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Abstract: We address an inference issue where the value of a covariate is measured at the date of
the survey but is used to explain behavior that has occurred long before the survey. This causes
bias because the value of the covariate does not follow the temporal order of events. We propose
an expected likelihood approach to adjust for such bias and illustrate it with data on the effects
of educational level achieved by the time of marriage on risks of divorce. For individuals with
anticipatory educational level (whose reported educational level was completed after marriage),
conditional probabilities of having attained the reported level before marriage are computed. These
are then used as weights in the expected likelihood to obtain adjusted estimates of relative risks. For
our illustrative data set, the adjusted estimates of relative risks of divorce did not differ significantly
from those obtained from anticipatory analysis that ignores the temporal order of events. Our results
are slightly different from those in two other studies that analyzed the same data set in a Bayesian
framework, though the studies are not fully comparable to each other.

Keywords: anticipatory analysis; event-history analysis; expected likelihood analysis; maximum
likelihood; retrospective surveys

1. Introduction

Consider a retrospective survey where the interest is to investigate differentials in
the risk of divorce across educational levels attained before marriage, but where avail-
able information is only respondents’ highest educational level at the time of the survey.
Common practice is to use the available information on educational level as a covariate
in modeling the risk of divorce, an event that took place before the survey. Educational
progress is likely to occur between the time of entry into marriage and the date of the
survey. The questions then are, to what extent do changes in patterns of divorce across
educational levels reflect real differences in divorce due to differences in educational level
and what portion of these changes can be attributed to misclassification of respondents
across education levels? These questions can be answered by dealing with the fact that the
covariate (education) is anticipatory and adjusting the corresponding parameters to correct
the bias inherent in the time inconsistency of the anticipatory covariate.

Hoem [1] warns that using anticipatory covariates is misleading, but concludes that
the adverse effects may be smaller in some situations. In their study of mortality clustering
in India using past births and deaths, Arulampalam and Bhalotra [2] discard anticipatory
regressors: household asset, toilet facility, electricity, or access to piped water at the date of
the survey. However, much valuable information may be lost by ignoring such covariates.
Hoem and Kreyenfeld [3,4] argue that anticipatory covariates may provide useful informa-
tion. They propose data imputation, but the procedure requires unrealistic assumptions.
Faucett et al. [5] treat anticipatory covariates as missing data and their results, based on
Bayesian techniques, gave interval estimates with higher coverage probabilities compared
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to imputation. Todesco [6] used anticipatory covariates like area of residence, education,
and religious commitment to analyze marital dissolution in Italy and concluded that use of
anticipatory analysis did not jeopardize the results.

Ghilagaber and Koskinen [7] and Munezero and Ghilagaber [8] used Bayesian model-
ing approaches and found that anticipatory analysis can lead to overestimation or under-
estimation of the relative risks associated with the anticipatory covariate. More recently,
Hoem and Nedoluzhko [9] highlighted that use of anticipatory analysis (or “negative
duration”) in estimating rates in childbearing before and after migration leads to incorrect
results and should be abandoned. In a related study, Pina-Sánchez et al. [10] suggested an
adjustment method based on a mixture Bayesian model in their analysis of restrospectively
reported work histories in Swedish register data.

In the present study, we use a maximum likelihood approach to examine any effects
of anticipatory covariates. We model divorce risks among 1312 Swedish men born between
1936 and 1964 in a piece-wise constant hazard model framework. For individuals with
anticipatory educational levels, we compute conditional probabilities that these levels were
attained before marriage. These probabilities are then used as weights in their contributions
to the likelihood function. Adjusted relative risks of divorce across educational levels are
then estimated by maximizing the weighted likelihood function. For our illustrative data
set, such adjusted estimates of relative risks did not differ significantly from those obtained
in the anticipatory analysis based on unweighted likelihood. The sign of the estimates is the
same as in the Bayesian analysis of the same data set by Ghilagaber and Koskinen [7] and
Munezero and Ghilagaber [8], but the differences between the estimates in the anticipatory
and adjusted models were significant in the two previous studies [7,8].

In Section 2, we introduce the simple two-factor multiplicative model with piece-
wise constant hazard and derive its likelihood function from which relevant parameters
are estimated. We extend this standard likelihood function to a weighted likelihood
function in Section 3 and derive the corresponding parameter estimates. In Section 4, we
illustrate our proposed approach using data on the effect of anticipatory educational level
on divorce risks among Swedish men. We summarize our findings in Section 5 by way
of concluding remarks and suggestions for future investigations. An appendix contains
omitted derivations as well as tables and figures of of our empirical findings.

2. The Multiplicative Two-Factor Hazard Model

For a sample of individuals, consider J educational levels and let Dij be the number of
divorces at marriage duration i, i = 1, . . . , I and education level j, j = 1, . . . , J for Tij years
of observed exposure to the risk of divorce. The covariate indexed by i is the grouped-time
variable (duration of marriage) measured from the date of marriage until the date of divorce
or until the interview date, whichever comes first.

Define

Di+ =
J

∑
j=1

Dij, D+j =
I

∑
i=1

Dij, (1)

D++ =
I

∑
i=1

Di+ =
J

∑
j=1

D+j =
I

∑
i=1

J

∑
j=1

Dij, (2)

and let Ti+, T+j, and T++ represent similar quantities for the exposure variable T. Divorce
risks are assumed to be piece-wise constant in each of the the I time intervals, but may vary
between intervals. The time to divorce then follows a piece-wise exponential distribution
for each educational level. The density function of the time to divorce in duration group i
for a person k with educational level j is then given by

f (tijk) = λij exp
(
−λijtijk

)
. (3)
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A multiplicative model for the hazard rate λij [11,12] corresponds to

λij = βiαj, (4)

where βi is the baseline risk of divorce at marriage-duration i and αj is the relative risk of
divorce for individuals with education level j (relative to those with the educational level
that is used as the baseline/reference).

The model in Equation (4) has I + J parameters β1, β2, . . . , β I and α1, α3, . . . , αJ . To
construct the likelihood function when Equation (4) holds, we define δijk as an indicator
of whether the kth sample member having the jth level of education is divorced (δijk = 1)
or is still married (δijk = 0) in the ith marriage-duration. From Equations (3) and (4), the
contribution to the likelihood of the nij sub-sample of individuals in the ith marriage-
duration and having the jth level of education, is obtained as

Λij =

nij

∏
k=1

(
βiαj

)δijk exp
(
−βiαjtijk

)
=
(

βiαj
)Dij exp

(
−βiαjTij

)
, (5)

where

Dij =

nij

∑
k=1

Dijk and Tij =

nij

∑
k=1

tijk.

The likelihood for the entire sample is then the product of the Λij over all levels of i and j:

Λ =
I

∏
i=1

J

∏
j=1

Λij =
I

∏
i=1

J

∏
j=1

(
βiαj

)Dij exp
(
−βiαjTij

)
, (6)

so that

ln Λ =
I

∑
i=1

J

∑
j=1

Dij ln
(

βiαj
)
−

I

∑
i=1

J

∑
j=1

(
βiαj

)
Tij (7)

=
I

∑
i=1

J

∑
j=1

Dij ln(βi) +
I

∑
i=1

J

∑
j=1

Dij ln
(
αj
)
−

I

∑
i=1

J

∑
j=1

(
βiαj

)
Tij

=
I

∑
i=1

Di+ ln(βi) +
J

∑
j=1

D+j ln
(
αj
)
−

I

∑
i=1

J

∑
j=1

(
βiαj

)
Tij.

Differentiating ln(Λ) in Equation (7) with respect to βi and, separately, with respect to
αj, equating the resulting derivatives to 0, and solving for the unknown parameters leads
to the following equations

β∗i =
Di+

J
∑

j=1
α∗j Tij

, i = 1, 2, . . . , I (8)

and

α∗j =
D+j

I
∑

i=1
β∗i Tij

, j = 1, . . . , J. (9)

This system of I + J equations has no analytical solution in general, but can be solved
iteratively using numerical methods.
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3. Adjusting for Anticipatory Covariates
3.1. Expected Likelihood

From Equations (8) and (9), we note that the maximum likelihood estimates of the
baseline hazards β̂i and relative hazards α̂j are functions of the total number of events, Dij ,
and exposure times, Tij. Therefore, misclassification of events or exposure times into wrong
intervals or into wrong levels of the covariate, as with anticipatory covariates, can lead to
incorrect estimates of the parameters.

Consider those individuals who have completed their reported highest educational
level after marriage. Inference is based on the individuals’ education levels at the date of
marriage, but only their highest level of education at the date of interview is observed. This
is an incomplete data problem, which is handled by maximizing the expected likelihood,
conditional on available information [13].

Equation (3) denotes the density conditional on the level of education xk(Tk) for
individual k at the age of marriage Tk. Since we are interested on when the reported
educational level j was completed (before or after marriage), j = j(k), the unconditional
density is given by

g
(

tijk

)
= f

(
tijk

)
(Pxk(Tk) = j(k)). (10)

We also impose the distribution P{xk(Tk) = j(k)}, which adds a term to the log-likelihood:

ln
(

Λ̃
)
= ln(Λ) +

nij

∑
k=1

ln(P(xk(Tk) = j(k))), (11)

where ln(Λ) is as in Equation (7), and the last term in Equation (11) reflects contribution,
to the likelihood function, of the distributions of times to educational progress (time to
complete primary level, time between primary- and secondary-levels, and time between
secondary- and post-secondary levels).

3.2. Parameter Estimation in the Expected Likelihood

To calculate the components of the last term,
nij

∑
k=1

ln(P(xk(Tk) = j(k))), in Equation (11),

assume that J = 3 and, as in [7,8], let Sjk denote the time of transition from educational level
j− 1 to educational level j for individual k, let f j denote the density function of Sjk, and let
Fj denote its distribution function. We introduce Bernoulli variables Zj of parameters φj
as indicators of whether or not the level xk(Tk) = j is the highest educational level. Then,
ruling out the possibility that xk(Tk) = 0 leads to Proposition 1.

Proposition 1. Writing pjk ≡ (Pxk(Tk) = j),

p1k = F1(Tk)− (1− φ1)
∫ Tk

0
f1(u)F2(Tk − u)du,

p2k =
∫ Tk

0
f1(u)F2(Tk − u)du (12)

− (1− φ2)
∫ Tk

u=0
f1(u)

∫ Tk−u

v=0
f2(v)F3(Tk − u− v)dvdu,

p3k =
∫ Tk

u=0
f1(u)

∫ Tk−u

v=0
f2(v)F3(Tk − u− v)dvdu.

Proof. See Appendix A.1.
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To calculate all P(xk(Tk) = j) explicitly, distributions are imposed on the times, Sjk,
spent at the different educational levels. As in [7,8], a piece-wise gamma distribution with
density function

f j(s) =
η

ζ j
j sζ j−1

Γ
(
ζ j
) exp

(
−ηjs

)
, (13)

and distribution function
Fj(s) = Γ

(
ζ j, ηjs

)
, (14)

is assumed, where

Γ(a, s) =
∫ s

0

ua−1

Γ(a)
exp(−u)du (15)

is the incomplete gamma function.
Writing

E∗(·) = E(·|y1, . . . , yK),

Equations (7) and (11) lead to

E∗
(

ln
(

Λ̃
))

=
I

∑
i=1

E∗(Di+) ln(βi) +
J

∑
j=1

E∗
(

D+j
)

ln
(
αj
)
−

I

∑
i=1

J

∑
j=1

E∗
(
Tij
)

βiαj (16)

+ ∑
k

E∗(ln(P(xk(Tk) = j(k)))).

To make inference on the parameters βi and αj, the conditional expectations of the sufficient
statistics Di+, D+j, and Tij need to be calculated. We re-write

Di+ =

nij

∑
k=1

Dijk I(k∈Ai)
,

D+j =

nij

∑
k=1

Dijk I(k∈Bj)
, (17)

Tij =

nij

∑
k=1

tijk I(k∈Ai∩Bj)

=

nij

∑
k=1

∑
l≤i

min
(

tl jk −m(l), m(l + 1)−m(l)
)

I(k∈Ai∩Bj)
,

where Ai is the set of individuals with common first index i, Bj is the set of individuals
with common second index j, m(i) is the lower duration limit in group i, and I(A) is the
indicator function of the event A. For each individual k, only one marriage duration group
i = i(k) and one educational level j = j(k) are observed. However, if that educational
level is completed after marriage, the educational level at time of marriage is unknown. By
introducing distributional assumptions on time to complete a certain educational level, the
probabilities are calculated as

P(j(k) = j0|yk) = P(xk(Tk) = j0|xk(tk) = yk), (18)

where tk is the age at completion of the reported level of education for individual k. This
feature does not affect Di+, since summation is over j. However, it affects D+j and Tij, since
different individuals may belong to different Bj depending on their unknown education
level at time of marriage.
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Hence, we need to compute

E
(

D+j|y1, . . . , yK
)
= ∑

k
E
(

Dijk I(k∈Bj)
|yk

)
. (19)

Re-writing the right-hand side as

E
(

Dijk I{k∈Bj}|yk

)
= DijkP

(
k ∈ Bj|yk

)
(20)

= DijkP(xk(Tk) = j|xk(tk) = yk), (21)

gives

E
(

D+j|y1, . . . , yK
)
=

nij

∑
k=1

DijkP(xk(Tk) = j|xk(tk) = yk). (22)

Similarly,

E
(
Tij|y1, . . . , yK

)
=

nij

∑
k=1

∑
l≤i

E
(

min
(

tl jk −m(l), m(l + 1)−m(l)
)

I(k∈Ai∩Bj)
|yk

)
(23)

=

nij

∑
k=1

∑
l≤i

min
(

tl jk −m(l), m(l + 1)−m(l)
)

I(k∈Ai)
P(xk(Tk) = j|xk(tk) = yk).

In order to maximize the adjusted log-likelihood in Equation (11) over the parameters βi
and αj, we first plug in the expression in Equation (22) into Equation (9) and the expression
in Equation (23) into Equations (8) and (9), and proceed in the usual manner.

To make inference on ζ j, ηj, and φj, note first that (see Equation (11))

nij

∑
k=1

E(ln P(xk(Tk) = j(k))|yk)

=

nij

∑
k=1

J

∑
j=1

ln P(xk(Tk) = j)P(xk(Tk) = j|xk(tk) = yk). (24)

Each set of ζ j, ηj, and φj values produces a numerical value of Equation (24) as well as
expected values of the sufficient statistics in Equations (22) and (23), which, in turn, are
used to maximize ln

(
Λ̃
)

in Equation (11).
This way, the expected log-likelihood for any set of ζ j, ηj, and φj is calculated and

maximized with respect to the αj and βi parameters.
The next step is to maximize over ζ j, ηj, and φj using the Newton–Raphson algo-

rithm. According to Orchard and Woodbury [13], such a procedure yields the desired
maximum likelihood estimates. The values of the P(xk(Tk) = j, xk(tk) = y) are obtained
using Proposition 2.
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Proposition 2. Writing pjyk ≡ P(xk(Tk) = j, xk(tk) = y) leads to

p11k = F1(Tk)− (1− φ1)
∫ Tk

0
f1(u)F2(tk − u)du,

p12k = (1− φ1)

{∫ Tk

0
f1(u)[F2(tk − u)− F2(Tk − u)]du

−(1− φ2)
∫ Tk

u=0
f1(u)

∫ tk−u

v=Tk−u
f2(v)F3(tk − u− v)dvdu

}
,

p22k =
∫ Tk

0
f1(u)F2(Tk − u)du (25)

− (1− φ2)
∫ Tk

u=0
f1(u)

∫ Tk−u

v=0
f2(v)F3(tk − u− v)dvdu,

p13k = p1k − p11k − p12k,

p23k = p2k − p22k,

p33k = p3k.

Proof. See Appendix A.2.

Then, the P(xk(tk) = y) are expressed in terms of the probabilities in Equation (25)
to get

P(xk(tk) = 1) = P(xk(Tk) = 1, xk(tk) = 1), (26)

P(xk(tk) = 2) = P(xk(Tk) = 1, xk(tk) = 2) + P(xk(Tk) = 2, xk(tk) = 2), (27)

and

P(xk(tk) = 3)

= P(xk(Tk) = 1, xk(tk) = 3) + P(xk(Tk) = 2, xk(tk) = 3) (28)

+ P(xk(Tk) = 3, xk(tk) = 3).

4. Illustration: Effect of Education on Divorce
4.1. Data set

An extract from the 1985 Mail Survey of Swedish men is used as our data for illustra-
tion. The survey contained background variables as well as retrospective information on
entry into and exit from marital and non-marital unions. Analysis is based on 1312 ever-
married men who were either divorced or still married by the survey time. Their distribu-
tion across age at marriage and age at attainment of the reported educational level is shown
in Figure A1. Those below the diagonal are the 245 (19%) observations whose reported
educational level was completed after they married. Anticipatory analysis, common in
the analysis of such types of data, amounts to moving the values below the diagonal in
Figure A1 to the left—all the way to the diagonal reference line. A cross tabulation of the
sample, as displayed in Table A1, shows differentials in percentage divorced across the
anticipatory status of education. The main goal of our work is investigating the role of
misclassification on such differentials in educational gradients of divorce.

4.2. Models

The time variable, duration of marriage in years, is categorized into five intervals:
0–1−, 1–2−, 2–3−, 3–6−, and 6+ years. Primary level of education is used as baseline
level and, hence, its corresponding relative hazard, α1, is set to 1. To make the proposed
adjustment comparable to previous works on the same data set [7,8], the parameters
from the common anticipatory approach and from a reduced model are also estimated.
Using anticipatory analysis amounts to “back-dating” the times of highest educational
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achievement, τk, for a number of individuals, while, in the reduced model, observations
whose reported educational level was completed after marriage, Tk < tk, are discarded.

Neither the anticipatory manipulations nor the proposed adjustment change the
observed marginal occurrences Di+ and exposures Ti+. In the reduced model, these
marginals are reduced due to the reduction of the total number of respondents. The time at
which the highest educational level is achieved is irrelevant as long as it precedes the time
of marriage, but it is relevant for calculating exposure times whenever it occurs after the
time of marriage.

The conditions required for using the Fisher information to construct confidence inter-
vals may not be fulfilled, due to the nature of the problem at hand. Instead, the bootstrap
method is used. The individuals are bootstrapped B times and the expected likelihood for
each such sample is maximized. We then calculate empirical 95% confidence intervals for
each parameter by computing the 2.5% and 97.5% percentiles of the bootstrap distributions.
An alternative approach is to compute standard deviations and form normal approximation
confidence intervals. But, this approach was considered problematic because of outliers in
the bootstrap distributions. In the reduced and anticipatory cases, the number of bootstrap
replications were B = 10,000. In the adjusted case, B = 1000 because estimation of the
additional parameters ζ and η required heavy computation. In the bootstrap replications,
integrals and derivatives were calculated in the same manner as in the estimation. The
estimated parameters were taken as starting values for each bootstrap replication.

4.3. Numerical Considerations

Numerical integration was used to calculate the integrals for given parameter values.
When maximizing the expected likelihood over the φ parameters, one problem may arise.
All the P{x(T) = j} are linear in the φi and, hence, for individuals with tk ≤ Tk, the deriva-
tives of ln P{xk(Tk) = j(k)} may be non-zero for all possible φi. Hence, if all individuals
would have tk ≤ Tk, and, thus, conditioning would be unnecessary, the likelihood may be
maximized at the boundary of the parameter space, φi = 0 or φi = 1, for i = 1 and 2. These
solutions might be considered unrealistic. For individuals with Tk < tk, the situation is
less clear-cut, but if the majority of the individuals have tk ≤ Tk, there is a risk that their
contribution dominates the likelihood, and this seems to be the case in the data set used for
our illustration.

Hence, the φi parameters were fixed to the empirical proportions of men who did not
continue to the next higher level (see Table A1). We assigned φ1 = 0.34, obtained from
Table A1 as 442

1312 , and φ2 = 0.66, obtained from Table A1 as 488+94
1312−442 . These are also almost

identical to the Bayesian estimates obtained in [7,8].
Instead of considering the gamma distribution parameters ζ j, ηj explicitly in the

maximization, it was more convenient to use the transformed parameters µj =
ζ j
ηj

and

σj =
ζ

1
2
j

ηj
. These correspond to the expectations and standard deviations, respectively. We

found that the likelihood has an asymptote as σ3 → 0. To alleviate this problem, σ3 was
fixed and maximization was carried over the other parameters. This turned out to work out
well. Unlike the φ parameter, there was no natural choice of ad hoc value of σ3. However,
the maximum with respect to all other parameters, including αj and βi, was very robust to
different choices. We decided to put σ3 = 0.5, which seemed to be a reasonable value.

To obtain the maximum of the expected likelihood, several methods were combined.
Each likelihood calculation was performed for a fixed set of the five gamma distribution
parameters, µ1, µ2, µ3, σ1, and σ2, including a maximization with respect to the αj and
βi parameters. Thus, in principle, the required task was to maximize over the gamma
parameters. Initially, a random choice of parameter values was performed, and the ones that
gave the largest value of the likelihood were selected. Then, using the Newton–Raphson
maximization algorithm, the likelihood was maximized over the five gamma distribution
parameters, one at a time, keeping the others fixed. Finally, we maximized over µ1, µ2,
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µ3, σ1, and σ2 simultaneously, using the Newton–Raphson maximization algorithm in five
dimensions.

To obtain approximate confidence intervals for the parameters, a bootstrap procedure
was used to sample the individuals with replacement. We performed the maximization
procedure described above for each bootstrap replication. While bootstrapping, the µ3
parameter drifted towards zero in about 6% of the bootstrap replications during the Newton–
Raphson iterations. As a negative value of µ3 is not reasonable, an extra condition, µ3 ≥
0.001, was imposed to overcome the problem. Further details on numerical issues, including
Matlab codes, can be obtained from the authors upon request.

4.4. Results
4.4.1. Conditional Probabilities

Figure A2 displays the distribution of conditional probabilities of various educational
levels at marriage, given a corresponding reported educational level at time of survey,
based on the 245 individuals who have completed their reported educational level after
marriage. For comparison purposes, corresponding conditional probabilities computed by
using estimates of the covariate-model parameters in a Bayesian analysis of the same data
set [7] are also plotted.

The plots show that the probabilities of having had a lower educational level at
marriage, given some higher level at interview, decrease with age at marriage. Thus, for
someone who reports a post-secondary educational level at interview but has married
early, say, below age 20, the probability that he had primary-level education at marriage,
P1|3, is almost 1 (see Figure A2). The probability that he had secondary-level education at
marriage, P2|3, is also high, but not as high as P1|3. The combined probability that he had a
lower-level education, primary or secondary, is almost 1.

A comparison of the ML- and Bayes-estimates of the conditional probabilities indicates
that the Bayes-estimates are, in general, higher than their corresponding ML-estimates. This
is especially the case at older ages of marriage and for men who reported post-secondary-
level of education at time of survey.

4.4.2. Model Parameters

Table A2 contains estimates of baseline risks, βi expressed per 1000 exposure units,
and relative risks of divorce, αj, across the three models, together with their corresponding
95% confidence intervals. Except for the effect of the second interval, β2, which is much
lower in the reduced model, the estimates of the baseline risks, βi, are close to each other
across the three models.

The estimates of the relative risks αj, on the other hand, vary appreciably across
models. For instance, men with secondary-level education have about the same risk of
divorce as those with primary level education in the reduced model, 10% higher risk in
the anticipatory model, and a negligible 5% higher risk in the adjusted model. Those
with post-secondary education have much higher risks of divorce relative to the baseline
men with primary education. The excess risk is 57% in the reduced model, 35% in the
anticipatory model, and 34% in the adjusted model.

More interesting for the present purpose are differences in the estimates of relative
risks across the models. That the anticipatory model leads to the same estimates of the
relative risks, αj, as in the adjusted model (1.13 and 1.05 for α2; 1.35 and 1.34 for α3)
indicates that anticipatory analysis is harmless in our data, in the sense that it does not lead
to substantial bias in the estimates of the relative risks. These estimates of relative risks are
somewhat higher than those obtained by Bayesian adjustment by of the same data set [7].
This is especially true for the estimate of α3, but it should be borne in mind that the 95%
confidence intervals for α2 and α3 in both the current study and those based on Bayesian
approach include 1 and, hence, are not significant at 5% significance level. Further, a re-
estimation of α3 using the Bayes-estimated parameters of the gamma distribution yielded
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α̂3 = 1.30, which is almost identical to the α̂3 = 1.34 obtained through the maximum
likelihood approach.

The combined effects of the differences in the estimates of the model parameters,
βi and αj, across the three models and for the three educational levels are depicted in
Figures A3–A8, which contain estimates λ̂ij = β̂iα̂j under various configurations.
Figures A3–A5 show educational profiles of divorce risks over marriage durations for
each of the three models (reduced, anticipatory, and adjusted). In Figures A6–A8, dif-
ferences in the estimates of divorce risks across the three models are depicted for each
educational level (primary, secondary, and post-secondary). Divorce risks increase over the
first four time intervals, except in the reduced model, which exhibits decrease in the risk be-
tween first and second interval, and decrease after about 6 years (Figures A3–A5). Further,
the levels and trends are alike across the anticipatory and adjusted models (Figures A6–A8).

4.4.3. Covariate-Model Parameters

In the adjusted model, the parameters of the gamma-distribution for educational
career, ζ j and ηj, are also estimated, in addition to the model parameters βi and αj. These
are shown in the lower half of the last column in Table A2. These parameters are then used
to compute estimates of the expected duration to complete the various educational levels,
as displayed in Table A3. Thus, it takes, on average, 16.4 years after birth to complete
primary-level education, 3.6 years to complete secondary-level education after completing
primary level, and 1.9 years to complete post-secondary-level education after completing
secondary level. The corresponding figures from the Bayesian analysis, extracted from
the estimates in [7], were 14.8, 6.5, and 6.3 years., while those in [8] were 3.56 years to
complete secondary-level education (after completing primary level) and 2.43 years to
complete post-secondary-level education (after completing secondary-level education).
The Bayesian-based estimates differ much from our current expected-likelihood-based
estimates. However, as can be seen in Table A5, where estimates of the model parameters αj
and βi, given the Bayesian estimates of the gamma-distribution parameters, are presented,
it is easy to observe, by comparing to Table A2, that the estimates of the model-parameters
from our expected likelihood approach are very robust to this kind of changes in the
gamma parameters.

In Tables A3 and A4, in addition to estimates of means µj and standard deviations σj of
education times, 80% bootstrap confidence intervals are also presented. The reason behind
choosing 80% instead of 95% is due to problems in estimating µ3 as already described in
Section 4.4. No confidence interval is provided for σ3 because it was fixed to 0.5. This might
also have contributed towards the relatively narrow confidence intervals for ζ3 and η3 in
Table A2 .

Finally, in Table A6, the results from our adjusted model in Table A2 are presented
together with corresponding results from previous studies—Ghilagaber and Koskinen (G
& K) [7] and Munezero and Ghilagaber, (M & G) [8] for comparison purposes. Our results
show that anticipatory analysis is harmless because it leads to the same conclusion as the
adjusted model. In the two previous studies, however, the conclusions from the respective
adjusted models were different, at least partly, from those based on anticipatory analysis.
However, the differences between the results in the adjusted and the anticipatory models
were in opposite directions in the two previous studies. While results in [7] show that
anticipatory analysis leads to overestimation of the relative risk of divorce for those with
post-secondary education, results in [8] show that it leads to underestimation of the relative
risks for the same group of individuals. But, it is worth noting that the three studies are
not comparable to each other (even the two that use Bayesian methods) because they use
different approaches and the results are presented using different baseline levels (though
we transformed the relatives risks from previous to have the same baseline as ours in
Table A6).
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5. Summary and Concluding Remarks

In this study, we addressed a problem in inference, where the value of a covariate is
measured at the date of the survey but is used to explain behavior that has occurred long
before the survey.

To correct for bias due to the lack of temporal order of events, we proposed an expected
likelihood approach, where conditional probabilities of having attained the reported level
before marriage were computed and used as weights in the likelihood. Adjusted relative
hazards were then estimated by maximizing the expected likelihood which, in turn, was
based on some distributions for the time to complete various educational levels.

Our proposed analytic procedure was illustrated with data on the effects of educational
level achieved at time of marriage on risks of divorce. Our results showed that anticipatory
analysis is harmless because the adjusted estimates of relative risks are close to those from
anticipatory analysis.

Whether such results can be replicated on other data sets or on the same data set but
with different events of interest, like family formation, through cohabitation or marriage,
or childbearing, is an open question for future investigation.

Further, our results are slightly different from two other studies that analyzed the
same data set in a Bayesian framework.

Thus, further studies that examine the effects of anticipatory analyses more deeply
are needed. Such studies can, for instance, use simulated data in order to draw stronger
conclusions about the behaviour of anticipatory analysis under various data configurations.
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Appendix A. Omitted Proofs & Tables and Figures of Empirical Results

Appendix A.1. Proof of Proposition 1

We find (dropping the index k for ease of exposition)

p1 = P{x(T) = 1} (A1)

= (1− φ1)P{x(T) = 1|Z1 = 0}+ φ1P{x(T) = 1|Z1 = 1}
= (1− φ1)P(S1 ≤ T, S1 + S2 > T) + φ1P(S1 ≤ T)

= (1− φ1)
∫ T

0
f1(u){1− F2(T − u)}du + φ1F1(T)

= F1(T)− (1− φ1)
∫ T

0
f1(u)F2(T − u)du,
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and, similarly,

p2 = P{x(T) = 2} (A2)

= (1− φ2)P{x(T) = 2|Z2 = 0}+ φ2P{x(T) = 2|Z2 = 1}
= (1− φ2)P(S1 + S2 ≤ T, S1 + S2 + S3 > T) + φ2P(S1 + S2 ≤ T)

= (1− φ2)
∫ T

u=0
f1(u)

∫ T−u

v=0
f2(v){1− F3(T − u− v)}dvdu

+ φ2

∫ T

0
f1(u)F2(T − u)du

=
∫ T

0
f1(u)F2(T − u)du− (1− φ2)

∫ T

u=0
f1(u)

∫ T−u

v=0
f2(v)F3(T − u− v)dvdu,

while

p3 = P{x(T) = 3} (A3)

= P(S1 + S2 + S3 ≤ T)

=
∫ T

u=0
f1(u)

∫ T−u

v=0
f2(v)F3(T − u− v)dvdu.

Appendix A.2. Proof of Proposition 2

We obtain (by dropping the index k for ease of exposition)

p11 = P{x(T) = 1, x(t) = 1} (A4)

= (1− φ1)P{x(T) = 1, x(t) = 1|Z1 = 0}
+ φ1P{x(T) = 1, x(t) = 1|Z1 = 1}
= (1− φ1)P(S1 ≤ T, S1 + S2 > t) + φ1P(S1 ≤ T)

= (1− φ1)
∫ T

0
f1(u){1− F2(t− u)}du + φ1F1(T)

= F1(T)− (1− φ1)
∫ T

0
f1(u)F2(t− u)du,

and

p12 = P{x(T) = 1, x(t) = 2} (A5)

= (1− φ1)(1− φ2)P{x(T) = 1, x(t) = 2|Z1 = 0, Z2 = 0}
+ (1− φ1)φ2P{x(T) = 1, x(t) = 2|Z1 = 0, Z2 = 1}
+ φ1P{x(T) = 1, x(t) = 2|Z1 = 1}
= (1− φ1)(1− φ2)P(S1 ≤ T, T < S1 + S2 ≤ t, S1 + S2 + S3 > t)
+ (1− φ1)φ2P(S1 ≤ T, T < S1 + S2 ≤ t) + 0

= (1− φ1)(1− φ2)
∫ T

u=0
f1(u)

∫ t−u

v=T−u
f2(v){1− F3(t− u− v)}dvdu

+ (1− φ1)φ2

∫ T

0
f1(u)[F2(t− u)− F2(T − u)]du

= (1− φ1)
∫ T

0
f1(u)[F2(t− u)− F2(T − u)]du

− (1− φ1)(1− φ2)
∫ T

u=0
f1(u)

∫ t−u

v=T−u
f2(v)F3(t− u− v)dvdu.
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Moreover,

p22 = P{x(T) = 2, x(t) = 2} (A6)

= (1− φ2)P{x(T) = 2, x(t) = 2|Z2 = 0}
+ φ2P{x(T) = 2, x(t) = 2|Z2 = 1}
= (1− φ2)P(S1 + S2 ≤ T, S1 + S2 + S3 > t)
+ φ2P(S1 + S2 ≤ T)

= (1− φ2)
∫ T

u=0
f1(u)

∫ T−u

v=0
f2(v){1− F3(t− u− v)}dvdu

+ φ2

∫ T

0
f1(u)F2(T − u)du

=
∫ T

0
f1(u)F2(T − u)du

− (1− φ2)
∫ T

u=0
f1(u)

∫ T−u

v=0
f2(v)F3(t− u− v)dvdu,

and the rest of the equalities are trivial.

Appendix A.3. Tables and Figures of Empirical Results

Table A1. Distribution of the sample of 1312 Swedish men across anticipatory status of education
and status of marriage.

Status

Still Married Divorced Total % Divorced

Non-Anticip Primary 371 71 442 16
Secondary 433 55 488 11
Post Secon. 116 21 137 15

920 147 1067 14

Anticipatory Primary - - - -
Secondary 66 28 94 30
Post-Secon. 120 31 151 21

186 59 245 24

Total 1106 206 1312 16

Table A2. Estimated baseline and relative risks of divorce across the three models (95% confidence
intervals in parentheses).

Reduced Anticip Adjusted

β1 7.2 (2.6, 13.3) 6.1 (2.5, 11.0) 6.4 (2.5, 11.1)
β2 5.7 (1.7, 11.0) 10.1 (5.0, 15.9) 10.5 (5.5, 16.5)
β3 13.1 (6.2, 21.7) 12.0 (6.2, 19.4) 12.5 (6.8, 20.2)
β4 14.9 (10.0, 20.8) 14.9 (10.4, 20.3) 15.5 (10.8, 20.9)
β5 11.9 (8.9, 15.2) 11.7 (8.8, 14.8) 12.1 (9.2, 15.3)

α2 0.97 (0.67, 1.39) 1.13 (0.83, 1.57) 1.05 (0.78, 1.44)
α3 1.57 (0.90, 2.51) 1.35 (0.93, 1.92) 1.34 (0.91, 1.92)

ζ1 - - 34,900 (21,600, 36,900)
ζ2 - - 6.92 (3.97, 20.18)
ζ3 - - 14.50 (0, 66.31)

η1 - - 2130 (1260, 2360)
η2 - - 1.90 (0.97, 9.59)
η3 - - 7.62 (0, 16.29)
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Table A3. Expected duration to complete various educational levels.

Estimate 80% Confidence Interval

Primary ζ1
η1

16.40 (15.62, 16.99)

Secondary ζ2
η2

3.65 (2.89, 3.92)

Post-secondary ζ3
η3

1.90 (0.60, 3.09)

Table A4. Standard deviation of the duration to complete various educational levels.

Estimate 80% Confidence Interval

Primary ζ
1
2

1
η1

0.088 (0.082, 0.095)

Secondary ζ
1
2

2
η2

1.40 (0.95, 1.82)

Table A5. ML—estimates of model parameters given Bayesian estimated gamma parameters.

β1 6.4
β2 10.5
β3 12.6
β4 15.6
β5 12.2

α2 1.07
α3 1.30

Table A6. Educational gradients of divorce-risks from three studies.

Model Education G & K [7] M & G [8] Present Study

Reduced Primary (ref) 1 1 1
Model Second. 0.96 (0.66, 1.35) 0.93 (0.40, 2.22) 0.97 (0.67, 1.39)

Post-Sec. 1.59 (1.23, 1.86) 1.08 (0.72, 1.73) 1.57 (0.90, 2.51)

Anticip. Primary (ref) 1 1 1
Model Second. 1.12 (0.81, 1.54) 1.12 (0.52, 2.38) 1.13 (0.83, 1.57)

Post-Sec. 1.36 (1.02, 1.76) 1.31 (0.66, 2.45) 1.35 (0.93, 1.92)

Adjusted Primary (ref) 1 1 1
Model Second. 0.98 (0.71, 1.30) 0.94 (0.41, 2.13) 1.05 (0.78, 1.44)

Post-Sec. 1.07 (0.84, 1.27) 1.26 (1.19 1.48) 1.34 (0.91, 1.92)
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Figure A1. A scatter plot of the data in Table A1: age at completion of reported highest educational
levels vs. age at marriage.
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Figure A3. Educational profiles of divorce risks over marriage duration in the reduced model.
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Figure A4. Educational profiles of divorce risks over marriage duration in the anticipatory model.
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Figure A5. Educational profiles of divorce risks over marriage duration in the adjusted model.
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Figure A6. Estimates of divorce risks for men with primary-level education across the three models.
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Figure A7. Estimates of divorce risks for men with secondary-level education across the three models.
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Figure A8. Estimates of divorce risks for men with post-secondary-level education across the
three models.
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