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The complex nature of
lncRNA-mediated chromatin
dynamics in multiple myeloma
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and Helena Jernberg Wiklund*

Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck
Laboratory, Uppsala University, Uppsala, Sweden
Extensive genome-wide sequencing efforts have unveiled the intricate

regulatory potential of long non-protein coding RNAs (lncRNAs) within the

domain of haematological malignancies. Notably, lncRNAs have been found to

directly modulate chromatin architecture, thereby impacting gene expression

and disease progression by interacting with DNA, RNA, and proteins in a tissue-

or condition-specific manner. Furthermore, recent studies have highlighted the

intricate epigenetic control of lncRNAs in cancer. Consequently, this provides a

rationale to explore the possibility of therapeutically targeting lncRNAs

themselves or the epigenetic mechanisms that govern their activity. Within the

scope of this review, we will assess the current state of knowledge regarding the

epigenetic regulation of lncRNAs and how, in turn, lncRNAs contribute to

chromatin remodelling in the context of multiple myeloma.
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Introduction

Multiple myeloma (MM) is a heterogeneous haematological malignancy characterized

by the clonal expansion of malignant plasma cells within the bone marrow (1). It represents

the second most prevalent haematological malignancy and it is marked by complex genetic

aberrations, including chromosomal translocations, copy number alterations, and somatic

mutations, affecting pathways critical to cell cycle regulation, DNA repair, and epigenetic

modulation (2–4). Treatment strategies include high-dose chemotherapy regimens,

autologous stem cell transplantation, as well as targeted therapies such as proteasome

inhibitors and immunomodulatory agents. Despite these therapeutic innovations, disease

relapse and drug resistance remain as substantial challenges (5). Thus, treatment of MM is

clinically challenging and new therapeutic interventions are required. Prior studies, by us

and others, have suggested that the epigenetic machinery plays a crucial role in MM

pathogenesis, including aberrant DNA methylation and abnormal histone modification

patterns (6–14). Furthermore, more recently, dysregulation of long non-protein coding
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1303677/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1303677/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1303677/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1303677&domain=pdf&date_stamp=2023-12-11
mailto:helena.jernberg_wiklund@igp.uu.se
https://doi.org/10.3389/fonc.2023.1303677
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1303677
https://www.frontiersin.org/journals/oncology


Nylund et al. 10.3389/fonc.2023.1303677
RNAs (lncRNAs) has been suggested to contribute to MM

pathogenesis, patient outcome and drug resistance (15–17).

Additionally, dysregulation of lncRNAs has been shown to

contribute to disease progression by influencing critical pathways

involved in proliferation, apoptosis, immune response, and drug

resistance (18, 19). Unravelling the complex network of lncRNA-

mediated molecular mechanisms could therefore unveil novel

therapeutic targets and diagnostic markers in MM.

lncRNAs represent the largest group of non-protein coding

RNAs, however, to date their functions remain largely unexplored.

lncRNAs are transcripts exceeding 200 nucleotides in length, and

their transcriptional regulation mirrors that of protein-coding

genes, including processes such as histone modifications,

chromatin compaction, and chromatin remodelling. The

biogenesis of lncRNAs encompasses a spectrum of events,

including 5’ capping, splicing, variation in exon and intron

dimensions, and the addition of polyadenylation (poly(A)+) tails.

Notably, features like poly(A)+ tails and 5’ capping play

fundamental roles in determining the transcript stability of

lncRNAs. In contrast to messenger RNAs (mRNAs), lncRNAs

transcripts exhibit a diminished steady-state, as they are

commonly less evolutionary conserved (20). lncRNAs can be

transcribed from multiple genomic locations, including

promoters, enhancers, intergenic regions, as well as in

bidirectional and antisense directions. Typically residing within

the nucleus, lncRNAs tend to manifest pronounced cell and tissue

specificity (21). In addition, a substantial fraction i.e., 81% of

lncRNAs, exhibit a limited degree of evolutionary conservation,

while 3% of lncRNAs manifest ultra-conservation (22).
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Functionally, lncRNAs perform a diverse array of functions

both within the nucleus and the cytoplasm. These molecules

regulate gene expression by engaging in intricate interactions with

RNA, DNA and proteins, including chromatin-modifying enzymes.

Within the nuclear domain, lncRNAs have been categorized into

four fundamental archetypes: signal, decoy, guide, and scaffold

lncRNAs (Figure 1). Signal lncRNAs respond to specific stimuli,

promoting integration of signals for the transcription of targeted

genes (23). Decoy lncRNAs, on the other hand, can bind proteins,

such as transcription factors and chromatin modifiers, resulting in

transcriptional control by impeding the binding capacity to their

targets (24). Guide lncRNAs have the ability to reposition

ribonucleoprotein complexes to designated loci, both in cis and in

trans, thereby altering the gene expression patterns. Finally,

scaffold-associated lncRNAs engage in temporally and spatially

regulated interactions with DNA, different types of RNAs and

proteins, thereby bolstering the stability of complexes involved in

either transcriptional activation or suppression. Additionally,

lncRNAs operate as microRNA (miRNA) sponges, sequestering

miRNAs to avert mRNA degradation (25). To date, various

lncRNAs have been described to localize with chromatin, where

they interact with different chromatin-associated proteins to

promote or repress their binding potential to specific DNA

locations. These chromatin-associated lncRNAs have been

implicated in MM pathogenesis and disease outcome. In addition,

lncRNAs do not only act as regulators of the epigenetic landscape

but can also themselves be epigenetically regulated by DNA and

chromatin modifications as well as by RNA modifications, referred

to as the epitranscriptomics. Among these, RNAmodifications such
FIGURE 1

Overview of lncRNA functions. lncRNAs can regulate transcription by acting as a scaffold by binding proteins together in a complex structure. A
secondary function of a lncRNA is as a guide of proteins or other molecules to target genomic location. lncRNAs can directly bind to genomic
regions within the genome to transduce signal activation of DNA-bound molecules. Furthermore, a lncRNA can act as a decoy, preventing different
molecules such as proteins to bind to targeted genomic regions. In addition, lncRNAs can regulate miRNAs function by acting as a miRNA sponge,
preventing miRNA-mRNA binding, thus inhibiting mRNAs degradation. Image was created with biorender.com.
frontiersin.org
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as, N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-

methylcytosine (m5C), and 7-methylguanosine (m7G), play a

crucial role in regulating various aspects of lncRNA function,

structure, stability, localization, and lncRNA-mediated

interactions (26–34) (Figure 2).

We and others have shown the importance of lncRNAs in

chromatin remodelling and the impact they have on MM patient

outcome (6, 15–17). In fact, aberrant lncRNA expression has

been demonstrated to have an oncogenic role in MM

pathogenesis and progression (35, 36). In this review, we

present an overview of the role of lncRNAs in the context of

MM through their epigenetic regulation and functional effects on

chromatin remodelling.
The functional impact of lncRNAs in
epigenetic regulation

lncRNAs have been suggested to affect multiple layers of cellular

function, encompassing processes such as cellular biogenesis of

macromolecules, differentiation, gene expression and chromatin

remodelling. The recent establishment of a comprehensive

genome-wide lncRNA-chromatin interactome has provided

insight into the intricate orchestration of chromatin compaction

by lncRNAs, subsequently impacting gene expression patterns (37–

39). Notably, the functional implications of lncRNA-mediated
Frontiers in Oncology 03
chromatin remodelling in the context of cancer have gained

considerable interest, however a summary within the domain of

MM is currently lacking.
Epigenetic regulation of lncRNAs by DNA
methylation and histone modifications

The expression of lncRNAs can be regulated by different

epigenetic machineries, such as DNA methylation (40). DNA

methylation plays an important role in regulating cell-type

specific gene expression. The DNA methylation process consists

of the deposition of methyl groups to the 5-carbon position of

cytosine in a CpG dinucleotide, resulting in gene suppression when

located along the promoter or transcription start site and gene

transcription when found in the gene body. This process is catalysed

by the DNA methyltransferases, DNMT1 and DNMT3A/B and can

be reversed by the DNA demethylase enzymes TET1-3 (41).

Disrupted DNA methylation has been shown to promote

carcinogenesis and disease progression in multiple cancers (3, 42,

43). In fact, it has previously been suggested that promoter DNA

hypermethylation is accountable for decreased expression of 35

lncRNAs in hepatocellular carcinoma (40, 44). Furthermore,

patients with lower expression of these lncRNAs had increased

expression of the DNA methyltransferase genes DNMT1,

DNMT3A, and DNMT3B. In contrast, patients with higher
FIGURE 2

Proposed overview of RNA modifications on lncRNA. Schematic overviews are provided for the different lncRNAs modifications. (A) The m6A modification
is deposited by a protein complex constituted mainly by METTL3, METTL14 and the cofactor WTAP. There are multiple m6A readers identified, namely
YTHDF1/2/3, IGF2BP1/2/3, HNRNPs and ZC3H13. The demethylation of m6A is catalysed by FTO and ALKBH5. (B) NSUN2 has been reported as the sole
writer of the m5C modification in lncRNAs. The m5C can be identified by ALYREF and YBX1 and it is speculated that the removal is catalysed by TETs. (C)
m1A is suggested to be deposited by TRMT10C, TRMT6/61 and NML on lncRNAs. Multiple readers have been identified in other types of RNAs, as
YTDHF1-3 and YTHDC1 and the removal is mainly associated to FTO and ALKBH1/3/7. (D) The exact manner of how m7G modification is deposited on
lncRNAs is currently unknown. Three different complexes can take the role of a writer, METTL1 and WDR4, RAM and RNMT or WBSCR22 and TRTM112.
Currently both readers and erasers on m7G are unknown and represented with ? in the figure. Image was created with biorender.com.
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expression of this panel of lncRNAs, exhibited lower expression of

the DNAmethyltransferases (40). Li et al. reported that the lncRNA

BM742401, defined as a tumour suppressor in gastric cancer and

chronic lymphocytic leukaemia, undergoes silencing in MM cell

lines due to promoter hypermethylation. Notably, decreased

BM742401 levels enhanced MM cell migration, while in newly

diagnosed MM patients, silencing by elevated DNA methylation

levels in the promoter of the lncRNA BM742401 correlated with

poor overall survival. This underscores the significant impact that

epigenetic regulation of lncRNAs can exert on disease progression

(45). Similarly, DNA methylation-mediated silencing of the

lncRNA KIAA0495 has been reported in MM cell lines, although

it was not found to be relevant for the progression of the disease

(46) (Table 1).

An additional level of transcriptional regulation is through

chromatin compaction. DNA is packed into chromatin fibres

wrapped around a histone octamer, ultimately forming a

nucleosome. The nucleosome consists of the four histone proteins

H2A, H2B, H3 and H4. Each histone protein has in its N-terminal

domain a histone tail that can be reversibly subjected to

methylation, acetylation, phosphorylation, ubiquitination,

sumoylation and histone tail clipping which control chromatin

compaction, thus either promoting or inhibiting transcription

factor binding, DNA repair, replication and genomic

recombination. The majority of studies have concentrated on

examining histone modifications related to protein coding genes

and non-protein coding genes such as miRNAs (59–62).
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Consequently, additional research is warranted to elucidate the

influence of histone modifications on lncRNAs’ regulation and the

potential implications in various diseases, including MM.
Interplay between lncRNAs and
chromatin modifiers

Although, data is largely lacking how regulation of lncRNAs by

the deposition of histone modifications may directly influence their

expression, there is now emerging data indicating that lncRNAs

may act as recruiters, guides and scaffolds for protein complexes

including chromatin modifiers, thus epigenetically influencing the

expression of other genes. Prior studies have shown that PRC2-

mediated gene silencing is important for MM pathogenesis and

disease progression, both in vivo and in vitro (7, 8, 10, 43).

Furthermore, several lncRNAs have been suggested to regulate

the enzymatic activity of PRC2 by binding to the catalytic subunit

EZH2. Moreover, lncRNAs can modulate PRC2 activity by acting as

a complex recruiter to target genomic locations. For instance, the

lncRNA PVT1 was recently described to be overexpressed in

primary MM patient samples and associated with poor prognosis,

a seemingly independent feature from patients’ cytogenetic

background (6). Moreover, PVT1 was shown to interact directly

with EZH2, facilitating recruitment of PRC2 to target genomic loci

and transcriptional repression of genes associated with pro-

apoptotic and tumour suppressor functions (6) (Table 1).
TABLE 1 Function and clinical implications of lncRNAs in multiple myeloma.

lncRNA Expression Function Downstream effects Prognosis Reference

BM742401 Downregulated Unknown Promote cell migration Poor OS (45)

KIAA0495 Downregulated Unknown Unknown Not involved (46)

PVT1 Upregulated PRC2 recruiter Silencing of tumor suppressor genes & pro-
apoptotic genes

Poor OS (6)

ANRIL Upregulated Guide for PRC1/2 Resistance to bortezomib Poor OS (47)

H19 Upregulated miRNA sponge & activator of BRD4 Imbalance of osteogenesis/osteolysis Poor OS (48)

CRNDE Upregulated Unknown Proliferation through IL6 signalling Poor OS (49)

MIAT Upregulated Unknown Resistance to bortezomib Poor OS (50)

HOTAIR Upregulated Activation of NF-kB & JAK2/
STAT3 signalling

Resistance to dexamethasone Unknown (51)

RROL Unknown Chromatin scaffold Promote cell growth Unknown (52)

AIR Upregulated Unknown Unknown Unknown (53)

HOXB-
AS1

Upregulated mRNA stabilizer Unknown Unknown (54)

DARS-AS1 Unknown Unknown Promoting the mTOR pathway Unknown (55)

MALAT1 Upregulated Scaffold for protein complexes &
miRNA sponge

Increased proliferation & reduction of pro-apoptotic
gene expression

Poor OS (25, 56, 57)

NEAT1 Upregulated Unknown Chemotherapeutic resistance Poor OS (25, 58)

GAS5 Upregulated Unknown Unknown Poor OS (25)
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Similarly to the function of PVT1, the lncRNA ANRIL, was

described to exert a guiding function for PRC1 and PRC2 DNA

binding in MM and was demonstrated to promote resistance to

conventional therapies such as bortezomib by guiding PRC2 to

promote gene silencing of the tumour suppressor gene PTEN. High

expression of ANRIL has been associated with poor overall survival

in MM (47) (Table 1). Furthermore, upregulation of the lncRNA

H19 correlates with worse prognosis and promotes the imbalance of

osteogenesis and osteolysis in MM by acting as a miRNA sponge,

resulting in upregulation of E2F7, which is a transcriptional

activator of EZH2 and thus affecting the suppression of PTEN

(48). In addition, increased H19 activity has been shown to activate

the chromatin reader protein BRD4 in MM (63). BRD4 is a well-

known epigenetic reader of acetylated lysine and assists in the

transmission of epigenetic memory during cell division (64, 65).

BRD4 has been identified as a therapeutic vulnerability and

potential target in MM (66) (Table 1).

The lncRNA CRNDE epigenetically regulates the transcription

of DUSP5 and CDKN1A in solid tumours by facilitating PRC2

recruitment (67). Overexpression of CRNDE has been described to

be associated with poor prognosis by regulating proliferative

capacity through IL6 signalling in MM, however, no direct

interaction between CRNDE and PRC2 has been proven (49).

Recruitment of the histone H3 lysine 4 methyltransferase MLL

has been suggested to occur through the binding to the lncRNA

MIAT, which can then guide MLL to the promoter region of the

collagen degradation enzyme MMP9. Inhibition of MIAT resulted

in the loss of transcriptional activity ofMMP9, which is suggested to

reduce proliferative capacity and cell migration in non-small cell

lung cancer (68). In MM, MIAT is overexpressed and has been

associated with sensitivity to bortezomib treatment (50) (Table 1).

Interestingly, additional lncRNAs have been suggested to play

important roles in chromatin regulation. The lncRNA HOTAIR has

been demonstrated to bind to the PRC2 complex and can further

interact with the TF-silencing complex formed by LSD1/CoREST/

repressor element 1, promoting gene repression (69). In addition,

HOTAIR may function as a stabilizing component of PRC2, as well

as a scaffold for complex-complex interactions (69). In MM,

HOTAIR has been described to be upregulated in primary patient

samples and to contribute to the oncogenic activation of the JAK2/

STAT3 signalling pathway (51) (Table 1). Similarly, the MIR17HG-

derived lncRNA, RROL, has been demonstrated to act as a

chromatin scaffold for protein interactions and to promote MM

cell growth (52). lncRNAs such as AIR and HOXB-AS1 have been

described to have a guiding function through which they recruit the

histone methyltransferases G9a and SET1/MLL to target locations

to induce gene repression or activation, respectively (53, 70).

Interestingly, HOXB-AS1 has been described to be upregulated in

MM, acting as a stabilizer for mRNA (54) (Table 1). In another

aspect of epigenetic regulation, DARS-AS1 promotes the

recruitment of the histone methyltransferases METTL3 and

METTL14 to DARS mRNA to induce m6A modification and

enhance translation in cervical cancer (71). In MM, DARS-AS1

has been described to regulate HIF-1a in promoting the mTOR

pathway (55) (Table 1).
Frontiers in Oncology 05
Increased expression of the lncRNAs GAS5, MALAT1 and

NEAT1 in MM patients, is associated with poor outcome and

worse overall survival (25) (Table 1). GAS5 has the ability to act

as decoy for different molecules by functioning as a DNA mimic,

thus preventing DNA motif binding (72). One of the most

abundant and most studied lncRNAs is MALAT1 which has been

implicated in various functions during MM pathogenesis by acting

as a scaffold for proteins involved in DNA repair (56) and as a

miRNA sponge (57). Interestingly it has also been described to

promote gene silencing by PRC2 recruitment in various cancers

(73–75). Recent studies in colorectal cancer have suggested that the

lncRNA NEAT1 promotes histone H3 lysine 27 acetylation in genes

associated with stemness (76). In addition, NEAT1 has further been

implicated in lung cancer by recruiting DNMT1 to the promoter

regions of genes regulating cytotoxic T-cell infiltration. In fact,

inhibition of NEAT1 leads to loss of DNMT1 binding to these

promoter regions and thus activating gene expression (77). In MM,

overexpression of NEAT1 has been associated with poor patient

outcome. In addition, and further supporting a clinical relevance,

inhibition of NEAT1 promoted increased sensitivity to

chemotherapeutic treatment (58) (Table 1).
Epigenetic regulation of lncRNAs by
RNA modifications

RNA modifications on lncRNAs may influence their stability,

subcellular localization, and interactions with DNA, proteins and

other RNA molecules. These modifications can also affect lncRNA

regulation and contribute to their reported functional diversity (33).

Dysregulation of RNA modifications on lncRNAs has been

associated with various diseases, including MM (33, 78–80).

The deposition of the N6-methyladenosine (m6A) mark may

give rise to structural changes in lncRNAs, thus modifying lncRNA-

protein interactions. Additionally, the m6A modification can

modulate gene transcription, influence the subcellular localization

of lncRNAs and regulate lncRNAs’ stability (81–84). There is an

interdependent connection between the m6A modification and

lncRNAs. Notably, lncRNAs have the ability to influence the

stability and degradation of enzymes involved in m6A, as well as

facilitate their integration into protein complexes (85–87). One

example of this function is the lncRNA FEZF1-AS1, the knockdown

of which led to an increased apoptosis by regulating the signalling of

IGF2BP1, an m6A reader protein, in MM (88). Furthermore,

dysregulation of m6A-related enzymes has been associated with

disease progression, enhancing tumour growth and cell

proliferation in MM (89–95). Significantly, m6A studies in MM

showed a correlation between exosome-induced drug resistance and

high levels of m6A on the lncRNAs LOC606724 and SNHG. Wang

et al. identified METTL7A as an additional component of the m6A

methyltransferase complex and described how its regulation is

mediated by EZH2. Depletion of EZH2 simultaneously reduced

METLL7A protein methylation levels, thus altering the m6A levels

on the lncRNAs LOC606724 and SNHG (96). Studies in prostate

cancer show that high levels of m6A on NEAT1 have been
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associated with bone metastasis (79, 97). Although no studies of

m6A on NEAT1 have been performed in MM, high expression of

NEAT1 in patients have been correlated with poor prognosis (98).

In addition, NEAT1 can enhance the preservation of DNA integrity,

thus promoting survival of MM cells (99). Moreover, knockdown of

NEAT1 improved dexamethasone drug response in MM cell

lines (100).

5-methylcytosine (m5C) has previously been described to exert

important functions on DNA and has also been found to occur on

RNA (78). The biological impact of RNA m5C primarily affects

RNA localization, stability and transcription efficiency (101).

Interestingly, NSUN2 has been reported as the sole writer of the

m5C mark on lncRNAs (79). In MM, dysregulated deposition of

RNA m5C has been correlated with disease progression and

immune microenvironment regulation (102). Furthermore, recent

studies have elucidated the importance of this modification in

various other cancer types, including lung adenocarcinoma,

pancreatic cancer, and colon cancer (79, 103–105).

Modifications of lncRNAs also include the deposition of N1-

methyladenosine (m1A), which alters RNA secondary and tertiary

structure, subsequently affecting its capacity to interact with RNA

binding proteins. However, the function of m1A in lncRNAs is not

fully elucidated, and the m1A modification has so far only been

reported in the lncRNA MALAT1 (80, 106). Despite the absence of

studies focusing on the m1A modification in MM, as previously

mentioned, MALAT1 overexpression is correlated with worse

prognosis, and the oncogenic role of MALAT1 in promoting MM

tumorigenesis has been widely studied (35, 56, 107). MALAT1

dysregulation in MM has been associated with a wide range of

processes including cell proliferation, DNA repair mechanisms,

metastasis, drug resistance, and angiogenesis pathways (57, 107–

109). Nonetheless, if these functions are mediated by chromatin

remodelling and regulated via RNA modifications remains to be

further investigated.

The N7-methy lguanos ine (m7G) modifica t ion i s

predominantly found at the 5´cap of mRNA, ribosomal RNAs

(rRNAs) and transfer RNAs (tRNAs). However, the impact of m7G

on lncRNAs remains uncertain, probably attributed to the absence

of 5´cap on less conserved lncRNAs (110, 111). Nevertheless, Yang

et al. constructed the first model based on eight m7G-related

lncRNAs to predict patient prognosis in colon cancer (112).

Similarly, RNA m7G MeRIP-seq uncovered the significance of

m7G-enriched lncRNAs in acute myeloid leukemia cells and

unravelled a potential role of this modification in modulating

gene expression, thereby enhancing drug resistance (111).

However, the role of m7G modification in MM remains at

present unknown.
Discussion

The pathogenic impact of lncRNAs in MM and other

haematological malignancies is unravelling. Recently, there have

been large sequencing efforts in various cancers including MM that

have suggested a clinical importance of lncRNAs. In MM, lncRNAs

have been implicated in clinically relevant elements such as disease
Frontiers in Oncology 06
development, progression, drug resistance and patient outcome

(25). Studies on the epitranscriptomics of lncRNAs through the

addition of methyl groups to the lncRNA transcripts have gained

increased attention and have furthered added an additional level of

complexity to how lncRNAs contribute to cellular processes, such as

RNA stability, translational efficiency of mRNAs and protein

complex formation. However, the exact nature of these

modifications needs to be further investigated in the context of

MM. Moreover, not only can the expression of lncRNAs be

epigenetically regulated but can in turn regulate chromatin

modifying enzymes. Although lncRNA-chromatin interactions are

clearly more dynamically investigated in some areas, such as in the

recently shown context of PRC2 recruitment, deep functional

evaluation of lncRNAs in MM is still lacking. It is apparent that

this field is underdeveloped and a complete picture of how lncRNAs

impact the pathophysiological processes in MM remains uncertain.

While their functions continue to unfold, targeting lncRNAs arises

as compelling innovative treatment option in cancer,

including MM.
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