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A B S T R A C T   

In recent decade, nanotechnology has got an extensive advancement in terms of production and application of 
nanomaterials. With the advancement, concern has risen for their biomedical and ecological safety, provoking a 
detailed analysis of the safety assement. Numerous experimental and computational approach has been devel-
oped to accomplish the goal of safety assessment of nanomaterials leading to orgin of interdisciplinary fields like 
nanoinformatics. Nanoinformatics has accomplished significant strides with the development of several 
modeling frameworks, data platforms, knowledge infrastructures, and in silico tools for risk assessment forecasts 
of nanomaterials. This review is an attemption to decipher and establish the bridge between the two emerging 
scientific arenas that includes computational modeling and nanotoxicity. We have reviewed the recent in-
formations to uncover the link between the computational toxicology and nanotoxicology in terms of biomedical 
and ecological applications. In addition to the details about nanomaterials interaction with the biological system, 
this article offers a concise evaluation of recent developments in the various nanoinformatics domains. In detail, 
the computational tools like molecular docking, QSAR, etc. for the prediction of nanotoxicity here have been 
described. Moreover, techniques like molecular dynamics simulations used for experimental data collection and 
their translation to standard computational formats are explored.   

1. Introduction 

The modern era of day to day life activities in industrial and domestic 
reign results in the production of various types of ultra-fine particles. 
These activities includes artificial as well as natural process like building 
construction, metal welding, cigarette smoke, aircraft waste gas, diesel 
exhaust and wildfires, volcanic eruptions, and other natural processes. 
The byproducts of these activites along with the production process 
creates nanomaterials with specific physiochemical properties linked to 
their micro or nanosized structures. Moreover, these nanomaterials are 
finding their way in different applications like electronics, cosmetics, 
pharmaceuticals [1]. According to the nanodatabase recorded till March 

2023, 5367 products of day to day activites are integrated with nano-
materials. These nanomaterials are designed with specific properties 
such as increased strength, catalytic properties, electrical and thermal 
conductivity, etc dedicated to their requirement in biomedical and so-
cial applications. Given the utility of these nanoparticles, the risk as-
sessments of hazardous impact due to their possible exposures is 
required. Scientists and toxicologist have given special attention to the 
concern of heath risk and stydying it at different parameters. Oberdör-
ster et al. in 2005, introduced a subfield of toxicology called “nano-
toxicology”, also recognized as “nanosafety”[23] in concern of the safety 
assessments of nanomaterials. The field of study is focused on the extent 
of ecotoxicity and biomedical toxicity of engineered and naturally 
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produced nanoparticles. 
Conventional experimental techniques and methodologies used for 

the toxicological investigations have their limitaions due to high cost, 
time-consumption, ethical concerns, and inability to align with the fast- 
paced nanotechnology industry [4]. To address the safety concerns of 
natural and engineered nanomaterials, there is a need of fast and reliable 
methods that can complement experimental approaches and reduces the 
number of experiments and resources; owing to fast-paced computa-
tional industry and research, it can be achieved by development of high 
throughput computational assessment methods [5]. The two broad 
strategies for evaluating the potential hazards of nanomaterials are 
experimental toxicology; which involves in vitro and in vivo testing, and 
computational simulations; which relies on in silico analysis [678]. The 
field of computational chemistry has been broadly accepted and 
advanced since its inception in 1960 s. With the development of 
powerful computers and sophisticated algorithms, researchers can now 
analyze vast amounts of chemical data using a variety of statistical and 
machine-learning techniques. This has revolutionized drug discovery, 
materials science, and many other fields that rely on chemical data 
analysis. The implementation of computational chemistry has allowed 
the scientists to predict the properties and behavior of chemical com-
pounds before conducting expensive and time-consuming experiments. 
To be more precise, the computational approaches simulates the the 
relationships between the structure, properties, and biological effects of 
nanomaterials as the principal endpoint. Therefore, as recommended by 
the European Chemicals Agency, reliable computer-generated models 
can provide additional valauble information during the initial phase of 
investigations to detect potential nanoparticle-related hazards. (ECHA) 
[9]. Alternatively, they can help in categorization and labelling of 
nanomaterials based on the degree of hazardness. To assess the risks of 
NMs, it is important to classify and determine, the exposure pathways, 
forms, concentrations, and threshold levels of hazardness of nano-
materials in terms of both biomedical as well as ecotological aspects. 
These steps also require the integration and assessment of NMs char-
acterization and toxicity data which are currently in disparate. It is 
imperative that based on purely laboratory studies of the risks associated 
with NMs, a lot of time, money, and resources will be consumed [10]. 
Computational methods could provide the solution by understanding 
the links between NM structure, characteristics, and their biological 
impacts in fast pace and with reliablility. The quantitative structur-
e–activity relationship (QSAR) technique is the foundation of the most 
effective computer models that can predict the biological characteristics 
of NMs in a variety of complex situations. It can model correlations 
between the material’s structure, molecular characteristics, provenance, 
and their biological effects using statistical and machine learning (ML) 
algorithms. Recently a number of literature have thoroughly studied the 
use of the approach for studying a variety of NMs toxicity (Fig. 1) [11]. 

Even though these approaches are data-driven, they can nonetheless 
simulate relatively tiny data sets [12]; it is imperative that the more 
extensive models will boost the automation of processing and inter-
pretation of experimental data based on larger data sets. 

These computational models can be used independently and can also 
be used as input parameters for more intricate pharmacokinetic (PBPK) 
models based physiological studies. The simulations can then be run 
using the information on QSAR and can foretell biological activities 
through estimation of probable biological interaction partners which 
can be responsible for hazardous response. These computer methods can 
quickly close data gaps, take use of “read across” predictions of the 
biological effects of related materials, and categorize the risks posed by 
NMs to different species. Additionally, they are helpful supplements to 
experimental data on the biological characteristics of novel materials, 
which continue to be the principal obstacle for accurate risk assessment 
[13]. These kinds of in silico models are widely used by researchers in 
both academia and industry to calculate PChem properties precisely for 
the assessment of the effects of chemicals on human and environmental 
health and predict the fate of a wide range of chemicals, including 
complex materials. Moreover, integrating these data resources across 
different disciplines; including non-nanotechnology resources and 
methodologies like chemoinformatics, systems biology, and omics; will 
assist in achievement of other goals like the reuse of existing data[14]. 
For continuous advancement in nanosafety research, an authenticated, 
predictive in silico method that can deliberates the complexity of NMs 
and their deploying area is necessary. Additionally, a thorough analysis 
can result fresh study findings that can energize the pipeline for new 
innovation. In past years, a wide range of computational techniques 
have been created in an effort to enhance simulations and generate ac-
curate findings. Considering the recent advancements in computational 
biology, this review aims to discover “in silico” based assessments that 
have contributed to a better understanding of safety assurance allied 
with recently discovered nanomaterials. 

2. Bio-nano Interactions: A mechanistic approach to 
nanoparticle toxicity 

The nantechnology has shown an enormous potential in the revo-
lution of biomedicine,and creation of sustainable environmental tech-
nologies. Unlike larger molecules, nanoparticles can access far more 
remote locations in the human body owing to their small size and higher 
surface area, aiding to the several physiological benefits like extended 
circulation, efficient controlled release of drugs, and blood–brain barrier 
crossing abilities[15]. The incorporation of established medications 
with nanoparticles enables their direct delivery to the targeted tissue, 
improving the effectiveness of the chemotherepy and optimization of 
the dosage. However, the application of nano-medicine in clinical 

Fig. 1. Bar graph showing the recent publication trends in the field of (a) Nanotoxicology and (b) computational nanotoxicology as estimated by pubmed analysis.  
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settings is hindered by the lack of understanding of the interactions 
between nanomaterials (NMs) and biological microenvironments. Thus, 
a systematic evaluation of nano-bio interaction is required for the effi-
cient designing of safe and reliable NMs for biomedical applications 
[16]. Cabrera et al. has reported an experimental research on the in-
teractions between low-cost IONPs (bare iron oxides, silica-coated sur-
faces, or readily functionalized surfaces) and the four main classes of 
biomolecules—proteins, lipids, nucleic acids, and carbohydrates. The 
driving forces and interdependending governing interactions at the 
solid–liquid interface, the distinctive structural traits of each class of 
biomolecules, and the environmental factors affecting adsorption were 
given special consideration[17]. In order to outline the bio-nano inter-
face, three crucial frontiers are frequently taken into account: (1) the 
surface of the nanoparticle, which is distinguished by its physicochem-
ical characteristics[18]; (2) the biological material, which converges 
with the solid–liquid interface at the contact plane; and (3) the sur-
rounding environment, which along with the particle forms the solid-
–liquid interface[19]. The first element shaping the bio-nano interface is 
the nanoparticle itself. For studying these interactions, a thorough 
characterization and comprehension of the nanoparticle qualities are 
essential because the identity of the different components is determined 
by their intrinsic characteristics. [2021]. The second component at the 

bio-nano interface is the target biomolecule, which has unique proper-
ties and a variety of forms, charges, sizes, and conformations in 
complicated mixes (Fig. 2). These characteristics specify the interactions 
with organic and inorganic materials and the specific functional groups 
exposed in the medium around them. The third building block is the 
medium of the interface. Its significance comes from its capacity to 
change the inborn properties of nanoparticles and biomolecules, 
including surface charge (zeta potential), stability (biodegradability), 
hydration, valence state, and capability to transport electrons[18] 
(Fig. 3). At the bio-nano interface, physical–chemical interactions occur 
between the surface of nanoparticles and biological compounds (Fig. 2). 
Firstly, the forces collaborating in the interaction between nanoparticles 
and biomolecules appear to be alike to those in classical colloidal sys-
tems[22]. Both physio-sorption and chemisorption can be used to 
categorize these interactions[19]. While chemisorption occurs when 
electron sharing occurs at the binding site developing stronger links (e. 
g., covalent bonds or hydrogen bonds), typically, physio-sorption de-
pends on the attraction of the adsorbing elements for the surface while 
remaining chemically unchanged (e.g., van der Waals, electrostatic, and 
so-called hydrodynamic interactions) [17]. With an advancement of 
implication of nanotechnology and nanomaterials in different applica-
tions, the abundance and concentration of NMs has also increased, 

Fig. 2. (a) Physical properties of metal oxide nanoparticle playing crucial role in the nanotoxicity (Image adapted from [23]) (b) Protein corona formation and 
interaction with immune cells (Image adapted from [24]). 
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attracting significant attention of worldwide reserachers to the toxico-
logical concerns of these NMs. This has led to the foundation of new 
research topics like “Nanotoxicology”, studying about the pathophysi-
ology and toxicity of NMs influenced by the formation of the biomole-
cule corona[25] (Fig. 2). Consequently, a number of studies on the 
function of the biocorona have been carried out, albeit with divergent 
outcomes. An investigation by Docter et al.[26] suggested that the pro-
tein corona played a significant role in cellular absorption and toxicity. 
Here, in vitro studies demonstrated that the corona-formation is 
responsible for a decreased cellular uptake of NMs in addition to the size 
factor of NMs involved in cellular toxicity[26]. Additionally, the NM- 
protein corona complex is required for NMs to induce or modify im-
mune responses, thereby activating the immune system. For the safe use 
of NMs in medicine, it is crucial to comprehend nano-immune in-
teractions[27]. In another study, researchers used primary human blood 
system cells in in vitro research to show the (patho)-biological effects of 
the protein corona. Here, protein-coated NMs exhibited less toxicity 
compared to pristine NMs, indicating that the corona protects cells from 
the NM-induced (patho)-biological processes and can also promote 
cellular uptake[25]. Apart from above mentioned reports, there is also 
an upsurge in the number of studies using computational approaches to 
address the relation between different NMs and biomolecules[28]. 

NMs interactions with biomolecules and structures (such as peptides, 
proteins, phospholipids, nucleic acids, etc.)[29] plays important role in 
different biomedical applications[30]. In order to control the reactions 
at nanomaterial-biology (nano-bio) interfaces, it is crucial to assess the 
fundamental mechanisms underlying these processes. The three primary 
elements involved in the phenomenon are: (1) biomolecules adhering to 
NM surfaces to form protein corona; (2) reconstructing and altering 
functional proteins; and (3) redox reactions between NMs and reactive 
species [16]. A case-by-case method of nano-toxicity evaluation is 
impractical due to the large amount of dataset obtained because of the 
variability of NMs physiochemical nature. High-throughput techniques 
might become essential tools for closing existing information gaps in our 
understanding of engineered NMs and their biomedical and ecological 
impacts. 

3. Nano-toxicology and computational biology: a brief 
introduction 

Just like every other attributes on this planet, nano-formulations too 
have their pose and cones. Nano-toxicity can be considerd as the darker 
side of nano-formulations, and has become a major challenge in the field 

of nanoscience and nanotechnology. Chemotherapeutic medications, 
nano-medicines, and nano-carriers all have hazardous profiles. When a 
nano-carrier containing bioactive (protein and peptide medicines) and 
chemotherapeutic medications (anticancer agents) is exposed to the 
body over an extended period, it becomes toxic and selectively induces 
cytotoxicity in healthy cells and organs (Fig. 4). Nanotoxicology is a 
relatively young field that embraces advances in toxicology, such as the 
use of systems biology techniques to simulate and foresee the disrup-
tions caused by NMs in living systems. A comprehensive understanding 
of nano-bio interactions can only be attained through a combination of 
different perspectives found in chemistry, physics, molecular biology, 
immunology, pharmacology, computational sciences, and other fields 
[32]. This is why it is important to view nano-toxicology as an inter-
disciplinary lesson. Therefore, constant communication between scien-
tific disciplines is crucial. The primary focus of nano-toxicology is the 
toxicity of nanoparticles and determining their toxic effects on in-
dividuals and the environment. Silver[3334], Gold[35], Cobalt oxide 
[36], Titanium dioxide[3738], Magnesium oxide[39], Iron oxide[40], 
Zinc oxide[41], diesel exhaust nanoparticles, as well as carbon nano-
tubes, fullerenes[42], and “nano-C60″ are typical nanoparticles that 
have been extensively studied in various toxicological studies[43]. 
Therefore, communication between scientific disciplines is very crucial 
[44]. 

By the late 1950s, computers were already used in population 
studies, species classification, and taxonomy construction; where pro-
grams, however, merely served as sophisticated calculators. The back-
ground for systems biology was largely hypothetical and not especially 
algorithmic, even though Wiener and others’ work on cybernetics 
created the foundations for it. The first bioinformatics algorithms were 
created at roughly the same time as theoretical computer science was 
still a fledgling discipline. Following the invention of Sanger sequencing, 
new algorithmic design and analysis concepts in dynamic pro-
gramming—for example, by Levenshtein for the computation of edit 
distance—and data structures for string matching—for example, the 
suffix trees of Weiner and McCreight—benefited the first computational 
methods for genomic and proteomic sequence similarity search as well 
as RNA secondary structure prediction. The Human Genome Project’s 
launch in the 1990s led to a sharp surge in algorithmic activity for 
resolving biomolecular issues. This period saw the emergence of novel 
techniques for multiple sequence alignment, motif discovery, hap-
lotyping, phylogenetic tree construction, protein structure analysis, and 
prediction, all of which helped to set the stage for the ultimate 
completion of the human genome sequence. The pursuit of assembling 

Fig. 3. (a) Nano-bio interactions and the driving forces (Image adapted from [31]) (b) Zeta potential zone and electric double layer surrounding charged nano-
particles shown schematically (Image adapted from [23]). 
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the human genome from Sanger sequencing reads by both public and 
private initiatives in the late 1990s was particularly fascinating. 
Numerous statistical and combinatorial techniques for clustering, clas-
sification, and regression have been developed concurrently with 
microarray technology development. By extending systems biology into 
the field of network science, additional developments in co-expression 
analysis and protein interaction prediction were made using the yeast 
two-hybrid system. Bioinformatics entered a new age of Big Data science 
with the completion of the Human Genome Project and the introduction 
of next-generation sequencing technology. The use of RNA-Seq data in 
read mapping and variant detection algorithms, gene annotation and 
functional element discovery methods, gene expression, and alternative 
splicing analysis tools, as well as the 1000 Genomes Project, ENCODE 
and mod-ENCODE, The Cancer Genome Atlas, and the International 

Cancer Genome Consortium, became essential to large-scale interna-
tional scientific projects. Interconnections between molecular biology, 
theoretical computer science, statistics, and statistical machine learning 
will need to get more intricate as the number and variety of biomole-
cular data increase. Although algorithmic technology from the 1980s 
and 1990s, such as suffix arrays, locality-sensitive hashing, and color 
coding, as well as general methods for linear and non-linear optimiza-
tion and approximation algorithms for NP-hard problems, have already 
found significant applications in bioinformatics; more recent methods 
such as streaming, sketching, metric embeddings, compressed data 
structures, differential privacy, homomorphic encryption, and others 
have yet to do so. Similarly, the theoretical computer science commu-
nity has paid little attention to new issues in large data genomics, 
transcriptomics, and proteomics. 

Fig. 4. Toxicity of nanoparticles: (a) Released nanoparticles from various sources and their harmful effect on human health (modified and conceptualize from [45]) 
(b) Nanoparticle induced toxicity mechanism (modified and conceptualize from [23]). 
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Similarly, the theoretical computer science community has paid little 
attention to new issues in large data genomics, transcriptomics, and 
proteomics. Computational biology utilizes data analysis, mathematical 
modeling, and computer simulations to understand biological systems 
and interactions. Fig. 5 illustrates the computational tools used for the 
nanotoxicity analysis. The field is a junction of computer science, 
biology, and big data with origins in applied mathematics, chemistry, 
and genetics. It differs from biological computing, a subfield of com-
puter engineering that uses bioengineering to build computers. 

4. In silico approaches for toxicity-based assessments 

Several in silico models and methods have been used to assess and 
predict the potential toxicity of chemical substances and their associated 
risks to humans and the environment. The different toxic effects of in-
dustrial chemicals have led to an understanding of the value of 
combining in silico models in risk assessments. Through a thorough 
assessment of chemicals, it is critical to identify and manage hazardous 
materials in advance[46]. Previously, the entire procedure of identifying 
hazardous substances depended on conducting tests on animal models. 
To avoid sacrificing thousands of animals, a cost-effective in silico 
approach can be helpful[47]. Additionally, utilizing non-testing 
methods to foresee toxicity early in the drug discovery and develop-
ment cycle helps to reduce costly drug failures caused by toxicity being 
discovered in late development or even during clinical trials. 

A wide range of computational tools are currently in use for in silico 
toxicology, for instance, databases, programs that produce molecular 
descriptors, simulation tools, and modeling techniques. Based on the 
idea that a substance’s molecular characteristics can be correlated with 
its physical and biological properties, in silico models and tools can 
predict the efficacy and toxicity of a substance. A few of the major in 
silico models used for toxicity-based assessments and hazard manage-
ment are QSAR, Read-Across, and Expert Knowledge Models. 

Each year, the nanomaterials scientific community implement 
quantitative structure–activity relationships (QSARs) predictions for the 
toxicity assessment of thousands of chemicals, [48]. In silico toxicity 
analysis aims to forecast chemical toxicity, which use a range of 

computational techniques to link a chemical’s structure to its toxicity or 
efficacy through computational modeling, QSARs, and algorithmic 
prediction. Finding the best approach for each problem of chemical 
toxicity is crucial because of the need of unique scope and interpretation 
intepreting the advantages and disadvantages of the methods[49]. Risk 
assessments frequently ignore the negative effects of the mixture, which 
is how chemicals become toxic when they interact with other sub-
stances. Moreover, it is also difficult to asses the synergistic toxicity of 
the mixture elements [50]. Quantitative structure-nanotoxicity re-
lationships, also known as quantitative structure-nanotoxicity relation-
ships (QSNR), or nano-QSAR, are unique to nanomaterials and include 
characteristics like size, shape, surface area, and solubility. A linear 
QSNR model has been developed to predict the effective concentration 
for 50 % enzymatic inhibition (EC50) of AgNPs from their data of size 
and surface charge[46]. Integrating high-throughput screening tech-
niques with biosafety and in silico modeling emphasizes a system biology 
approach that guarantees the quality of nanosafety research, fills the 
mechanical gap in fundamental research, and offers suggestions for 
predictive biological responses in nanotoxicology. However, “nano- 
QSAR” needs to be organized and standardized with the data gathered 
for nano-characteristics. The NanoPUZZLES project of the EU was one of 
the international collaborations that improved the data availability and 
modeling approach to support the evaluation of nanomaterials. System 
interactions should be considered when developing toxicity prediction 
models[51]. 

A significant problem in the study of toxuicological evaluations is the 
prediction of chemical toxicity in silico using machine learning and 
structural alerts, including the various toxicities and negative effects. 
[52]. There have been efforts to create in silico models, including 
computational tools, that can be used to predict the toxicity of com-
pound before being syntheticlly synthesized. Chemical risk assessment 
has recently seen the development of chemical toxicity prediction 
models, as well as an admetSAR Web server with machine learning 
techniques and structural alerts that have been created for free public 
use[53]. For instance, recently CarcinoPred-EL, a Web server that can 
predict carcinogenicity online, was created to model chemical carcino-
genesis[54]. There are currently over 8000 compounds that are known 

Fig. 5. Computational tools and models used for nano/toxicological analysis.  
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to be Ames mutagens, and in toxicity data have been used to expand 
predictive models and structural alerts recent years. The most frequently 
studied computational prediction is acute oral toxicity, for which 
computational models have been created (Table 1). A variety of machine 
learning techniques were created and used to build classification and 
regression models to forecast LD50 or its toxicity categories[5556]. 
Considering the near future, computational methods are likely to 
develop models for unique and novel types of toxicity endpoints for 
chemicals, provide insight into toxicological pathways, combine and 
compare results from various models, tailor models to users’ needs, and 
improve models with the availiability of new data. 

5. Computational tools assisted toxicity studies 

5.1. Molecular docking for structure knowledge 

The engineered and natural nanomaterials cause cytotoxicity to the 
cells due to their surface-to-volume ratio property, which eventually 
interacts with the macromolecules in a biological system[57]. The 
interaction and dynamics of the interaction of nanoparticles and the 
biological system are crucial to understand the mechanism [16]. To 
obtain insightful predictive interactions, computational analyses like 
electronic structure methods using molecular docking, density func-
tional theory calculations, Monte Carlo, kinetic mean field model, and 
coarse-grained molecular dynamic simulations play an important role 
[58]. The mechanism behind the possible pathological phenotypic 
changes due to the physiological alterations caused by the nanoparticle 
interaction with the biological system is not fully understood. However, 
the modern molecular docking approaches specifically statistical 
modeling and machine learning method have acquired a stronghold in 
the macromolecule-nanoparticle interacting prediction. 

To simulate the predicted interaction between the nanoparticles and 
the macromolecules, molecular docking modeling often involves mul-
tiple steps (Fig. 6). To replicate the accurate size and shape of the 
nanoparticle, the structure must first be meticulously constructed. The 
initial chemical configuration of the nanoparticles may be created from 
scratch employing various software modules like Material Studio[59], 
and Chem Draw[60] or it could be retrieved from internet-based data-
bases like the Cambridge Cluster Database[61]. Following that, 
employing the proper method and degree of theory, the geometry of 
those nanoparticles must be optimized by minimization of energy. 
Recently published research has made extensive use of software modules 
for NP optimization. Gaussian, Forcite, and CASTEP are a few examples. 
In 1970, Carnegie Mellon University created the general-purpose 
computational chemistry software program known as Gaussian. Ac-
cording to Kumari et al[62] and Wu et al[63], it can do semi-empirical, 
DFT, and ab initio calculations as well as molecular mechanical pre-
dictions employing specific force fields. According to Arami et al.,[59], 
Forcite is a traditional molecular mechanic tool that may optimize sys-
tems of periodicity and structures of crystals while maintaining crys-
talline integrity. For modeling the properties of solids, interfaces, and 
surfaces of diverse material groups, including ceramics, semiconductors, 
and metals, CASTEP is an ab initio quantum mechanics program that 
relies on DFT computations[64]. 

Most computational studies use NPs that are less than 100 nm in size 
and come in an array of structures, including sheets[65], lattices[66], 
and spheres[67]. In addition, some research has focused on single units 
as tiny as angstroms, which is a scale commonly encountered in the 
actual world. It is important to carefully replicate the main dimensions 
and shape of the Nanoparticles in biological fluids while preparing the 
Nanoparticles architecture. According to Brancolini et al[68], certain 
NPs, like gold, have the propensity to combine fast in solution. To pre-
dict the binding mode, the docking program should be given a meticu-
lously developed, parametrized representation of the actual structure of 
the nanoparticles under biological environments. As was previously 
indicated, accurate NPs might be gathered from databases like the 

Table 1 
List of commercially and freely available software used for predicting toxico-
logical endpoints.  

Softwares Developers Avaialability Toxicity endpoints 

ACD/Tox Suite ToxBoxes Commercial Acute oral toxicity, 
Genotoxicity, 
Endocrine activity 

Derek Lhasa Ltd Commercial Genotoxicity, 
Carcinogenicity, 
Reproductive toxicity, 
Endocrine activity, 
Hepatotoxicity, 
Nephrotoxicity, 
Neurotoxicity, 
Immunotoxicity 

BioEpisteme Prous Institute for 
Biomedical 
Research 

Commercial Carcinogenicity, 
Nephrotoxicity, 
Hepatotoxicity 

ADMET 
Predictor 

Simulations Plus 
Inc. 

Commercial Chronic oral toxicity, 
Genotoxicity, 
Carcinogenicity, 
Endocrine activity, 
Hepatotoxicity 

HazardExpert CompuDrug Commercial Genotoxicity, 
Carcinogenicity, 
Neurotoxicity, 
Immunotoxicity 

Caesar project 
models 

Mario Negri 
Institute 

Free Genotoxicity, 
Carcinogenicity, 
Reproductive toxicity 

MCASE/MC4PC MultiCASE Commercial Acute oral toxicity, 
Chronic oral toxicity, 
Carcinogenicity, 
Reproductive toxicity, 
Endocrine activity, 
Hepatotoxicity, 
Nephrotoxicity, 
Cytotoxicity 

OncoLogic US EPA Free Carcinogenicity 
Lazar (In Silico 

Toxicology) 
Freiburg university Free Chronic oral toxicity, 

Genotoxicity, 
Carcinogenicity, 
Hepatotoxicity, Human 
liver toxicity 

OASIS-TIMES Laboratory of 
Mathematical 
Chemistry, Bourgas 
University 

Commercial Genotoxicity, 
Endocrine activity 

Leadscope Leadscope Commercial Genotoxicity, 
Carcinogenicity, 
Reproductive toxicity, 
Hepatotoxicity, 
Nephrotoxicity, 
Neurotoxicity 

TerraQSAR TerraBase Commercial Acute oral toxicity, 
Endocrine activity 

MDL QSAR MDL Commercial Acute oral toxicity, 
Chronic oral toxicity, 
Carcinogenicity, 
Reproductive toxicity, 
Hepatotoxicity, 
Nephrotoxicity 

TOPKAT Accelrys Commercial Acute oral toxicity, 
Chronic oral toxicity, 
Genotoxicity, 
Carcinogenicity, 
Reproductive toxicity, 

Molcode 
Toolbox 

Molcode Ltd Commercial Chronic oral toxicity, 
Genotoxicity, 
Carcinogenicity, 
Endocrine activity, 
Cytotoxicity 

Pallas Suite 
including 
ToxAlert, 
Cytotoxicity 

CompuDrug Commercial Genotoxicity, 
Carcinogenicity, 
Neurotoxicity, 
Cytotoxicity 

(continued on next page) 
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Cambridge Cluster Database or drawn in silico using data from experi-
ments like nuclear magnetic resonance and dynamic light scattering 
[69]. There are a number of databases that offer experimental results for 
typical nanoparticles, including InterNano, Nano-EHS, Nano- HUB, and 
NANO by Springer Nature[69]. Since, gold nanoparticles have a mean 
diameter of 12 nm whereas the protein’s mean diameter is only 3 nm, 
researchers from Heidelberg University hypothesized that the protein 
interprets gold nanoparticles as flat surfaces[68]. The precision of the 

docking results, however, might be compromised by excessive NPs 
structural simplification. A single three-atom molecule of titanium di-
oxide (TiO2) was utilized for the docking simulation in recent research 
on the interaction between titanium dioxide nanoparticles and human 
serum albumin[70]. According to a study by Fei Yin et al.[71], TiO2 NPs 
often have a rutile or anatase crystalline structure, in which the titanium 
is coordinated by 6 oxygen atoms in an octahedral configuration. The 
reduced complexity in this scenario might invalidate the docking results 
since it distorts the true nature and size of TiO2 nanoparticle. The bio-
logical macromolecule must be prepared similarly. The RSCB Protein 
Data Bank (PDB) is often used to retrieve the proper crystal structure. If 
not, a homology model must be constructed with the proper software, 
such as Swiss-Model, Modeler (BIOVIA), and Prime (Schrodinger). 
Notably, in the availability of an appropriate crystal structure, homol-
ogy modeling should be disregarded since it represents still another 
approximating degree[72]. The ligand and macromolecule are pre-
pared, and then the program of choice is used to complete the docking 
procedure. It’s important to note that there are currently no dedicated 
programs available for NP docking simulation. The AutoDock program 
with the Lamarckian genetic algorithm has been employed in the ma-
jority of current studies[73]. Additionally, NPs docking has lately made 
use of various online docking servers. These include Patchdock, which 
utilizes an algorithm based on shape complementarity[74], and HEX 
6.3, which applies an algorithm based on the Fourier transform[74]. 
Additionally, we have observed that the majority of the published 
research employed a rigid docking technique that kept the protein 

Table 1 (continued ) 

Softwares Developers Avaialability Toxicity endpoints 

Toxtree JRC Free Chronic oral toxicity, 
Genotoxicity, 
Carcinogenicity 

T.E.S.T. US EPA Free Acute oral toxicity, 
Reproductive toxicity 

CSGenoTox ChemSilico Commercial Genotoxicity 
q-Tox Quantum 

Pharmaceuticals 
Commercial Acute oral toxicity 

PASS IBCRussian 
Academy of Medical 
Sciences, Moscow 

Free Genotoxicity, 
Carcinogenicity, 
Reproductive toxicity, 
Hepatotoxicity, 
Nephrotoxicity, 
Neurotoxicity, 
Cytotoxicity, 
Embryotoxicity  

Fig. 6. Schematic representation of steps involved in molecular docking mentioning the tools to perform the molecular docking.  
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residues at a fixed value. The visualization of the interaction between 
NPs and macromolecules using several platforms, including Discovery 
studio, Pymol, iGEMDOCK[75], and UCSF Chimaera[76], constitutes 
the final phase. 

5.2. Quantitative Structure-Activity relationship (QSAR) 

The most pursued methods to estimate the toxicity caused by 
nanomaterials are structure-based mathematical models, particularly 
quantitative structure–activity relationships (QSAR) at the nanoscale 
(nano-QSAR)[77]. Examples of these models also include Bayesian 
methods and Markov Chain Monte Carlo simulation. Numerous QSAR 
prediction models have been built for predictions of various toxicolog-
ical endpoints based on molecular descriptors, such as the descriptors 
generated by Mold2[78], which utilized the innovative methods 
developed in the structure elucidation system ESSESA. The fundamental 
goal of a QSAR model is to specify a suitable function that has an 
apparent connection between chemical structure and biological activity. 
In order to forecast toxicity repercussions or create perfect nano-
materials, this may further summarise the physiochemical and biolog-
ical data[79]. 

The limitations of conventional QSAR techniques for nanomaterials 
can be overcome using a variety of other models[10]. The computa-
tional hybrid nano-QSAR model for nanocytotoxicity uses two de-
scriptors: electronegativity, which is connected to stability, and the 
enthalpy of a formation, which is related to bandgap energy. The cyto-
compatibility of metal oxide ENMs was accurately calculated using the 
straightforward nano-QSAR method for a variety of cell lines[80]. Under 
the Registration, Evaluation, Authorization, and Restriction of Chem-
icals (REACH) regulation, the European Commission has started a 
number of projects to promote the development of computational tools 
for the evaluation of toxicity caused by engineered nanomaterials 
(ENMs)[10]. A safe regulation is supported by the fact that several of the 
evaluated nano-QSAR models can also forecast the bio persistence of the 
ENMs[81]. Fiber forms of materials and their ability to produce ROS are 
considered to be signs of a material’s high toxicity. All CNTs have a fiber 
form, however, some also release ROS, in order to investigate the 
toxicity of MWCNTs, quasi-QSAR models[82] were created based on the 
representation of conditions, including concentration, the presence of S9 
mix, the type of MWCNT (surface area), and the use of preincubation, in 
a quasi-simplified molecular input-line entry system (SMILES) form, 
whose descriptor correlation weights were determined via the Monte 
Carlo method. In an alternative investigation, genotoxicity was modeled 
as a function of five factors: particle type (MWCNT or fullerene), illu-
mination, concentration, metabolic activation, and preincubation, 
which produced acceptable statistical values. These examples use the 
reverse mutation test (TA100) as the cytotoxicity assessment endpoint. 
Fourches et al[83] took into account four empirically discovered de-
scriptors of 44 distinct nanoparticles (NPs): size, zeta potential resulting 
from the intensity of charge on the surface, R1 relaxivity, and R2 
relaxivity. The last two terms have relevance to the magnetic features of 
the NPs, which affect their capacity to modify the proton spin relaxation 
rates in the surrounding water molecules. To gauge cellular absorption, 
they also examined the lipophilicity dataset. The efficiency of the QSAR 
approach and support vector machines (SVM) in predicting nano-
toxicology and developing safer NPs was examined by the authors[84]. 
To construct and integrate the naive Bayesian classifier on the same 
dataset, a different study uses the nano-SAR model[84]. Additionally, 
studies have found that their estimates of cytotoxicity in NPs were more 
than 90 % accurate. Considering three descriptors;molar volume, size, 
and polarizability of NPs; Luan et al. built a QSAR-perturbation model to 
forecast the cytotoxicity of NPs against mammalian cell lines and re-
ported an accuracy of 93 %[85].To anticipate the general toxicity pro-
files of NPs, Concu et al. created a unified in silico machine learning 
model based on artificial neural networks. This model’s accuracy was 
greater than 97 % when applied to 260 NPs utilizing two families of 

descriptors: physicochemical and 2D topology[86]. Based on the out-
comes of metal NP first principal computations, Boukhvalov and Yoon 
created descriptors[87]. They took into account two processes: water 
dissociation on crystal surfaces with varied miller indices, such as (001) 
and (111), nanorods, and two cubic nanoparticles of 0.6–0.3 nm size 
made of various metals, including Al, Fe, Cu, Ag, Au, and Pt. The in-
vestigations described how the form and size of NPs affected chemical 
activity. According to the size and specific surface area of NPs, three 
types of cluster NPs—monometallic (Au-Pd) clusters, core–shell parti-
cles, and bimetallic clusters (Au/Pd)—were tested for toxicity on 
Escherichia coli and CHO-K1 cells[88]. In comparison to pure TiO2, 
bimetallic clusters (Au-TiO2, Pd-TiO2, and Au/Pd-TiO2) were found to 
have increased cytotoxicity. A mathematical model was created using 
quasi-SMILES descriptors obtained with the Monte Carlo method and 
the cytotoxicity data of C60 NPs towards Salmonella typhimurium from 
ref.[89], and the model’s statistical parameters were R2 = 0.755 and q2 

= 0.571. In order to continue the investigation, two datasets from 
reference [61] were used, and mathematical models were built as 
functions of dose, S9 mix, and illumination using quasi-SMILES opti-
mum descriptors discovered using the Monte Carlo approach. In contrast 
to the preceding study’s single split, this study made many splits into the 
training, calibration, and validation datasets. The reverse mutation test, 
either TA100 or WP2 uvrA/pKM101, served as the cytotoxicity endpoint 
in each of these experiments[90]. Similar to the method used earlier, a 
mathematical function of size, concentration, and exposure duration 
was used to construct a predictive model for estimating the cytotoxicity 
of 20 and 50 nm silica NPs. Three random sets—training, calibration, 
and validation—were created from the dataset. Using the 3-[4,5-dime-
thylthiazole-2-yl]- 2,5-diphenyltetrazolium bromide (MTT) assay to 
measure the viability of cultured human embryonic kidney cells exposed 
to various doses of silica NPs, the toxicity was determined. Cell viability 
was used as the endpoint in this study’s cytotoxicity tests. A collection of 
experimental data on cytotoxicity encompassing 19 data points for silica 
NPs was used to compare the quasi-QSAR method (using quasi-SMILES 
optimum descriptors) with the random forest (RF) approach. Aspect 
ratio and zeta potential were discovered to be the most significant var-
iables for RF, but no equivalent conclusion could be made for quasi- 
QSAR. It was also shown that silica’s cytotoxicity may be modeled 
using the RF technique [14]. Later, using CORAL software, better nano- 
QSAR models with high determination coefficients (0.8–0.95) were 
constructed based on quasi-SMILES. 

5.3. Concept of Grouping/Read-Across 

From 2007, the EU implemented REACH, a new paradigm for 
chemical assessment that includes the staged registration and evaluation 
of all currently used chemicals that have been produced and imported 
without safety information. According to REACH Annex XI, Read-across 
is a method for predicting endpoint data for one or more target sub-
stances using data from the same endpoint from other substances which 
have similar physicochemical, toxicokinetic, toxicodynamic, and eco-
toxicological properties, or follow a regular pattern as a result of 
structural similarity that enables them to be considered a group[91]. 
Nanomaterials (NMs) lack a clearly defined structure; hence it is more 
difficult to distinguish them from regular chemicals when it comes to 
structural similarity. Concerning the application of QSARs and grouping 
approaches to NMs, as well as how to support grouping for read-across 
between nanoforms of the same substance, ECHA published a guidance 
document on information requirements and chemical safety assessment 
[92]. The ECHA Group Assessing Already Registered Nanomaterials 
(GAARN) and the ECHA Nanomaterials Working Group (NMWG), as 
well as an earlier strategy (RIVM, JRC, and ECHA, 2016), have all been 
considered in the development of this guidance. These concepts and 
considerations are key to NM grouping and read-across. This includes 
the requirement to consider characteristics other than chemical 
composition for instance, aspect ratio, particle size, shape, or solubility, 
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the affirmation of the similarity requirements from REACH Annex XI for 
NMs, and the significance of toxicokinetic studies, in grouping, read- 
across, and for extrapolating from in vitro to in vivo[93]. Similarly, the 
Regulatory Cooperation Council (RCC) of the United States and Canada 
has created a strategy based on the chemical composition which defines 
seven classes of NMs: semiconductor quantum dots, inorganic carbon, 
metal and metalloid oxides, metals, metal salts, and metalloids, carbon 
nanotubes (CNTs), and organics and other classes. RCC defines a 

flowchart to categorize various groups of NMs according to solubility, 
biopersistence, and morphology, based on the likelihood of exposure 
and accessibility of toxicity tests. The flowchart is based on solubility, 
biopersistence, and morphology[94]. According to Hansen et al[95] 
NMs are classified according to their shape for instance, high aspect ratio 
NMs are prioritized in terms of hazard or by the presence of toxicological 
effects for instance, acute toxicity, genotoxicity, mutagenicity, and 
carcinogenicity (Fig. 7). In conclusion, utilizing the read-across method, 

Fig. 7. Read-across prediction and properties. (a) End point-specific framework for read-across analog selection (Image adapted from [96]) (b) a structural way of 
assessment of uncertainty and acceptance in read-across prediction (Image adapted from [108]) (c) different properties of read across models (Image adapted 
from [49]). 
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structurally similar materials can be found and used as data sources to 
assess a target chemical’s safety. The quality of the read-across data, the 
hypothesis and justification of the toxicokinetic and toxicodynamic 
bases of the prediction, and the pertinent supporting data and infor-
mation all contribute to the uncertainties of a toxicological read-across 
prediction (Fig. 7). By identifying and minimizing the uncertainties 
related to these factors, one can increase confidence in a read-across 
prediction. As the mode of action for each end point varies greatly, 
read-across frameworks are more likely to be accepted when applied end 
point-by-end point[96]. These advancements will aid in the develop-
ment of read-across case studies as well as nanosafety assessments in 
future (Fig. 7). 

6. Role of molecular dynamics simulations in toxicity-based 
investigations: advances and applications 

Nanoinformatics begins with the application of modeling and 
simulation approaches toward an array of objectives, such as integrating 
together toxicological data into clinical and personal databases or 
establishing novel strategies for scientific ontologies[97]. The method 
used to analyze the time-dependent behavior of a molecular system is 
known as molecular dynamics (MD) simulation, and it is an arising 
technology in computational nanotoxicology. The molecular system 
refers to the physical motions of atoms and molecules in the system. 
MD simulations could provide comprehensive details on the molecule’s 
fluctuations and structural alterations. To investigate the potential 
hazards of nanomaterials in nanotoxicology, many computational al-
gorithms for molecular dynamic simulations have been built[98]. Sci-
entists are interested in exploring the interactions among nanometers 
and tiny-range nanoparticles and biological molecules using different 
MD simulations[99].As was already noted, in a molecular system, MD 
simulation is the time-dependent modeling of atomic movements that 
are governed by interactions between atoms within a defined radius. 
The dynamic operations and statistical characteristics of a molecular 
system can be monitored and thoroughly investigated by documenting 
and analyzing the coordinates, velocities, and forces of the individual 
particles inside it[100]. In the disciplines of structural biology, drug 
development, toxicology, and nanotechnology, several MD simulation 
methods, and algorithms such as Molecular mechanics, Quantum me-
chanics, ab initio, hybrid Quantum, and Molecular mechanics have been 
built and are often utilized[101102]. Molecular dynamic simulation 
follows a standard protocol for an accurate biological macromolecule 
and nanoparticle. Aqueous media at least partially contains the majority 
of biomolecules. Prior to performing MD simulations, it is standard 
practice to place a biomolecule in pure or ion-containing water. The 
majority of MD simulations use various water models to do precise 
solvent computations of biological macromolecules. Based on their 
physiochemical characteristics, the water models employed MD simu-
lations that are depicted by all-atom force fields may be divided into 
numerous categories. Simple point charge (SPC), SPC/E, transferable 
intermolecular potential (TIP3P), TIP4P, and TIP5P are the most often 
utilized water models out of the 46 different water models that are 
applied in MD simulations[103]. Depending on the number of sessions 
they need, the level of precision, and other parameters, users may 
choose the water models to employ in their MD simulations. The SPC 
model[104], SPC/E model[105], TIP3P model[106], TIP4P model 
[106], and TIP5P model[107] are among the most often used explicit 
water models in MD simulations. 

Efficient MD simulations depend on having a suitable energy func-
tion to describe how molecules interact inside a molecular system in 
simulation. Typically, parametrized terms derived from experiments or 
computations using quantum mechanics are included in the energy 
functions employed in MD simulations. Large macromolecules like 
proteins are thought to be compatible with parametrized terms. A force 
field is a collection of energy functions and the parametric variables that 
correspond with them[109]. In the 1960s, while MM approaches were 

being developed, the force field idea was first proposed. In general, force 
fields are cumulative. Class II force fields are those that contain higher- 
order terms and are not additive. Predicting molecular structures, vi-
bration spectra, and enthalpies of isolated molecules is the main 
objective of force fields. For the modeling of diverse biological a variety 
of force fields have been created and employed[110]. The most widely 
used programmes for MD simulations are AMBER[111], AMOEBA[112], 
CHARMM[113], GROMAS[114], OPLS[115], and ReaxFF[116]. MD 
simulations depend on molecular system preparation. A starting system 
with atomic conflicts may break the MD simulation’s tertiary structure, 
terminating it. To avoid a poor initiating system, apply solid preparatory 
practices. MD simulations start with a 3D structure from investigations 
like crystallography and NMR spectroscopy, homology modelling, 
docking simulation, or an MD trajectory. Conjugate-gradient and 
steepest-descent methods are used to optimize the structure’s atomic 
coordinates by minimizing the original structure’s potential energy. 

Before MD simulation, an explicit water model must solvate the 
minimized structure. First, a periodic box with 8–12 Å surfaces is placed 
around the minimized structure. In explicit models, water molecules fill 
the periodic box. MD simulation on water molecules for 1–5 ps smooths 
the water network[117]. Finally, the biomolecules, fluids, and molec-
ular systems are optimized for MD simulation. One such strategy that 
has been successful at the fundamental level is nanoparticle-mediated 
medication delivery. By analyzing the interactions between proteins 
and nanoparticles, it has become possible to better understand how 
nanoparticles affect the human body. Using all-atom molecular dy-
namics simulations (MDS), Hazarika et al., assessed the effect of silver 
nanoparticles on the structure and function of human serum albumin 
[118]. Being a transport protein, HSA may not function properly if its 
structure changes. The results of the post-MD analysis demonstrated that 
the nanoparticle and human serum albumin interact and that the con-
jugated system stabilized over the course of time. The study indica-
ted that the AgNP interacts with HSA without changing its secondary 
and tertiary structures, which in turn does not alter the protein’s ability 
to function (Fig. 8. a & b). Because silver nanoparticle has no negative 
impact on serum proteins, it is advised to use them in the transportation 
of conjugated medicinal molecules. Because human serum albumin is 
found in the circulatory system, it may be possible to use silver nano-
particles in a variety of biological applications further stated by the 
authors[118]. In another study to investigate the gold nanoparticle and 
corona formation, Sajib et al., studied ovispirin-1 and lysozyme corona 
formation on the bared surface of the nanoparticle using coarse-grain 
simulation for the purpose of drug delivery (Fig. 8. c, d, & e). Several 
factors, including protein-surface interactions, protein–protein in-
teractions, and the hydrophobic effect of the surface, were shown to 
control protein corona formation. It has been determined that the size of 
the nanoparticles and the nature of the protein affect the corona struc-
ture. In contrast to the inhomogeneous multilayered aggregates formed 
by lysozyme on gold NP surfaces, ovispirin proteins form homogeneous 
single-layered adsorption. 

Increased angular degrees of freedom for protein adsorption orien-
tation occurs because of the reduction in nanoparticle size. [119]. 
Although studies have successfully shown the importance of molecular 
dynamics simulations in, future investigations related to so may assist its 
further advancement and applications for the prediction of toxicity of 
materials. 

7. A glance at biofunctionalized nanoparticles and the inclusion 
of computational approaches towards their cytotoxicity analysis 

Biofunctionalization is a crucial element in the process of synthe-
sizing innovative materials. It comprises the alteration of the physico-
chemical characteristics of a material’s surface, enabling a diverse range 
of applications. These applications include the use of the material as an 
implant, prosthesis, or topical/oral additive. The principal goal of bio-
functionalization is to improve the organism’s biological response to the 
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engineered material[120]. Studies have demonstrated the bio-
functionalized nanoparticles has also been shown a promising agent for 
the therapeutic delivery platforms. The study used MD simulation and 
calculations based on density functional theory to shed light on the 
mechanisms involved in the creation of nanoparticles and the method by 
which free medicines are released from methotrexate-camptothecin 
nanoparticles[121]. The hydrophobic and hydrogen bonding in-
teractions between methotrexate-camptothecin prodrug molecules and 
water molecules allowed prodrug monomers to self-arrange into a 
spherical shape, which was followed by the formation of self-assembled 
nanoparticles, according to the moment of inertia calculated using the 
MD simulation.The computational simulation also showed that the 
release of methotrexate and camptothecin-free medication in an acidic 
environment was made possible by the breaking of the methotrexate- 
camptothecin ester link. Prodrug-based nanoformulation may there-
fore be a potential strategy for a regulated, targeted drug delivery sys-
tem, according to the experimental and computational results[122]. 

Two coarse-grained methodologies, notably dissipative particle dy-
namics (DPD) and coarse-grained molecular dynamics (CG MD) 
employing the MARTINI force field, have been employed in the study of 
drug-excipient interactions[123]. The DPD simulations represent 
excipient molecules as discrete beads, facilitating the prediction of drug- 
polymer interactions and the polymer’s efficacy in encapsulating hy-
drophobic pharmaceuticals such as prednisolone and paracetamol. 
However, the simulations proved to be inadequate in accurately repre-
senting the interactions between polymers and hydrophilic medicines, 
such as isoniazid. This suggests that the simulations did not successfully 
capture the dynamics of hydrophilic drug-polymer interactions. CG MD 
(the MARTINI force field) is an efficient model for simulating polymer 
self-assembly in micelles and drug distribution within the micelle[124]. 
By using DPD simulation, the self-assembly mechanism was broken 
down into two steps[123]. The first step described how chains of poly-
ethylene glycol cetyl ether (PEGCE) arranged themselves to form the 

core of the nanoparticle in the presence of cyclohexane solvent (a hy-
drophobic environment), and the second step described how the pro-
drug molecule assembled itself around the PEGCE core. The projected 
nanoparticle size agreed well with the actual experimental findings ac-
cording to simulation results[125]. Additional research could clarify the 
function of computer simulations in the cytotoxicity evaluation of bio-
functionalized nanomaterials. 

8. Application of computational tools for nanostructures 
modified by antimicrobial peptides and monoclonal antibodies 

Proteins and peptides can be changed to some extent to change their 
biological functions and pharmacological activities, but their 3D struc-
ture and surface properties are essential for interactions with receptors 
or ligands[126]. An essential tool is the use of molecular dynamics (MD) 
simulations on antimicrobial peptides and monoclonal antibodies 
modified nanostructures. Studies on drug design have made substantial 
use of the effective prediction of the folding and dynamics of a number 
of proteins and peptides using MD simulations[126127]. The halogen 
bond (or X-bond) is an exciting tool for engineering protein–ligand in-
teractions. Recently, the force field has been simplified by confining the 
number of variables to just one for each type of halogen and by esti-
mating the electrostatic variable using a conventional calculation of 
atomic charges for the constrained electrostatic potential. Glycopro-
teins, often referred to as therapeutic monoclonal antibodies, are 
essential components of the immune response because they precisely 
recognize and bind to certain antigens, such as bacteria or viruses, and 
contribute to their destruction. There is a need for the development of 
tools that would enable a quick and correct interpretation of glyco-
proteomics data due to the time-consuming and laborious interpretation 
of mass spectrometry (MS) output data linked to glycan structure and 
glycosylation site identification. Although there is already commercial 
software for glycoproteomics analysis, such as SimGlycan® (SCIEX), 

Fig. 8. Molecular dynamic simulation of nanoparticle and protein interaction. (a) Silver nanoparticle and human serum albumin interaction and (b) Root-mean- 
square deviations (RMSD) and root-mean-square fluctuations (RMSF) plots on silver nanoparticle and human serum albumin interaction. (Image 5. a and 5. b 
adapted from [118]). (c) Ovispirin and lysozyme corona formation on gold nanoparticles with size 3.2 nm (upper, small sized particles) and 10 nm (Lower, bigger 
size). Ovispirin protein orientation distribution profile with regard to the surface of gold nanoparticle, (d) adsorption of protein at orientation angle θ, and (e) 
distribution of θ for proteins on 3.2 and 10 nm gold nanoparticle surfaces. (adapted from [119]). 
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MassyLynxTM (Waters), and BionycTM (Protein Metrics), highly 
competitive and reliable open-source software is still being developed 
because manual data validation is still necessary because the majority of 
commercial tools have high false discovery rates [128]. Future studies 
assisted with the mentioned computational tools and softwares may 
discover the detailed properties of the the nanostructures modified with 
antimicrobial peptides and monoclonal antibodies. 

9. Conclusion 

In order to produce new products for widespread safe use in elec-
tronics, cosmetics, optical devices, etc., it is crucial to assess the toxi-
cological impacts of novel nanomaterials. The use of these materials, in 
particular, has grown significantly, despite the fact that there is still 
debate over their toxicity and that numerous international organizations 
are working to establish and standardize procedures for evaluating and 
managing their potentially dangerous effects. Characterization of 
nanoparticles is one of the utmost importance measures for revealing the 
connections between nanostructure and biological processes as well as 
for accelerating the calculation of tailored NMs. On the contrary, the 
time and money needed to accomplish a thorough experimental review 
would be considerable, taking many years. To process experimental data 
further for a prediction model, standard computation models are 
required. These models gather experimental data and transform it into 
standard formats. The quantity and quality of the data that is available 
play a significant role in the development of computational approaches 
like molecular docking or molecular dynamics simulations and models 
like nano-QSARs. Although enormous efforts have been invested in data 
standardization and curation over the past few years, the information 
accessible for nanoparticles is relatively limited in comparison to that 
for bulk chemicals and small molecules. As a result, the applicability 
area of current hazard models for nanoparticles is restricted, which 
limits their use in regulatory risk assessment. By creating new high- 
throughput and high-content screening technologies for the quick 
characterization of vast nanoparticle libraries at various exposure cir-
cumstances, the current data shortage could be overcome. It is necessary 
to standardize experimental tests in terms of future approaches for the 
assessment of toxicity. This standardization must be used in juxtaposi-
tion with computational and experimental approaches to help re-
searchers better understand risk assessment and other problems in the 
future. Future generations of fundamental tools for implementing 
intelligent testing strategies for and supporting the estimation of the 
toxicity risk assessment of nanoparticles and regulatory decision-making 
will be made possible by the use of in silico methods and sophisticated 
machine learning techniques to obtain NP descriptors. 

10. Current challenges and future perspectives 

The evolution of nanoscience from benchtop science to applied 
technology during last few years, has made it crucial to assess its related 
toxicity for usage in several commercial products. Data scarcity in 
nanotoxicology substantially restrains the creation of relevant and 
reliable in silico models. Additionally, it is well known that machine 
learning algorithms perform better on bigger datasets. There is 
disagreement over the amount of information needed to develop trust-
worthy in silico models, but findings show that building models from the 
data on toxicity that is currently accessible can result in strong models 
with good predictive power. In order to ensure accurate and efficient 
application of in silico models, it is essential to (1) comprehend the 
methods’ advantages, disadvantages, range of use, and interpretation; 
(2) select the most suitable method for the issue at hand; and (3) tailor 
these methods for each issue as needed. With the use of deep learning 
and AI-based technologies that will more precisely be able to provide an 
integrated view on NP design, this might be feasible in the future. 
Interoperable and effective procedures are needed to fully utilize 
research data from bioscience groups, and as they aid in the 

development of an open data sharing culture. The application of data 
mining methods in the study of nanotoxicity, to run the trial data pro-
grammatically and foresee the toxicity of nanomaterials. It is hard to tell 
how close we are to achieving this goal. However, recent advancements 
in both nanomedicine and computational tools have greatly accelerated 
efforts toward achieving this pivotal goal. 
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