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Abstract 

This project’s goal was to assess both the challenges of implementing the Deep Q-Learning 

algorithm to create an autonomous car in the CARLA simulator, and the driving performance of 

the resulting model. An agent was trained to follow waypoints based on two main approaches. 

First, a camera-based approach, which allowed the agent to gather information about the 

environment from a camera sensor. The image along with other driving features were fed to a 

convolutional neural network. Second, an approach focused purely on following the waypoints 

without the camera sensor. The camera sensor was substituted for an array containing the 

agent’s angle with respect to the upcoming waypoints along with other driving features. Even 

though the camera-based approach was the best during evaluation, no approach was 

successful in consistently following the waypoints of a straight route. To increase the 

performance of the camera-based approach more training episodes need to be provided. 

Furthermore, both approaches would greatly benefit from experimentation and optimization of 

the model’s neural network configuration and its hyperparameters.  
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Populärvetenskaplig Sammanfattning

I detta projekt har en metod fr̊an förstärkningsinlärning vid namn Deep Q-Learning
(DQN) implementerats med hjälp av Python och PyTorch. DQN är förstärknings-
metoden Q-Learning parad med neuronnät. Syftet med denna metod var att lära
en modell att köra en bil i en stadsmiljö genom att följa vägpunkter. Stadsmiljön
samt bil- och körfysiken har tillhandah̊allits av simulatorn CARLA.

Projektet har fokuserat p̊a implementation och optimering av förstärkningsinlärn-
ingsmetoden DQN, för att skapa en självkörande bil i CARLA. Målet var att
bedöma b̊ade utmaningarna med att använda DQN för att träna modellen, samt
framförandet av den självkörande bilen fr̊an den tränade modellen.

Under projektets g̊ang uppstod tv̊a huvudsakliga tillvägag̊angssätt. Det första in-
nebar att agenten som styr bilen huvudsakligen fick information om världen fr̊an
en kamerasensor placerad p̊a bilen. Agenten fick ocks̊a information om hur l̊angt
bort nästa vägpunkt är, agentens vinkel gentemot vägbanans riktning, samt agen-
tens fart. Bilden fr̊an kamerasensorn matades till ett faltningsnätverk där utdatan
sammanfogades med resten av informationen innan allt matades till det första
lagret i neuronnätet. Därefter approximerade neuronnätet den bästa handlingen
för stunden.

Det andra tillvägag̊angssättet var riktat till att göra det lättare för agenten att
enbart lära sig följa vägpunkterna, genom att avlägsna kamerasensorn. Istället
använde sig agenten av information tillhandah̊allen enbart fr̊an en lista. Inform-
ationen bestod av vinkeln mellan agentens bil och de nästa 15 vägpunkterna,
agentens avst̊and till mitten av vägbanan, agentens vinkel gentemot vägbanans
riktning, och agentens fart. Denna informationslista matades till neuronnätet som
approximerade den bästa handlingen.

De tv̊a tillvägag̊angssätten, där det sista sättet utfördes tv̊a g̊anger; en g̊ang utan
byggnader i simulationen och en g̊ang med, tog ungefär 48, 40 samt 40 timmar
att träna 16000, 40000 och 40000 episoder. Även om tillvägag̊angssättet med
kamerasensorn gav det bästa resultatet under utvärderingen, lyckades ingen av
dem kontinuerligt följa vägpunkterna p̊a en rak väg. Metoden med kamerasensorn
hade med fördel behövt fler träningsepisoder för att förbättra sin prestation, vilket
tiden inte räckte till för. Utöver detta, skulle experimentering med neuronnätets
uppställning, samt dess hyperparametrar för att optimera modellen ha störst bety-
delse för tillvägag̊angssättens inlärning.
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1 Introduction

1.1 Background

Machine learning is an increasing part of our day-to-day lives. It can help us solve
many problems with greater ease and speed. Everything from identifying melan-
oma [1] to companies tailoring their commercials to a certain demographic [2].
Another particular issue that can be improved by machine learning is the one of
road safety.

According to WHO global status report on road safety 2018 [3], deaths on the
roads have increased every year since 2000 and is the leading cause of death for
people between the ages 5-29. Among the key risk factors for accidents are speed
and driving under the influence. Additionally, humans have a tendency to lose
attention, be uncertain of traffic rules, or have slow reaction times. These risk
factors are all a consequence of our inherent flaw of human error. This flaw cannot
be removed, but it can be mitigated in certain situations.

Autonomous driving is one such way to mitigate human error when driving. In
particular, autonomous driving refers to the concept of a vehicle driving using
machine learning, without a human controlling it. The vehicle uses sensors such
as cameras, LiDAR, radar, etc., to gather data from the surrounding environ-
ment [4]. Many accidents could be avoided if a self-driving vehicle, trained to
obey all traffic rules, without being distracted, and simultaneously taking swift
actions with quicker reaction times than humans, were to be put into action in the
real world. Driving under the influence would no longer be an issue, and driving
while fatigued never a risk.

Several car manufacturers have already incorporated parts of autonomous driving
into their cars, e.g. cruise control or lane assist, and some have begun the journey
towards complete autonomous driving [5]. However, this is a difficult task to
accomplish, but by using machine learning methods such as reinforcement learning,
it can become a reality.

Reinforcement learning is an area of machine learning that has grown popular
within the category of games. It consists of an agent exploring an environment
to find a set of actions that would maximize a cumulative reward. It is a relat-
ively recent introduction within machine learning, having been introduced in the
1980s [6]. Only recently, in 2016, a reinforcement learning agent by the name
AlphaGo [7] beat a master at the complex game of Go.

Reinforcement learning mainly constitutes a trial and error process. Q-Learning
is one method within reinforcement learning and the focus of this project. This

1
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method calculates and saves the reward for a specific action taken in a specific
state in a table. Essentially, this is how an agent learns which actions to take.
However, what happens when there are many states and many actions? In that
case, the action-reward table would become too computationally expensive to use.
This is what deep reinforcement learning (DRL) aims to solve by using a deep
neural network.

In autonomous driving, the states are normally represented by high-dimensional
data from cameras and other sensors. Instead of calculating the action-reward for
every state and saving it to a table, DRL uses a deep neural network to approximate
the reward of each action from the high-dimensional data, making it possible to
solve complex problems that require a large amount of data [8], [9]. This method
is known as Deep Q-learning (DQN) [10].

Training a vehicle safely requires a realistic driving simulator such as CARLA [11].
This is an open-source simulator for autonomous driving research built upon Un-
real Engine. CARLA provides many features, e.g. pre-built city maps, Python
API, autonomous driving sensor suite, actors, traffic manager, among many others
outside the scope of this project. These features allow the focus of this project to
be on the implementation of one autonomous vehicle in a life-like city environment,
given that CARLA can provide the city map, other vehicles, pedestrians, and the
control of these within the program.

1.2 Project Goals

This project focuses on the implementation and optimization of the reinforcement
learning method deep Q-learning, to construct an autonomous vehicle in the open-
source autonomous driving simulator, CARLA. The goal is to assess both the
challenges of using DQN for an autonomous vehicle in a city environment, and
the driving performance of this algorithm when the environment moves towards
more realistic scenarios. Mainly, an environment consisting of other vehicles, traffic
lights, and pedestrians. This goal is achieved by answering the following questions:

• What is the rate at which the DQN algorithm converges during training?

• How stable is the DQN algorithm during training episodes?

• How well will the trained autonomous vehicle follow the designated route?

• How consistent will the trained autonomous vehicle be when following the
same route?

• Can the autonomous vehicle avoid collisions and follow traffic rules?

2
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1.3 Related Work

Recent work in the field of autonomous driving through neural networks have show-
cased significant progress. This section provides an overview of some noteworthy
developments in this domain. For more information on the topic, the survey in [12]
is a great starting point.

In the pursuit of more streamlined autonomous systems, researchers have explored
end to end approaches using Convolutional Neural Networks (CNNs). This ap-
proach, presented in [13], involves training a CNN to map raw pixels from a front-
facing camera directly to steering commands. This system has shown that CNNs
are able to learn the task of lane following in diverse conditions, which signifies
remarkable progress in the world of self-driving vehicles.

However, in [13], the network was given control over lane and road following only,
when the agent approached an intersection or a lane change was required, a human
driver had to take over. A solution to this is presented in [14], where an agent is
trained via imitation learning and at test time is driving based on visual input as
well as by responding to navigational commands. In theory, this solution would
allow a passenger to provide input on which lane the agent should drive in or which
turn to take.

Online training of a reinforcement learning agent, where the agent gathers data
from the environment first-hand, is time-consuming. By training multiple agents
in parallel, the training time can be decreased. However, for CARLA, this is
especially resource intensive. In [15], two distributed asynchronous multi-agent
reinforcement learning algorithms are presented to address this issue. It is demon-
strated that the methods proposed can accelerate the online training of an agent
on the CARLA simulator. This method could further increase the speed at which
self-driving vehicles are developed.

Furthermore, recent work in autonomous driving using DRL and CARLA consist
of the implementation and comparison between the algorithms DQN and Deep
Deterministic Policy Gradient (DDPG) in [16]. This work concluded that it was
successful in implementing both DQN and DDPG to control the navigation of a
vehicle. They also found that DDPG obtained better performance and driving
more similar to a human.

The aim of this project is to implement the DQN algorithm in a life-like scenario
provided by the CARLA simulator. As opposed to the recent work in [16], the
focus of this project is purely on the implementation, optimization, and evalu-
ation of DQN when put into a realistic scenario incorporating other vehicles and
pedestrians.

3
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2 Theory

In this section, theory about the topics used in this project is provided. It begins
with neural networks and the basics of reinforcement learning, and ends with the
concept of Q-learning and DQN.

2.1 Neural Networks

Neural networks are the foundation of DQN. They are inspired by the human
brain’s network of neurons. The structure of a neural network is typically built of
layers: 1 input layer, at least 1 hidden layer and 1 output layer, see Figure 1. The
layers contain nodes (neurons) that are connected to each node in the next layer.

The input layer is a vector x with the dimensions (n, 1), where n is the number of
input features. The hidden layers apply weights to the information passed through
the layers. Consider 1 hidden layer, for the i-th node in the hidden layer, we
compute a weighted sum of the inputs and apply a non-linear activation function,
such as the rectified linear unit function (ReLU(y) = max(0, y)) to introduce
non-linearity,

ReLU

(
n∑

j=1

(xjwij) + bi

)
,

where xj represents the i-th input, wij corresponds to the weight applied between
the j-th input and i-th hidden layer node, bi is the bias term for the i-th node,
which allows the network to shift the activation function. The output layer is the
final layer that adjusts the output from the hidden layers to the final output, which
for reinforcement learning is the approximated Q-value for each action. Similar to
the hidden layer, each node in the output layer calculates a weighed sum of the
hidden layer output and applies an activation function.

The neural network learns by minimizing a loss function by updating the network’s
weights and biases, typically using gradient descent. This process of learning is
called backpropagation [17].

When using images to feed a neural network, the most common approach is to
use a convolutional neural network (CNN). The point is for the neural network
to extract features of the input image. There are three main layers in a CNN:
convolutional layer, pooling layer, and fully-connected layer [19], see Figure 2.

The convolutional layer is the first layer the image is fed to. This layer produces
a convolution of the image, which entails using a 2D filter that moves across the
entire image and calculates a dot product between the weights of the filter and the
pixel values spanning the size of the filter. Each filter operation is collected into

4



Evaluation of Deep Q-Learning Applied to City Environment Autonomous Driving J. Wedén

Figure 1: Simple example of a neural network [18].

Figure 2: Diagram of basic CNN architecture [20].

an output array and is known as a feature map. To establish nonlinearity in the
model, a ReLU function is applied to the complete output array.

The pooling layer reduces dimensionality of the array to help reduce the complexity
and improve the efficiency of the network. Like the convolution layer, the pooling
layer places a filter on top of the array, but instead of calculating the dot product
between the weights of the filter and the array, it applies either max pooling or
average pooling. Max pooling involves taking the maximum of the pixel values
within the filter to send to the output array, and average pooling taking the average
of the pixel values.

The final layer is the fully-connected layer. This layer is in charge of classification
based on the features extracted from the previous layers. For this project, this is
the layer that finally produces the approximated Q-values for each action available.

5
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2.2 Reinforcement Learning

Reinforcement learning is a collective term for a multitude of algorithms that aim
to instruct an agent to take actions in order to maximize a cumulative reward.
The focus of this project is the algorithm known as Q-learning, and, when paired
with neural networks, Deep Q-Learning.

The agent in reinforcement learning is an entity that takes actions. We can think
of this agent as a person. The environment could be a city this person has never
been to. The problem could be that the person is set free in the middle of the
city with the goal to find the closest restaurant. What the person observes is what
is called the state, which, of course, is derived from the city environment. We
allow the agent to explore the city and send them rewards when they walk in the
right direction. Hopefully, the person will figure out, based on the rewards, which
actions lead to the correct direction and finally reach the restaurant. This is the
essence of reinforcement learning.

Figure 3 shows a diagram of the interaction between the agent and the environ-
ment, as described in the previous paragraph. The agent takes an action, which
affects the agent’s relationship to the environment. Based on the effect of the
agent’s action, the agent receives a reward and the next state. The process is then
repeated.

Figure 3: The interaction between the agent and the environment [6].

2.2.1 Markov Decision Process

The decision process of a reinforcement learning agent can be described by the
Markov Decision Process (MDP), see [6, Chapter 3]. The MDP is a mathematical
framework essential in reinforcement learning to model and solve decision-making
problems.

The MDP is defined as a 4-tuple (S,A, p,R), where:

• S is the state space, containing a set of states,

6
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• A is the action space, containing a set of actions,

• p(s′, r | s, a) is the probability that action a in state s will lead to the next
state s′ and the reward r,

• R is the reward received when moving from state s to the next state s′.

The probability distribution denoted as

p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r | St = s, At = a}, (2.1)

plays a vital role in reinforcement learning and MDPs. In this equation, the
variables are defined as follows: St+1 = s′ represents the next state, Rt+1 = r the
next reward, St = s signifies the current state, and At = a corresponds to the
action chosen in the current state, see Figure 3.

The probability, states, and actions, are what defines the dynamics of an MDP. The
goal is often to maximize the received rewards. Therefore, given the quantities in
(2.1), the agent’s decision-making process can be optimized to identify the actions
that yield the greatest cumulative rewards.

2.2.2 Q-Learning

The Q-learning algorithm paired with a neural network is known as Deep Q-
learning, which is the focus of this project. Before describing the theory behind
DQN, the basis of the regular Q-learning algorithm will be explained in this section.

The Q-Learning algorithm is a fundamental technique used to train an agent to
make decisions within an environment. The agent explores the environment with
the goal of learning an optimal policy, often denoted π. The policy π is found
by estimating the value of each action for every state, known as the Q-value.
The expected future reward of taking a specific action in a given state is what
the Q-value represents. The policy π specifies which action the agent will take.
Throughout the learning process, the agent continually updates the Q-values [6].

The process is as follows:

1. Initialization of Q-Table: Initialize the Q-table for each state-action pair,
arbitrarily. This process is executed once at the start of the learning phase.

2. Action Selection: At each step, the agent selects an action, denoted as a,
based on its current state s following a specified policy π.

7
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3. Action Execution and Observation: The agent executes action a, inter-
acts with the environment, and observes both the immediate reward r, and
the subsequent state s′, as a consequence of taking action a.

4. Q-Value Update: The Q-value for the current state-action pair (s, a) is
updated according to the Q-learning equation, see [6, Chapter 6.5]:

Q(s, a) = Q(s, a) + α[r + γmax
a

(Q(s′, a))−Q(s, a)]. (2.2)

Here α represents the learning rate, γ the discount factor applied to future
rewards, and maxa(Q(s′, a)) signifies the maximum Q-value achievable in
the net state s′ by considering all possible actions.

5. State Transition: The agent updates its current state s to be the next
state s′ observed after taking action a.

With the completion of this process, the agent has a fully updated Q-table. With
this Q-table, the agent can determine the next action for each state by selecting
the action associated with the highest Q-value.

2.2.3 Deep Q-Learning

Regular Q-Learning is most useful for simpler tasks, with an environment that
possess a limited amount of actions and states. When the number of actions and
states increase, the Q-table will become too computationally expensive. Therefore,
the incorporation of a deep neural network to Q-learning has been contrived, with
the idea that the neural network will approximate the Q-values for each action.

The input to the neural network will be the state s, and in turn the network will
approximate the optimal Q-value function

Q∗(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + · · · | st = s, at = a, π], (2.3)

which is the maximum sum of rewards rt discounted by γ at each time step t,
achieved by a policy π after an observation s and taking an action a [10]. The
agent will choose the action with the highest Q-value, as in regular Q-learning,
but through gradient descent the weights in the neural network will be updated
instead of a Q-table [21].

When a neural network is used to approximate the Q-values, challenges related
to stability and convergence arises. There are several causes to the instability.
First, often in reinforcement learning, an agent experiences correlated observations
over time. Learning from correlated data can introduce bias, which can lead to
instability. Second, when the Q-function is updated within the neural network,

8
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small changes can change the policy π. This can affect the data distribution of
the observed states and actions, which can make learning unstable. Third, the
correlations between the Q-values and the target values r + γmaxa Q(s′, a) can
affect the learning process and lead to instability.

The instabilities are mitigated by two techniques, experience replay, and target
network. Experience replay stores the agent’s experiences et = (st, at, rt, st+1) at
each time-step t in a data set Dt = {e1, . . . , et}. Q-learning updates are applied on
randomly drawn mini-batches of experience from the stored samples to break the
correlation between consecutive experiences. A target network is a separate neural
network copy of the primary network used to stabilize the training. This network
computes the target values periodically and is updated less frequently than the
primary network, reducing correlations with the target.

During training, the loss is calculated from the Mean Squared Error (MSE) between
the target value r + γmaxa Q(s′, a), and the approximated value Q(s, a). Minim-
izing this loss leads to the optimal Q-values.

The process of the DQN-algorithm during training starts by initializing the main
Q-value network, the target Q-value network, and the experience replay storage.
The agent is trained in an episodic fashion, where for every time-step of an epis-
ode, the agent either chooses the most optimal action or a random action with
probability ϵ. At every time-step of an episode, the agent interacts with the en-
vironment, takes an action, observes the next state and reward, and stores these
into the experience storage. During training, the agent samples a random mini-
batch from the storage to update the network. The target network is updated less
frequently than the primary network, and an MSE loss is calculated between the
two. Afterward, gradient descent is used to update the network’s weights.

Furthermore, a technique called ϵ-greedy with ϵ-decay can help the agent learn
faster by forcing the agent to explore new actions. At the beginning of the training,
ϵ is set to a high value, e.g. ϵ = 0.7, to make it more probable that the agent chooses
a random action. However, for every time-step, ϵ is decreased a small amount until
it reaches a minimum ϵ. This is called ϵ-decay. This technique ensures the agent
maximizes exploration at the beginning of training while slowly converging to a
more greedy approach, where the agent only chooses the most optimal actions.

The DQN-algorithm’s behavior and performance is influenced by a set of para-
meters known as hyperparameters, which are set before the training commences.
Some of these hyperparameters are [22]:

• Learning rate α: This determines the step-size taken during the gradient des-
cent optimization process. A higher value could result in faster convergence,

9
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but could also overshoot the optimal value.

• Discount factor γ: To determine the weight given to future rewards, the dis-
count factor is used. A value closer to 0 results in more weight to immediate
rewards, while a value closer to 1 gives more weight to future rewards.

• Batch size: Number of experiences pulled from the experience storage and
used during each training update. Larger batch sizes can help the agent
learn more quickly, but requires more computation.

The hyperparameters require tuning to find the values that give the best results.

2.3 Using Deep Q-Learning to Learn Driving

To teach an agent to drive using the DQN-algorithm, the problem first needs to be
structured as an MDP to model the agent’s decision-making and define the states,
actions, and rewards. In DQN, the primary objective is to learn the Q-value
function, see (2.2), and then find an optimal policy that maximizes the expected
future rewards, see (2.3).

For the agent to be able to learn well, the action space and reward function needs
to be well-defined. In our context, actions should consist of various turn radii and
acceleration values, to allow the agent to navigate the environment. Equally, the
design of the reward function is vital to serve as a guide towards desirable driving
behavior.

Neural networks play an important role within DQN to approximate the Q-value
function, where a state defined in the MDP serves as the input to the neural net-
work. When driving, the agent can observe the state from onboard sensors, often
a camera, resulting in an image for each time-step, where its pixel values form the
input to the neural network. The network’s output consists of the approximated
Q-values for every possible action.

During training, the weights of the neural network are updated using gradient
descent driven by the MSE loss between the predicted Q-values from the primary
network and the Q-values from the target network. To stabilize training and break
correlation in observations, the agent’s experiences (state, action, reward, next
state) at every time-step are stored in a replay buffer, and is randomly sampled in
mini-batches during the training.

3 Method

In this section, the method of using a DQN together with CARLA is explained.

10
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The basic overview for the method of teaching an agent to drive a car was to
use CARLA to handle the simulation of the city, its vehicles, pedestrians, and
the agent vehicle. CARLA provided the sensors to receive data of the current
state, in this case an RGB image, see Figure 7. The sensors also detected whether
the vehicle has collided or violated traffic rules by crossing a solid lane marker.
Furthermore, CARLA also provided the means to control the agent vehicle.

To teach the agent, the DQN-algorithm described in section 2.2.3 was implemented
together with a CNN. The CNN received the RGB image from the camera sensor
as input and output approximated Q-values for the actions, see Figure 4. The
agent chose the best action approximated by the CNN at every step in an ϵ-greedy
policy, and learned from experience using the experience replay introduced in the
DQN-algorithm.

Furthermore, a simpler approach, comparable to the similar approach in [16] was
also explored. This approach did not use an image sensor to observe the environ-
ment, hence it did not need a CNN, only a regular neural network. For this, the
input state consisted of an array of various vehicle- and waypoint-information, see
Figure 5. The output and the rest of the algorithm worked in similar fashion to
the more advanced camera-based approach.

To maximize the computational speed, the code used the PyTorch package Torch
CUDA (v. 1.13.1+cu117) to utilize a dedicated GPU for computations. The
training and validation was running on the following system specifications:

• GPU: GTX 1070.

• CPU: i7-7700k @ 4.20 GHz.

• RAM: 16 GB DDR4.

• OS: Windows 10 v. 19045

3.1 CARLA

This section is dedicated to presenting how CARLA (v.0.9.13) was used in this
project.

The map used in CARLA is called ”Town10”, and is a city containing junctions
with traffic lights, crosswalks, stop signs, and different lanes, among others, see
Figure 6. Namely, an urban environment filled with typical traffic rules belonging
to a city. In this project, only this map has been considered, primarily because it
possesses every main property of city-driving.

To place a vehicle in the city, the type of vehicle was chosen from the CARLA
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Figure 4: The structure of choosing an action for the approach with camera.

blueprints and was spawned on a chosen coordinate. The destination was chosen
as coordinates to another part of the city.

Using the built-in route planner, waypoints from the location of the vehicle spawn
to the destination were generated with a chosen spacing in meters. The waypoints
took the appearance of green rectangles, which distinguished them from the rest
of the environment.

CARLA provides various sensors that can attach to the car. Some examples are:
RGB camera, collision sensor, depth camera, radar, LiDAR, and lane invasion.
In this project, only the RGB camera, collision sensor, and lane invasion sensor
were used. The RGB camera provided data of the current state to the CNN, the
collision as well as the lane invasion sensor recorded any collision or violation of
lane marking which ended the episode.

The vehicle was controlled using built-in methods. These methods were applied
to the vehicle as the actions that were taken. Controlling a vehicle in reality is
more advanced than discrete actions, but because DQN works best with discrete
actions and to avoid having many actions, they have been limited to four types in
the camera-based approach.
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Figure 5: The structure of choosing an action for the approach without camera.

Figure 6: Bird’s-eye view of CARLA’s Town10.
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3.2 Deep Q-Learning

Because the agent observed the environment using a camera sensor provided by
CARLA in the camera-based approach, see Figure 7, the DQN algorithm was
implemented with a CNN to be able to extract features from the camera image.
The CNN was implemented using the PyTorch library (v. 1.13.1+cu117) [23]. In
the camera-free approach, the convolutional part of the CNN which deals with
images was not needed.

Figure 7: The vehicle’s perspective from the camera sensor in 128x128 RGB.

3.2.1 Markov Decision Process

The problem considered in this project can be structured as an MDP, see Sec-
tion 2.2.1. At every step, the agent observes the current state of the environment,
takes an action based on this, and receives a reward for that action. This repeats
until the goal is reached. The MDP 4-tuple was defined as:

• State space S: The state at each step was what the agent observed through
the camera sensor, as well as additional features extracted from the environ-
ment, namely,

– d, the agent’s Euclidean distance to the next waypoint in m,

– θ ∈ [0, 360], the agent’s angle to the lane heading,

– v, the agent’s speed in km/h.

The image obtained from the camera sensor was fed to the CNN, and the
output was concatenated with the additional features before the first fully
connected layer.
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For the camera-free approach, the state space had to be modified such that
the agent could learn where to go without using a camera sensor. Therefore,
the state space here consisted of

– An array of relative angles between the agent and the next 15 waypoints.
The array is similar to a queue. When the first waypoint was reached,
it was removed from the array and another waypoint was appended at
the end, always maintaining an array of 15 waypoints.

– dc, Euclidean distance to the center of the lane in m.

– θ ∈ [0, 360], the agent’s angle to the lane heading.

– v, the agent’s speed in km/h.

• Action space A: The agent’s actions in CARLA with the camera-based
approach were defined as 4 discrete actions, as in Table 1. The camera-
free approach had 27 discrete actions, see Table 2, to better compare to the
method in [16]. In CARLA, the range of throttle and steer are: Throttle ∈
[0, 1], Steer ∈ [−1, 1]. In action No. 3 in Table 1 the steering remained the
same as the previous step.

• The probability function: p(s′, r | s, a), see (2.1), which was used to find the
optimal policy in the agent’s decision process.

• The reward function R: The agent was both rewarded and punished. For
the camera-based approach, the reward was received when driving straight in
relation to the lane, below the speed-limit, and driving within 3 meters of the
next waypoint (boolean W ∈ 0, 1). It was punished for collisions (boolean
C ∈ 0, 1), crossing solid lane markings (boolean, L ∈ 0, 1), and driving faster
than the speed-limit. Thus, the reward function was defined as:

if v < speed-limit:

R(d, θ, v,W,C, L) = v · cos(θ) + 100 ·W − 200 · C − 200 · L, (3.1)

else:
R(d, θ, v,W,C, L) = −v + 100 ·W − 200 · C − 200 · L, (3.2)

where the weights were based on the weights in [16].

The camera-free approach was different, but has some similarities. The agent
was rewarded for driving straight and close to the center of the lane, and for
reaching the next waypoint. It was also punished for colliding, and crossing
solid lane markers. When the agent was in the lane, the reward function was
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defined as

R(dc, θ, v,W ) = |v · cos θ| − |v · sin θ| − |v| · |dc|
+ 100 ·W − 200 · C − 200 · L. (3.3)

The reward was inspired by the reward function used in [16], to be able to
better compare the two models.

Table 1: A set of the available actions the agent could choose from in the camera-
based approach. Throttle ∈ [0, 1], Steer ∈ [−1, 1]. In action 3, the steering
remained the same as in the previous step.

Action Throttle Steer
0 0.5 -0.1
1 0.5 0
2 0.5 0.1
3 0 -

Table 2: A set of the agent’s available actions for the camera-free approach.
Throttle ∈ [0, 1], Steer ∈ [−1, 1]. Every throttle value was combined with every
steering value, resulting in 27 actions.

No. of Actions Throttle Steer
27 0, 0.5. 1 -1, -0.75, . . . , 0.75, 1

3.2.2 Training and Validation With Camera

The agent was trained in an ϵ-greedy fashion on pre-determined routes, where
waypoints were placed along the center of the lane the agent was to follow. The
waypoints could be seen in the world and the agent could see them through the
camera sensor (Figure 7). The input to the CNN were the images from the camera
sensor, with the output being concatenated with the agent’s distance to the next
waypoint, its angle from the lane heading, and its speed, then fed into the first
fully-connected layer. The states and inputs were saved in the agents’ experience
replay storage, helping it learn from experience. The agent was rewarded and
punished based on its actions, see the reward functions (3.1) and (3.2).

Furthermore, the agent was also punished if it were to have a collision or cross
solid lane markings, with the intention that the agent would avoid collision and
stay within the lane. The latter two punishments were also terminations of the
episode, meaning that the episode would terminate, and a new one begin, if these
occur.
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When all training episodes were finished, the model was saved and validated on
one straight route during 50 episodes, to assess whether the agent was capable of
staying within the lane and follow the waypoints. The straight route was chosen
as evaluation because it was the simplest, and gave a clear indication of how well
the agent had learned.

3.2.3 Training and Validation Without Camera

Similar to the camera-based approach, the agent was trained in an ϵ-greedy fashion,
but on random routes. The waypoints were placed along the center of the lane the
agent was supposed to follow. Because the agent was not using a camera to see the
waypoints, the angles between the agent and the next 15 waypoints were sent to
the agent as a part of the state. The angles towards the waypoints were updated
every step. This gave the agent an idea of where to go. The state was one array,
with the waypoint angles between the agent and the waypoints, concatenated with
the distance to the center of the lane, the angle from the lane heading, and the
agent’s speed. This state array was fed into the first fully-connected layer. The
agent’s experiences were saved to the experience replay storage to allow the agent
to learn from experience. The agent was rewarded and punished based on its
actions, as defined by (3.3). Furthermore, when the agent crosses a solid lane
marker, or collide, the episode would terminate, and a new episode would begin.

When the training was finished, the model was saved and validation was com-
menced on a straight route, to assess how well the agent had learned to stay inside
the lane and follow waypoints. Validation was performed for 50 episodes.

3.2.4 Approaches

Several different training approaches, displayed in Table 3, have been considered
when solving the problem.

Table 3: Training approaches considered during training of the model.

Approach Image Routes Action Set Buildings
3.1 128x128-RGB 4 Table 1 No
3.2 No Image Random Table 2 No
3.3 No Image Random Table 2 Yes

Approach 3.1 in Table 3 was using the camera sensor with additional features
consisting of the agent’s distance to the next waypoint, its angle from the lane
heading, and its speed, concatenated to the output of the CNN before the first
fully connected layer.
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Approaches 3.2 and 3.3 in Table 3 did not use the camera sensor and therefore
needed only a regular neural network. Instead, these approaches used a state array
containing the angles between the agent and the next 15 waypoints, the distance
to the center of the lane, the agent’s angle to the lane heading, and the agent’s
speed. This state array was fed to the first fully-connected layer in the neural
network.

The goal of using an RGB image was to make it easier for the agent to distinguish
the waypoints and important signs from the rest of the environment compared
to using a grayscale image. However, by transforming the image to grayscale,
effectively removing 2 dimensions, should result in a reduction of the computational
load.

With the 4 different routes approach, the training of the agent took place on 4
crafted routes. At the beginning of each episode, a route was chosen randomly,
and the agent was spawned at the beginning. The ”Random” value for the routes
in Table 3 refers to the start position and destination being chosen completely
at random among the city maps spawn points. The waypoints were generated as
usual.

The last column in Table 3 named ”Buildings” refers to if the map was with or
without buildings. With buildings the environment was a complete city, contain-
ing multiple story buildings, parking houses, museums, etc. However, without
buildings, the environment contained only the roads. It was theorized that for the
camera-based approach, the buildings might interfere with the CNN and distract
the agent from learning where the waypoints were. Furthermore, the buildings
could also have an impact on the performance of the CARLA program.

3.2.5 Route Design

The 4-route approach was more focused on teaching the agent to specifically accom-
plish the driving and waypoint-following task. In essence, each route was designed
for a particular action. The routes were: sharp left turn in junction, straight lane,
soft right turn in lane, and soft left turn in lane. The waypoints for these routes
had to be placed in the city at the same time. Hence, the waypoints had to be
placed such that the agent would not see any of the waypoints belonging to the
other routes, when it was driving one route. As a result, a route incorporating a
sharp right turn was not feasible.

The completely random route design was only used in the camera-free approach,
where the goal was for the agent to only learn to follow the waypoints. This
route design was meant to help the agent learn quicker by exploring many different
routes. This route design was incorporated in the later stages of this project, when
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training of approach 3.1 in Table 3 had already been completed and validated.
Therefore, this route design was not used in approach 3.1.

4 Results & Discussion

In this section, the results from the approaches in Table 3 will be presented, to-
gether with discussion about their results.

4.1 Evaluation Method

The evaluation method used in this project was to let the agent try to follow a
straight route for 50 episodes, with a 20-second time limit. The assessment was
based on how far the agent managed to drive this route without driving outside
the lane. For a well-trained model, the agent should be able to complete this route
within 20 seconds. An image of the route is presented in Figure 8.

However, there were various ways to evaluate the driving of the autonomous
vehicle. Some examples are:

• distance driven without human intervention.

• time driven without human intervention.

• number of times the agent successfully reached a destination within a time
limit.

• average distance driven between traffic violations.

These are mostly evaluations on a smaller scale. Naturally, there are larger
scale evaluation methods, such as the Quantitative Evaluation for Driving (QED)
method proposed in [24]. QED aims to assess several features of the driving within
one scoring method. Some of the included features are the ability to stay in the
center of the lane, follow the speed limit, and avoid collisions.

Since this project was focusing more towards the implementation of the DQN
algorithm and its challenges for an autonomous vehicle, an advanced evaluation
method, such as QED, was not considered.

4.2 Training and Validation

During training, the agent learned for a maximum of 20 × 103 episodes with an
ϵ-greedy policy with ϵ starting on 0.9 and ending on 0.1, with ϵ-decay set to
4 × 10−5 in the camera-free approach. In the camera-based approach, the agent
was trained on intervals of 2 × 103 episodes, and no maximum training episodes
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were set. Therefore, the ϵ-decay was set to 4.4 × 10−4 such that epsilon started
on 0.9 and ended on 0.1 every interval. The agent’s score, average score, and loss
were plotted to assess how the agent performed and learned.

During validation, the agent performed with maximum greed, i.e. ϵ set to 0. The
agent was evaluated on a 50 episode run on a straight route, see Figure 8, with a 20-
second time limit. Likewise, the agent’s score, average score and route completion
was plotted to assess how well the agent performed.

Figure 8: The straight route, the agent was evaluated on.

4.2.1 Approach With Camera

This approach was trained for 16× 103 episodes, which took roughly 48 hours to
complete.

Figure 9a shows the average score during the 16 × 103 episodes of training. The
average score was slowly increasing as ϵ was decreasing, indicating that the agent
was learning how to gain the most reward.

Each episode’s score is displayed in Figure 9b. In some episodes, the agent received
a much higher reward than in others, namely, close to episodes 3.5×103, 5.5×103,
7.5 × 103, and 12 × 103. This is most likely due to the exploration of the agent
accidentally following the route exactly, or the route during these episodes was
considered a simpler one by the agent.

In Figure 9c, the neural network’s loss is shown. Ideally, the loss should not bounce
around as much as it did, but converge around a value. There are many reasons
for why the loss may not converge:

• Learning rate too large.
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• Batch size too large or small.

• Neural network architecture not well-suited.

• Hyperparameter tuning.

• Not enough training episodes.

Since these reasons all affect the model’s predictive capability, they would also
affect the loss.

Unfortunately, because the time investment required to train the model is very
large, it was beyond the scope of this projects’ timetable to evaluate the effect of
all these parameters.

Evaluating the camera-based approach on the straight route for 50 episodes, with
a time limit of 20 seconds per episode, yields the results in Figure 10. The figure
that best shows how well the agent performed on the straight route is the route
completion in Figure 10c. This figure displays how many waypoints of the route
the agent reached before driving outside the lane or reaching the time limit. The
most successful episode was episode 22, where the agent completed about 85%
of the route. The average route completion during these 50 episodes was 36%.
Evidently, the model had not learned enough to follow a straight route consistently.
Based on the training data presented in Figure 9, it is possible that the model
required additional training and experimentation with the neural network and its
hyperparameters in order to enhance its performance.
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(a) Average score

(b) Score

(c) MSE loss

Figure 9: Results from 16× 103 episodes training using a 128x128 RGB image as
input to the CNN. Batch size 32, learning rate 1× 10−5.
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(a) Average score

(b) Score

(c) Route completion per episode

Figure 10: Results from 50 episodes evaluation of the model trained for 16 × 103

episodes using 128x128 RGB image as input to the CNN. Batch size 32, learning
rate 1× 10−5.
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4.2.2 Approach Without Camera

Because the camera-based approach did not achieve a satisfactory result, the
method without a camera sensor (3.2, and 3.3 in Table 3) was implemented based
on the similar method in [16]. Both approaches were trained for 20 × 103 epis-
odes with the same neural network structure, batch size, learning rate, epsilon
start/end, and epsilon decay. Training these two approaches for 20× 103 episodes
took approximately 40 hours each.

The training result for approach 3.2 is seen in Figure 11. The learning rate was the
same as the camera-based approach, but the batch size was larger. When an image
no longer had to be fed to the neural network, the algorithm was faster. Therefore,
a larger batch size should have provided a more stable learning experience for the
agent without affecting the algorithm performance. However, it would have been
beneficial to experiment with different batch sizes to find the optimal one.

The per episode average score, score, and loss are displayed in Figure 11a, Fig-
ure 11b, and Figure 11c, respectively. In Figure 11a the average score per episode
was decreasing during the whole training run except around episode 15×103 where
it began to stabilize. The reason for the stabilization at the end is likely because
this was where ϵ began to reach its minimum value and the agent was starting to
use a greedy policy.

Furthermore, this approach was without the buildings present in the environment,
which allowed the agent to drive off the map in certain locations because of in-
consistencies with the lane invasion sensor, see Figure 15. When this occurred,
the agent received a very large punishment, which can be seen in the scores in
Figure 11b. Consequently, the average score was skewed because of this large
punishment.

The loss in Figure 11c seems to be trending upwards, but was stabilized until right
before episode 5× 103. Comparing this to the loss in the camera-based approach,
where the loss was never stable, this seems like an improvement. However, the loss
for approach 3.2 overall is far greater than the camera-based approach, and would
also benefit from model optimizations.

The results from evaluating approach 3.2 are displayed in Figure 12. In Figure 12c,
it can be seen that the farthest the agent reached on the straight route was around
3%, if the agent managed to reach a waypoint at all. Clearly, this approach was
not successful in learning to follow waypoints.

The training data after 20 × 103 episodes using approach 3.3 is displayed in Fig-
ure 13. With the buildings present in this approach, the agent would now collide
with an object instead of driving off the map. Therefore, the average score in
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(a) Average score

(b) Score

(c) MSE loss

Figure 11: Results from 20×103 episodes training using the camera-free approach,
3.2 in Table 3. Batch size 512, learning rate 1× 10−5.
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Figure 13a is not skewed from the unexpected punishment. Moreover, Figure 13a
shows the average score beginning to balance by episode 10×103, with a potential
to increase if further training was provided.

In Figure 13b there were some episodes where the score peaked. Visually inspect-
ing the agent while training, these were episodes where the agent followed the
waypoints well.

The loss in Figure 13c is similar to the camera-based approach, meaning that it
did not converge. The model’s performance would have likely improved if there
had been enough time to tune the hyperparameters.

When evaluating approach 3.3 on the straight route for 50 episodes using the model
trained for 20× 103 episodes, Figure 14c shows that the agent did not manage to
reach the first waypoint during any episode. Nonetheless, the agent did attempt
different actions, demonstrated by the different scores per episode in Figure 14a
and Figure 14b.

Seemingly, the agent has not learned to follow the waypoints well enough during
the 20× 103 episode training. Thus, the model most likely needs to be optimized
by tuning the hyperparameters.
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(a) Average score

(b) Score

(c) Route completion per episode

Figure 12: Results from 50 episodes evaluation of the model trained for 20 × 103

episodes using the camera-free approach, 3.2 in Table 3. Batch size 512, learning
rate 1× 10−5.
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(a) Average score

(b) Score

(c) MSE loss

Figure 13: Results from 20×103 episodes training using the camera-free approach,
3.3 in Table 3. Batch size 512, learning rate 1× 10−5.

28



Evaluation of Deep Q-Learning Applied to City Environment Autonomous Driving J. Wedén

(a) Average score

(b) Score

(c) Route completion per episode

Figure 14: Results from 50 episodes evaluation of the model trained for 20 × 103

episodes using the camera-free approach, 3.3 in Table 3. Batch size 512, learning
rate 1× 10−5.

29



Evaluation of Deep Q-Learning Applied to City Environment Autonomous Driving J. Wedén

4.3 Further Discussions

The image resolution for the camera-based approach was chosen to be 128x128,
because it was the most efficient image resolution for the computer used in this
project. Both 84x84 and 256x256 were tried. The 256x256 resolution yielded more
information, but at the same time increased the required computational resources.
The larger resolution caused the agent to sometimes not register when it reached
a waypoint, which is detrimental to the training process. The smaller resolution
of the 84x84 image gave no additional impact on the performance of the training
compared to 128x128. However, the smaller resolution contains less information
and so if the performance of 128x128 and 84x84 is satisfactory, then the larger
resolution is preferable.

The goal of implementing the camera-free approaches was to compare them to
the similar, successful, approach in [16]. Unfortunately, in [16] it is not disclosed
how the neural network was configured or how the hyperparameters were set.
Furthermore, there are differences between how the agent is made aware of the
waypoints. In this project, the agent received the relative angle between itself
and the next waypoints, which was updated each step. In [16], a transformation
matrix and the x-coordinates of the waypoints with respect to the agent, was given
to the agent to find the waypoints. Hence, it is not feasible to directly compare
the approaches. However, it is clear from [16] that this type of approach can be
trained to successfully follow waypoints within 20 × 103 training episodes, given
the right hyperparameters and neural network configuration.

Unfortunately, the lane markers in CARLA did not seem 100% consistent. In
Figure 15, the agent vehicle is seen crossing a solid lane marker without the episode
ending. CARLA included an example code that, among several features, allowed
the user to take manual control of a vehicle and alerted the user when a lane marker
was crossed. By using this code it could be confirmed that the area in Figure 15,
next to the intersection, had solid lane markers that were not recognized by the
lane invasion sensor. This made the training of the agent more difficult when it
was sometimes not punished for crossing these lane markers.
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Figure 15: Frame capture of the agent vehicle crossing a solid lane marker without
being flagged by the lane invasion sensor.

5 Conclusion & Future Work

In this project, a DQN algorithm has been implemented using Python in order
to train a model to drive a vehicle in a city environment by following waypoints.
The environment and driving physics were provided by the autonomous driving
research simulator CARLA.

Unfortunately, the method and approaches considered during this project were
not successful in training an agent to drive a car in a city environment. Before
implementing other vehicles and pedestrians, the first goal was to train the agent
to drive a short route in an empty city, without crossing the solid lane markings.
This first challenge already proved difficult for the DQN. Due to the time cost of
both training and optimizing the hyperparameters, the agent was unsuccessful in
learning how to follow a route in the amount of training episodes provided.

Furthermore, because the camera-based approach was not successful, approaches
3.2 and 3.3 in Table 3 were implemented, based on the similar approach in [16].
The goal of the latter approaches, was to learn to only follow waypoints, ignoring
traffic rules. Likewise, the model was also unsuccessful in learning to only follow
waypoints using these approaches. However, it is proved in [16] that it is possible
to train a model to accomplish this task, given an optimized neural network,
optimized hyperparameters, and enough training.

To improve upon the work executed in this project, training the agent for more
episodes would most probably result in a better model. In [16], where a similar
problem is solved using a DQN and CNN, they trained for 120×103 episodes. This
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would take at least 15 days with the approach in this project. A solution could
be to run training for several agents simultaneously to accelerate the learning.
However, this would require a more powerful system than the one used in this
project, see system specification in Section 3.

Furthermore, it could benefit the training of the camera-based approach if it was
trained on the random route design, similarly to the camera-free approach, instead
of the 4-route design. This would create several different scenarios for the agent
to learn from and decrease the familiarity of the 4-route design.

There is room to optimize the reward function with better fitting values for the
rewards and punishments. Especially, for approach 3.2, where the agent would
receive a huge punishment for driving off the map. Either driving off the map
needs to be prevented, or the punishment decreased.

In the camera-based approach, instead of letting the agent always see all the
waypoints, an improvement could be to only show the next or the two/three next
waypoints. As of now, if the route is a curve, the agent can basically see all
waypoints, which could result in confusion. Furthermore, waypoints farther from
the camera still appear as large as waypoints closer to the camera, which could
also add to confusion. All waypoints are drawn when starting the simulation using
a debug function. In the present version of CARLA, there is no way to remove
drawn waypoints without restarting the simulation, which would result in even
longer training times. Alternatively, the drawn waypoints can be set to only last a
set time. For example, the first three waypoints can be drawn for 5 seconds, then
the next three for 5 seconds, but this also poses a problem. The best would be for
the CARLA team to implement a removal function for debug elements, otherwise
another way to create waypoints is needed.

As shown in Figure 15, the lane markers were not always flagged by the lane
invasion sensor. Upon further inspection, this seemed to be the case when there was
an intersection nearby. Therefore, the training stage would benefit from ensuring
that the lane markers the agent can cross are actually being flagged by the lane
invasion sensor. Alternatively, implementing another method to identify when a
lane marker is being crossed, or when the agent leaves the lane.

Unfortunately, a large part of the project consisted of troubleshooting a CARLA
Unreal Engine 4 crashing issue in CARLA version 0.9.14, in which the program
required to run the training would crash randomly. This severely hindered the
ability to make progress on the solution of the considered problem. However, a
downgrade to version 0.9.13 did not have this issue and therefore for future work, it
is recommended to use this CARLA version or trying CARLA on a better system,
another supported OS, i.e. Linux, or finding another simulator.
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The largest improvement to the model would be to optimize the neural network
configuration, as well as experiment with the hyperparameters to find the best
suitable values for the considered problem.
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