF to separate 
properly the HF and LF components from the original signal 𝑠.

The last case we study in this section regards the separation of the two frequencies from signal (14) when 𝑓 is irrational. If we 
guide properly the IF method in its mask length selection we obtain remarkable results as shown in Fig. 5. If, instead, we use the 
currently implemented mask length selection approach, we obtain the performance shown in Fig. 6 which, again, fit well with the 
analysis made by Flandrin et al. in [17] regarding the actual extrema of the signal 𝑠.

3. Conclusions

The decomposition of non-stationary signals into simple oscillatory components, and their subsequent analysis, is an active 
research direction, which has a broad impact in many applied fields of research. Among the questions that researchers have been 
trying to address in recent years, there is the “one or two frequencies” problem, i.e. up to which extent a decomposition method is 
able to separate and extract two close-by stationary frequencies? This key question was originally raised and addressed by Rilling 
and Flandrin for the method called Empirical Mode Decomposition, in the paper [17]. Few years later, Wu, Flandrin, and Daubechies 
9

raised and addressed the same question for the Synchrosqueezing algorithm [18].
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Fig. 4. IF performance in separating two-tones with rational frequencies from signal (14) when we use the first derivative (left panel) and the second derivative (right 
panel) of the signal to compute the mask length. The critical curves plotted are: 𝑎𝑓 = 1 (red), 𝑎𝑓 2 = 1 (black), 𝑎𝑓 3 = 1 (green), 𝑎𝑓 4 = 1 (white). From the plots we see 
that by using the first or second derivative of the signal, left and right panel respectively, we can enlarge the region in which the IF method can perfectly separate, up 
to machine precision, the two frequencies.

Fig. 5. IF performance in separating two-tones with irrational frequencies from signal (14), when we assume an ideal way of selecting the mask length. We use 
criterion (23) averaged over 𝜙 to produce the plot shown in the left panel. In the right panel we present its zoomed in version. In this ideal case the performance of 
IF is good.

Fig. 6. Left panel, IF performance in separating two-tones with irrational frequencies from signal (14), when the currently implemented approach for mask length 
selection is used. The results shown are obtained using criterion (23) when 𝜙 = 3. Right panel, the projection onto the (𝑎, 𝑓 )-plane. The critical curves 𝑎𝑓 = 1 and 
𝑎𝑓 2 = 1 are plotted in solid red and black, respectively. From these plots we see that the performance of IF fits well with what predicted by formulas presented by 
Flandrin et al. in [17].

In this work, given the recent theoretical results obtained in the analysis of the Iterative Filtering (IF) algorithm [12,10,13], and 
the impact that this method is having in many applied fields of research, see for instance [26,25,27,24,23] and references there in, 
we decided to address the “one or two frequencies” question also for the IF method.

Starting from the numerical analysis of the IF technique [13], in this work we provided several new theoretical results. These new 
insights on the IF method properties allowed to address the question if the IF method can separate a signal into one or two frequencies, 
both in the ideal case of a continuously sampled signal and the more practical case of a discretely sampled one. In particular, we 
completed the numerical analysis presented in [13], by studying also the case of a aperiodical discrete signal. Furthermore, we 
showed how to design filters, in the discrete setting, such that two important properties are guaranteed: the a priori convergence 
of the IF algorithm and, at the same time, the converge of IF to a non-zero simple oscillatory component, even if we iterate the 
10

decomposition steps for millions of times.
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In the numerical section, we presented various examples that confirm the results obtained in the theoretical analysis of the algo-

rithm. From these results, we were able to observe that the implemented IF algorithm either matches or outperforms the performance 
of both the Empirical Mode Decomposition and the Synchrosqueezing technique in separating two stationary frequencies.

Furthermore, we proposed the innovative idea of using the signal derivatives to increase the algorithm’s ability to properly 
separate two frequencies. We provided theoretical explanations of the reason why this approach can work, and we present numerical 
examples which confirm this claim.

At this point, the question that becomes natural to ask is whether, and up to which extent, the IF approach can separate two 
non-stationary components from a given signal. This is, to the best of our knowledge, a completely unexplored direction of research 
for any decomposition method proposed so far in the literature. We plan to tackle this question from the IF method perspective in 
future work.

Another open problem regards the proper computation of the IF filter support size. As shown in the numerical section, an ideal 
mask length selection method would allow the IF method to separate the two frequencies in any scenario. We leave this problem to 
future research.

Data availability

Codes are available online at the link reported in the paper.
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