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Distilling causality between physical activity traits
and obesity via Mendelian randomization
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Abstract

Background Whether obesity is a cause or consequence of low physical activity levels and

more sedentary time has not yet been fully elucidated. Better instrumental variables and a

more thorough consideration of potential confounding variables that may influence the causal

inference between physical activity and obesity are needed.

Methods Leveraging results from our recent genome-wide association study for leisure time

moderate-to-vigorous intensity (MV) physical activity and screen time, we here disentangle

the causal relationships between physical activity, sedentary behavior, education—defined by

years of schooling—and body mass index (BMI), using multiple univariable and multivariable

Mendelian Randomization (MR) approaches.

Results Univariable MR analyses suggest bidirectional causal effects of physical activity and

sedentary behavior with BMI. However, multivariable MR analyses that take years of

schooling into account suggest that more MV physical activity causes a lower BMI, and a

higher BMI causes more screen time, but not vice versa. In addition, more years of schooling

causes higher levels of MV physical activity, less screen time, and lower BMI.

Conclusions In conclusion, our results highlight the beneficial effect of education on

improved health and suggest that a more physically active lifestyle leads to lower BMI, while

sedentary behavior is a consequence of higher BMI.
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Plain language summary
It remains unclear exactly how phy-

sical activity, sedentary behavior

(usually time spent sitting or lying,

often in front of a screen), and obe-

sity influence each other, and what

role education plays in this relation-

ship. Here, we use genetic informa-

tion to study this relationship. We

show that if you’re more physically

active, you’re likely to be thinner. If

your weight is higher, you tend to

spend more time in front of the TV or

computer. Additionally, getting more

years of education leads to more

physical activity, less screen time,

and a lower weight later in life. The

take-home messages are that being

more physically active can prevent

obesity; watching more TV is a result

but not the cause of obesity; and

education stimulates a healthier life-

style later in life. These findings may

help to guide public health messaging

around healthy lifestyles.
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Many studies have shown that lower levels of physical
activity and more time spent sedentary are associated
with higher odds of obesity1–6. Other studies suggest

that obesity may lead to more sedentary time and lower physical
activity levels3,4. However, observational and cross-sectional
studies can suffer from confounding and reverse causation.
Mendelian randomization (MR) studies leverage the special
properties of germline genetic variants to strengthen causal
inference regarding exposures. MR is now typically implemented
within an instrumental variable framework, which allows for a
naturally occurring form of randomization that meets the guiding
principle of randomized controlled trials, thereby minimizing the
influence of reverse causation and confounding7,8. MR analyses
have shown bidirectional causal effects between more sedentary
time and higher BMI, while for physical activity and BMI, results
are controversial9,10. An earlier study suggested that a higher BMI
reduces physical activity, while a more recent study concluded
that more physical activity causes a lower BMI but not vice
versa9,10. Poor instrumental variables for physical activity due to
low statistical power in genetic association studies may have
limited causal inference between physical activity and BMI. We
recently published a large meta-analysis of genome-wide asso-
ciation studies (GWAS) for self-reported leisure time (1)
moderate-to-vigorous intensity (MV) physical activity and (2)
screen time11. Using results from up to 606,820 individuals, we
identified 11 loci that are robustly associated with MV physical
activity and 88 that are associated with screen time11. As a result,
we now have stronger instruments for causal inference. However,
increasing the number of instruments through ever larger GWAS
is not an unalloyed benefit. As the sample size gets larger, it is
increasingly likely that variants for upstream traits become
genome-wide significant hits for the exposure of interest7. So, if
years of education influences BMI, eventually single nucleotide
variants (SNVs) of primary relevance for education become
genome-wide significant hits for BMI. Years of schooling has so
far not been taken into consideration when examining the causal
relationship of physical activity and sedentary behavior with BMI.

Here, we use genome-wide summary statistics for MV physical
activity11, screen time11, BMI12 and years of schooling13 in
individuals of European ancestry as instrumental variables for
these traits. We next use a range of univariable and multivariable
MR methods14–19 to assess: (1) the causal relationship between
MV physical activity, screen time and BMI; (2) how years of
schooling causally affects MV physical activity, screen time and
BMI; and (3) how years of schooling affects the causal relation-
ship of MV physical activity and screen time with BMI. The MR
methods used include traditional MR methods that use genome-
wide significant index SNVs as genetic instrumental
variables15–17 – to facilitate one-to-one comparisons between
current and previously published findings, as well as between
univariable and multivariable MR methods—as well as the
recently introduced Causal Analysis Using Summary Effect esti-
mates (CAUSE)14 and Latent Heritable Confounder MR (LHC-
MR)19 methods. These utilize full genome-wide summary results,
account for both correlated and uncorrelated pleiotropy, and are
more robust in some confounding scenarios. The results show
that being more physically active can prevent obesity; watching
more TV is a result but not the cause of obesity; and education
stimulates a healthier lifestyle later in life.

Methods
Genetic correlations. To explore potentially shared genetic
architectures, we estimated genetic correlations of MV physical
activity and screen time with educational attainment (years of
schooling) and obesity related traits (Supplementary Data 1)

using LD score regression implemented in the LD-Hub web
resource20. To define significance, we applied a Bonferroni cor-
rection for the 14 selected phenotypes (P < 3.5 × 10−3).

Data source for Mendelian Randomization (MR). We used
summary statistics from the largest published meta-analyses of
GWAS for MV physical activity, screen time, years of schooling
and BMI in individuals of European ancestry (Supplementary
Data 2)11–13. Results from our recently published physical activity
and sedentary behavior GWAS in up to 661,399 European
ancestry participants for questionnaire-based, self-reported MV
physical activity (more than 20 min per week or not) and screen
time (hours per day) were used11. We also used GWAS results of
educational attainment, assessed as the number of years of
schooling completed in 766,345 European ancestry participants13.
For BMI, we utilized GWAS results from a meta-analysis of the
Genetic Investigation of Anthropometric Traits (GIANT Con-
sortium) and the UK Biobank data in 681,275 European
participants12. We used the GWAS results with the largest sample
size to maximize statistical power, acknowledging partial sample
overlap. In the presence of weak instruments, sample overlap
across traits may bias MR estimates in the direction of the
observational association, while no sample overlap between the
discovery and outcome would bias estimates towards the null21.
We limited scope for weak instrument bias by evaluating the
strength of instruments as measured by F-statistics22.

Univariable two sample MR
CAUSE and LHC-MR. We applied the recently published
Bayesian-based MR method: CAUSE14, which accounts for both
correlated and uncorrelated pleiotropy and allows overlapping
GWAS samples in evaluating bidirectional causal effects between
MV physical activity and screen time, years of schooling, and
BMI. CAUSE calculates the posterior probabilities of the causal
effect and the shared effect, and tests whether the causal model
fits the data better than the sharing model. That is, it examines if
the association between traits is more likely to be explained by
causality than by horizontal pleiotropy. In addition, CAUSE
improves the power of MR analyses by using full genome-wide
summary results (LD pruned at r2 < 0.1 with P < 1 × 10−3, as
recommended for CAUSE)14. We also implemented the recently
described LHC-MR method that can estimate bidirectional causal
effects and confounder effects while accounting for sample
overlap19. SNVs with minor allele frequency >0.5% were used for
LHC-MR analyses.

Traditional MR. Genetic instrumental variables for each trait
were selected using genome-wide significant (P < 5 × 10−8) index
SNVs that were LD clumped (r2 > 0.001 within a 10-Mb window).
We followed several steps to evaluate potential causality. As MR
results can be severely biased if instrumental SNVs show hor-
izontal pleiotropy and violate the instrumental variable
assumptions16, we prioritized methods that are robust to hor-
izontal pleiotropy when calculating causal estimates. Amongst the
methods we prioritized is MR-PRESSO (Pleiotropy RESidual Sum
and Outlier)15, which removes pleiotropy by identifying and
discarding influential outlier predictors from the standard inverse
variance–weighted (IVW) test16. For analyses with no strong
evidence of distortion due to pleiotropy (MR-PRESSO Global test
P > 0.05), we considered other robust methods, for instance fixed-
and random-effect IVW, weighted- or simple- median and mode
methods. We also conducted Steiger filtering to remove variants
likely influenced by reverse causation and used Cook’s distance
filtering to remove outlying heterogeneous variants as deemed
necessary23. Outliers identified by Steiger filtering were reported
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in Supplementary Data 3. To select the most appropriate
approach, we implemented a machine learning framework that
predicts the most appropriate model18.

Multivariable mendelian randomization. In the multivariable
MR analysis that evaluates the direct effects of each trait, the
genetic instrumental variables from two traits were combined. For
example, while estimating the direct effect of screen time and
years of schooling on BMI, independent loci associated with
screen time or years of schooling were pooled together and used
as instrumental variables. Conditional F-statistics were calculated
to evaluate the strength of the instruments22. We set the multiple-
testing significance threshold for all MR analyses at 0.008, i.e.,
Bonferroni correction for the six possible causal effects we are
testing: the bidirectional causal effects between screen time or MV
physical activity and BMI; years of schooling and BMI; and screen
time or MV physical activity and years of schooling (0.05/
6= 0.008). We applied both MR-PRESSO and IVW methods for
the multivariable MR analyses, and report MR-PRESSO results
when there is evidence of distortion due to pleiotropy, and IVW
results otherwise15.

Clustering analyses. For the screen time association signals, we
next examined associations with BMI and years of schooling in
UK Biobank participants. Among the 88 screen time-associated
SNVs (P < 5 × 10−9), 68 SNVs for which associations with screen
time, BMI and years of schooling were available to us were used
for clustering analyses. We used an agglomerative hierarchical
clustering method named ‘complete linkage’, where each element
is its own cluster at the beginning, and two clusters of the shortest
distance in between them are sequentially combined into larger
clusters until all elements are included in a single cluster24. The
corresponding P-values for, and direction of association with
screen time, BMI and years of schooling were used for hier-
archical clustering, which yielded five groups of loci. Loci in
groups 2 (n= 8) and 4 (n= 6) are additionally associated with
years of schooling; loci in groups 2 and 3 (n= 9) with BMI; and
loci in group 5 (n= 42) are predominantly associated with screen
time (Supplementary Fig. 1). For loci in group 5, we cannot
exclude the possibility that: (1) variants near but in low LD with
lead SNVs (r2 < 0.2) have been associated with obesity traits and/
or years of schooling in UK Biobank; (2) lead variants or variants
in LD with lead variants have been associated with obesity traits
and/or years of schooling in other datasets.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Univariable MR analyses. In line with our previous results11,
univariable MR analyses highlight bidirectional causal effects
between more MV physical activity and lower BMI, as well as
between more screen time and higher BMI (Fig. 1a, b, Supple-
mentary Data 4–5). Moreover, univariable MR analyses reveal
bidirectional causal effects between more years of schooling and
both more MV physical activity, and less screen time (Fig. 1a, b,
Supplementary Data 6–7). More years of schooling also causes a
lower BMI, but BMI does not affect years of schooling (Fig. 1, b,
Supplementary Data 8).

Multivariable MR analyses. In multivariable MR analyses that
take BMI into account, the estimated causal effects of MV phy-
sical activity and screen time on years of schooling are abolished,
such that more years of schooling causes more MV physical

activity and less screen time, but not vice versa (e.g., screen time
on schooling: Total effect β=−0.49, P= 7.8 × 10−24; Direct
effect β=−0.04, P= 0.28; schooling on screen time: Total effect
β=−0.33, P= 8.5 × 10−76; Direct effect β=−0.40,
P= 8.8 × 10−55; Table 1, Supplementary Data 9, Fig. 1c, d). With
that and the aforementioned causal effect of years of schooling on
BMI, years of schooling may confound the causal inference
between MV physical activity, screen time and BMI. Indeed,
when taking years of schooling into account, multivariable MR
analyses show that higher BMI has a direct effect on more screen
time (Total effect β= 0.16, P= 1.4 × 10−74; Direct effect β= 0.16,
P= 1.0 × 10−34, Table 1, Fig. 1c), while the effect of more screen
time on higher BMI is confounded by years of schooling (Total
effect β= 0.40, P= 8.4 × 10−14; Direct effect β=−0.07, P= 0.19;
Table 1, Fig. 1c). In contrast, MV physical activity appears to have
a direct effect on BMI (Total effect β=−0.25, P= 2.0 × 10−3;
Direct effect β=−0.20, P= 1.8 × 10−6)—although precision of
the inference may suffer from weak instrument bias (conditional
F statistics <10)22 and results should be interpreted accordingly—
while the causal effect of higher BMI on lower MV physical
activity appears confounded by years of schooling (Total effect
β=−0.10, P= 5.8 × 10−12; Direct effect β=−0.03, P= 0.03,
Supplementary Data 9). It is worth noting that we conclude there
is no direct causal effect of BMI on years of schooling (Fig. 1c, d),
even though multivariable MR analyses using the IVW method
show a significant effect of BMI on years of schooling (Table 1).
The conclusion is based on results from the univariable MR
analyses using the CAUSE method (Fig. 1a, b, Supplementary
Data 8), which is prioritized for its robustness to confounding
and pleiotropy.

Sensitivity analyses using loci that primarily influence
screen time. In line with previous studies25–27, we found that
MV physical activity and screen time are strongly genetically
correlated with years of schooling (r 0.62 and −0.58, respec-
tively), as well as with multiple obesity-related traits (r up to
−0.33 and 0.41, respectively), suggesting a shared genetic
architecture (Supplementary Data 1). In line with high genetic
correlations, about one third of the screen time and MV phy-
sical activity loci have previously been associated with years of
schooling (n= 11), obesity-related traits (n= 11), or both
(n= 7)13,28 (Supplementary Data 10). Therefore, we next per-
form agglomerative hierarchical clustering using 68 of the
88 screen time-associated SNVs for which associations with
years of schooling and BMI are available to us (Methods). This
yields five groups of screen time-associated loci. Loci in groups
2 (n= 8) and 4 (n= 6) are additionally associated with years of
schooling; loci in groups 2 and 3 (n= 9) with BMI; and loci in
group 5 (n= 42) are predominantly associated with screen time
(Supplementary Fig. 1). Based on our MR analyses, we hypo-
thesize that group 5 loci primarily influence screen time
directly. We therefore conduct additional sensitivity analyses
using group 5 loci only.

When we repeat the two-sample univariable and multivariable
MR analyses using only loci predominantly associated with screen
time (i.e., group 5 loci, Supplementary Data 11–13), we observe
that—similarly to using results from all screen time-associated
loci – a 1 SD higher screen time predicts fewer years of schooling,
by 0.30 SD (P= 3.4 × 10−11) and increases BMI by 0.28 SD (MR-
PRESSO P= 6.9 × 10−7, Supplementary Figure 2a, Supplemen-
tary Data 11–12). Results from the sensitivity multivariable MR
analyses with group 5 loci only show that the causal effect of
higher screen time on higher BMI is confounded by years of
schooling (Supplementary Data 13, Supplementary Fig. 2b),
supporting the results of our main analyses.
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Discussion
In a previous GWAS, a bidirectional causal relationship was
reported between accelerometer-assessed overall physical activity
and BMI27. A lenient threshold was used to select instrumental
variables (P < 5 × 10−6), which leaves scope for horizontal pleio-
tropy, i.e., the selected instrumental variables may influence BMI
through mechanisms other than physical activity. Another recent
study reported a bidirectional, causal relationship between
sedentary time and BMI9. MR analyses in our previously pub-
lished GWAS and the univariable MR analyses in this study show
that both MV physical activity and screen time have bidirectional
causal relationships with BMI11, consistent with results from
previous studies. However, multivariable MR analyses do not
support these bidirectional causal effects (Fig. 1c, d). The main
reason for the discrepancy between our and previous studies
seems to be that neither of the previous studies have taken years
of schooling into account.

A large body of evidence, including randomized controlled
trials, suggests that physical activity – particularly MV physical
activity—may improve cognitive function and academic
achievement29–31. Others have shown that a higher attained
educational level is associated with more physical activity during
leisure time32. Additionally, educational attainment is associated
with obesity, although the direction of association varies by the
country’s economic development level: an inverse association is
more common in higher-income countries and a positive asso-
ciation is more common in lower-income countries33. Using
population-based MR approaches to estimate the causal effect
between educational attainment and health outcomes may suffer
from bias due to dynastic effects34. Recent studies applying
within-sibship MR have allowed for the estimation of direct
causal effects free from such bias35. Although these studies have
shown bidirectional causal effects between education and BMI,
effect estimates were much smaller than those estimated using

Fig. 1 Mendelian randomization (MR) analyses between leisure screen time, leisure time moderate-to-vigorous intensity physical activity (MVPA),
years of schooling (Schooling) and BMI. a, b Causal estimates of univariable MR analyses using the CAUSE method for screen time and MVPA.
c, d Causal estimates of Multivariable MR analyses using the IVW method for screen time and MVPA. Arrows and results in gray indicate that the
precision of the effect estimate may suffer from weak instrument bias in the multivariable MR analysis (conditional F statistics <10) and should be
interpreted accordingly. Results are shown as effect size (95% CI) for 1 SD change in outcome per 1 SD change in exposure for continuous variables
(original units: kg/m2 for BMI, years for Schooling, hours/day for Screen time, and yes/no for MVPA). No direct causal effect of BMI on schooling is shown
in (c, d) - despite significant effects in multivariable MR analyses - because univariable MR analyses using the CAUSE method show no evidence of a causal
effect of BMI on schooling.

Table 1 Total and direct causal effects estimated from univariable and multivariable Mendelian randomization (MR) analyses for
leisure screen time, BMI and years of schooling using the inverse variance weighted (IVW) method.

Exposure Outcome Total effect Direct effect

beta SE P beta SE P

Screen time BMI 0.4 0.04 8.37E-14 −0.07 0.05 0.19
BMI Screen time 0.16 0.01 1.35E-74 0.16 0.01 1.00E-34
Schooling BMI −0.28 0.02 4.94E-32 −0.32 0.02 1.91E-35
BMI Schooling −0.14 0.01 7.10E-36 −0.14 0.01 2.22E-31
Screen time Schooling −0.49 0.03 7.78E-24 −0.04 0.04 0.28
Schooling Screen time −0.33 0.01 8.54E-76 −0.40 0.02 8.82E-55

Schooling: years of schooling; Beta: effect sizes expressed in SD unit changes in outcome per 1 SD increase in exposure. Unit for the exposures and outcomes are SD (original units: kg/m2 for BMI, years
for Schooling and hours/day for Screen time); Direct effect: not through the third trait; significant results (P < 0.008).
BMI body mass index.
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population data, especially for BMI on education36,37. In line with
these findings, we report no direct causal effect of BMI on years of
schooling based on the robust CAUSE method, although such an
effect is observed when using traditional uni- and multivariable
MR methods. This phenomenon further highlights the impor-
tance of taking the potential confounder years of schooling into
consideration when assessing causal effects between MV physical
activity, screen time and BMI38.

Our multivariable MR results confirm the causal effect of
higher BMI on more screen time, but not vice versa. Interestingly,
the multivariable MR results for MV physical activity suggest that
the effect of higher BMI on lower MV physical activity is con-
founded by years of schooling. While educational attainment may
confound the causal relationship between BMI and physical
activity in adulthood, it is less likely to do so in children. The
initial study assessing causal effects between childhood obesity
and physical activity suggested that higher BMI causes less phy-
sical activity and more sedentary time in children at age 1110.
Another study in younger children showed that 3–8-year-olds
with a higher genetic predisposition for obesity spend more time
sedentary but are similarly physically active39, in line with our
multivariable MR findings. Similarly to others40, we observe a
direct causal effect of MV physical activity on BMI, although the
precision of the effect estimate may suffer from weak instrument
bias in the multivariable MR analysis and results should be
interpreted accordingly38. With the instrumental variable for MV
physical activity being stronger in this study than ever before –
thanks to a recent doubling of the number of loci robustly
associated with MV physical activity11 – results from earlier MR
analyses for MV physical activity should be interpreted with
caution.

In summary, our study suggests that more years of schooling
will reduce sedentary behavior and BMI, and promote MV
physical activity, resulting in improved health. In addition, our
results suggest that a more physically active lifestyle results in
lower BMI, while reducing sedentary behavior per se – unless it is
replaced by MV physical activity – does not affect BMI, but rather
is a consequence of higher BMI.

Data availability
Source data for Fig. 1 can be found in Supplementary Data 4–9. All analyses have been
conducted using publicly available data. Our previously published GWAS summary
statistics for physical activity and sedentary behavior are available from the GWAS
Catalog: https://www.ebi.ac.uk/gwas/publications/36071172. Other GWAS summary
statistics used in the analyses described here are freely accessible through the MR-Base
platform (https://www.mrbase.org/) and the IEU OpenGWAS database (https://gwas.
mrcieu.ac.uk/). All other data and code are available from the corresponding author
(ZW), on reasonable request.
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