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Abstract
Key message Pooling and imputation are computational methods that can be combined for achieving cost-effective 
and accurate high-density genotyping of both common and rare variants, as demonstrated in a MAGIC wheat 
population.
Abstract The plant breeding industry has shown growing interest in using the genotype data of relevant markers for per-
forming selection of new competitive varieties. The selection usually benefits from large amounts of marker data, and it is 
therefore crucial to dispose of data collection methods that are both cost-effective and reliable. Computational methods such 
as genotype imputation have been proposed earlier in several plant science studies for addressing the cost challenge. Genotype 
imputation methods have though been used more frequently and investigated more extensively in human genetics research. 
The various algorithms that exist have shown lower accuracy at inferring the genotype of genetic variants occurring at low 
frequency, while these rare variants can have great significance and impact in the genetic studies that underlie selection. In 
contrast, pooling is a technique that can efficiently identify low-frequency items in a population, and it has been successfully 
used for detecting the samples that carry rare variants in a population. In this study, we propose to combine pooling and 
imputation and demonstrate this by simulating a hypothetical microarray for genotyping a population of recombinant inbred 
lines in a cost-effective and accurate manner, even for rare variants. We show that with an adequate imputation model, it is 
feasible to accurately predict the individual genotypes at lower cost than sample-wise genotyping and time-effectively. Moreo-
ver, we provide code resources for reproducing the results presented in this study in the form of a containerized workflow.

Abbreviations
AAF  Alternate allele frequency
AIL  Advanced intercross lines
GBS  Genotyping by sequencing
GS  Genomic selection
GWAS  Genome-wide association studies
IWGSC  International Wheat Genome Sequencing 

Consortium
LD  Linkage disequilibrium

MAGIC  Multi-parent advanced generation intercross
MAS  Marker-assisted selection
NIAB  National Institute for Applied Botany
NDM  NIAB Diverse MAGIC
NGS  Next-generation sequencing
QTL  Quantitative trait locus
RIL  Recombinant inbred lines
SD  Segregation distortion
SLURM  Simple Linux Utility for Resource Management
SNP  Single nucleotide polymorphism

Introduction

Genotype imputation is a common computational strategy 
that is adopted for augmenting the density of lab-determined 
genotypes. Imputation is a standard practice with human 
data, for which several accurate and efficient imputation 
algorithms have been developed and tested, as well as large 
reference panels are available (Das et al. 2018). In crop 
species, genotype imputation represents a promising and 
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relevant computational technique for producing data sup-
porting the decisions for conducting selection cycles in 
plant breeding (Skøt and Grinberg 2017; Rasheed and Xia 
2019; Maccaferri et al. 2022). Genotype imputation can be 
performed with array-based genotype data, but it is also a 
particularly valuable method for processing genotyping-by-
sequencing (GBS) data in which there is often a high miss-
ing rate of genotypes, especially in the case of low-coverage 
sequencing which requires specific treatment (Fragoso et al. 
2015; Zheng et al. 2018). Some methods originally designed 
for imputation in outbred human populations, for instance 
Beagle, have shown high accuracy in wheat and other crop 
species, under the condition of adapting the default param-
eters (Pook 2019). Indeed, plant breeders often use experi-
mental crop populations that involve extensive pedigrees and 
deliberate selfing of individuals into pure lines. Examples 
of this can include multi-parent advanced generation inter-
cross (MAGIC) populations. The selfing phenomenon is not 
encountered in the human species, such that at the cohort 
level, the characteristics of a natural human population 
might substantially differ from a MAGIC crop population.

The specific genetic structure of experimental plant popu-
lations can pose challenges that need to be addressed by 
implementing tailored imputation methods, in order to allow 
for the practical use of high-accuracy genotype imputation in 
plant breeding. First, inbred populations typically have a low 
level of genetic diversity and second, a very high proportion 
of fully homozygous individuals. Some specific imputation 
methods have taken advantage of these features (Pook 2019; 
Gonen et al. 2018). Moreover, the algorithms and software 
for plant populations should accommodate relatively scarce 
reference data. Indeed, despite the recent efforts in devel-
oping informative resources for plant genetic research and 
various plant species (Gao 2020), there are rather few and 
small reference panels available. This can be critical since 
large reference panels usually improve the accuracy of impu-
tation and the power of genome-wide association studies 
(GWAS). Nonetheless, using a reference panel consisting 
of a limited number of founder individuals can still achieve 
high imputation accuracy since their haplotypes represent an 
ideal library that suffices for explaining the genetic structure 
of the descendants (Fragoso et al. 2015; Thorn et al. 2021). 
As the data for founders can be defective or unavailable, 
crop scientists need imputation methods that can deal with 
scenarios where a reference panel other than the founders 
has to be used (Thorn et al. 2021). Last, crop breeding can 
include more dense and structured pedigrees than other pop-
ulations and some imputation algorithms have exploited this 
characteristic (Pook 2019; Gonen et al. 2018). Still, pedi-
gree records can turn out to be incomplete or incorrect in 
practice. Computational methods should therefore be able 
to accommodate such cases (Gonen et al. 2018).

Regardless of the species, the major weakness of refer-
ence-based genotype imputation remains the correct infer-
ence of the genotype of rare variants, even with large refer-
ence panels (Gao 2020).

Research has highlighted the great role of rare variants 
that can affect complex traits of agricultural relevance (Mar-
roni et al. 2012). Inherent to their rarity, proper accounting 
of such variants requires the screening of even larger popula-
tions in order to detect the variants and perform statistical 
analyses with sufficient power.

Consequently, a main technological challenge is the 
ability to deliver and process large volumes of dense and 
accurate genotype data at a reasonable cost (Gardner et al. 
2016). Pooling complemented by imputation could be a 
sensible strategy for meeting this challenge, with possible 
applications both in quantitative trait loci (QTL) analysis 
as well as in genomic selection (GS). We have previously 
demonstrated in a human setting that the composite power 
to detect rare variants can be improved greatly by combin-
ing pooled testing with a slightly more dense SNP chip, and 
imputation, rather than imputation alone with sample-wise 
testing on a more sparse chip (Clouard et al. 2022). It has 
also been proposed to combine pooling and imputation for 
large-scale and cost-effective application of GBS (Technow 
and Gerke 2017). While the interest for GBS in a plant-
breeding concept is definitely increasing, breeders can still 
find the hybridization-based SNP arrays convenient for rou-
tine genotyping (Keeble-Gagnère et al. 2021). Arrays are 
also a suitable and reliable option for producing data des-
tined for imputation since they usually yield lower missing 
rates and higher genotype calling accuracies (Keeble-Gag-
nère et al. 2021). However, despite their lower cost per data 
point compared to GBS, the overall cost of microarrays for 
single-sample genotyping can remain expensive and there-
fore impractical for applied usage in breeding programs. 
Rasheed and Xia (2019).

We propose an approach combining the usage of pooled 
data on a relatively dense array, that is able to directly 
capture rare variants, and imputation for genotyping bial-
lelic polymorphic markers in large populations of inbred 
lines of bread wheat (Triticum aestivum). In order to dem-
onstrate the effectiveness of our approach, we use the 
published genotype data from the NIAB Diverse MAGIC 
wheat population (Scott et al. 2021) for investigating the 
performance of imputation downstream to genotype pool-
ing on a hypothetical microarray panel based on their 
identified subset of tag SNPs. Thanks to the processing 
applied to the raw reads after their original sequencing, we 
consider that the genotypes in the NIAB Diverse MAGIC 
wheat population can be used to mimic SNP chip data 
for a theoretical 55K array. Briefly, our pipeline simulates 
coalescence-based imputation from genotype probabilities 
that are estimated by consistently resolving the genotypes 
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of overlapping pools of constant size. We found that an 
overall high genotyping accuracy of 94.5% and up to 99% 
for low-frequency variants can be achieved for a popu-
lation of about 500 bread wheat accessions and roughly 
1,000 SNP loci on chromosome 1A. With a pooling strat-
egy such as the one we propose, the cost of genotyping 
for the whole population can be decreased since that for 
the same number of markers on the chip, fewer arrays are 
needed for genotyping pools compared to sample-wise 
genotyping.

Materials and methods

From the released tag SNP genotype dataset derived 
through sequencing, quality control, and imputation in 
Scott et al. (2021), we simulate an experiment equivalent 
to genotyping overlapping pools of samples on microar-
rays, and computationally reconstructing the per-sample 
genotypes. The pooling approach cuts the number of 
microarrays but with the drawback of partially missing 
individual data. This caveat is addressed by imputing the 
genotypes with an implementation of a coalescent method 
on the one hand, and the Beagle software on the other. 
The computational performance and accuracy of the two 
imputation methods are compared.

A workflow implemented with the workflow manage-
ment tool Snakemake (Mölder et al. 2021) as well as a 
specific container for executing this workflow are avail-
able (Clouard 2023) if the reader would like to reproduce 
the results presented in this study. A fixed seed is passed 
to the random generator that selects the samples to be 
included in the study population when the workflow is 
executed, therefore the exact assignments of individuals 
to pools and other related factors should remain identical 
between two runs. Moreover, due to some stochasticity in 
the imputation algorithms, the results of imputation might 
also slightly differ between runs. These differences are 
however very small and observed for very few markers, 
such that the overall accuracy is not significantly affected. 
Figure 1 contains a Snakemake rule graph summarizing 
the different steps in this workflow.

Fig. 1  Experimental workflow Clouard (2023)
Every box represents a rule that is executed by Snakemake (from top to bot-
tom). Overall, the workflow chains three main tasks:
1. Data downloading and preprocessing: from rules "load data" to "remove 
swaps" and from rule "load mapping data" to "interpolate chromosome map".
2. Pooling simulation: rules "chunk chromosomes" and "pool chromosomes".
3. Imputation: rules "clone compile prophaser" and "run prophaser"

▸
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Data sources and preprocessing

In order to conduct imputation, we prepare two datasets and 
a genetic map for the targeted markers. The first dataset is 
the reference panel; the second one is the study population.

Genotype data of the NIAB Diverse MAGIC wheat 
population

We use the genotype data of an inbred population of bread 
wheat obtained with a MAGIC breeding scheme, which are 
accessible through the European Variant Archive (EVA) 
database. The dataset was co-published by the National 
Institute for Agricultural Botany (NIAB) and University 
College London (UCL) Genetics Institute in 2021 (Scott 
et al. 2021). The full wheat genome comprises three similar 
subgenomes A, B, and D, made of 7 pairs of chromosomes 
each. These subgenomes trace their origin to successive 
hybridizations in the development history of modern wheat.

The genotype data provided for the NIAB Diverse 
MAGIC (NDM) wheat population are obtained either from 
variant calls made in sequence data, or imputed to a large 
extent in the inbred lines. The founders were sequenced at 
high coverage, 15 of them with ∼ 23 x coverage and 1 of 
the founders with ∼ 16 x coverage. The inbred lines were 
sequenced with whole genome sequencing at low-coverage 
∼ 0.3 x. The available genotype data for the 16 founders cor-
respond to approximately 1.1M SNPs sites that were called, 
and the same sites were used for calling the genotypes in 
the 504 inbred lines. Scott et al. (2021) reported that the 
variant calls were made unambiguously across the subge-
nomes for those variants that were included in the dataset. 
Sites with heterozygous or missing calls in founders were 
removed from the set of markers, such that the genotype 
data is fully homozygous. For the inbred lines, the low-cov-
erage sequencing data were augmented using imputation. 
Heterozygous calls were removed before being input to the 
STITCH software (Davies et al. 2016). STITCH implements 
a diploid model, and the performance of imputation is gener-
ally dependant on a correct mapping of the loci where the 
genotypes are predicted. Scott et al. controlled the quality of 
the imputation with STITCH by comparing the imputed gen-
otypes to a dataset assayed on a microarray for the variants 
that mapped uniquely to a single subgenome according to 
stringent BLASTn-filtering. For those array variants, based 
on the analysis of the patterns in the haplotypes assigned 
after imputation on the one hand, and on the other hand on 
the genotype concordance with microarray data, the authors 
reported a high accuracy in the imputed data. We therefore 
consider that the imputed data can reasonably represent 
diploid-like SNP genotypes within the total allohexaploid 
wheat reference genome. Moreover, the imputation process 
is expected to correct for moderate sequencing biases such 

as affinity for a specific allele, by leveraging the identified 
haplotype mosaic. After selecting a subset of tag SNPs based 
on linkage disequilibrium (LD), the data for the inbred lines 
consist in a smaller dataset with the genotypes at ca. 55 K 
loci over all 3 × 7 pairs of chromosomes. Our experiments 
start out with this 55K SNP dataset, since it would be rea-
sonable to expect a cost-conscious user to select a microar-
ray with a total marker density in this range. While the geno-
types used do not represent data from any single existing 
microarray product, we believe that the careful postprocess-
ing applied to the original sequence data mean that these 
genotypes accurately reflect the true ones for the curated 
variants to a high extent. Therefore, the data can be used as 
the basis for a simulation study. Would an actual microar-
ray be devised based on these SNPs, it would be crucial to 
ensure that the oligo probes would still hybridize uniquely 
to a single position within a single subgenome.

We use the founders as the reference panel for imputation, 
as suggested in Zheng et al. (2018), and the inbred lines as 
the true data for simulating pooling augmented by imputa-
tion in the study population.

The data for the founders and the inbred lines were down-
loaded from the data repository of UCL (University College 
London) (London 2021). We use PLINK 1.9 for creating 
the VCF files from the bim, bed, and fam files. It is known 
from several studies that the STITCH software can yield 
still high missing rates after imputation (Nicod et al. 2016; 
Pook 2021). In practice, the genotypes are set to missing if 
no posterior genotype probability is larger than 0.9 (Nicod 
et al. 2016), which is unsuitable for our simulation purposes. 
After filtering out genetic positions with missing genotypes, 
both the reference panel and the study population contain the 
same 20, 572 loci.

Genetic map

We download the genetic map provided by INRAE (Unité 
de Recherche 2018) that uses the reference genome Ref-
Seq v1.0 released by IWGSC (International Wheat Genome 
2018). For markers not present in the genetic map, we used 
a linear interpolation based on the adjacent markers present 
in the map, as for example suggested in the 1000 Genomes 
Project (Pickrell 2015).

Pooling simulation on full homozygotes 
in the inbred lines

Relative to diverse human populations, where we have stud-
ied pooling strategies previously (Clouard et al. 2022), the 
individual wheat samples in this study constitute inbred 
lines. Whether heterozygotes can be ignored in practice 
will be dependent on the exact nature of the population, 
but we chose to implement an approach where we assume 
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homozygosity in all loci. Consequently, the decoding is 
simplified compared to the one presented earlier for human 
ternary genotypes. The algorithm used for decoding the 
outcomes of the pooled genotyping experiments with only 
homozygous genotypes is given in Algorithm 1. The geno-
types of the pools are modeled as integers as we assume 
error-free genotyping. The resolved genotype of any indi-
vidual is represented as simplex of genotype probabilities 
for suitability to the imputation.

We keep only 496 = 16 × 31 samples randomly selected 
out of the 504 inbred lines for compatibility with the 4 × 4 
row-column pooling design which involves 16 samples per 
pooling block. In an actual pooling scenario, the savings in 
terms of the number of plates would be dependent on the 
number of wells per plate. If the study population size has 
already been adapted to just use a single plate, savings will 
be limited, but in a typical case the number of plates will 
be reduced by 50%. If we consider a hypothetical 384-well 
plate for our 496-individual simulation, individual genotyp-
ing would require 2 plates, while pooled genotyping could 
fit within a single plate. For hypothetical 96-well plates, the 
full population will use 6 plates, with low occupancy on 
the final plate. For pooling, 3 plates would be used, with 
roughly 40% of the wells left empty on the final plate. Each 
individual genotype at each marker is later retrieved with 
high accuracy in our pipeline thanks to different methods of 
statistical inference, with limited computational cost.

Imputation of genotypes based on pooled tests

The decoding procedure we propose from pooled genotype 
data is independent of the marker considered, that is by 
extension decoding is LD-agnostic and does not take into 
account the actual allelic frequency in the study population. 
By taking advantage of the genetic structure and character-
istics of both the study population and the reference panel, 
the genotype imputation methods are suitable for enhancing 
the genotype probabilities inferred from pooling.

We compare two population-based methods, the first one 
being Beagle 4.1 (Browning and Browning 2016) and the 
second one being prophaser (Ausmees and Nettelblad 2022). 
The reasons for using this version of Beagle rather than the 
most recent release are that we need a method that handles 
genotype likelihoods (GL) as input.

Both Beagle 4.1 and prophaser can produce genotype 
posterior probabilities (GP) for any marker, computed using 
a Hidden Markov Model (HMM). On purpose, no pedigree 
information is used in our imputation settings. Indeed, while 
our study uses the founder generation as reference panel, we 
aim for developing a genotyping method in which imputa-
tion can be conducted with any reference panel that could 
possibly be different from the founders.

There are only 16 homozygous founders in the reference 
panel, that is only 8 actually different haplotypes, which 
could impact the accuracy of imputation. However, inher-
ently to the breeding scheme implemented, this limited set 
of reference haplotypes should cover all existing haplotype 
variations within the study population.

Both Beagle 4.1 and prophaser were run on chromo-
some 1A with the corresponding interpolated genetic map. 
Beagle 4.1 handles the whole study population at once 
whereas prophaser processes the study individuals one by 
one. While the genetic map is required for prophaser, it 
is optional, but recommended, for Beagle 4.1. In practice 
tough, we have not noticed any significant improvement 
in the imputation accuracy of Beagle 4.1 when using the 
map.

Along the Snakemake workflow, we provide examples of 
scripts that can be used for submitting an imputation job to 
a Slurm system (Yoo et al. 2003). We underline that these 
files are specific to the compute cluster we use. They will 
need adaptations for use on other resources.

Imputation with Beagle 4.1

Our Beagle-based imputation approach consists of a first 
phasing step followed by actual genotype inference. The 
decoded genotypes are used as initial genotype priors in the 
HMM. Beagle 4.1 implements a round of phasing iterations 
preceding the round of imputation iterations. Between these 
two rounds, an intermediate operation of so-called geno-
type conforming is required, which consists in making the 
alleles in the study population consistent with the reference 
file. The template haplotypes used as hidden states of the 
HMM in Beagle 4.1 are formed through a model-building 
step. Model-building consists in merging into clusters the 
haplotype segments that are identical across the reference 
and the study samples. This clustering operation decreases 
the computational complexity of imputation and performs 
particularly well in large populations with thousands of sam-
ples. Beagle 4.1. is multi-threaded, which lowers its execu-
tion time with suitable computing resources.

The executable of Beagle 4.1. as well as the documen-
tation was made available for download by Browning and 
Browning (Browning 2018). For comparison purposes with 
prophaser, we execute Beagle 4.1. on a compute cluster 
node with the JVM memory settings -Xss5m. We tested 
the default settings, as well as explicit changes of the ne and 
modelscale parameters, one at a time, as suggested in a 
previous study (Pook 2019).

The node (HP ProLiant SL230s Gen8) has a memory con-
figuration of 128 GiB and consists of 2 CPUs (Intel Xeon 
E5-2660) with 8 cores each. All the available cores on the 
nodes are used for execution Beagle 4.1.



 Theoretical and Applied Genetics          (2024) 137:26    26  Page 6 of 15

Imputation with prophaser

With prophaser, the template haplotypes are all the actual 
haplotypes in the reference panel. By relying on the assump-
tion of coalescence across the population, the imputed hap-
lotypes are expected to be similar to the available templates. 
The transition and emission probabilities are derived from 
explicit parameters for the recombination and the muta-
tion rates. We refer to the related publication (Ausmees and 
Nettelblad 2022) for more details about prophaser.

Because of the small size of the reference panel, we 
set the effective population Ne size equal to 16. As all the 
founders are fully homozygous, we enforce the phasing by 
rewriting the unphased genotypes to a phased state since 
prophaser requires phased genotypes in the reference panel.

The memory complexity of prophaser scales quadratically 
in the number of template haplotypes and grows proportion-
ally to the cube root of the number of markers to impute. 
Given the small size of the reference panel and the small 
number of markers we use, memory usage should not be 
an issue in this study. However, larger sizes of populations 
and sets of markers require that prophaser is run on a large-
enough cluster node. Because each of the 496 samples is 
imputed separately, we prefer executing prophaser on a clus-
ter node for this study as well and we use the same equip-
ment as for running Beagle 4.1. Every study sample can be 
imputed asynchronously in parallel with the other samples, 
which reduces the time complexity that would otherwise 
scale linearly in the number of study samples.

Metrics for quantifying accuracy of imputation

For evaluating the performance in accuracy of our approach, 
we use the genotype concordance on the one hand, and the 
cross-entropy in the genotype probabilities on the other 
hand. The details regarding the definitions of these met-
rics as well as their relevance are presented in our previous 
research (Clouard et al. 2022). The current study calculates 
the concordance over all genotypes, including the homozy-
gotes for the reference allele. In some publications, the non-
reference discordance rate is given rather than the concord-
ance rate, as we did in our experiment with human data. 
We choose to complement the concordance metrics with the 
cross-entropy as this quantity renders better than concord-
ance how close the predictions are to the true genotypes.

In this study, we want to explore to what extent the lim-
ited genetic diversity in a wheat breeding context, as well as 
the homozygosity patterns of inbred lines, affect the accu-
racy of genotyping through pooling and imputation. Sec-
ondly, we would like to verify that a small reference panel 
can be informative enough for pedigree-free imputation, 
under the assumption that this panel spans the total hap-
lotype repertoire found in the study population. Last, we 

expect the rare variants to be accurately genotyped as we 
found with human data.

Results

We performed imputation using the founders as reference 
using both the Beagle and prophaser workflows. We also 
characterized our marker set and populations in terms of 
genotype frequencies and other parameters.

Descriptive population statistics on original data

Our workflow implements to some extent an exploratory 
analysis of the data for all chromosomes; however, in this 
manuscript, we present and discuss the results for the chro-
mosome 1A only.

In order to get insights into the original data as well as 
to specify the effects of simulating pooling on them, we 
want to identify and describe some genetic characteristics 
of both the population of founders and the population of 
inbred lines. These insights might also help to understand 
the factors affecting the performance of the imputation fol-
lowing pooling.

Reference panel of founders

Table 1 gives some statistics describing the genotype data 
of the 16 founders. As expected from the description of the 
Diverse MAGIC Wheat study, the founders are homozy-
gotes at all loci and no data is missing since the incomplete 
markers were filtered out when creating the VCF file with 
PLINK 1.9. The bins 0.05–0.10 and 0.10–0.20 represent 
nearly 63% of the total number of markers. We note the 
absence of rare variants in the reference data, which could 
be explained by the segregation phenomenon that Scott et al. 
(2021) observed for SNPs with MAF below 0.05 when they 
compared the 16 founders against resources from the Global 
germplasm.

Study population of inbred lines

Table 2 indicates that all study samples are full homozy-
gotes as the reference samples are, which was expected since 
in the dataset we use for our simulations, the heterozygous 
genotypes were replaced with missing entries and imputed 
with STITCH.

Moreover, the inbred lines are the last generation in the 
MAGIC scheme and thus derive from several cycles of self-
ing, which should in practice ensure that all plants are fully 
homozygous. Overall, the distribution of the true genotypes 
in the inbred lines is somewhat different than the one in 
the founder population, although the bins 0.05–0.10 and 
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0.10–0.20 remain the largest ones. The presence of low-
frequency variants could be explained by a phenomenon of 
genetic drift through the breeding process. Such dissimilari-
ties in the distribution of genotypes could impact the accu-
racy of imputation. However, in the case of Beagle, ca. 30 
times more study samples than founder individuals are used 
when computing the template haplotypes. The differences 
might therefore be mitigated and only have an insignificant 
effect.

Figure 2 shows the proportions of the reference and 
alternate homozygous loci per MAF bin across the pooled 
genotypes of the inbred lines. Inherently to the shortages of 
a pooling strategy and the pooling design used, some geno-
types cannot be resolved from the pools, especially when 
both alleles at the locus are observed in at least 10% of the 
samples. The percentage of missing data increases with the 
MAF and reaches on average 75% for the loci with the high-
est MAF. Over all markers, around a third of the genotypes 
are not decoded after the pooling simulation, which is a low 
rate in the context of imputation where some methods can 
handle up to 90% missing data. Nonetheless, we have earlier 
demonstrated (Clouard et al. 2022) that the non-randomness 
of the distribution of the missing data from pooling poses 
particular challenges to the imputation algorithms.

We observe in Table 4 that a large share of the pooled 
genotypes can be successfully decoded. This could be partly 
explained by the binary nature of the genotype data in the 
NDM wheat population, to the difference of human geno-
types that are ternary. For instance, 74.2% of the genotypes 
of markers with a MAF in 0.1–0.2 are fully decoded in 
wheat whereas this percentage was only 47.2% in human.

The heatmap displayed in Fig. 3 provides further insights 
into the impact of successive pooling simulation and imputa-
tion on the observed allelic frequencies in the inbred lines. 
After decoding the pooled outcomes only, we can notice 
that the frequency of the alternate allele is largely underes-
timated at most loci for which the true AAF is in the range 
0.05–0.45.

The lowest AAF values (up to ca. 5%) correspond to 
situations where either the large majority of the samples is 
homozygous for the reference allele at a given locus, and 
most of the pools are therefore homogeneous, which enables 
full decoding. When the true AAF is in the range 0.05–0.30, 
a few homozygotes for the alternate allele might be found in 
the same pooling block and can thus not be decoded. This 
biases the proportion of observable genotypes against the 
homozygotes for the alternate allele. For larger AAF values, 
the proportions of both homozygotes are closer, such that 
most of the pools are heterogeneous, and very few samples 

Table 1  Statistics for markers 
per MAF bin in the population 
of founders

The bin [0.00, 0.05] is not shown since there are no variants in this range. Indeed, the minimal value for 
MAF is 1∕16 = 0.625 in the case only one copy of the minor allele is found among the founders
a SNPs proportions per MAF bin with respect to the total number of SNPs on the genetic map
b The reason for the absence of any heterozygote lies in the filtering operations that were applied to the data 
by Scott et al. (2021). For the founders, the sites with heterozygous calls in a any founder were excluded 
from the set of SNPs

0.05–0.10 0.10–0.20 0.20–0.30 0.30–0.40 0.40–0.50 Total

Counts 333 401 151 184 101 1170
Proportionsa 0.285 0.343 0.129 0.157 0.086 1.000
% missing genotypes 0.000 0.000 0.000 0.000 0.000 0.000
%  heterozygotesb 0.000 0.000 0.000 0.000 0.000 0.000

Table 2  Statistics for markers per MAF bin in the population of inbred lines (true and pooled data)

a SNPs proportions per MAF bin with respect to the total number of SNPs on the genetic map
b  Scott et al. (2021) intentionally set to missing sites with heterozygous calls and imputed all missing entries with STITCH, such that the data is 
fully homozygous
c The decoding algorithm we use assumes there are no heterozygous sites

0.00–0.05 0.05–0.10 0.10–0.20 0.20–0.30 0.30–0.40 0.40–0.50 Total

Counts 74 266 359 223 140 108 1170
Proportionsa 0.063 0.227 0.307 0.191 0.120 0.092 1.000
% missing genotypes (true data)b 0.000 0.000 0.000 0.000 0.000 0.000 0.000
% heterozygotes (true data)b 0.000 0.000 0.000 0.000 0.000 0.000 0.000
% missing genotypes (pooled data) 2.558 7.598 26.307 48.606 66.228 75.196 34.092
% heterozygotes (pooled data)c 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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can be decoded as the lighter gray shades indicate. However, 
the prophaser imputation method manages to greatly correct 
this bias in the allelic distribution despite a slight residual 
underestimation overall. This heatmap makes the caveats 
of pooling more obvious and also motivates the implemen-
tation of an adequate imputation step for complementing 
pooling and by that taking full advantage of this cost-cutting 
strategy.

Performance of imputation

Table 4 lets us verify that both Beagle 4.1 and prophaser 
can impute all the genotypes that are unresolved after 
pooling since there is no missing data. That is, we man-
age to estimate the genotypes at 1170 loci in 496 samples 
based on the simulated outcome of array-based genotyp-
ing for only 248 pools. Furthermore, no heterozygous 
genotypes are predicted, which is a relevant result given 
the absence of heterozygotes in the true population. We 
underline that the initial LD pruning applied for creating 
the 55K dataset makes the imputation task in our pipe-
line relatively challenging since the markers with high LD 
which would likely be correctly imputed after our pooling 
simulation are filtered out.

Beagle 4.1

Table 3 presents the results for the computational perfor-
mance and the accuracy of Beagle 4.1 for various sets of 
parameters. We use as a baseline for comparison the values 
measured with full default settings. On the whole, we find 

that modifying only the model scale default value to 1.5 
and processing the entire population at once yields the best 
trade-off in performance, that is an increased accuracy up to 
86.5% concordance and a much higher computational effi-
ciency. Increasing the modelscale parameter might have 
a strong impact on the computational performance because 
a larger model scale lets less similar haplotypes be clustered 
together in the model-building step of Beagle (Pook 2019). 
As a result, the clustered tree defines fewer template hap-
lotypes which in its turn speeds up the computations with 
the imputation HMM as well as uses less memory. Modify-
ing the default parameters modelscale or ne seems to 
have only little effect on the accuracy of imputation. We also 
executed a sample-wise imputation with Beagle 4.1 (mod-
elscale=1.5 and other parameters to default) but since 
the accuracy was not improved we do not present the results.

Figures 4 and 5 compare the accuracy of imputation of 
Beagle 4.1 with the best parameter settings against pro-
phaser. The accuracy of imputation is especially high for 
variants with rare alternate alleles (top left of the plot), 
which are usually a caveat of the imputation methods. Over-
all, Beagle 4.1 achieves a concordance score of 86.5% and a 
cross-entropy score of 1.517. While the model implemented 
by Beagle has a clear advantage in computational perfor-
mance, it seems to struggle with making use of the tailored 
genotype probabilities resolved from pooling. The node 
merging rules might not be well-suited for dealing with data 
that is not missing at random as it is the case with pooled 
genotypes. Moreover, the irregular shape of the quantile 
envelopes and the uneven median line suggests that Beagle 
4.1 produces heterogeneous results for markers having close 
MAF. This might be also due to the node merging step that 

Fig. 2  Genotype proportions in 
496 inbred lines (pooled data) 
for 1170 SNPs on the chromo-
some 1A Proportions scaled and 
given per bin. M is the major 
allele and m the minor one. ’./.’ 
indicates that the genotype is 
not decoded from pooling, i.e., 
missing. Thanks to the binary 
nature of the genotypes in a 
fully homozygous population, 
there are no cases where one 
allele only can be resolved 
while the other is ambiguous. 
The genotypes are either fully 
missing or fully known
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over- or undersamples some haplotypes when creating the 
templates.

Prophaser

Figures  4 and 5 illustrate that prophaser achieves a 
nearly completely exact imputation of very low-MAF 

markers ( MAF < 0.08 ). The overall average concordance 
resp. cross-entropy reaches 94.5% resp. 0.343, but the accu-
racy decreases as MAF increases.

The low cross-entropy value renders that the genotype 
predictions are very close to the true value. This could be 
explained by the low occurrence of cases in which very low 
probabilities are assigned to the actually correct genotypes, 

Table 3  Performance of 
Beagle 4.1 for various sets of 
parameters

Bold font highlights the settings achieving the best performance. The computational performance is given 
for processing all the 496 study samples together
a The accuracy is calculated as the average concordance or cross-entropy over all markers, regardless of the 
MAF
b Computations run on 1 node with dual CPUs (Intel Xeon E5-2660), 8 cores per CPU, that is 16 cores in 
total and 128 Gigabyte RAM

Parameters Accuracya Computational
performanceb

Concordance Cross-entropy Running time
(hh:mm:ss)

Memory 
usage
(maximum 
in GiB)

all default 0.86152 1.54605 02:28:08 10.7
modelscale=1.5,
other default

0.86494 1.51749 00:02:02 0.7

modelscale=2.0,
other default

0.85770 1.59198 00:01:03 0.7

ne=16,
other default

0.86309 1.56898 02:30:10 7.5

ne=5000,
other default

0.86147 1.55936 02:33:09 9.3

modelscale=1.5,
ne=5000,
other default

0.86328 1.53511 00:01:16 0.7

modelscale=1.5,
ne=16,
other default

0.86277 1.57283 00:03:48 0.7

Table 4  Distribution of the markers genotyped after pooling and after imputation per data MAF bin

a SNPs proportions per MAF bin with respect to the number of SNPs in the bin
b Beagle 4.1: modelscale=1.5, other parameters to default

MAF bin
Imputation  methodb

0.00–0.05 0.05–0.10 0.10–0.20 0.20–0.30 0.30–0.40 0.40–0.50

Fully decoded before imputation Beagle 4.1
Prophaser 70.036 249.143 267.109 115.569 46.651 26.716

Exact matches after imputation Beagle 4.1 71.093 261.877 324.651 176.222 99.956 79.401
Prophaser 71.393 265.020 343.740 205.004 125.448 95.667

% heterozygotes after imputation Beagle 4.1
Prophaser 0.000 0.000 0.000 0.000 0.000 0.000

Proportion of fully decoded before  imputationa Beagle 4.1
Prophaser 0.973 0.923 0.742 0.523 0.336 0.247

Proportion of exact matches after  imputationa Beagle 4.1 0.987 0.970 0.902 0.797 0.719 0.735
Prophaser 0.992 0.982 0.955 0.928 0.903 0.886
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as if the model implemented in prophaser would have the 
ability to sense ambiguity when resolving the genotypes. 
For instance, at the genetic position 9,234,368, we find a 
sample whose true genotype is homozygote for the alternate 
allele, that is the genotype probabilities are represented by 
the tuple (0, 0, 1). After pooling simulation and imputa-
tion, Beagle predicted the genotype probabilities (1, 0, 0) 
and prophaser predicted (0.407351, 0, 0.592649). That is, 
the best-guess prediction of Beagle is homozygote for the 
reference allele with probability 1, which is fully incorrect, 
and the cross-entropy is thus maximal in this case. The best-
guess prediction prophaser is homozygote for the reference 
(resp. alternate) allele with probability 0.59 (resp. 0.41), 
which is weakly correct, and the cross-entropy is submaxi-
mal but not null. The narrow quantile envelopes both for 
the concordance and the cross-entropy indicate that accu-
racy is highly consistent over markers with similar MAF 
values. The counts of exact matches presented in Table 4 
confirm the observations made in the figures. The markers 

having MAF < 0.1 are on average imputed exactly in 98.2% 
of the cases and even up to 99.2% when MAF drops below 
0.05. While it is true that most of these low-MAF markers 
are decoded from the pools at up to 97.3% , increasing the 
percentage of the matches by 2 points is a relevant improve-
ment, since it is crucial in order to actually pinpoint the 
identity of the carriers of the rare variant.

Computational performance

The execution of all the steps in the workflow that pre-
cede imputation, that is from the initial downloading of 
the genotype data until the computation of the interpolated 
maps, takes about 3 min and 20 s and requires at most 1.1 
GiB memory on a compute node whose characteristics are 
described in the methods for imputation.

The computations with prophaser for imputing the unre-
solved genotypes take around 475 milliseconds per study 

Fig. 3  Proportions of markers per AAF-bin in the pooled and the 
imputed study population with respect to the AAF-bin in the true 
study population The simulated population corresponds on the one 
hand to pooled and decoded study population (gray shades), on the 
other hand to the pooled and imputed study population with pro-
phaser (bright shades). The target line stands for the ideal situation 
where there is an exact correlation between the AAF of markers in 
the true study population and in the simulated population. The dark-

est color shades on the heatmap close to the origin of the plot are 
close to the target line, which denotes that a high proportion of low-
AAF markers (AAF below 5% ) is decoded and imputed at a correct 
frequency. The yellow shades indicate on the contrary a lower con-
centration of markers and the increased spreading of the colored cells 
suggests that imputation accuracy has a higher variance for variants 
with MAF > 0.3
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sample and require an insignificant amount of memory. For 
Beagle, the best results are achieved by processing the entire 
study population at once for imputing all samples in 2 min 
and using 0.7 GiB memory.

Discussion

Since our approach of combining pooling with imputation 
is novel, there are few points of direct comparison in the 
literature. Our best score for average concordance in the 
imputed data is about 94.5% , which has the same order 
of magnitude as imputation from two-way-pooled GBS 
data that was sequenced at 0.5x coverage (Technow and 
Gerke 2017). Concordance was not binned by MAF in that 
study, which we think is crucial in order to understand the 
performance of a method. Pook (2019) included a figure 
rendering the error with respect to the allele frequency, 
but this was in a scenario with specific genotypes missing 
at random, rather than the structured frequency-dependent 
missingness patterns arising from pooling, and as such 
resulting in a very different overall trend. The error is 
indeed the lowest for common variants and the lowest for 
the rare ones, while the complementing nature of pooling 
and imputation gives our results the opposite overall trend.

Overall, we obtain high genotyping accuracy, especially 
with regard to low-frequency alleles. The combination of 
computer-assisted decoding and genotype imputation is 
motivated by the interest in saving costs for genotyping. 
While we treat the samples in both the study population 
of inbred lines and the reference panel of founders as they 
would be unrelated, the very good accuracy of imputation 
achieved with prophaser may be explained by the actual 
relatedness inherent to the breeding scheme, such that 
every inbred line is a perfect mosaic of the founders both 
in practice and in the imputations model. We see room 
for improvement and further investigations of this pool-
ing strategy.

The challenge of large-scale genotyping is represented 
through two main dimensions which are the number of 
markers to genotype for one thing, and the number of 
samples to analyze in the target population. Conventional 
genotype imputation from low-density to high-density sets 
of markers has long been a powerful computational tool 
for reducing the cost of genotyping by only testing the 
majority of samples on lower density chips. This results in 
the need for smaller and thus less expensive microarrays. 
Our pooling strategy instead acts in the other dimension, 
by cutting the number of samples to test on the microar-
rays, without decreasing the marker density. In practice, 
to maximize the savings, one should try to fill all wells in 
the plates used. Since the number of wells needed for a 
population of a certain size is cut in half, workflows might 
need adaptation to allow for pooling into blocks and then 
filling each plate. Assuming working with 96-well plates, 
this implies that we should aim for genotyping a number 
of pools which is a multiple of 96 in order to not leave 
any empty well, or in other words, a total sample count of 

Fig. 4  Genotype concordance for Beagle 4.1 (1) and prophaser (2) 
The central line is the median and the shadowed areas delimit the 
quantiles 0.0, 0.01, 0.25, 0.75, 0.99, 1.0. The x-axis was built from 
0.05-long MAF bins within which each marker concordance score 
was computed as the mean score in a five-marker-long window 
including the 2 previous and 2 next markers sorted per ascending 
MAF. The maximum score for perfect concordance is 1.0

Fig. 5  Genotype cross-entropy for Beagle 4.1 (1) and prophaser (2) 
The central line is the median and the shadowed areas delimit the 
quantiles 0.0, 0.01, 0.25, 0.75, 0.99, 1.0. The x-axis was built from 
0.05-long MAF bins within which each marker concordance score 
was computed as the mean score in a five-marker-long window 
including the 2 previous and 2 next markers sorted per ascending 
MAF. The best cross-entropy score is 0.0 and indicates that the pre-
dictions exactly match the true genotype probabilities. Higher scores 
are caused by larger differences between the predicted and the true 
genotype probabilities
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96 × 2 = 192 individuals is the minimum optimal size of 
population given the filling constraint (assuming no wells 
are reserved for controls). In this regard, our simulation is 
not optimized for the laboratory since it would require two 
fully filled plates and one filled with only 56 pooled sam-
ples. On the computational side, the complexity in time of 
prophaser is linear in the number of samples, but overall, 
our pipeline is highly parallelizable, per block for pooling, 
and per individual for imputation.

We are aware our simulations present a weakness since 
they assume an error-free genotyping, which is a situation 
that is not encountered in practice. It would be relevant and 
ideal to apply our approach to the data of actual pools that 
were though not available to us when we conducted this 
study. However, in preliminary experiments, we explored 
imputation based on pooled data in which we added artificial 
noise with varying intensity for modeling possible geno-
typing inaccuracies (unpublished research). We observed 
that reasonable levels of noise do not significantly degrade 
the accuracy of imputation. Thus, we believe that an actual 
workflow of pooling followed by imputation using, e.g., 
prophaser would also be robust to noise, assuming that the 
calling of individual pooled genotypes took the skewed 
allele proportions in samples into account, in a way similar 
to what is already done for polyploidic markers (Clevenger 
et al. 2015; Blischak et al. 2017).

In our previous simulation study of pooling on human 
data, we implemented an iterative approach for the decod-
ing of the pools, especially in order to give reasonable prior 
estimates to imputation of heterozygote vs. homozygote 
alternate allele genotype probabilities. This was less neces-
sary for inbred data. However, we believe that a more well-
developed approach for information sharing within blocks, 
taking preliminary imputation results into account, could 
be worthwhile. The benefits of such an approach are prob-
ably more pronounced for the structured and highly related 
populations frequently found in plant breeding.

While the time and the memory requirements for impu-
tation are negligible and do not represent a bottleneck in 
our study case, the computational efficiency of prophaser 
would be critical for performance if larger populations and 
sets of markers are investigated. As the founders and the 
inbred lines are homozygous, it would be possible to use 
an explicitly haploid HMM, similar to the one proposed by 
Thorn et al. (2021).

Beyond the need for testing our approach on real and 
likely noisy data collected from actual pools, investing vari-
ous other datasets could reveal weaknesses and strengths 
of the pooling strategy. For instance, scaling up this study 
could facilitate the comparison between Beagle 4.1 and 
prophaser regarding the computation time and the memory 
resources used. The set of markers we used for our simula-
tion purposes is particularly sparse due to strong filtering 

and LD pruning implemented for the tag SNP dataset in 
Scott et al. (2021). We expect our approach to achieve above 
94.5% accuracy with denser SNP sets that are also likely to 
be more rich in rare variants. We believe that the accuracy 
would remain high with larger or smaller populations, as 
long as all individuals have a similar genetic structure, such 
that the 16 founders we use suffice for describing this struc-
ture. For example, enlarging the study population with sam-
ples of north-west European origin should not degrade the 
accuracy since Scott et al. (2021) found that the 16 founders 
from the UK are representative of the germplasm found in 
this area. Imputation with other reference panels, such as 
cultivars from a different geographical origin, a subset of 
the inbred lines, or a mix of founders and inbred progeny, 
might elucidate to what extent the composition and size of 
the reference panel can impact imputation accuracy. Overall, 
we believe that existing results on imputation quality in clas-
sical imputation and the relevance of an appropriate refer-
ence panel would translate to the pooling imputation setting. 
Larger pool sizes would decrease the cost for testing equip-
ment even more and let us evaluate the trade-off between 
cost-effectiveness in laboratory testing and the accuracy of 
genotyping.

We have been considering adapting the method of com-
bined use of pooling and imputation for handling GBS data 
as suggested by Technow and Gerke (2017). This type of 
data is known to be more noisy than array-based genotype 
data though; therefore, an additional step of denoising or 
error correction may be needed in our workflow in order to 
handle the increased uncertainty of the genotype data. The 
expense for library preparation is the most impacting com-
ponent of the cost in sequencing experiments. If one would 
do library preparation and sequencing only after first pooling 
the samples, a pooling strategy could therefore contribute to 
decrease the cost of sequencing and genotyping with GBS 
as well, still augmented by imputation.

Conclusion

This study suggests that a pooling strategy can be success-
fully implemented for genotyping SNPs at reduced cost in 
a MAGIC wheat population. Given the characteristics and 
quality of the dataset we use as basis for our simulations, we 
propose to model pooled array data from them and experi-
ment our strategy with the simulated pools. The strategy 
consists in combining a probabilistic pattern-consistent reso-
lution of the pools and genotype imputation. The genotyping 
accuracy from pooled data was the highest with a coalescent 
model, which performed better than the haplotype clustering 
model implemented in Beagle.

Despite the small reference panel used and the differences 
in allelic frequencies with the study population, we obtain 



Theoretical and Applied Genetics          (2024) 137:26  Page 13 of 15    26 

high genotype concordance and low cross-entropy after 
pooling and imputation, even without pedigree information. 
Pooling benefits the low-frequency variants the most, as it 
was the case with human data, even with a simpler algorithm 
for resolving the pools.

Being able to achieve high accuracy with reference panels 
of small size is advantageous with regard to the computa-
tional cost and the expenses for genotyping the reference 
panel are lower. Moreover, it might be possible to augment 
the size of the study population (inbred lines) without the 
need for enlarging the panel of founders or sacrificing the 
accuracy of imputation.

With the pooling design we investigate, we test in each 
pooling block the genotype of 8 pools instead of 16 single 
samples and therefore achieve a cost reduction in 50% for 
the microarray testing equipment. We observe a better reso-
lution of the pools in wheat data compared to human data, 

which could be explained by the full homozygosity in the 
population of inbred lines, decreasing the level of residual 
ambiguity after pool decoding.

Based on the highly successful simulation results, we 
believe that it would be worthwhile to explore the true chal-
lenges of applying the approach to real array data with the 
added challenges from conducting pooling in practice.

Algorithms

Algorithm 1 describes the deterministic rules for resolving 
the pools of the row-column design into individual geno-
types. The decoding procedure assumes that any individual i 
is homozygous at any loci j, such that the outcomes are gen-
otypes that are either homozygous or completely missing.

Algorithm 1  Homozygous genotype decoding with a NORB pooling design

1: Consider the pool k:
2: for all j do
3: for all i do
4: if {Pijk = 0}, i ∈ k then
5: Gij ← (1, 0, 0)
6: else if {Pijk = 2}, i ∈ k then
7: Gij ← (0, 0, 1)
8: else if {Pijk ∈ {0, 1}}, i ∈ k then
9: Gij ← (1, 0, 0)

10: else if {Pijk ∈ {1, 2}}, i ∈ k then
11: Gij ← (0, 0, 1)
12: else if {Pijk = 1}, i ∈ k ∩ {Pijk = 0}, i /∈ k then
13: Gij ← (0, 0, 1)
14: else if {Pijk = 1}, i ∈ k ∩ {Pijk = 2}, i /∈ k then
15: Gij ← (1, 0, 0)
16: else
17: Gij ← (0.5, 0, 0.5)
18: end if
19: end for
20: end for
Pijk is the integer genotype of the kth pool at the jth marker in which the individual
i participates. Gij are the genotype probabilities of the ith individual at the jth
marker.

Supplementary information

The simulations conducted can be reproduced via a work-
flow which can be found at https:// github. com/ camcl/ pooli 
mpute SNPs. This workflow uses source codes that are acces-
sible at https:// github. com/ camcl/ genot ypool er/ tree/ magic 

wheat (genotypooler) and at https:// github. com/ scico mpuu/ 
proph aser/ tree/ multi level (prophaser).
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