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Abstract: The spike (S) protein on the surface of the SARS-CoV-2 virus is critical to mediate fusion
with the host cell membrane through interaction with angiotensin-converting enzyme 2 (ACE2).
Additionally, heparan sulfate (HS) on the host cell surface acts as an attachment factor to facilitate the
binding of the S receptor binding domain (RBD) to the ACE2 receptor. Aiming at interfering with the
HS-RBD interaction to protect against SARS-CoV-2 infection, we have established a pentasaccharide
library composed of 14,112 compounds covering the possible sulfate substitutions on the three
sugar units (GlcA, IdoA, and GlcN) of HS. The library was used for virtual screening against RBD
domains of SARS-CoV-2. Molecular modeling was carried out to evaluate the potential antiviral
properties of the top-hit pentasaccharide focusing on the interactive regions around the interface
of RBD-HS-ACE2. The lead pentasaccharide with the highest affinity for RBD was analyzed via
drug-likeness calculations, showing better predicted druggable profiles than those currently reported
for RBD-binding HS mimetics. The results provide significant information for the development of
HS-mimetics as anti-SARS-CoV-2 agents.

Keywords: SARS-CoV-2; RBD; heparan sulfate; protein binding; virtual screening

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent
of coronavirus disease 2019 (COVID-19), which was declared a global pandemic by the
World Health Organization (WHO) in 2020. Although the pandemic situation is under
control at present, whether new variants will emerge is unpredictable, thus COVID-19
still poses a great threat to human health [1]. SARS-CoV-2 is a member of the betacoron-
aviruses [2], and infects human cells via a trimeric S (spike) protein on its surface binding
to the angiotensin-converting enzyme 2 (ACE2) receptor [3] through the receptor-binding
domain (RBD) in an ‘open’ conformation [4]. Heparan sulfate (HS) has been identified [5]
as a coreceptor priming the S protein for ACE2 interaction [6], which then triggers the
fusion of the viral membrane with the host cell membrane [7]. Mutations within the S
protein of SARS-CoV-2 emerged rapidly, which is assumed to alter virus–host cell inter-
actions [8–10]. Vaccines are critical tools to reduce the severity of virus-induced diseases;
however, vaccine effectiveness against SARS-CoV-2 is threatened by the emergence of viral
variants [11]. Therefore, it is necessary to develop drugs targeting viral infection, including
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the inhibition of viral entry, virus replication and release, and virus-induced inflammation.
Since HS plays important roles in virus–cell receptor interactions, identifying HS-mimetics
as potential inhibitors for targeting S protein-HS-ACE2 interactions is a valid approach
to attenuate SARS-CoV-2 infection [12–14]. Here, we have established an unprecedented
pentasaccharide library containing 14,112 species. Through virtual screening of the binding
between RBD and the pentasaccharides, we have identified a potent lead structure with a
high affinity for the RBD. Drug-likeness calculations showed better the properties of the
pentasaccharide than those of the reported oligosaccharide compounds. Collectively, our
results provide insights into the potential to develop HS-mimetics as therapeutic agents
which prevent SARS-CoV-2 binding to target cells.

2. Results
2.1. Identification of the RBD-Binding Pentasaccharide

The trimeric SARS-CoV-2 S protein engages human ACE2 with a single RBD extending
from the trimer in an “open” active conformation (Figure 1) and mediates the entry of
virions into target cells [15]. There is a cluster of positively charged amino acid residues
adjacent to the ACE2 binding site in the open RBD conformation, serving as a binding
site for HS [14]. To identify oligosaccharides (HS-mimetics) binding to the RBD with high
affinity, we established an unprecedented virtual library of pentasaccharides, using the
backbone sequences of five sugar units of glucuronic acid, iduronic acid, and glucosamine,
with sulfate substitution in the possible positions, resulting in a library of 14,112 different
structures. The pentasaccharide library was virtually screened for a binding to the S pro-
tein with open RBD conformation, and the top-hit pentasaccharide (designated AD08043,
Figure 2) is GlcNS-β-(1→4)-GlcA-α-(1→4)-GlcNAc3S-β-(1→4)-IdoA-α-(1→4)-GlcNAc.
This pentasaccharide contains one IdoA unit that increases its conformational flexibil-
ity [16], and a 3-O-sulfated glucosamine unit that is a signature of the antithrombin binding
epitope of heparin and the herpes virus binding epitope of HS [17,18]. Moreover, we found
that the top ten pentasaccharides virtually screened, including AD08043, all exhibited a
poor degree of sulfation (Table S1).
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2.2. Analysis of the Molecular Interactions via Molecular Modelling

Next, we analyzed binding affinity of the selected pentasaccharide AD08043 with RBD
in comparison with other oligosaccharides that have shown a binding to RBD (Figure 3),
including the pentosan polysulfate monomer (PPS) [20,21] and (IdoA2S-GlcNS6S)4 [6] via
the molecular docking of SARS-CoV-2 RBD (Table 1). The results indicate that AD08043
binds more tightly with SARS-CoV-2 RBD (with a binding energy of −7.149 kcal/mol)
than (IdoA2S-GlcNS6S)4 and PPS (with binding energies of −6.797 and −6.247 kcal/mol,
respectively).
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Table 1. Results of the molecular docking between SARS-CoV-2 RBD and the ligands.

Ligand Name Binding Free Energies (kcal/mol) Dissociation Constant (µM)

AD08043 −7.149 5.751
(IdoA2S-GlcNS6S)4 −6.797 10.417

PPS −6.247 26.357

To generate further insights into the intermolecular interactions and stability of the
complexes between the pentasaccharide and RBD protein, we examined the weak non-
bond forces such as hydrogen bonds and hydrophobic contacts for each of the amino
acids involved in the binding (Table 2). Hydrogen bonding has a diverse role in ligand–
receptor interactions. The favorability of the ligand–receptor hydrogen bonds depends
upon the total energy change involved in the formation and breaking of all these hydrogen
bonds. Likewise, the ligand–receptor hydrogen bonds are considered key contributors
to binding due to their specificity. AD08043 shows seven hydrogen bonds involving
amino acid residues of Arg355 (3.18 Å and 3.06 Å), Arg466 (3.14 Å, 3.11 Å, and 3.18 Å),
Tyr396 (2.94 Å and 3.14 Å), and Leu517 (3.11 Å). In comparison, the (IdoA2S-GlcNS6S)4
oligosaccharide shows a maximum of 24 interactions, including thirteen hydrogen bonds
with binding interface amino acid residues Arg355 (3.11 Å), Arg357 (3.19 Å, 2.95 Å, 3.06 Å,
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3.00 Å, 2.96 Å, and 3.24 Å), and Arg466 (3.14 Å and 3.18 Å), as well as eleven hydrophobic
contacts with the binding interface amino acid residues Trp353 and Asn354. PPS shows six
hydrogen bonds with amino acid residues of Arg355 (2.93 Å and 3.14 Å), Arg357 (3.03 Å and
3.35 Å), and Arg466 (3.28 Å and 3.03 Å) (all of which are located in the binding interface),
and eleven hydrophobic contacts. The results of the molecular modeling also showed that
AD08043 was located on the binding interface of RBD and ACE2 (Figure 4).

Table 2. Detailed information on the non-bond forces between SARS-CoV-2 RBD and the oligosaccharides.

Ligand Name
Hydrogen Bond

Receptor Atom—Ligand Atom
(Bond Length)

Hydrophobic Contact

AD08043

(1) Arg355:NH1—O15 (3.18 Å); (2) Arg355:N—O20 (3.06 Å);
(3) Arg466:NH1—O17 (3.14 Å); (4) Arg466:NH2—O16 (3.11 Å);
(5) Arg466:NH2—O16 (3.18 Å); (6) Tyr396:OH—O28 (2.94 Å);

(7) Tyr396:OH—O30 (3.14 Å); (8) Leu517:N—O4 (3.11 Å).

(1) Trp353; (2) Asn354;
(3) Pro426; (4) Asp428;
(5) Phe429; (6) Phe464;
(7) Phe515; (8) Glu516;

(9) His519.

(IdoA2S-GlcNS6S)4

(1) Asn334:ND2—O7 (2.94 Å); (2) Asn334:ND2—O12 (3.12 Å);
(3) Arg355:N—O73 (3.11 Å); (4) Arg357:N—O62 (3.19 Å);

(5) Arg357:NE—O42 (2.95 Å); (6) Arg357:NE—O53 (3.06 Å);
(7) Arg357:NH1—O57 (3.00 Å); (8) Arg357:NH1—O89 (2.96 Å);

(9) Arg357:NH2—O42 (3.24 Å); (10) Asn360:O—O9 (2.99 Å);
(11) Tyr396:OH—2O12 (2.94 Å); (12) Arg466:NH1—O92 (3.14 Å);

(13) Arg466:NH2—N76 (3.18 Å).

(1) Pro337; (2) Trp353;
(3) Asn354; (4) Ser359;
(5) Pro426; (6) Pro463;
(7) Phe464; (8) Glu465;
(9) Ser514; (10) Phe515;

(11) Glu516.

PPS
(1) Arg355:NH1—O14 (2.93 Å); (2) Arg355:NH1—O33 (3.14 Å);
(3) Arg357:NH1—O5 (3.03 Å); (4) Arg357:NH2—O55 (3.35 Å);

(5) Arg466:NH1—O17 (3.28 Å); (6) Arg466:NH2—O23 (3.03 Å).

(1) Tyr396; (2) Pro426;
(3) Asp428; (4) Lys462;
(5) Pro463; (6) Phe464;
(7) Glu465; (8) Ser514;

(9) Phe515; (10) Leu517;
(11) His519.
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Figure 4. The binding molecular model of oligosaccharides of the HS-analogue and SARS-CoV-2 RBD.
The green surface indicates the RBD-ACE2-RBD binding interface. AD08043 is colored in purple, PPS
is colored in teal, and (IdoA2S-GlcNS6S)4 is colored in yellow.

Interestingly, although the number and length of the hydrogen bonds of AD08043 is
less than PPS and (IdoA2S-GlcNS6S)4, the binding affinity of AD08043 to RBD is stronger.
This may be ascribed to the 3-O-sulfation substitution.

Furthermore, the binding affinity of AD08043 with the RBD of several SARS-CoV-2
variants was also analyzed (Table S2). The results demonstrated a high-affinity binding
of AD08043 to the RBD of SARS-CoV-2 variants (Table 3). During the interaction with
AD08043, the SARS-CoV-2 B.1.1.7 (alpha) variant’s RBD shows six hydrogen bonds with
the binding interface amino acid residues of Arg355 (3.18 Å, 3.33 Å, and 3.23 Å) and Arg466
(2.84 Å and 2.95 Å) as well as nine hydrophobic contacts. The SARS-CoV-2 B.1.351 (beta)
variant’s RBD shows six hydrogen bonds with the binding interface amino acid residues
Arg355 (3.22 Å) and Arg466 (3.28 Å and 3.06 Å), as well as seven hydrophobic contacts.
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The SARS-CoV-2 P.1(gamma) variant’s RBD shows two hydrogen bonds with the binding
interface amino acid residues Asn448 (2.73 Å) and Arg509 (2.96 Å), as well as eleven
hydrophobic contacts with the binding interface amino acid residues Arg346, Asn450, and
Tyr451. The SARS-CoV-2 B.1.617.2 (delta) variant’s RBD shows six hydrogen bonds with
the binding interface amino acid residues Arg346 (2.80 Å) as well as nine hydrophobic
contacts with the binding interface amino acid residues Ala348, Ala352, Asn354, and Tyr451.
The SARS-CoV-2 B.1.1.529 (omicron BA.1) variant’s RBD shows six hydrogen bonds with
the binding interface amino acid residues Arg346 (2.81 Å), Ser349 (3.06 Å), Asn354 (2.96 Å),
and Asn450 (3.01 Å), as well as eight hydrophobic contacts with the binding interface
amino acid residues Phe347, Ala348, and Ala352. Exceptionally, the B.1.351 (beta) variant’s
RBD has shorter hydrogen bond lengths and more hydrophobic contacts. It should be
pointed out that the interactions between AD08043 and the RBDs of the different variants
of SARS-CoV-2 are located around the interface of the RBD-ACE2 (Figure 5). To provide a
more comprehensive analysis, we further analyzed the binding affinity and intermolecular
interactions of the top ten pentasaccharides with the RBD. The results demonstrated that
the other pentasaccharides bind with a slightly lower affinity than AD08043. Additionally,
the top ten pentasaccharides all bind to the RBD at the RBD-HS-ACE2 binding interface,
demonstrating a comparable binding pattern with the AD08043-RBD complex (Figure S1
and Table S3).

Table 3. Detailed information on non-bond forces between AD08043 and RBDs of different variants
SARS-CoV-2.

Receptor Name
Hydrogen Bond

Receptor Atom—Ligand Atom
(Bond Length)

Hydrophobic Contact

B.1.1.7
(alpha) variant RBD

(1) Arg355:NH1—O10 (3.18 Å); (2) Arg355:NH2—O9 (3.33 Å);
(3) Arg355:NH2—O10 (3.23 Å); (4) Lys462:NZ—O (3.20 Å);

(5) Arg466:NH2—O16 (2.84 Å); (6) Arg466:NH2—O25 (2.95 Å).

(1) Tyr396; (2) Pro426;
(3) Asp428; (4) Phe429;
(5) Thr430; (6) Pro463;
(7) Phe464; (8) Ser514;

(9) Glu516.

B.1.351
(beta) variant RBD

(1) Arg355:NH1—O30 (3.22 Å); (2) Thr430:N—O7 (3.01 Å);
(3) Arg466:NE—O20 (3.28 Å); (4) Arg466:N—O26 (3.06 Å);

(5) Ile468:N—O21 (2.80 Å); (6) Phe515:O—N (2.91 Å).

(1) Asp428; (2) Phe429;
(3) Phe464; (4) Glu465;
(5) Asp467; (6) Glu516;

(7) Leu517.

P.1
(gamma) variant RBD (1) Asn448:ND2—O22 (2.73 Å); (2) Arg509:NH2—O26 (2.96 Å).

(1) Asn343; (2) Ala344;
(3) Thr345; (4) Arg346;
(5) Ser373; (6) Trp436;

(7) Asn437; (8) Asn440;
(9) Leu441; (10) Asp442;
(11) Asn450; (12) Tyr451.

B.1.617.2
(delta) variant RBD

(1) Arg346:NH2—O5 (2.80 Å); (2) Arg452:NH2—O29 (2.89 Å);
(3) Thr470:OG1—O13 (3.13 Å); (4) Thr470:OG1—O15 (2.96 Å);

(5) Thr470:O—O20 (2.74 Å); (6) Gly482:O—N1 (3.26 Å).

(1) Ala348; (2) Tyr351;
(3) Ala352; (4) Asn354;
(5) Tyr451; (6) Ile468;
(7) Glu471; (8) Ile472;

(9) Phe490.

B.1.1.529
(omicron BA.1) variant RBD

(1) Asn343:O—O8 (2.98 Å); (2) Thr345:N—O9 (3.16 Å);
(3) Arg346:N—O9 (2.81 Å); (4) Ser349:OG—O20 (3.06 Å);

(5) Asn354:ND2—O (2.96 Å); (6) Asn450:ND2—O25 (3.01 Å).

(1) Glu340; (2) Ala344;
(3) Phe347; (4) Ala348;
(5) Tyr351; (6) Ala352;
(7) Tyr449; (8) Leu452.
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Next, we conducted MD simulations to verify the reliability of the model constructed
from docking. Quantitatively, the RMSD values of the structures from the MD and docking
are small (Figure S2), which indicates that the structural variation is minor between the MD
simulations and docking. Furthermore, to explore the SARS-CoV-2 RBD-AD08043 binding
mechanism during conformation changes, we intercepted a conformation every 10 ns and
calculated the electrostatic potential map of the RBD. The results revealed an extended
electropositive surface with dimensions and turns/loops consistent with an HS-binding
site identified earlier [4,14] (Figure 6), e.g., around the binding interface between RBD and
ACE2. AD08043, in almost all of the different time points (except for 10 ns, colored orange
in Figure 6), was located around the RBD electropositive surfaces.

To understand the molecular interaction mechanisms, configurations of the SARS-
CoV-2 RBD-AD08043 complex were analyzed every 10 ns during the MD simulation (80 ns)
(Table 4). The molecular interactions shown are those mediated by hydrogen bonds and
hydrophobic contacts that play a major role in forming the SARS-CoV-2 RBD-AD08043
complexes. At 0 ns of the MD simulation, AD08043 shows a maximum of 13 interactions
including five hydrogen bonds with the binding interface amino acid residues Arg355
(3.07 Å and 2.65 Å) and Arg466 (2.77 Å and 2.83 Å), as well as eight hydrophobic contacts
with the binding interface amino acid residues Trp353. At 10 ns, AD08043 shows two
hydrogen bonds due to the initial unstable stage of the MD simulation which is consistent
with the electrostatic convergence interaction result when AD08043 is positioned on the
electronegative surface of the RBD. At 20 ns, AD08043 shows five hydrogen bonds with the
binding interface amino acid residues Arg357 (2.60 Å, 2.81 Å, and 2.88 Å). At 30 ns, AD08043
shows four hydrogen bonds with the binding interface amino acid residues Arg357 (2.67 Å
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and 2.76 Å). However, there is no non-bond interaction at 40 ns, showing that the complex
is in a relatively unstable state, which is consistent with the RMSD results, as the RMSD
values from the MD and docked structures fluctuate considerably around this time point.
At 50 ns, AD08043 shows one hydrogen bond as well as two hydrophobic contacts with the
binding interface amino acid residues Arg355 and Arg357. At 60 ns, AD08043 shows five
hydrogen bonds with the binding interface amino acid residues Arg357 (2.81 Å, 2.96 Å, and
3.28 Å) as well as two hydrophobic contacts. At 70 ns, AD08043 shows two hydrogen bonds
with the binding interface amino acid residues Asn354 (3.10 Å) and Arg357 (3.04 Å), as
well as eight hydrophobic contacts with the binding interface amino acid residues Arg346,
Phe347, Ala348, Arg355, Lys356. At 80 ns, AD08043 shows three hydrogen bonds with the
binding interface amino acid residues Arg346 (2.92 Å), Lys356 (3.03 Å), and Arg357 (2.97 Å),
as well as two hydrophobic contacts with the binding interface amino acid residues Phe347
and Ala348.
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L0, L10, L20, L30, L40, L50, L60, L70, and L80 are colored in pink, orange, yellow, cyan, pale green,
salmon, wheat, limon, and gray (e.g., L10 represents the location of AD08043 at 10 ns during the MD
simulation period).

Interestingly, at the late MD time points (70 ns and 80 ns), all RBD-HS-ACE2 interfacial
amino acid residues are involved in non-bond interactions. Aside from the unstable time
points of 10 ns and 40 ns, the measured dynamic interaction involved Arg357, which is
likely a key amino acid for maintaining structural stability during the conformational
changes of the complex. Notably, the interactions between AD08043 and SARS-CoV-2 RBD
in the process of the MD simulation mainly involve the sulfate groups (3OS, NS), carboxyl
group on the GlcA unit, and the hydroxyl groups on AD08043 skeletons (Figures S4–S12).
Further, 3-O-sulfation on the GlcNAc unit seems to be critical for stabilization of the RBD-
AD08043 complex, since it is directly involved in all the interactions during the entire
period of MD analysis after stabilization. We have also noticed that the initial phase of the
interaction involved amino acids both located at the interaction interface and outside of
the interface; however, towards the end of the interaction, only interface amino acids are
involved (Figure 7). By the end of the MD simulation, AD08043 is completely located on
the RBD-HS-ACE2 binding interface. We also performed point mutations to re-assess the
effects of key amino acids on the HS-RBD interaction. As expected, the point mutations of
the amino acids involved in hydrogen bond formation, through their conversion to alanine
residues, lead to the loss of RBD-HS-ACE2 binding interface interactions (Figure S13).
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Table 4. Detailed information on the non-bond forces of SARS-CoV-2 RBD and AD08043 at different
time points during the MD simulation period.

Time Point
Hydrogen Bond

Receptor Atom—Ligand Atom
(Bond Length)

Hydrophobic Contact

0 ns
(1) Arg355:NH1—O10 (3.07 Å); (2) Arg355:O—O20 (2.65 Å);

(3) Arg466:NH1—O16 (2.77 Å); (4) Arg466:NH2—O16 (2.83 Å);
(5) Phe515:O—O4 (2.66 Å).

(1) Trp353; (2) Tyr396;
(3) Asp428; (4) Phe464;
(5) Ser514; (6) Glu516;
(7) Leu517; (8) His519.

10 ns (1) Asn394:ND2—O32 (3.07 Å); (2) His519:ND1—O10 (3.01 Å). /

20 ns
(1) Arg357:NH1—O16 (2.60 Å); (2) Arg357:NH2—O15 (2.81 Å);
(3) Arg357:NH2—O16 (2.88 Å); (4) Asn360:ND2—O31 (2.91 Å);

(5) Tyr396:OH—O22 (2.73 Å).
/

30 ns (1) Arg357:NH1—O16 (2.67 Å); (2) Arg357:NH2—O15 (2.76 Å);
(3) Asn360:ND2—O29 (2.80 Å); (4) Tyr396:OH—O25 (3.02 Å).

/

40 ns / /

50 ns (1) Tyr396:OH—O30 (2.80 Å). (1) Arg355; (2) Arg357.

60 ns
(1) Arg357:NH1—O17 (2.81 Å); (2) Arg357:NH2—O15 (2.96 Å);
(3) Arg357:NH2—O17 (3.28 Å); (4) Asn360:ND2—O15 (3.23 Å);

(5) Asn394:ND2—O29 (2.70 Å).
(1) Ace332; (2) Thr393.

70 ns (1) Asn354:OD1—O4 (3.10 Å); (2) Arg357:N—O29 (3.04 Å).
(1) Arg346; (2) Phe347;
(3) Ala348; (4) Arg355;

(5) Lys356.

80 ns (1) Arg346:NH2—O7 (2.92 Å);(2) Lys356:NZ—O13 (3.03 Å);
(3) Arg357:N—O29 (2.97 Å).

(1) Phe347; (2) Ala348.
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To confirm the affinity of oligosaccharides towards the RBDs of the variants of
SARS-CoV-2 in the ligand–protein complexes, binding free energy calculations were
carried out. The calculated results of the Poisson–Boltzmann surface area (MMPBSA)
binding free energy are represented in Table S4. The overall trend of the binding free
energy values of oligosaccharides–RBD complexes, in decreasing order, is given as
PPS < (IdoA2S-GlcNS6S)4 < AD08043, respectively. The complexes AD08043 and RBD
demonstrated the highest binding free energy values compared to other oligosaccharide
complexes. Moreover, comparing the binding affinity of AD08043 with the RBD of the
various SARS-CoV-2 variants under investigation revealed that the delta and omicron
variants had a comparatively lower affinity, which is consistent with the docking results.
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2.3. Frontier Molecular Orbital Analysis of the Ligands

Frontier molecular orbitals (FMOs) are usually referred to as the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The struc-
tural properties of the ligands used for developing the docking interactions are important
in explaining the density distribution pattern on frontier molecular orbitals [22]. The ener-
getics of FMOs are crucial to the reactivities and chemical structures of ligand molecules.
Differences in HOMO-LUMO energy is of importance in determining the reactivity and
stability of the molecules. To explore the chemical stability of the pentasaccharide, we
performed FMO analysis in comparison with the reported oligosaccharides. The energetic
results show that the ∆Eg values of the HOMO-LUMO gap of AD08043, PPS, and (IdoA2S-
GlcNS6S)4 are 6.572, 6.283, and 6.092 eV, indicating that the structure of AD08043 is more
stable (Figure 8 and Table 5).
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Table 5. FMOs results of AD08043, PPS, and (IdoA2S-GlcNS6S)4.

Ligand Name HOMO (eV) LUMO (eV) ∆Eg = ELUMO − EHOMO (eV)

AD08043 −6.660 −0.088 6.572
PPS −6.256 0.027 6.283

(IdoA2S-GlcNS6S)4 −6.034 0.058 6.092

2.4. Evaluation of the HS-Analogues for Druggability via ADMET Studies

Having observed the high affinity binding between AD08043 and RBD at the interac-
tion interface of ACE2-RBD, it should be interesting to explore the feasibility of developing
AD08043 into a therapeutic drug to prevent SARS-CoV-2 from binding to ACE2. Analysis
via ADMET (Table 6) revealed that AD08043 possesses a high TPSA as well as aqueous
solubility due to its polar groups. The parameter of the Plasma Protein Binding (PPB)
being in the range of <90% indicates a relatively high therapeutic response [23]. The results
also indicate that AD08043 has an appropriate in vivo volume distribution, falling within
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the range of 0.04–20 L/kg. Adhering to the Pfizer Rule [24], that substances with a low
log P (<3) and high TPSA (>75) are likely to be non-toxic, AD08043 is unlikely to cause
drug-induced toxicity, e.g., liver damage, acute oral toxicity, skin sensitization, carcino-
genicity, and respiratory toxicity. Based on its pharmacokinetics and toxicity, AD08043 is
predicted to be a drug-like chemical. At the same time, we also compared the HS-analogues
of PPS and (IdoA2S-GlcNS6S)4. As shown in Table 6, AD08043 is superior to the other two
structures in several parameters of druggability. Notably, all three structures displayed
poor blood–brain barrier permeability, which may limit their penetration into the brain;
however, none of the structures is predicted to impact the five major cytochrome P450
(CYP) isoforms, e.g., CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4.

Table 6. Predicted ADMET properties of AD08043, PPS, and (IdoA2S-GlcNS6S)4.

Parameters AD08043 PPS (IdoA2S-GlcNS6S)4

No. of H bond acceptors 36 50 81
No. of H bond donors 18 10 30

Topological Polar Surface area, TPSA ([Å]2) 568.400 720.460 1264.350
Lipophilicity, log P −6.291 −8.807 −15.092

Water Solubility, log S 1.948 5.717 8.771
Pfizer Rule Accepted Accepted Accepted

Pgp inhibitor No No No
Plasma Protein Binding (PPB) 3.180% 61.866% 52.737%

Volume Distribution (VD) (L/kg) 0.140 −0.324 −0.926
Blood–Brain Barrier (BBB) Penetration No No No

CYP1A2 inhibitor No No No
CYP2C19 inhibitor No No No
CYP2C9 inhibitor No No No
CYP2D6 inhibitor No No No
CYP3A4 inhibitor No No No

Human hepatotoxicity (H-HT) Negative Positive Positive
Rat Oral Acute Toxicity Low toxicity High toxicity Low toxicity

Skin Sensitization Negative Positive Negative
Carcinogenicity Negative Positive Negative

Respiratory Toxicity Negative Positive Positive
Drug-likeness Yes No No

3. Discussion

HS acts as a co-receptor priming SARS-CoV-2 RBD for ACE2 interaction, thus as-
sisting the virus’ attachment and entry. Previous studies have shown that HS-mimetics
display potent anti-SARS-CoV-2 activity, and the concept of interfering with HS–virus
interactions using HS-mimetics for prophylactic as well as therapeutic purposes against
virus is drawing attention [5,12,13,21,25]. Inspired by the previous findings, we em-
ployed a molecular modelling approach, aiming to find HS-mimetics binding to the
SARS-CoV-2 RBD with high affinity. Virtual screening of an in-house built pentasaccha-
ride library for their binding to the SARS-CoV-2 RBD identified one top-ranked structure,
GlcNS-GlcA-GlcNAc3S-IdoA-GlcNAc, known as AD08043. This unique structure has
a relatively low degree of sulfation, but displayed the highest binding affinity to the
SARS-CoV-2 RBD, which reveals that the binding affinity is closely related not only to
the number and site of negatively charged groups in the oligosaccharide sequence, but
also to the changes in RBD protein conformation and the site of key basic amino acids
during the interaction. Notably, the pentasaccharide has a 3-O-sulfate substitution that
is present in the antithrombin-binding sequence of heparin and the herpes simplex virus
binding domain of HS.

MD simulations were performed to determine the fluctuation and conformational
changes of AD08043 binding to the RBD under physiological conditions. The result demon-
strates that AD08043 at different time points (except for 10 ns) is located around the RBD
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electropositive surfaces, which is consistent with the mechanism of negatively charged
HS-mimetics binding to positively charged amino acid patches in the target protein. In
particular, Arg357 repeatedly occurred during this process, suggesting a key role of the
amino acid in the conformational stability of the AD08043-SARS-CoV-2 RBD interaction.
Additionally, the amino acid residues involved in each period of the MD simulation illus-
trate that there are non-interface amino acids that interact before the MD simulation (during
docking), whereas the amino acid residues that interact at the end of the MD simulation
(70 ns, 80 ns) all belong to the interface amino acids, and AD08043 is completely located
on the RBD-ACE2 binding interface. This is consistent with the results obtained from our
earlier study [26]. This finding may represent a general mechanism of oligosaccharides
interacting with amino acids at the binding interface of the RBD.

Comparing the binding affinity and intermolecular interaction of AD08043 with the
RBDs of several SARS-CoV-2 variants of concern revealed the relatively lower affinity of
the delta and omicron variants. One explanation is that the S protein mutations increased
the proportion of hydrophobic amino acids, such as leucine and phenylalanine, which may
affect the binding affinity. Nevertheless, the interactions between AD08043 and different
the RBDs of the variants of SARS-CoV-2 are all located near the interface of RBD-ACE2,
indicating that AD08043 may have a broader anti-SARS-CoV-2 potential. The higher
stability of AD08043 than PPS and (IdoA2S-GlcNS6S)4, and the favorable profile of its
druggability further highlights the advantages of AD08043.

4. Materials and Methods
4.1. Preparation of the Pentasaccharide Library

The library (in .sdf format), containing 3D structures of HS-mimetics pentasaccha-
ride sequences, was established in Chem3D 17.0. To mimic HS structure, the library
contains pentasaccharide sequences of GlcN-HexUA-GlcN-HexUA-GlcN with possible
sulfate substitutions (Figure 9). The configurations of the pentasaccharides were obtained
through optimizing each structure to minimize the molecules’ energy, using the DISCOV-
ERY STUDIO v4.5 computer program [27]. The energy minimization was performed using
CHARMm force fields until an RMS gradient of 0.1 kcal/(mol × Å) was reached.
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4.2. Virtual Screening

For the virtual screening validation test, the crystal structure of the SARS-CoV-2 RBD
(PDB ID: 6VSB) was used. The protein was protonated at a physiological pH and was then
converted to .pdbqt from the .pdb format using AutoDock MGLTools [28]. The pentasaccha-
rides in the library were prepared using the built-in script ‘prepare_ligand4.py’ in MGLTools
to assign polar hydrogen atoms and convert the format from .pdb to .pdbqt. The binding in-
terface of the SARS-CoV-2 RBD as the target of the screening was predicted via Schrodinger
SiteMap [29]. In the rescoring procedure, the following amino acids at the binding inter-
face were allowed to be flexible: Arg346, Phe347, Ala348, Ser349, Ala352, Trp353, Asn354,
Arg355, Lys356, Arg357, Lys444, Asn448, Asn450, Tyr451, Arg466, and Arg509, which is
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also consistent with previous work [4]. The box size was set to 60.00 Å × 60.00 Å × 60.00 Å
with Glide [30,31] as the receptor-based virtual screening program.

4.3. Molecular Docking

The molecular docking studies were performed utilizing Autodock VINA in
YASARA [32,33]. Binding affinities between the pentasaccharides with several variants’
RBDs, including B.1.1.7 (alpha) variant (PDB ID:7FEM), B.1.351 (beta) variant (PDB
ID:7VX1), B.1.617.2 (delta) variant (PDB ID:7W92), P.1(gamma) variant (PDB ID:7SBT),
and B.1.1.529 (omicron BA.1) variant (PDB ID:7XO4), were investigated. To remove
bumps and ascertain the covalent geometry of the oligosaccharide ligands, the RBD
structures were all energy-minimized via the NOVA force field [34]. The blind dockings
were undertaken by defining simulation cell boxes of 60.00 Å × 45.00 Å × 55.00 Å for
all variants of the SARS-CoV-2 RBD. The docking studies were carried out through the
built-in docking simulation macro ‘dock_run.mcr’ using AMBER03 force field [35] with
25 poses and 9 clusters for each situation.

4.4. Molecular Dynamics

To examine whether the fluctuation and conformational changes of the model con-
structed from protein–ligand docking are reliable, a molecular dynamics (MD) simulation
of the binding between the RBD of SARS-CoV-2 S protein and the selected pentasaccha-
ride was performed. The AMBER14 force field was utilized for the MD simulation, as
implemented in the YASARA program. For the long-range coulomb forces beyond the
8 Å cutoff, the MD simulation used periodic boundary conditions and the particle-mesh
Ewald method. NaCl was used at a concentration of 0.9%, and the density of HOH was
0.997 g/mL in the MD cell. No restraints were applied during the MD simulation and
the settings employed in the second equilibration dynamics were used. The energies and
coordinates were saved every 100 ps with a total simulation length of 80 ns at constant
temperature (298 K) and uncontrolled pressure in an NVT ensemble. The structural stability
of the RBD-pentasaccharide complex was examined by analyzing the average values of
potential energy with root mean square deviation (RMSD) throughout the trajectory. The
RMSD profiles of the MD structures (Figures S2 and S3) show that the variation of the
RMSD values tends to be stable, which assumes that the structures at equilibrium have
been obtained and the last MD structure was chosen for the analysis.

The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) was used to
compute the binding free energies of the complexes [36]. The calculations were conducted
using the YASARA program. The cumulative free energy of the binding is calculated
as follows:

∆EMMPBSA = Gcomplex − (Gprotein + Gligand) (1)

where Gcomplex is the total MMPBSA energy of the protein–ligand complex, and Gprotein
and Gligand are the highest occupied molecular orbital energies of the separated protein
and ligands.

4.5. Visualization of Protein–Ligand Complex

LigPlot analysis was used to study the protein–ligand interactions by automatically
generating schematic 2D representations of the protein–ligand complexes. The results are
shown in a simple and informative diagram of the intermolecular interactions and their
strengths, including hydrogen bonds, hydrophobic interactions, and atom accessibilities.
The electrostatic potential map of the SARS-CoV-2 S protein’s RBD was generated from the
crystal structure (PDB: 6VSB) and visualized using PyMoL (version 2.5.4 by Schrödinger).

4.6. Quantum Chemical Analysis

The electronic analysis of the selected pentasaccharide and other oligosaccharides
was carried out using GAUSSIAN 09 [37], while the orbitals were shown using Multi-
wfn [38] and VMD 1.9.3 [39] software. The gradient-corrected (density functional theory)
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DFT with the three-parameter hybrid functional (B3) [40] for the exchange part, and the
Lee–Yang–Parr (LYP) correlation function [41], was utilized to compute the molecular struc-
ture, vibrational frequencies, and energies of the optimized structures [42]. Moreover, to
further explain the dispersion interactions that the B3LYP function is unable to describe,
B3LYP-D3 was employed [43]. Meanwhile, the basis set 6-311 + G(d,p) was augmented
by polarization functions on heavy atoms, polarization functions on hydrogen atoms, and
diffuse functions for both hydrogen and heavy atoms [44]. The optimized geometries have
been used to calculate the HOMO and LUMO energy parameters in this study.

∆Eg = ELUMO − EHOMO (2)

where ∆Eg is the energy difference between the calculated excited state (LUMO) and the
ground state (HOMO), ELUMO is the lowest unoccupied molecular orbital energy, and
EHOMO is the highest occupied molecular orbital energy.

4.7. ADMET Study

The potential druggability of the selected pentasaccharides was evaluated using the
web-based platform ADMETlab2.0 (https://admetmesh.scbdd.com/service/evaluation/
index (accessed on 20 July 2023)). ADMETlab2.0 [45] utilizes a series of high-quality
prediction models trained via a multi-task graph attention framework to conveniently and
efficiently implement the calculation and prediction of the physicochemical properties,
pharmacokinetics, and toxicology of the ligands. Molecules were uploaded in SMILES
format. The web server automatically standardizes the input SMILES strings and computes
all the endpoints including physicochemical properties, medicinal chemistry friendliness,
and the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties.

5. Conclusions

The multidimensional biological functions of HS offer a wide range of pharmacological
development potentials through targeting HS–protein interactions. Although hundreds of
HS-binding proteins have been identified, knowledge of the exact structures of HS binding
to a defined protein is still limited. One primary challenge in development of HS-mimetics
is to identify a specific HS structure that interacts with a target protein with high affinity. A
typical example is the heparin pentasaccharide binding to antithrombin [46]. With the rapid
progress in the illustration of protein structures, virtual screening provides a powerful tool
for the preliminary identification of HS structures. As such, computer-aided study is an
efficient and economical way to rationally design drug candidates, and our work provides
an example, showing the potential of this approach. This established procedure may be
applied to a broad-spectrum screening of oligosaccharides–protein interactions, to explore
potential novel drug candidates.

Despite the high throughput and efficiency of virtual screening, the most challeng-
ing task in the development of oligo/polysaccharide drugs is production of the com-
pounds. The successful synthesis of the anticoagulant fondaparinux [47] demonstrates
the possibility of chemically synthesizing oligosaccharides; however, the complicated
chemical process including protection, activation, coupling, and de-protection, requires
multiple steps, often with low yield. Nevertheless, the emerging synthetic biology is
expected to break the bottle-necks of organic synthesis, making the synthesis of compli-
cated carbohydrate structures possible [48], adding another pathway to the preparation
of HS-mimetics for pharmaceutical development purposes. Yet, when considering the
highly complicated structures of oligo/polysaccharides, more efficient synthesis pro-
cedures will be required, with tremendous effort needed to meet the requirement of
diverse oligosaccharides structures.

https://admetmesh.scbdd.com/service/evaluation/index
https://admetmesh.scbdd.com/service/evaluation/index
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