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1 Introduction

Studies on weak decays of charmed baryons provide crucial information on the strong
and weak interactions in the charm sector. Decay amplitudes of charmed hadrons can be
divided into factorizable terms, where the strong and weak parts can be treated separately,
and non-factorizable terms, where the two parts are entangled and hard to calculate [1–
3]. In the case of charmed mesons, non-factorizable terms are negligible compared to
factorizable ones. However, for charmed baryon decays, the non-factorizable terms, such
as inner exchange and emission of W bosons, are no longer negligible and increase the
complexity of calculation. For example, W -exchange manifesting a pole diagram is no
longer subject to helicity and color suppression [4]. This makes theoretical calculations of
the charmed baryon decays more challenging than those of charmed mesons. There are
many theoretical models and approaches dealing with charmed baryon decays, including the
covariant confined quark model [5–7], pole model [4, 8–12], current algebra [4, 12, 13], and
SU(3) flavor symmetry [14]. To discriminate between these different models, experimental
measurements are necessary.

There has been much progress in measurements of decay rates [15–17] of the charmed
baryons. Using a data set at

√
s = 4.600 GeV, which is just above the threshold of Λ+

c Λ̄−
c

pair production, BESIII improved the precision of the branching fractions of the Cabibbo-
favoured Λ+

c decays [18–21]. However, the experimental precision of Cabibbo-suppressed
Λ+

c decay rates, such as for the decays of Λ+
c → pη and pω, remains poor. BESIII measured

the branching fraction of Λ+
c → pη in 2017 [22] with a statistical significance of less than

5σ. LHCb measured the relative branching fraction of Λ+
c → pω in the same year with

greater than 5σ significance [23], where ω was reconstructed through the leptonic channel
ω → µ+µ−. Belle also reported the relative branching fractions of both Λ+

c → pη and
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B(Λ+
c → pη) B(Λ+

c → pω)

BESIII 1.24 ± 0.28 ± 0.10 [22] —

LHCb — 0.94 ± 0.32 ± 0.22 [23]

Belle 1.42 ± 0.05 ± 0.11 [24] 0.827 ± 0.075 ± 0.075 [25]
This paper 1.57 ± 0.11 ± 0.04 1.11 ± 0.20 ± 0.07

Current algebra Uppal [13] 0.3 —

Cheng [26] 1.28 —

SU(3) flavor symmetry

Sharma [14] 0.2a(1.7b) —

Geng [27] 1.25+0.38
−0.36 —

Geng [28] 1.30 ± 0.10 —

Hsiao [29] 1.24 ± 0.21 —

Geng [30] — 0.63 ± 0.34

Hsiao [31] — 1.14 ± 0.54

Zhong [32] 1.36a(1.27b) —

Topological diagram method Hsiao [33] 1.42 ± 0.23c (1.47 ± 0.28d) —

Heavy quark effective theory Singer [34] — 0.36 ± 0.02

Table 1. Measurements and predictions of the branching fractions of Λ+
c → pη and Λ+

c → pω (in
units of 10−3) from different experiments and theoretical calculations. The superscript a (b) denotes
the assumption of P -wave amplitude of Λ+

c → Ξ0K+ is positive (negative). The superscript c (d)
denotes SU(3) flavor symmetry is conserved (broken).

Λ+
c → pω in 2021 with a higher precision [24, 25]. All these measurements are listed

in table 1.
With respect to topological diagrams, singly Cabibbo-suppressed decays Λ+

c → pη and
Λ+

c → pω occur through internal W -emission and W -exchange diagrams at tree level, as
shown in figure 1. They share the same diagrams, except that Λ+

c → pη has one additional s
quark involved W -emission amplitude in figure 1(b). Diagrams of figure 1(a) and figure 1(b)
are mainly factorizable, while the other diagrams in figure 1 are non-factorizable. The
branching fractions of Λ+

c → pη and pω are calculated based on various theoretical models,
as listed in table 1. In refs. [13, 26], the non-factorizable part of Λ+

c → pη is calculated
with the pole model and the soft meson approximation, considering the parity violating
amplitude. In refs. [14, 26–32], global fits are carried out on the irreducible representation
amplitudes based on SU(3) flavor symmetry. In ref. [33], the authors adopt the topological
diagram approach, where the decay amplitudes consist of W -emission and W -exchange
topologies. In ref. [34], the branching fraction of Λ+

c → pω is predicted with the heavy
quark effective theory under the factorization approximation. The theoretical results of the
aforementioned phenomenological models agree with the experimental results, except for
the ones in refs. [13, 14, 34]. Additional measurements of these two decays are necessary
to improve the experimental precision and provide more stringent tests of the different
theoretical models.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Feynman diagrams for Λ+
c → pη/ω. Plots (a), (b) and (c) correspond to internal W-

emission diagrams, while plots (d), (e) and (f) are W-exchange diagrams.

In this paper, we report the measurement of the branching fractions of Λ+
c → pη and

Λ+
c → pω, based on the e+e− collision data samples collected by BESIII [35] at seven

energy points between 4.600 and 4.699 GeV corresponding to an integrated luminosity
of 4.5 fb−1 [36, 37]. Charge conjugation is always implied throughout this paper, unless
explicitly mentioned.

2 BESIII experiment and Monte Carlo simulation

The BESIII detector [35] records symmetric e+e− collisions provided by the BEPCII storage
ring [38] in the center-of-mass energy range from 2.0 to 4.95 GeV, with a peak luminosity of
1×1033 cm−2s−1 achieved at

√
s = 3.77 GeV. The BESIII detector has collected large data

samples in this energy region [39]. The cylindrical core of the BESIII detector covers 93%
of the full solid angle and comprises a helium-based multilayer drift chamber (MDC), a
plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter
(EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0
T magnetic field [40]. The solenoid is supported by an octagonal flux-return yoke with
resistive plate counter muon identification modules interleaved with steel. The charged-
particle momentum resolution at 1 GeV/c is 0.5%, and the dE/dx resolution is 6% for
electrons from Bhabha scattering. The EMC measures photon energies with a resolution
of 2.5% (5%) at 1 GeV in the barrel (end-cap) region. The time resolution in the TOF
barrel region is 68 ps, while that in the end-cap region is 110 ps. The end-cap TOF system
was upgraded in 2015 using multi-gap resistive plate chamber technology, providing a time
resolution of 60 ps [41–43].

Simulated data samples generated with geant4-based [44] Monte Carlo (MC) soft-
ware, containing the geometric description of the BESIII detector and the detector re-
sponse [45, 46], are used to determine detection efficiencies and to estimate backgrounds.
The simulation models the beam energy spread and initial state radiation (ISR) in the
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e+e− annihilations with the generator kkmc. The inclusive MC samples include the pro-
duction of Λ+

c Λ̄−
c pairs, open charm processes, the ISR production of vector charmonium

(-like) states, and the continuum QCD processes e+e− → qq̄ (q = u, d, s) incorporated in
kkmc [47, 48]. The known decay modes are modeled with evtgen [49, 50] using branch-
ing fractions taken from the Particle Data Group (PDG) [51], and the remaining unknown
charmonium decays are modeled with lundcharm [53, 54]. Final state radiation (FSR)
from charged final state particles is incorporated using photos [55]. Phase space (PHSP)
MC samples, where the Λ+

c decays into final states pη, pω and pπ+π−π0 with uniform
phase space distributions, are also generated. The signal MC samples are used to obtain
signal shapes and estimate detection efficiencies.

3 Event selection

For Λ+
c → pη, the η is reconstructed through the two dominant modes η → γγ (ηγγ) and

η → π+π−π0 (η3π). For Λ+
c → pω, the ω is reconstructed through ω → π+π−π0, where

neutral pions are reconstructed from two photons. Since the data sets are taken at the
energy just above the Λ+

c Λ̄−
c mass threshold, the Λ+

c Λ̄−
c pairs are produced without any

accompanying hadrons. The single-tag (ST) method is utilized in this analysis, where only
one Λ+

c is reconstructed in each event without requiring the other Λ̄−
c in the recoil side.

This method has a higher efficiency and allows us to acquire more Λ+
c candidates.

Charged tracks detected in the MDC are required to be within a polar angle (θ) range
of |cos θ| < 0.93, where θ is defined with respect to the z-axis, which is the symmetry
axis of the MDC. Due to the short lifetime of charmed baryons (∼ 10−13 s [51]), charged
tracks are expected to originate from the interaction point (IP). Hence, the track distance
to the IP along the z-axis (Vz) is required to be less than 10 cm, and that perpendicular
to the z-axis (Vr) less than 1 cm. By combining the information on the specific energy
loss deposited in the MDC (dE/dx) and the time of flight measured by TOF, a likelihood
(L(h)) is calculated for each hadron hypothesis (h = p,K, π) for each charged track. Proton
candidates are required to satisfy L(p) > L(π), L(p) > L(K), and L(p) > 0, while pion
candidates to satisfy L(π) > L(p), L(π) > L(K), and L(π) > 0. The efficiency for
K/π particle identification (PID) is greater than 95% for momentum within the region
[0.2, 1.0] GeV/c2, where the K/π contamination rate is less than 5%, and the efficiency
for proton PID is nearly 100% for momentum within the region [0.4, 1.0] GeV/c2 [35, 52].
A further requirement Vr < 0.2 cm is imposed on the proton candidates to avoid protons
produced from beam interactions with residual gas in the beam pipe, the materials of the
beam pipe or the MDC inner wall.

Photon candidates from π0 and η decays are reconstructed by electromagnetic showers
produced in the EMC. The deposited energy of each shower is required to be greater than
25 MeV in the barrel region (|cos θ| < 0.80) and 50 MeV in the end-cap region (0.86 <

|cos θ| < 0.92). In order to suppress the showers produced by electronic noise, beam
background or unrelated to the event, the difference between the EMC time and event start
time [56] is required to be within 700 ns. Showers are required to be separated by more than
8◦ from other charged tracks and more than 20◦ from anti-protons, to eliminate showers
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induced by charged tracks. The EMC shower shape variables are used to distinguish
photons from anti-neutrons: the lateral moment [57] should be less than 0.4 and E3×3/E5×5
should be greater than 0.85, where E3×3 (E5×5) is the deposited energy summed over 3×3
(5 × 5) crystals around the center of the shower.

For π0 (ηγγ) candidates, the invariant mass of the photon pair is required to be within
the interval 0.115 GeV/c2 < Mγγ < 0.150 GeV/c2 (0.510 GeV/c2 < Mγγ < 0.570 GeV/c2).
A one-constraint (1C) kinematic fit (KF) is performed by constraining the invariant mass of
the photon pair to the nominal π0 (η) mass [51] to improve the momentum resolution. The
χ2 of the 1C KF is required to be less than 50 (20) for π0 (ηγγ) candidates. The momenta
after the 1C KF are used in the subsequent analysis. To eliminate miscombinations that
accumulate at large |cos θdecay|, we further require |cos θdecay| < 0.9 for ηγγ candidates,
where θdecay is the helicity angle of one photon candidate in the rest frame of the ηγγ

candidate. For η3π (ω) candidates, the invariant mass of the three pion combinations is
required to be in the region 0.536 GeV/c2 < Mπ+π−π0 < 0.560 GeV/c2 (0.750 GeV/c2 <

Mπ+π−π0 < 0.810 GeV/c2).
For Λ+

c → pη3π candidates, events with the invariant mass Mpπ0 within the region
(1.17, 1.20) GeV/c2 are rejected to suppress the intermediate Σ+ contributions from Λ+

c →
Σ+ (→ pπ0)π+π−. For the Λ+

c → pω candidates, we apply a vertex fit to the proton and
two charged pions, and the resultant momenta are used in further analysis. In addition,
we veto events with the invariant mass of Mpπ0 , Mpπ− , and Mπ+π− in the regions of
(1.17, 1.20) GeV/c2, (1.10, 1.12) GeV/c2, and (0.47, 0.51) GeV/c2, respectively, to remove
the contributions from Λ+

c → Σ+π+π−, Λ+
c → Λπ+π0, and Λ+

c → pK0
Sπ

0. The amplitude
for ω → π+π−π0 is conventionally expanded as a polynomial around the center of the
Dalitz plot, as shown in figure 2, in terms of symmetrized coordinates X and Y [58], which
are defined as

X =
√

3(T+ − T−)/Q, (3.1)
Y = 3T0/Q− 1, (3.2)

where T+, T−, and T0 are the kinetic energies of π+, π−, and π0 in the rest frame of ω. Q
is defined as Q = Mω − (mπ+ +mπ− +mπ0), where mπ+ , mπ0 , and mπ− are the nominal
masses from the PDG [51], and Mω denotes the invariant mass of ω meson reconstructed
with three pions Mω = Mπ+π−π0 . The Dalitz plot with symmetrized coordinates has
advantage in deriving a variable of normalized distance R, which is defined as

R =
√

X2 + Y 2

X2
bound + Y 2

bound
. (3.3)

Here, (Xbound, Ybound) is the intersection of a line through the origin (0, 0) and (X,Y )
with the boundary curve, as shown in figure 2. Hence, R represents the scaled distance
between (0, 0) and (X,Y ). Figure 2(a) shows the ω signal and the sideband regions. The
signal region is defined as 0.750 GeV/c2 < Mπ+π−π0 < 0.810 GeV/c2, while the sideband
regions as 0.620 GeV/c2 < Mπ+π−π0 < 0.720 GeV/c2 and 0.840 GeV/c2 < Mπ+π−π0 <

0.890 GeV/c2. Figures 2(c) and 2(d) show the Dalitz plots of the signal MC sample and
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Figure 2. (a) Fit to the Mπ+π−π0 distribution, where the blue dashed line denotes the ω signal
events, and the magenta dashed line are non-ω contributions. The red arrows mark the signal
region, and the blue arrows mark the sideband regions. (b) ∆E distribution from data, where the
red arrows mark the ∆E window requirement. (c) and (d) Dalitz plots after all requirements except
the R requirement in the dimensions of X and Y , as defined in eqs. (3.1)–(3.2), of the ω signal MC
sample and non-ω background events from the Mπ+π−π0 sideband regions, respectively. The orange
lines tracing the borders of Dalitz plots are the kinematic limits of ω → π+π−π0. The yellow curve
marks the position of the R requirement.

non = ω background events, respectively, where ω signals concentrate at the origin, while
non-ω background events distribute uniformly. Therefore, we require the R value to be
less than 0.9 to further suppress the backgrounds from non-ω contribution.

To further identify signal candidates, the beam constrained mass MBC and the energy
difference ∆E variables are used, defined as

MBC =
√
E2

beam/c
4 −

∣∣∣p⃗Λ+
c

∣∣∣2 /c2, (3.4)

∆E = EΛ+
c
− Ebeam, (3.5)

where Ebeam is the beam energy, and p⃗Λ+
c

and EΛ+
c

are momentum and energy of the
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i Energy Points (GeV) pηγγ pη3π pω

1 4.600 4.86 12.77 20.06
2 4.612 4.62 20.51 16.34
3 4.628 5.19 13.68 19.71
4 4.641 6.05 15.50 16.14
5 4.661 7.35 16.85 18.10
6 4.682 7.30 16.52 18.79
7 4.699 10.08 15.20 19.98

Table 2. The fractions of events with more than one candidate at different energy points in
percentage.

Λ+
c candidate in the rest frame of e+e−, respectively. For a correctly reconstructed Λ+

c

candidate, one expects MBC to be the nominal Λ+
c mass (2.28646 GeV/c2 [51]) and ∆E

to be zero. The beam constrained mass of Λ+
c candidates should satisfy 2.25 GeV/c2 <

MBC < Ebeam/c
2 and 2.22 GeV/c2 < MBC < Ebeam/c

2 for Λ+
c → pη and Λ+

c → pω,
respectively. For the decay channel Λ+

c → pη, a loose constraint on the energy difference
−0.07 GeV/c2 < ∆E < 0.07 GeV/c2 is used, and a two-dimensional (2D) fit to the MBC and
∆E distributions is performed to obtain the signal yield. The details will be reported in
the next section. For the Λ+

c reconstructed from Λ+
c → pω, a tight constraint on the energy

difference −0.03 GeV < ∆E < 0.02 GeV is used to suppress the high qq̄ backgrounds, as
shown in figure 2(b). Therefore, the 2D fit to the MBC and ∆E distributions is not applied,
and the signal yield is extracted from one-dimensional (1D) fit to MBC spectrum.

Multiple Λ+
c candidates survive after the above selection criteria and the fractions of

events with more than one candidate are listed in table 2. For Λ+
c → pηγγ , the candidate

with the maximum value of proton PID probability and the minimum value of χ2 from the
1C KF of η → γγ is retained. For Λ+

c → pη3π, the candidate with the maximum value of
proton PID and the minimum value of |Mπ+π−π0 −mη| is kept, where mη is the nominal
value of η mass from the PDG [51]. For Λ+

c → pω, the candidate with the minimum |∆E|
is selected.

4 Branching Fraction Measurement

The branching fractions of signal modes are determined by a simultaneous maximum like-
lihood fit to the data sets at seven energy points. The branching fractions of Λ+

c → pη

and Λ+
c → pω at each energy point (i indicates the i-th energy point, from 1 to 7) is

determined by

B =
N i

sig
2 ·N i

Λ+
c Λ̄−

c
· εi · Binter

, (4.1)

where N i
sig is the signal yield, N i

Λ+
c Λ̄−

c
is the number of Λ+

c Λ̄−
c pairs, εi is the detection

efficiency estimated according to the signal MC sample, and Binter represents the branching
fractions of intermediate states, including η → γγ, η → π+π−π0, π0 → γγ, and ω →
π+π−π0, from the PDG [51]. The numbers of Λ+

c Λ̄−
c pairs for each energy point, which
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Energy Points (GeV) 4.600 4.612 4.626 4.640 4.660 4.680 4.700

N i
Λ+

c Λ̄−
c

99222 ± 3671 17441 ± 828 89302 ± 3307 95451 ± 3535 91609 ± 3416 278540 ± 9738 84342 ± 3252

Li (pb−1) 586.89 ± 3.90 103.65 ± 0.55 521.53 ± 2.76 551.65 ± 2.81 529.43 ± 2.81 1667.39 ± 8.84 535.54 ± 2.84

εi for pηγγ (%) 41.70 ± 0.07 41.58 ± 0.07 41.63 ± 0.07 41.44 ± 0.07 41.37 ± 0.07 41.34 ± 0.07 41.09 ± 0.07

N i
sig for pηγγ 50 ± 12 9 ± 5 45 ± 11 48 ± 11 46 ± 11 140 ± 19 42 ± 11

N
′i
sig for pηγγ 34 ± 9 8 ± 4 36 ± 10 56 ± 11 38 ± 11 185 ± 22 36 ± 12

εi for pη3π (%) 23.25 ± 0.06 22.49 ± 0.06 23.40 ± 0.06 22.24 ± 0.06 22.28 ± 0.06 22.34 ± 0.06 22.18 ± 0.06

N i
sig for pη3π 17 ± 6 3 ± 2 15 ± 6 16 ± 6 15 ± 6 47 ± 10 14 ± 5

N
′i
sig for pη3π 16 ± 5 0 ± 2 4 ± 4 27 ± 7 11 ± 5 59 ± 11 8 ± 5

εi for pω (%) 16.82 ± 0.05 16.28 ± 0.05 15.94 ± 0.05 15.81 ± 0.05 15.54 ± 0.05 15.26 ± 0.05 14.88 ± 0.05

N i
sig for pω 33 ± 16 6 ± 6 28 ± 15 30 ± 15 28 ± 15 84 ± 26 25 ± 14

N
′i
sig for pω 50 ± 13 1 ± 6 24 ± 14 16 ± 15 36 ± 17 56 ± 27 44 ± 15

Table 3. Number of Λ+
c Λ̄−

c pairs (N i
Λ+

c Λ̄−
c

), luminosities (Li), efficiencies (εi), and number of signal
events from simultaneous fit (N i

sig) and separate fit (N ′i
sig) at different energy points.

are listed in table 3, are calculated by N i
Λ+

c Λ̄−
c

= Li × σi, where Li and σi denote the
luminosity [36] and cross section [59], respectively.

4.1 Λ+
c → pη

To determine the signal yield, a 2D unbinned maximum likelihood fit is performed on the
2D distribution of MBC versus ∆E for each energy point. Figure 3(a) shows 2D distribu-
tions from all data sets. The signal shape obtained from the signal MC sample is convolved
with a 2D Gaussian function to account for the resolution difference between data and MC
simulation. The signal shapes among seven energy points are obtained separately. The
parameters of the 2D Gaussian are fixed in the fit to the ones obtained from the control
sample of D+ → ηπ+ taken at 3.773 GeV, because of the similar final states as the signal
mode. The background shape is modeled as a product of an ARGUS function [60], de-
noted as fARGUS, and a second order Chebyshev polynomial function, denoted as PCheb.
The parameters of fARGUS, PCheb, and B are left floating in the simultaneous fit. The last
one is shared by all energy points while the others are allowed to be different. Figures 3(b)
and 3(c) show one-dimensional (1D) projections of the fitting results of Λ+

c → pηγγ and
Λ+

c → pη3π, respectively. The branching fractions obtained via the two decay modes are
consistent and are found to be (1.55 ± 0.13stat) × 10−3 and (1.64 ± 0.21stat) × 10−3, with a
statistical significance greater than 10σ and greater than 5σ, respectively. The statistical
significance is evaluated by

√
−2 lnL0/Lmax, where Lmax is the maximum likelihood ob-

tained from the nominal fit and L0 is the maximum likelihood of the fit without including
the signal component. The efficiencies and signal yields from simultaneous and separate
fits are given in table 3, where the yields from separate fits are in agreement with the yields
from simultaneous fits.

4.2 Λ+
c → pω

A 1D unbinned maximum likelihood fit is simultaneously performed to the MBC distribu-
tions for data selected in the ω signal and sideband regions at seven energy points, as shown
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Figure 3. (a) 2D distributions of data summing over all the energy points. (b), (c) 1D projections
of 2D simultaneous fits of Λ+

c → pηγγ and Λ+
c → pη3π summing over the corresponding distributions

at the seven energy points, respectively. Black points with error bars are data, green dashed lines are
the signal shapes, blue dashed lines are background, and red solid lines are the total fitting results.
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in figure 4, to estimate the branching fraction of Λ+
c → pω. The 2D fit is not used because

the qq̄ background would be too high to control if the restriction on the ∆E is released. The
signal shape is obtained from signal MC simulations convolved with a Gaussian function.
The signal shapes among seven energy points are obtained separately. The parameters
of the Gaussian function are fixed according to the control sample D+ → ωπ+ taken at
3.773 GeV, because of the similar final states as the signal mode. The background is com-
posed of two parts: the combinatorial part and the remaining non-ω peaking background.
The combinatorial background is modeled by an ARGUS function, while the non-ω peaking
background is modeled with the shape derived from the Λ+

c → pπ+π−π0 MC sample, where
its yields are constrained in the simultaneous fit to the Λ+

c yields in the ω sideband regions
in figure 4(b). Here, according to studies on MC simulations, other non-ω backgrounds
apart from Λ+

c → pπ+π−π0 are negligible after the requirements described in section 3.
According to the fit to the Mπ+π−π0 spectrum, as shown in figure 2(a), the ratio between
the number of non-ω peaking background events in figure 4(a) and the corresponding num-
ber of events in ω sideband regions in figure 4(b) is fixed to 0.468 ± 0.003. Therefore, the
fitted branching fraction of Λ+

c → pω is given as (1.11 ± 0.20stat) × 10−3, with a statistical
significance of 5.7σ. The efficiencies and signal yields from simultaneous and separate fits
are given in table 3, where the yields from separate fits are in agreement with the yields
from simultaneous fits. A potential peak is seen around 2.26 GeV in the MBC distribution
in figure 4(a), which is not observed in MC simulations and the significance of the peak is
merely 2.4σ, so we treat it as statistical fluctuation in the nominal model. The systematic
uncertainty caused by the peak will be discussed in section 5.

5 Systematic uncertainties

The systematic uncertainties for Λ+
c → pη and Λ+

c → pω are summarized in table 4 and
are described below.

I. Proton tracking and PID. We select a control sample of J/ψ → pp̄π+π− to study
the proton tracking and PID efficiencies as functions of proton momenta based on
tag-and-based method. The relative difference between data and MC simulations
is estimated and used to reweight the nominal efficiencies in the dimensions of the
signal momenta to obtain alternative efficiency. The relative difference between the
nominal efficiency and the alternative one is taken as the systematic uncertainty.
This method of estimating systematic uncertainty has been used in refs. [18, 61].
The systematic uncertainties for proton tracking are evaluated to be 0.4% for the
pηγγ and pη3π modes, and 0.7% for the pω mode; the PID uncertainties are 0.1% for
the pηγγ and pη3π modes, and 0.2% for the pω mode.

II. Proton Vr requirement. A control sample of Λ+
c → pK−π+ is used to study the

systematic uncertainty of the Vr requirement for proton candidates. The difference
of the estimated efficiency-corrected signal yields with and without the Vr requirement
is found to be 1.2%, which is taken as the systematic uncertainty.
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Figure 4. Simultaneous fit to the MBC distributions for data in the ω signal (a) and sideband
regions (b) as defined in figure 2(a), summing over the corresponding distributions at seven energy
points. Black dots with error bars are data, red dashed lines are signal shapes, violet dashed lines
represent the non-ω peaking background contributions of Λ+

c → pπ+π−π0, blue dashed lines are
combinatorial background, and green solid lines are the total fitting results.

Sources Λ+
c → pηγγ (%) Λ+

c → pη3π (%) Λ+
c → pω (%)

Proton tracking 0.4 0.4 0.7
Proton PID 0.1 0.1 0.2

Proton Vr requirement 1.2 1.2 1.2
Charged π tracking — 0.6 0.6

Charged π PID — 0.2 0.3

ηγγ π
0
γγ reconstruction 1.0 0.5 0.5

Shower requirements 0.8 0.2 0.9
Mπ+π−π0 mass window — 0.2 1.1

R value — — 0.5
Vetoing Σ+, K0

S and Λ — 1.8 0.7

∆E requirement — — 0.1
Non-η and non-ω contribution — — 0.7

Input Binter 0.5 1.2 0.8

Total number of Λ+
c Λ̄−

c pairs 1.6 1.6 1.6

MC statistics 0.1 0.1 0.1
MC model 0.2 0.1 0.7

Fitting model 0.2 0.5 5.2
Total 2.4 6.2

Table 4. Systematic uncertainties from multiple sources of three signal channels in percentage.
Items in bold are treated as fully correlated between Λ+

c → pηγγ and Λ+
c → pη3π.
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III. Charged π tracking and PID. The uncertainties due to charged π tracking and PID
are studied based on a control sample J/ψ → π+π−π0. We adopt the same method
of estimating the systematic uncertainty as for proton tracking and PID. Accordingly,
the relevant systematic uncertainties are assigned as 0.6% (0.2%), and 0.6% (0.3%)
for tracking (PID) efficiencies in the pη3π and pω modes, respectively.

IV. ηγγ (π0
γγ) reconstruction. We study the control sample of J/ψ → pp̄ηγγ (J/ψ →

pp̄π0) [62] to estimate the systematic uncertainty due to photon shower pairing to
form ηγγ (π0) candidates, which is evaluated to be 1.0% (0.5%) with the same method
as proton tracking and PID.

V. Further η and ω requirements. The photon candidates from ηγγ and π0 are chosen
with additional shower requirements on the lateral moment and E3×3/E5×5. We
further apply the helicity angle requirement, mass window requirement and the R
value selection on ηγγ , η3π and ω candidates, respectively. The efficiencies on these
additional requirements are studied by control samples of D+ → ηγγπ

+, D+ →
η3ππ

+, and D0 → K0
Sω. The differences between efficiency-corrected signal yields

of the control samples with and without these requirements are taken as systematic
uncertainties. The systematic uncertainty due to shower requirements and cos θdecay
criteria for pηγγ is estimated to be 0.8% in total, and that due to shower requirements
and Mπ+π−π0 mass requirement for pη3π is 0.2%. The systematic uncertainties due
to shower requirements, R value requirement and Mπ+π−π0 mass window for pω are
given as 0.9%, 0.5% and 1.1%, respectively.

VI. Vetoing Σ+, K0
S, and Λ. We use control samples Λ+

c → Σ+π+π−, Λ+
c → pK0

Sπ
0, and

Λ+
c → Λπ+π0 to study the data and MC difference in the Mpπ0 , Mπ+π− and Mpπ−

spectra. The difference is described by a Gaussian function which is used to correct
the signal MC sample. The relative changes on the detection efficiencies before and
after correction are assigned as systematic uncertainties, which are 1.8% and 0.7%
for pη3π and pω, respectively.

VII. ∆E requirement. Using the control sample of D+ → ωπ+, the resolution in the
∆E distribution in the pω mode is studied. The relative change of the detection
efficiencies before and after correcting the MC-simulated resolution effect is assigned
as the systematic uncertainty, which is 0.1%.

VIII. Non-η and non-ω contribution. For the pη3π mode, a potential non-η contribution
from Λ+

c → pπ+π−π0 is found to be negligible, according to a control sample in the
η3π sideband region. For the pω mode, the ratio of the sizes of Λ+

c → pπ+π−π0

in the ω signal and sideband regions is varied to understand the potential bias on
the estimation of non-ω contributions. An alternative method to calculate the ratio
is implemented by counting the surviving numbers of events in the π+π−π0 signal
and sideband regions of the Λ+

c → pπ+π−π0 MC sample. The resultant difference
of the branching fractions with the new ratio from the nominal result is assigned as
systematic uncertainty, which is 0.7%.
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IX. Input Binter. The uncertainties of intermediate branching fractions are from the
PDG [51], and they are 0.5%, 1.2%, and 0.8% for pηγγ , pη3π, and pω, respectively.

X. Number of Λ+
c Λ̄−

c pairs. The statistical uncertainties from NΛ+
c Λ̄−

c
are 1.6%, which

include the uncertainties on the luminosity and cross section [36, 59] of each data set.

XI. MC statistics. The statistical uncertainties of the estimated efficiencies from the
signal MC samples are both 0.1%.

XII. Signal model. In the nominal analysis, the efficiencies are calculated by using a PHSP
MC sample. The alternative efficiencies are estimated with the weighted MC samples
according to the joint angular distributions for pη and pω, which are written as

W(θ0, θ1, ϕ1) = 1 + α0 · (cos θ0)2 +
√

1 − α2
0 · α(pη) · sin ∆0 cos θ0 sin θ0 sin θ1 sinϕ1,

(5.1)

and

W(θ0, θ1, ϕ1) = 1 + α0 · (cos θ0)2 +
√

1 − α2
0 ·
β − αγ

1 + γ
· sin ∆0 cos θ0 sin θ0 sin θ1 sinϕ1

(5.2)

respectively. Here, α0 and ∆0 denote the parameters related to the polarization
of e+e− → Λ+

c Λ̄+
c . The parameters θ0 and θ1 denote the helicity angles of the

corresponding process e+e− → Λ+
c Λ̄+

c and the signal Λ+
c decay, respectively, while

ϕ1 is the angle between the initial e+e− reaction plane and the Λ+
c decay plane.

α(pη) denotes the asymmetry parameter of Λ+
c → pη, while α, β and γ denote the

asymmetry parameters of Λ+
c → pω [63, 64]. Due to the limited statistics of the

signal yields, no practical information can be determined from data. Hence, the
parameters of α(pη), α, β and γ are varied within the allowed physical region, and
the corresponding changes on the alternative efficiencies from the nominal efficiencies
are estimated. The maximum differences are considered as systematic uncertainties,
which are 0.2%, 0.1%, and 0.7% for pηγγ , pη3π and pω modes, respectively.

XIII. Fitting model. The systematic uncertainty from the fitting model results from the
signal and background shapes. To estimate the potential effects, we vary the smearing
Gaussian parameters within the uncertainties from the control samples, and vary the
parameter Ebeam of the ARGUS function by ±0.2 MeV. Six thousand pseudo data sets
are generated randomly, where for each pseudo data set these parameters are varied
randomly. The pull distribution of the fitted branching fractions in the pseudo data
sets indicates a relative shift of 0.2%, 0.5%, and 2.2% on the results of pηγγ , pη3π and
pω modes, respectively, which are assigned as systematic uncertainties. For Λ+

c → pω,
the peak around 2.26 GeV in the MBC distribution in figure 4(a) is insignificant in
data and not reproduced in MC simulations. However, the peak could be caused by
some unknown process in truth. To estimate the potential systematic uncertainty in
the nominal fit, an alternative fitting model is considered, which assumes the peak
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around 2.26 GeV with a Gaussian function. Two thousands toy data samples are
generated based on the alternative fitting model. We fit the toy data samples with
the nominal model, and the deviation of the pull distribution is taken as systematic
uncertainty, which is 4.7%.

We combine the measured branching fractions of Λ+
c → pηγγ and Λ+

c → pη3π con-
sidering correlations of systematic uncertainties utilizing BLUE (Best Linear Unbiased
Estimate) [65]. We assume the uncertainties from proton tracking, PID, Vr requirement
and total number of Λ+

c Λ̄−
c pairs are 100% correlated, and the other sources of systematic

uncertainties are uncorrelated. The branching fraction of Λ+
c → pη is estimated to be

(1.57 ± 0.11stat ± 0.04syst) × 10−3. For Λ+
c → pω, we add the systematic uncertainties in

quadrature, and the branching fraction is calculated to be (1.11±0.20stat±0.07syst)×10−3.

6 Summary

Based on e+e− collision samples with an integrated luminosity of 4.5 fb−1 collected with
the BESIII detector at seven energy points between 4.600 and 4.699 GeV, the branching
fractions of Λ+

c → pη and Λ+
c → pω are measured using the single tag method, and they

are found to be (1.57 ± 0.11stat ± 0.04syst) × 10−3 and (1.11 ± 0.20stat ± 0.07syst) × 10−3,
with a statistical significance greater than 10σ and 5.7σ, respectively. Our results are
consistent with previous measurements, as given in table 1. The result of Λ+

c → pη is the
most precise single measurement to date. The results allow more stringent tests of various
phenomenological models, as listed in table 1, where early calculations in refs. [13, 14, 34]
are confirmed as inconsistent with experimental measurements.
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