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Influence of nonlocal damping on magnon properties of ferromagnets
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We study the influence of nonlocal damping on the magnon properties of Fe, Co, Ni, and Fe1−xCox (x =
30%, 50%) alloys. The Gilbert damping parameter is typically considered as a local scalar both in experiment
and in theoretical modeling. However, recent works have revealed that Gilbert damping is a nonlocal quantity
that allows for energy dissipation between atomic sites. With the Gilbert damping parameters calculated from a
state-of-the-art real-space electronic structure method, magnon lifetimes are evaluated from spin dynamics and
linear response, where a good agreement is found between these two methods. It is found that nonlocal damping
affects the magnon lifetimes in different ways depending on the system. Specifically, we find that in Fe, Co, and
Ni, the nonlocal damping decreases the magnon lifetimes, while in Fe70Co30 and Fe50Co50 an opposite, nonlocal
damping effect is observed, and our data show that it is much stronger in the former.
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I. INTRODUCTION

In recent years, there has been a growing interest in
magnonics, which uses quasiparticle excitations in magnet-
ically ordered materials to perform information transport
and processing on the nanoscale. Compared with con-
ventional information-technology devices, magnonics-based
devices exhibit lower energy consumption, easier integrabil-
ity with complementary metal-oxide semiconductor (CMOS)
structures, anisotropic properties, and efficient tunability by
various external stimuli, to name a few [1–10]. Yttrium iron
garnet (YIG) [11] as well as other iron garnets with rare-
earth elements (Tm, Tb, Dy, Ho, Er) [12] are very promising
candidates for magnonics-based device applications due to
their low-energy dissipation properties and thus long spin-
wave propagation distances up to tens of μm. In contrast, the
damping in other materials relevant for magnonics, such as
CoFeB, is typically two orders of magnitude higher compared
with YIG [12], leading to much shorter spin-wave propagation
distances. A clear distinction can be made between materials
with an ultralow damping parameter, such as YIG, and those
with a significantly larger, but still small, damping parameter.
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In materials that are insulating, such as YIG, many of the
microscopic mechanisms responsible for damping are hin-
dered, resulting in the low observed damping parameter. In
contrast, materials such as CoFeB are metallic. In research
projects that utilize low damping materials, YIG and simi-
lar nonmetallic low damping systems are typically favored.
However, metallic systems have an advantage, since magnetic
textures can easily be influenced by electrical currents. Hence,
there is good reason to consider metallic systems for low
damping applications, even though their damping is typically
larger than in YIG. One can conclude that Gilbert damping
is one of the major bottlenecks for the choice of material in
magnonics applications, and a detailed experimental as well
as theoretical characterization is fundamental for this field
of research, especially for metallic systems. Thus, a more
advanced and detailed understanding of Gilbert damping is
called for in order to overcome this obstacle for further devel-
opment of magnonics-based technology.

Whereas most studies consider chemical modifications of
the materials in order to tune the damping [13,14], only a
few focus on the fundamental physical properties as well as
dependencies of the Gilbert damping. Often, Gilbert damping
is considered to be a phenomenological scalar parameter in the
equation of motion of localized atomistic magnetic moments,
i.e., the Landau-Lifshitz-Gilbert (LLG) equation [15]. How-
ever, from using the general Rayleigh dissipation function in
the derivation proposed by Gilbert [16], it was theoretically
found that the Gilbert damping should be anisotropic, a ten-
sor, and nonlocal, especially in some low symmetric systems.
Furthermore, it depends on the temperature and thus on the
underlying magnon as well as phonon configurations [17–20].
This is naturally built into the multiple theoretical methods
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developed to predict the damping parameter, including the
breathing Fermi surface model [21], the torque correlation
model [22], and the linear-response formulation [23]. For
instance, the general Gilbert damping tensor as a function
of the noncollinear spin configuration has been proposed in
Ref. [24].

Nonetheless, an experimental verification is still missing
due to lacking insights into the impact of the generalized
damping on experimental observables. Changes of Gilbert
damping in a magnetic domain wall, and thus its dependency
on the magnetic configuration, were measured in Ref. [25] and
fitted to the Landau-Lifshitz-Baryakhtar (LLBar) equation,
which includes nonlocality of the damping by an additional
dissipation term proportional to the gradient of the magneti-
zation [26–28]. However, the pairwise nonlocal damping αi j

has not yet been measured.
The most common experimental techniques of evaluating

damping are ferromagnetic resonance (FMR) [29] and the
time-resolved magneto-optical Kerr effect (TR-MOKE) [30].
In these experiments, Gilbert damping is related to the relax-
ation rate (i) when slightly perturbing the coherent magnetic
moment out of equilibrium by an external magnetic field [31],
or (ii) when disordered magnetic moments remagnetize after
pumping by an ultrafast laser pulse [32]. Normally, in case (i)
the nonlocality is suppressed due to the coherent precession
of the atomic magnetic moments. However, this coherence
can be perturbed by temperature, making nonlocality in prin-
ciple measurable. One possible other path to link nonlocal
damping with experiment is magnon lifetimes. Theoretically,
the magnon properties as well as the impact of damping on
these properties can be assessed from the dynamical structure
factor, and atomistic spin-dynamics simulations have been
demonstrated to yield magnon dispersion relations that are
in good agreement with experiment [33]. In experiment, neu-
tron scattering [34] and electron scattering [35] are the most
common methods for probing magnon excitations, where
the linewidth broadening of magnon excitations is related to
damping and provides a way to evaluate the magnon lifetimes
[36]. It is found in ferromagnets that the magnon lifetimes
are wave-vector (magnon-energy) -dependent [37–39]. It has
been reported that the magnon energy in Co films is nearly
twice as large as in Fe films, but they have similar magnon
lifetimes, which is related to the intrinsic damping mechanism
of materials [40]. However, this collective effect of damping
and magnon energy on magnon lifetimes is still an open ques-
tion. The study of this collective effect is of great interest for
both theory and device applications.

Here, we report an implementation for solving the stochas-
tic Landau-Lifshitz-Gilbert (SLLG) equation incorporating
the nonlocal damping. With the dynamical structure factor
extracted from the spin-dynamics simulations, we investigate
the collective effect of nonlocal damping and magnon energy
on the magnon lifetimes. We propose an efficient method to
evaluate magnon lifetimes from linear-response theory, and
we verify its validity.

The paper is organized as follows. In Sec. II, we
give the simulation details of the spin dynamics, the
adiabatic magnon spectra and dynamical structure fac-
tor, and the methodology of DFT calculations and lin-
ear response. Section III presents the nonlocal damping

in real-space, nonlocal damping effects on the spin dynamics
and magnon properties including magnon lifetimes of pure
ferromagnets (Fe,Co,Ni), and Fe1−xCox (x = 30%, 50%) al-
loys. In Sec. IV, we provide a summary and an outlook.

II. THEORY

A. Nonlocal damping in atomistic spin dynamics

The dynamical properties of magnetic materials at finite
temperature have been simulated up to now from atomistic
spin dynamics by means of the stochastic Landau-Lifshitz-
Gilbert (SLLG) equation with scalar local energy dissipation.
Here, the time evolution of the magnetic moments mi = miei

at atom site i is well described by

∂mi

∂t
= mi ×

(
−γ [Bi + bi(t )] + α

mi

∂mi

∂t

)
, (1)

where γ is the gyromagnetic ratio. The effective field Bi

acting on each magnetic moment is obtained from

Bi = − ∂H
∂mi

. (2)

The spin-Hamiltonian H considered here consists of a Heisen-
berg spin-spin exchange:

H = −1

2

∑
i �= j

Ji jei · e j . (3)

Here, Ji j—the Heisenberg exchange parameter—couples the
spin at site i with the spin at site j and is calculated from
first principles (see Sec. II C). Furthermore, α is the scalar
phenomenological Gilbert damping parameter. Finite tem-
perature T is included in Eq. (1) via the fluctuating field
bi(t ), which is modeled by uncorrelated Gaussian white noise:
〈bi(t )〉 = 0 and 〈bμ

i (t )bν
j (t

′)〉 = 2Dδi jδμνδ(t − t ′), where δ is
the Kronecker delta, i, j are site indices, and μ, ν = {x, y, z}
are Cartesian indices. Furthermore, the fluctuation-dissipation
theorem gives D = α kBT

γ mi
(see, e.g., Ref. [41]), with the Boltz-

mann constant kB.
A more generalized form of the SLLG equation that

includes nonlocal tensorial damping has been reported in pre-
vious studies [20,42,43] and is

∂mi

∂t
= mi ×

⎛
⎝−γ [Bi + bi(t )] +

∑
j

αi j

m j

∂m j

∂t

⎞
⎠, (4)

which can be derived from the Rayleigh dissipation func-
tional in the Lagrange formalism used by Gilbert [16]. In the
presence of nonlocal damping, the Gaussian fluctuating field
fulfills [42,44,45]〈

bμ
i (t )bν

j (t
′)
〉 = 2Dμν

i j δ(t − t ′), (5)

with Dμν
i j = α

μν
i j

kBT
γ mi

. The damping tensor α
μν
i j must be

positive-definite in order to be physically defined. Along with
spatial nonlocality, the damping can also be nonlocal in time,
as discussed in Ref. [46]. To prove the fluctuation-dissipation
theorem in Eq. (5), the Fokker-Planck equation has to be
analyzed in the presence of nonlocal damping, similar to
Ref. [15]. This is, however, not the purpose of this paper.
Instead, we will use the approximation α

μν
i j = 1

3 Tr{αii}δμν
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within the diffusion constant Dμν
i j . Such an approximation is

strictly valid only in the low-temperature limit.
To solve this SLLG equation incorporating the nonlocal

damping, we have implemented an implicit midpoint solver
in the UPPASD code [47]. This iterative fix-point scheme
converges within an error of 10−10μB, which is typically
equivalent to six iteration steps. More details of this solver are
provided in Appendix A. The initial spin configuration in the
typical N = 20 × 20 × 20 supercell with periodic boundary
conditions starts from a totally random state. The spin-spin
exchange interactions and nonlocal damping parameters are
included up to at least 30 shells of neighbors in order to guar-
antee the convergence with respect to the spatial expansion
of these parameters (a discussion about the convergence is
given in Sec. III A). Observables from our simulations are
typically the average magnetization M = 1

N

∑N
i mi as well as

the magnon dispersion.

B. Magnon dispersion

Two methods to simulate the magnon spectrum are applied
in this paper: (i) the dynamical structure factor, and (ii) the
frozen magnon approach.

For the dynamical structure factor S(q, ω) at finite temper-
ature and damping [33,48], the spatial and time correlation
function between two magnetic moments i at position r and j
at position r′ as well as different times 0 and t is expressed as

Cμ(r − r′, t ) = 〈
mμ

r (t )mμ

r′ (0)
〉 − 〈

mμ
r (t )

〉〈
mμ

r′ (0)
〉
. (6)

Here 〈·〉 denotes the ensemble average, and μ are Cartesian
components. The dynamical structure factor can be obtained
from the time and space Fourier transform of the correlation
function, namely

Sμ(q, ω) = 1√
2πN

∑
r,r′

eiq·(r−r′ )
∫ ∞

−∞
eiωtCμ(r − r′, t )dt .

(7)

The magnon dispersion is obtained from the peak positions of
S(q, ω) along different magnon wave vectors q in the Brillouin
zone and magnon energies ω. It should be noted that S(q, ω) is
related to the scattering intensity in inelastic neutron scatter-
ing experiments [49]. The broadening of the magnon spectrum
correlates with the lifetime of spin waves mediated by Gilbert
damping as well as intrinsic magnon-magnon scattering pro-
cesses. Good agreement between S(q, ω) and experiment has
been found previously [33].

The second method—the frozen magnon approach—
determines the magnon spectrum directly from the Fourier
transform of the spin-spin exchange parameters Ji j [50,51]
and nonlocal damping αi j . At zero temperature, a time-
dependent external magnetic field is considered,

B±
i (t ) = 1

N

∑
q

B±
q eiq·Ri−iωt , (8)

where N is the total number of lattice sites and B±
q = Bx

q ±
iBy

q. The linear response to this field is then given by

M±
q = χ±(q, ω)B±

q . (9)

We obtain for the transverse dynamic magnetic susceptibility
[52,53]

χ±(q, ω) = ±γ Ms

ω ± ωq ∓ iωαq
, (10)

with saturation magnetization Ms, spin-wave frequency ωq =
E (q)/h̄, and damping

αq =
∑

j

α0 je
−iq·(R0−R j ). (11)

We can extract the spin-wave spectrum from the imaginary
part of the susceptibility,

Imχ±(q, ω) = γ Msαqω

[ω ± ωq]2 + α2
qω

2
, (12)

which is equivalent to the correlation function S±(q, ω) due
to the fluctuation-dissipation theorem [54]. We find that the
spin-wave lifetime τq is determined by the Fourier transform
of the nonlocal damping (for αq 	 1),

τq = π

αqωq
. (13)

The requirement of positive-definiteness of the damping ma-
trix αi j directly implies αq > 0, since αi j is diagonalized
by Fourier transformation due to translational invariance.
Hence, αq > 0 is a criterion to evaluate whether the damping
quantity in real space is physically consistent and whether
first-principles calculations are well converged. If αq < 0 for
some wave vector q, energy is pumped into the spin system at
the corresponding magnon mode, preventing the system from
fully reaching the saturation magnetization at sufficiently low
temperatures.

The effective damping α0 of the FMR mode at q = 0 is
determined by the sum over all components of the damping
matrix, following Eq. (11),

αtot ≡ α0 =
∑

j

α0 j . (14)

Therefore, an effective local damping should be based on αtot

if the full nonlocal damping is not taken into account.

C. Details of the DFT calculations

The electronic structure calculations, in the framework
of density functional theory (DFT), were performed using
the fully self-consistent real-space linear muffin-tin orbital
in the atomic sphere approximation (RS-LMTO-ASA)
[55,56]. The RS-LMTO-ASA uses the Haydock recursion
method [57] to solve the eigenvalue problem based on a
Green’s functions methodology directly in real space. In the
recursion method, the continued fractions have been truncated
using the Beer-Pettifor terminator [58], after a number LL of
recursion levels. The LMTO-ASA [59] is a linear method that
gives precise results around an energy Eν , usually taken as the
center of the s, p, and d bands. Therefore, as we calculate fine
quantities as the nonlocal damping parameters, we consider
here an expression accurate to (E − Eν )2 starting from the
orthogonal representation of the LMTO-ASA formalism [60].

For bcc FeCo alloys and bcc Fe, we considered LL = 31,
while for fcc Co and fcc Ni much higher LL values (51 and
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47, respectively) are needed to better describe the density of
states and Green’s functions at the Fermi level.

The spin-orbit coupling (SOC) is included as an l · s [59]
term computed in each variational step [61]. All calculations
were performed within the local spin density approximation
(LSDA) exchange-functional (XC) by von Barth and Hedin
[62], as it gives general magnetic information with equal or
better quality than, e.g., the generalized gradient approxima-
tion (GGA). Indeed, the choice of XC between LSDA and
GGA [63] has a minor impact on the on-site damping and the
shape of the αq curves, as well as the analyzed properties (re-
magnetization, magnon lifetimes) when considering the same
lattice parameters (data not shown). No orbital polarization
[64] was considered here. Each bulk system was modeled
by a big cluster containing ∼55 000 (bcc) and ∼696 000
(fcc) atoms located in the perfect crystal positions with the
respective lattice parameters of a = 2.87 Å (bcc Fe and
bcc Fe1−xCox, sufficiently close to experimental observations
[65]), a = 3.54 Å (fcc Co [20,66]), and a = 3.52 Å (fcc Ni
[67]). To account for the chemical disorder in the Fe70Co30

and Fe50Co50 bulk systems, the electronic structure was calcu-
lated within the simple virtual-crystal approximation (VCA),
which has been shown to work well for the ferromagnetic
transition-metal alloys (particularly for elements next to each
other in the Periodic Table, such as FeCo and CoNi) [68–75],
and it is also described as being in good agreement with the
damping trends in both FeCo and CoNi (see Appendix C).
However, it is known that VCA neglects both short-range-
order effects and scattering of electrons caused by the random
distribution of atoms in the system, while the latter is bet-
ter treated by the coherent-potential approximation (CPA)
[76,77]. Despite these limitations, VCA is a computationally
efficient scheme also for the real-space DFT method applied
here, which otherwise entails computationally demanding al-
loying over thousands of samples.

As reported in Ref. [78], the total damping of site i,
influenced by the interaction with neighbors j, can be decom-
posed in two main contributions: The on-site contribution (for
i = j), and the nonlocal contribution (for i �= j). Both can
be calculated, in the collinear framework, by the following
expression:

α
μν
i j = αC

∫ ∞

−∞
η(ε)Tr

(
T̂ μ

i Âi j
(
T̂ ν

j

)†
Â ji

)
dε

T →0 K−−−−→

× αCTr
(
T̂ μ

i Âi j (εF + iδ)
(
T̂ ν

j

)†
Â ji(εF + iδ)

)
, (15)

where we define Âi j (ε + iδ) = 1
2i [Ĝi j (ε + iδ) − Ĝ†

ji(ε + iδ)]
as the anti-Hermitian part of the retarded physical Green’s
functions in the LMTO formalism, and αC = g

mti π
is a pref-

actor related to the ith site magnetization. The imaginary part,
δ, is obtained from the terminated continued fractions in the
present calculations [58]. Also in Eq. (15), T̂ μ

i = [σμ
i ,HSOi ]

is the so-called torque operator [20] evaluated in each Carte-
sian direction μ, ν = {x, y, z} at site i, η(ε) = − ∂ f (ε)

∂ε
is the

derivative of the Fermi-Dirac distribution f (ε) with respect
to the energy ε, g = 2(1 + morb

mspin
) is the g-factor (not con-

sidering here the spin-mixing parameter [79]), σμ are the
Pauli matrices, and mti is the total magnetic moment of site
i (mti = morbi + mspini

). This results in a 3 × 3 tensor with

terms α
μν
i j . In the real-space bulk calculations performed in

the present work, the αi j (with i �= j) matrices contain off-
diagonal terms that are canceled by the summation of the
contributions of all neighbors within a given shell, resulting in
a purely diagonal damping tensor, as expected for symmetry
reasons [15]. Therefore, as in the DFT calculations the spin
quantization axis is considered to be in the z ([001]) direction
(collinear model), we can ascribe a scalar damping value
αi j as the average αi j = 1

2 (αxx
i j + α

yy
i j ) = αxx

i j for the systems
investigated here. This scalar αi j is then used in the SLLG
equation [Eq. (1)]. In the above demonstrated torque-torque
correlation method, only the spin-orbit induced torque is con-
sidered. Turek et al. [77] and Garate et al. [80] have shown that
the use of the complete torque, including torque induced by
the local spin-dependent exchange-correlation potential and
by the spin-orbit coupling, leads to an identically zero result.

The exchange parameters Ji j in the Heisenberg model
were calculated by the Liechtenstein-Katsnelson-Antropov-
Gubanov (LKAG) formalism [81], according to the imple-
mentation in the RS-LMTO-ASA method [60]. Hence all
parameters needed for the atomistic LLG equation have been
evaluated from ab initio electronic structure theory. It is worth
stressing that we apply the nonlocal damping calculated us-
ing a collinear DFT framework (q = 0) to the noncollinear
(q �= 0) atomistic spin dynamics (ASD) simulations, which is
an approximation in a similar fashion of applying Heisenberg
exchange parameters from LKAG (only valid in the long-
wavelength limit) to ASD simulations. It would be of great
interest to explore the ASD with damping computed using a
noncollinear DFT framework [53], but such an investigation
is outside the scope of the present work.

Finally, for the calculations shown in Appendix C, we con-
sidered special quasirandom structures (SQS) [82]. The SQS
cells were created using the MCSQS algorithm within the
framework of the Alloy Theoretic Automated Toolkit (ATAT)
[83]. We restricted ourselves to the evaluation of a 16-atom
SQS cell (or a 2 × 2 × 2 supercell in the perfect bcc lattice,
SQS-16), where Fe50Co50 contains 8 Fe and 8 Co atoms.
The doublet, triplet, and quadruplet correlation distances are
set to match, respectively, 3.1, 1.8, and 1.5 lattice constants.
In the same Appendix, we also performed calculations by a
fully relativistic multiple-scattering Green’s function method
[Korringa-Kohn-Rostoker method (KKR)] [84], where the
LSDA exchange-correlation functional, an irreducible k-mesh
of 20 × 20 × 20, and the maximal momentum quantum num-
ber lmax = 4 were adopted in the self-consistent calculations.
For the density of states (DOS), we considered a 40 × 40 × 40
k-mesh in both CPA and VCA calculations, where the imag-
inary part of the energy δ = 0.005 Ry was used in the VCA
calculations.

III. RESULTS

A. On-site and nonlocal dampings

Table I shows the relevant ab initio magnetic properties of
each material; the TC values refer to the Curie temperature cal-
culated within the random-phase approximation (RPA) [85],
based on the computed Ji j set. Despite the systematic αtot val-
ues found in the lower limit of available experimental results
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TABLE I. Spin (mspin) and orbital (morb) magnetic moments, on-site (αii) damping, total (αtot) damping, and Curie temperature (TC) of the
investigated systems. The theoretical TC value is calculated within the RPA. In turn, mt denotes the total moments for experimental results of
Ref. [87]. Except for Ref. [32], where the information of temperature is not mentioned, all the other experimental Gilbert damping values are
measured at room temperature.

mspin (μB) morb (μB) αii (×10−3) αtot (×10−3) TC (K)

bcc Fe (theory) 2.23 0.05 2.4 2.1 919
bcc Fe (expt.) 2.13 [67] 0.08 [67] 1.9–7.2 [32,76,88–93] 1044
bcc Fe70Co30 (theory) 2.33 0.07 0.5 0.9 1667
bcc Fe70Co30 (expt.) mt = 2.457 [87] 0.5–1.7a [32,88,94] 1258 [96]
bcc Fe50Co50 (theory) 2.23 0.08 1.5 1.6 1782
bcc Fe50Co50 (expt.) mt = 2.355 [87] 2.0–3.2b [32,88,97] 1242 [98]
fcc Co (theory) 1.62 0.08 7.4 1.4 1273
fcc Co (expt.) 1.68(6) [99] 2.8(5) [32,93] 1392
fcc Ni (theory) 0.61 0.05 160.1 21.6 368
fcc Ni (expt.) 0.57 [67] 0.05 [67] 23.6–64 [22,88,91–93,100,101] 631

aThe lower limit refers to polycrystalline Fe75Co25 10-nm-thick films from Ref. [32]. Lee et al. [94] also found a low Gilbert damping in
an analogous system, where αtot < 1.4 × 10−3. For the exact 30% of Co concentration, however, previous results [32,76,95] indicate that we
should expect a slightly higher damping than in Fe75Co25.
bThe upper limit refers to the approximate minimum intrinsic value for a 10-nm-thick film of Fe50Co50|Pt (easy magnetization axis).

(in a similar case with, e.g., Ref. [86]), in part explained by
the fact that we analyze only the intrinsic damping, a good
agreement between theory and experiment can be seen. When
the whole VCA Fe1−xCox series is considered (from x = 0%
to 60%), the expected Slater-Pauling behavior of the total
magnetic moment [72,87] is obtained (data not shown).

For all systems studied here, the dissipation is dominated
by the on-site (αii) term, while the nonlocal parameters (αi j ,
i �= j) exhibit values at least one order of magnitude lower;
however, as will be demonstrated in the next sections, these
smaller terms still cause a non-negligible impact on the re-
laxation of the average magnetization as well as magnon
lifetimes. Figure 1 shows the nonlocal damping parameters for
the investigated ferromagnets as a function of the (i, j) pair-
wise distance ri j/a, together with the correspondent Fourier
transforms αq over the first Brillouin zone (BZ). The first point
to notice is the overall strong dependence of α on the wave
vector q. The second point is the fact that, as also reported in
Ref. [20], αi j can be an anisotropic quantity with respect to the
same shell of neighbors, due to the broken symmetry imposed
by a preferred spin quantization axis. This means that, in
the collinear model and for a given neighboring shell, αi j is
isotropic only for equivalent sites around the magnetization as
a symmetry axis.

Another important feature that can be seen in Fig. 1
is the presence of negative αi j values. Real-space negative
nonlocal damping parameters have been reported previously
[20,78,102]. They are related to the decrease of damping at
the �-point, but they may also increase αq from the on-site
value in specific q points inside the BZ; therefore, they cannot
be seen as ad hoc antidissipative contributions. In the ground
state, these negative nonlocal dampings originate from the
overlap between the anti-Hermitian parts of the two Green’s
functions at the Fermi level, each associated with a spin-
dependent phase factor �σ (σ =↑,↓) [20,85].

Finally, as shown in the insets of Fig. 1, a long-range con-
vergence can be seen for all cases investigated. An illustrative
example is the bcc Fe50Co50 bulk, for which the effective

damping can be ∼60% higher than the converged αtot if only
the first seven shells of neighbors are considered in Eq. (14).
The nonlocal damping of each neighboring shell is found to
follow a 1

r2
i j

trend, as previously argued by Thonig et al. [20]

and Umetsu et al. [102]. Explicitly,

αi j ∝ sin(k↑ · ri j + �↑) sin(k↓ · ri j + �↓)

|ri j |2 , (16)

which also qualitatively justifies the existence of negative
αi j’s. Thus, the convergence in real space is typically slower
than other magnetic quantities, such as exchange interactions
(Ji j ∝ 1

|ri j |3 ) [85], and it also depends on the imaginary part δ

[see Eq. (15)] [20]. The difference in the asymptotic behavior
of the damping and the Heisenberg exchange is distinctive;
the first scales with the inverse of the square of the distance,
while the latter scales as the inverse of the cube of the dis-
tance. Although this asymptotic behavior can be derived from
similar arguments, both using the Green’s function of the
free-electron gas, the results are different. The reason for this
difference is simply that the damping parameter is governed
by states close to the Fermi surface, while the exchange pa-
rameter involves an integral over all occupied states [20,81].

From bcc Fe to bcc Fe50Co50 [Figs. 1(a)–1(f)], with in-
creasing Co content, the average first neighbors αi j decrease
to a negative value, while the next-nearest-neighbor contri-
butions reach a minimum, and then increase again. Similar
oscillations can be found in further shells. Among the inter-
esting features in the Fe1−xCox systems (x = 0%, 30%, 50%),
we highlight the low αq around the high-symmetry point H ,
along the H-P and H-N directions, consistently lower than
the FMR damping. Both α values are strongly influenced by
nonlocal contributions �5 NN. Also consistent is the high αq

obtained for q = H . For long wavelengths in bcc Fe, some αq

anisotropy is observed around �, which resembles the same
trait obtained for the corresponding magnon dispersion curves
[85]. This anisotropy changes to a more isotropic behavior by
FeCo alloying.
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FIG. 1. Nonlocal damping (αi j) as a function of the normalized
real-space pairwise (i, j) distance computed for each neighboring
shell, and corresponding Fourier transform αq [see Eq. (11)] from
the on-site value (αii) up to 136 shells of neighbors (136 NN) for
[(a),(b)] bcc Fe; [(c),(d)] bcc Fe70Co30; [(e),(f)] bcc Fe50Co50 in the
virtual-crystal approximation; and up to 30 shells of neighbors (30
NN) for [(g),(h)] fcc Co; [(i),(j)] fcc Ni. The insets in subfigures (a),
(c), (e), (g), and (i) show the convergence of αtot in real space. The
obtained on-site damping values are shown in Table I. In the insets
of the left panel, green full lines are guides for the eyes. In (b), (d),
(f), (h), and (j), the dashed lines correspond to calculations using
Eq. (14).

Far from the more noticeable high-symmetry points, αq

presents an oscillatory behavior along the BZ, around the on-
site value. It is noteworthy, however, that these oscillatory αq

parameters exhibit variations up to ∼2 times αii, thus showing
a pronounced nonlocal influence in specific q points.

In turn, for fcc Co [Figs. 1(g) and 1(h)], the first val-
ues are characterized by an oscillatory behavior around zero,
which also reflects the damping of the FMR mode, αq=0.
In full agreement with Ref. [20], we compute a peak of αi j

contribution at ri j ∼ 3.46a, which shows the long-range char-
acter that nonlocal damping can exhibit for specific materials.
Despite the relatively small magnitude of αi j , the multiplicity
of the nearest-neighbor shells drives a converged αq dispersion
with non-negligible variations from the on-site value along
the BZ, especially driven by the negative third neighbors. The
maximum damping is found to be in the region around the
high-symmetry point X, where the lifetime of magnon exci-
tations are thus expected to be reduced. A similar situation is
found for fcc Ni [Figs. 1(i) and 1(j)], where the first neighbors
αi j are found to be highly negative, consequently resulting in a
spectrum in which αq > αq=0 for every q �= 0. In contrast with
fcc Co, however, no notable peak contributions are found. It is
noteworthy that the total damping as well as the local damping
of Ni are much higher than in other ferromagnets, which is due
to the well-known peak in the minority-spin density of states
at EF in fcc Ni and the scaling factor 1

mt
given in Eq. (15).

B. Remagnetization

Gilbert damping in magnetic materials determines the rate
of energy that dissipates from the magnetic to other reser-
voirs, such as phonons or electron excitations. To explore
what impact nonlocal damping has on the energy dissipation
process, we performed atomistic spin dynamics (ASD) simu-
lations for the aforementioned ferromagnets: Bcc Fe1−xCox

(x = 0%, 30%, 50%), fcc Co, and fcc Ni for the (i) fully
nonlocal αi j and (ii) effective αtot [defined in Eq. (14)] dissi-
pative case. We note that, although widely considered in ASD
calculations, the adoption of a constant αtot value [case (ii)]
is only a good approximation for long-wavelength magnons
close to q = 0.

First, we study the role of nonlocal damping in the remag-
netization processes as it was already discussed by Thonig
et al. [20] and as it is important for, e.g., ultrafast pump-
probe experiments as well as all-optical switching, although
we note that the model considered here is of limited use
in the ultrafast case as the rigid spin approximation breaks
down. In the simulations presented here, the relaxation starts
from a totally random magnetic configuration. The results of
remagnetization simulations are shown in Fig. 2. The fully
nonlocal damping (i) in the equation of motion enhances the
energy dissipation process compared to the case in which only
the effective damping (ii) is used. This effect is found to be
more pronounced in fcc Co and fcc Ni compared to bcc Fe
and bcc Fe50Co50. Thus, the remagnetization time to 90% of
the saturation magnetization becomes approximately five to
eight times faster for case (i) compared to case (ii). This is
due to the increase of αq away from the � point in the whole
spectrum for Co and Ni (see Fig. 1), where in Fe and Fe50Co50

it typically oscillates around αtot.
For bcc Fe70Co30, the effect of nonlocal damping on the

dynamics is opposite to the data in Fig. 2; the relaxation pro-
cess is decelerated. In this case, almost the entire αq spectrum
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FIG. 2. Remagnetization process simulated with ASD, consider-
ing fully nonlocal Gilbert damping (αi j , blue solid lines), and the
effective damping (αtot, red dashed lines), for (a) fcc Ni; (b) fcc Co;
and (c) bcc Fe1−xCox (x = 0%, 30%, 50%). The dashed gray lines
indicate the stage of 90% of the saturation magnetization.

is below αq=0, which is an interesting result given the fact that
FMR measurements of the damping parameter in this system
are already considered an ultralow value when compared to
other metallic ferromagnets [32]. Thus, in the remagnetization
process of Fe70Co30, the majority of magnon mode lifetimes
is underestimated when a constant αtot is considered in the
spin dynamics simulations, which leads to a faster overall
relaxation rate.

Although bcc Fe presents the highest Gilbert damping
obtained in the series of the Fe-Co alloys (see Table I), the re-
magnetization rate is found to be faster in bcc Fe50Co50. This
can be explained by the fact that the exchange interactions
for this particular alloy are stronger (∼80% higher for nearest
neighbors) than in pure bcc Fe, leading to an enhanced Curie
temperature (see Table I). In view of Eq. (13) and Fig. 1, the
difference in the remagnetization time between bcc Fe50Co50

and elemental bcc Fe arises from αq values that are rather
close, but where the magnon spectrum of Fe50Co50 has much
higher frequencies, with corresponding faster dynamics and
hence shorter remagnetization times.

From our calculations, we find that the sum of nonlocal
damping (

∑
i �= j αi j ) contributes with −13%, −81%, −87%,

+80%, and +7% to the local damping in bcc Fe, fcc Co, fcc
Ni, bcc Fe70Co30, and bcc Fe50Co50, respectively. The high
positive ratio found in Fe70Co30 indicates that, in contrast to
the other systems analyzed, the nonlocal contributions act like
an antidamping torque, diminishing the local damping torque.
A similar antidamping effect in antiferromagnetic (AFM)
materials has been reported in theoretical and experimental
investigations (e.g., [103,104]), induced by electrical current.
Here we find that an antidamping torque effect can have an
intrinsic origin.

To provide a deeper understanding of the antidamping
effect caused by a positive nonlocal contribution, we analyt-
ically solved the equation of motion for a two-spin model
system, e.g., a dimer. In the particular case when the on-
site damping α11 is equal to the nonlocal contribution α12,
we observed that the system becomes undamped (see Ap-
pendix B). As demonstrated in Appendix B, ASD simulations
of such a dimer corroborate the result of undamped dynamics.
Full details of the analytical solution and ASD simulation
of a spin-dimer and the antidamping effect are provided in
Appendix B.

C. Magnon spectra

To demonstrate the influence of damping on magnon
properties at finite temperatures, we have performed ASD
simulations to obtain the excitation spectra from the
dynamical structure factor introduced in Sec. II. Here, we
consider 16 NN shells for S(q, ω) calculations both from sim-
ulations that include nonlocal damping as well as the effective
total damping (see Appendix D for a focused discussion).
In Fig. 3, the simulated magnon spectra of the ferromagnets
investigated here are shown. We note that a general good
agreement can be observed between our computed magnon
spectra (both from the frozen magnon approach as well as
from the dynamical structure factor) and previous theoretical
as well as experimental results [33,51,85,105–108], where
deviations from experiments are largest for fcc Ni. This excep-
tion, however, is well known and has already been discussed
elsewhere [109].

The main effect of the nonlocal damping on the magnon
spectra in all systems investigated here is that it changes
the full width at half-maximum (FWHM) �q of S(q, ω).
Usually, �q is determined from the superposition of thermal
fluctuations and damping processes. More specifically, the
nonlocal damping broadens the FWHM compared to simu-
lations based solely on an effective damping for most of the
high-symmetry paths in all of the ferromagnets analyzed here,
with the exception of Fe70Co30. The most extreme case is for
fcc Ni, as αq exceeds the 0.25 threshold for q = X , which
is comparable to the damping of ultrathin magnetic films on
high-SOC metallic hosts [110]. As a comparison, the largest
difference of FWHM between the nonlocal damping process
and the effective damping process in bcc Fe is ∼2 meV,
while in fcc Ni the largest difference can reach ∼258 meV.
In contrast, the difference is ∼ − 1 meV in Fe70Co30, and the
largest nonlocal damping effect occurs around q = N and in
the H-P direction, corroborating the discussion in Sec. III A.
At the � point, which corresponds to the mode measured in
FMR experiments, all spins in the system have a coherent
precession. This implies that ∂m j

∂t in Eq. (4) is the same for
all moments, and thus both damping scenarios discussed here
(the effective damping and fully nonlocal damping) make no
difference to the spin dynamics. As a consequence, only a
tiny (negligible) difference of the FWHM is found between
effective and nonlocal damping for the FMR mode at low
temperatures.

The broadening of the FWHM on the magnon spectrum is
temperature-dependent. Thus, the effect of nonlocal damping
to the width near � can be of great interest for experiments.
More specifically, taking bcc Fe as an example, the difference
between the width in the effective damping and the nonlo-
cal damping processes increases with temperature, where the
difference can be enhanced up to one order of magnitude
from T = 0.1 to 25 K. Note that this enhancement might be
misleading due to the limits of the finite-temperature assump-
tion made here. This temperature-dependent damping effect
on FWHM suggests a path for the measurement of nonlocal
damping in FMR experiments.

We have also compared the difference in the imaginary part
of the transverse dynamical magnetic susceptibility computed
from nonlocal and effective damping. Defined by Eq. (12), the
imaginary part of the susceptibility is related to the FWHM
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FIG. 3. Magnon spectra calculated with nonlocal Gilbert damping and effective Gilbert damping in (a) bcc Fe; (b) bcc Fe70Co30; (c) bcc
Fe50Co50; (d) fcc Co; and (e) fcc Ni. The black lines denote the adiabatic magnon spectra calculated from Eq. (7). Full red and open blue points
denote the peak positions of S(q, ω) at each q vector for αtot and αi j calculations, respectively, at T = 0.1 K. The width of transparent red and
blue areas corresponds to the full width at half-maximum (FWHM) on the energy axis fitted from a Lorentzian curve, following the same color
scheme. To highlight the difference of the FWHM between the two damping modes, the FWHMs shown in the magnon spectrum of Fe1−xCox ,
Co, and Ni are multiplied by 20, 5, and 1

2 times, in that order. The triangles represent experimental results in (a) Fe at 10 K [107] (yellow up)
and Fe with 12% Si at room temperature [106] (green down); in (d) Co(9 ML)/Cu(100) at room temperature [108] (green down); and in (e)
Ni at room temperature (green down) [105]. The standard deviation of the peaks is represented as error bars.

[15]. Similar to the magnon spectra shown in Fig. 3, the
susceptibility difference is significant at the BZ boundaries.
Taking the example of fcc Co, Imχ±(q, ω) for effective
damping processes can be 11.8 times larger than in
simulations that include nonlocal damping processes, which
is consistent with the lifetime peak that occurs at the high-
symmetry point, X , depicted in Fig. 4. In the Fe1−xCox alloy
and Fe70Co30, the largest ratio is 1.7 and 2.7, respectively.
The intensity at � point is zero since αq is independent
of the coupling vector and equivalent in both damping modes.
The effect of nonlocal damping on susceptibility coincides
well with the magnon spectra from spin dynamics. Thus, this
method allows us to evaluate the magnon properties in a more
efficient way.

D. Magnon lifetimes

By fitting the S(q, ω) curve at each wave vector with a
Lorentzian curve, the FWHM and hence the magnon life-
times, τq, can be obtained from the simple relation [15]

τq = 2π

�q
. (17)

Figure 4 shows the lifetimes computed in the high-
symmetry lines in the BZ for all ferromagnets investigated
herein. As expected, τq is much lower at the q vectors
far away from the zone center, being of the order of 1
ps for the Fe1−xCox alloys (x = 0%, 30%, 50%), and from

∼0.01 to 1 ps in fcc Co and Ni. In view of Eq. (13), the
magnon lifetime is inversely proportional to both damping and
magnon frequency. In the effective damping process, αq is a
constant and independent of q; thus, the lifetime in the
entire BZ is dictated only by ωq. The situation becomes
more complex in the nonlocal damping process, where the
τq is influenced by the combined effect of changing damp-
ing and magnon frequency. Taking Fe70Co30 as an example,
even though the αq is higher around the �, the low magnon
frequency compensates for the damping effect, leading to an
asymptotically divergent magnon lifetime as ωq → 0. How-
ever, this divergence becomes finite when including, e.g.,
magnetocrystalline anisotropy or an external magnetic field to
the spin-Hamiltonian. In the H-N path, the magnon energy of
Fe70Co30 is large, but αq reaches ∼4 × 10−4 at q = ( 1

4 , 1
4 , 1

2 ),
resulting in a magnon lifetime peak of ∼10 ps. This value is
not found for the effective damping model.

In the elemental ferromagnets, as well as for Fe50Co50, it is
found that nonlocal damping decreases the magnon lifetimes.
This nonlocal damping effect is significant in both Co and
Ni, where the magnon lifetimes from the αi j model differ by
an order of magnitude from the effective model (see Fig. 4).
In fact, considering τq obtained from Eq. (13), the effective
model predicts a lifetime already higher by more than 50%
when the magnon frequencies are ∼33 and ∼14 meV in the
K-� path (i.e., near �) of Ni and Co, respectively. This dif-
ference mainly arises, in real space, from the strong negative
contributions of αi j in the close neighborhood around the
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FIG. 4. Magnon lifetimes τq of (a) bcc Fe; (b) bcc Fe70Co30; (c) bcc Fe50Co50; (d) fcc Co; and (e) fcc Ni as a function of q, shown in
logarithmic scale. The color scheme is the same as Fig. 3, where blue and red represents τq computed in the effective and nonlocal damping
models. The transparent lines and points depict the lifetimes calculated with Eq. (13) and by the FWHM of S(q, ω) at T = 0.1 K [see Eq. (17)],
respectively. The lifetime asymptotically diverges around the �-point due to the absence of anisotropy effects or external magnetic field in the
spin-Hamiltonian.

reference site, namely the NN in Ni and third neighbors in
Co. In contrast, due to the αq spectrum composed of almost
all dampings lower than αtot, already discussed in Sec. III A,
the opposite trend on τq is observed for Fe70Co30: The positive
overall nonlocal damping contribution results in an antidamp-
ing effect, and the lifetimes are enhanced in the nonlocal
model.

Another way to evaluate the magnon lifetimes is from
the linear-response theory. As introduced in Sec. II B, we
have access to magnon lifetimes at low temperatures from
the imaginary part of the susceptibility. The τq calculated
from Eq. (13) is also displayed in Fig. 4. Here the spin-wave
frequency ωq is from the frozen magnon method. The magnon
lifetimes from linear response are in very good agreement
with the results from the dynamical structure factor, showing
the equivalence between both methods. Some of the small
discrepancies are related to magnon-magnon scattering in-
duced by the temperature effect in the dynamical structure
factor method. We also find good agreement on the magnon
lifetimes of effective damping in pure Fe with previous studies
[111]. They are in a similar order and decrease with increasing
magnon energy. However, their results are more diffused since
the simulations are performed at room temperature.

IV. CONCLUSION

We have presented the influence of nonlocal damping on
spin dynamics and magnon properties of elemental ferro-
magnets (bcc Fe, fcc Co, fcc Ni) and the bcc Fe70Co30 and
bcc Fe50Co50 alloys in the virtual-crystal approximation. It
is found that the nonlocal damping has important effects

on relaxation processes and magnon properties. Regarding
the relaxation process, the nonlocal damping in Fe, Co, and
Ni has a negative contribution to the local (on-site) part,
which accelerates the remagnetization. Contrarily, influenced
by the positive contribution of αi j (i �= j), the magnon life-
times of Fe70Co30 and Fe50Co50 are increased in the nonlocal
model, typically at the boundaries of the BZ, decelerating the
remagnetization.

Concerning the magnon properties, the nonlocal damping
has a significant effect in Co and Ni. More specifically, the
magnon lifetimes can be overestimated by an order of mag-
nitude in the effective model for these two materials. In real
space, this difference arises as a result of strong negative
nonlocal contributions in the close neighborhood around the
reference atom, namely the NN in Ni and the third neighbors
in Co.

Although the effect of nonlocal damping to the stochastic
thermal field in spin dynamics is not included in this work,
we still obtain coherent magnon lifetimes compared to the
analytical solution from linear-response theory. Notably, it is
predicted that the magnon lifetimes at certain wave vectors
are higher for the nonlocal damping model in some materials.
An example is Fe70Co30, in which the lifetime can be ∼3
times higher in the H-N path for the nonlocal model. On the
other hand, we have proposed a fast method based on linear
response to evaluate these lifetimes, which can be used in
high-throughput computations of magnonic materials. How-
ever, the applied VCA theory on an alloy has discarded the
short-range disorder in alloys. Hence, the local environmental
effects on their damping and magnon properties need further
investigation.
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FIG. 5. Spin dynamics at T = 0 K of an undamped dimer in
which α12 = α21 = α11 (see text). The vector m1 is normalized and
its Cartesian components are labeled in the figure as mx , my, and mz.
The black and gray lines indicate the length of spin and energy (in
mRy), respectively.

Finally, our study provides a link on how nonlocal damping
can be measured in FMR and neutron scattering experiments.
Even further, it gives insight into optimizing excitation of
magnon modes with possible long lifetimes. This optimization
is important for any spintronics applications. As a natu-
ral consequence of any real-space ab initio formalism, our
methodology and findings also open routes for the investiga-
tion of other materials with preferably longer lifetimes caused
by nonlocal energy dissipation at low excitation modes. Such
materials research could also include tuning the local chemi-
cal environments by doping or defects.
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APPENDIX A: NUMERICAL SOLVER

In this Appendix, the numerical method to solve Eq. (1) is
described. In previous studies, several numerical approaches
have been proposed to solve the local LLG equations, in-
cluding the HeunP method, the implicit midpoint method,
Depondt-Merten’s method [112], and the semi-implicit A
(SIA) and semi-implicit B (SIB) methods [41]. To solve this
nonlocal LLG equation, we use the fixed-point iteration mid-
point method. We have done convergence tests on this method
and find that it preserve the energy and spin length of the
system, which is demonstrated in Fig. 5 for the case of a dimer.
With stable outputs, the solver allows for a relatively large
time step size, typically of the order of �t ∼ 0.1–1 fs.

Following the philosophy of an implicit midpoint method,
the implemented algorithm can be described as follows. Let
mt

i be the magnetic moment of site i at a given time step t .
Then we can define the quantity mmid and the time derivative
of mi, respectively, as

mmid = mt+1
i + mt

i

2
,

∂mi

∂t
= mt+1

i − mt
i

�t
. (A1)

Using this definition in Eq. (4), the equation of motion of the
ith spin becomes

∂mi

∂t
= mmid ×

⎛
⎝−γ [Bi(mmid) + bi(t )] +

∑
j

αi j

m j

∂m j

∂t

⎞
⎠.

(A2)

Thus, with a fixed-point scheme, we can do the following
iteration:

mt+1(k+1)
i = mt

i + �t

⎧⎨
⎩

(
mt+1(k)

i + mt
i

2

)
×

⎛
⎝−γ

[
Bi

(
mt+1(k)

i + mt
i

2

)
+ bi(t )

]
+

∑
j

αi j

m j

mt+1(k)
j − mt

j

�t

⎞
⎠

⎫⎬
⎭. (A3)

If mt+1(k+1)
i ≈ mt+1(k)

i , the self-consistency converges.
Typically, about six iteration steps are needed. This solver was
implemented in the software package UPPASD [47] for this
work.

APPENDIX B: ANALYTICAL MODEL OF ANTIDAMPING
IN DIMERS

In the dimer model, there are two spins on site 1 and site 2
denoted by m1 and m2, which are supposed to be related here
to the same element—so that, naturally, α11 = α22 > 0. Also,
let us consider a sufficiently low temperature so that bi(t )→0,

which is a reasonable assumption, given that damping has
an intrinsic origin [113]. This simple system allows us to
provide explicit expressions for the Hamiltonian, the effective
magnetic fields, and the damping term. From the analytical
solution, it is found that the dimer spin system becomes an
undamped system when local damping is equal to nonlocal
damping, i.e., the effective damping of the system is zero.

Following the definition given by Eq. (4) in the main text,
the equation of motion for spin 1 reads

∂m1

∂t
= m1 ×

(
−γ B1 + α11

m1

∂m1

∂t
+ α12

m2

∂m2

∂t

)
, (B1)
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and an analogous expression can be written for spin 2. For the
sake of simplicity, the Zeeman term is zero and the effective
field only includes the contribution from Heisenberg exchange
interactions. Thus, we have B1 = 2J12m2 and B2 = 2J21m1.
With |αi j | 	 1, we can take the LL form ∂mi

∂t = −γ mi × Bi to
approximate the time derivative on the right-hand side of the
LLG equation. Let m1 = m2 and α12 = λα11. Since J12 = J21

and m1 × m2 = −m2 × m1, we then have

∂m1

∂t
= −2γ J12m1 ×

[
m2 + (1 − λ)

α11

m1
(m1 × m2)

]
. (B2)

Therefore, when α12 = α21 = α11 (i.e., λ = 1), Eq. (B1) is
reduced to

∂m1

∂t
= −2γ J12m1 × m2, (B3)

and the system becomes undamped. It is, however, straightfor-
ward that, for the opposite case of a strong negative nonlocal
damping (λ = −1), Eq. (B2) describes a common damped
dynamics. A side (and related) consequence of Eq. (B2), but
important for the discussion in Sec. III B, is the fact that
the effective on-site damping term α∗

11 = (1 − λ)α11 becomes
less relevant to the dynamics as the positive nonlocal damping
increases (λ → 1), or, in other words, as αtot = (α11 + α12)
strictly increases due to the nonlocal contribution. Exactly
the same reasoning can be made for a trimer, for instance,
composed by atoms with equal moments and exchange in-
teractions (m1 = m2 = m3, J12 = J13 = J23), and the same
nonlocal dampings (α13 = α12 = λα11).

The undamped behavior can be directly observed from
ASD simulations of a dimer with α12 = α11, as shown in
Fig. 5. Here the magnetic moment and the exchange are
taken the same as those of an Fe dimer, m1 = 2.23μB and
J12 = 1.34 mRy. Nevertheless, obviously the overall behavior
depicted in Fig. 5 is not dependent on the choice of m1 and J12.
The z component is constant, while the x and y components of
m1 oscillate in time, indicating a precessing movement.

In a broader picture, this simple dimer case exemplifies
the connection between the eigenvalues of the damping ma-
trix α = (αi j ) and the damping behavior. The occurrence
of such undamped dynamics has been recently discussed in
Ref. [114], where it is shown that a dissipation-free mode can
occur in a system composed of two subsystems coupled to the
same bath.

APPENDIX C: EFFECTIVE AND ON-SITE DAMPING
IN THE FECO AND CONI ALLOYS

As mentioned in Sec. II, the simple VCA model allows
us to account for the disorder in 3d-transition-metal alloys
in a crude but efficient way that avoids the use of large su-
percells with random chemical distributions. With exactly the
same purpose, the CPA [115] has also been employed to ana-
lyze damping in alloys (e.g., in Refs. [76,77,116]), showing
a very good output with respect to trends, when compared
to experiments [32,86]. In Fig. 7 we show the normalized
calculated local (on-site, αii) and effective damping (αtot) pa-
rameters for the zero-temperature VCA Fe1−xCox alloy in the
bcc structure, consistent with a concentration up to x ≈ 60%
of Co [32]. The computed values in this work (blue points

FIG. 6. Comparisons between the total density of states calcu-
lated from (a) Fe50Co50 SQS-16 cell (blue solid lines) and Fe50Co50

VCA (red dashed lines); and (b) CPA (solid lines) and VCA (dashed
lines) via the KKR approach for bcc Fe1−xCox alloys: Fe70Co30 (in
red) and Fe50Co50 (in blue). In the inset of (a) we show the relation
between the total DOS at EF calculated with VCA and the SQS-16
cell.

representing αii, and red points representing αtot) are
compared to previous theoretical CPA results and room-
temperature experimental data. The trends with VCA are
reproduced in good agreement with respect to experiments
and CPA calculations, showing a minimal αtot when the Co
concentration is x ≈ 30%. This behavior is well correlated
with the local density of states (LDOS) at the Fermi level,
as expected by the simplified Kamberský equation [117], and
the on-site contribution. Although the scattering of electrons
could be distinct for Fe and Co due to the differences in
the (narrow) d bands [118], these local environment effects
are less pronounced when comparing the total density of
states coming from VCA and CPA approaches, and even from
an explicit SQS cell (average DOS/atom) for the Fe50Co50

alloy—especially near (and at) the Fermi level. Figure 6
shows the total DOSs comparison between (a) VCA and
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FIG. 7. Left scale: Computed Gilbert effective (αtot, red circles)
and on-site (αii, blue squares) damping parameters as a function
of Co the concentration (x) for bcc Fe1−xCox binary alloy in the
virtual-crystal approximation. The values are compared with pre-
vious theoretical results using CPA at 0 K, from Ref. [76] (gray
full triangles), Ref. [53] (black open rhombus), Ref. [77] (yellow
open triangles), and room-temperature experimental data [32] (green
full triangles). Right scale: The calculated density of states (DOS) at
the Fermi level as a function of x, represented by the black dashed
line.

the SQS-16 cell, both calculated with the RS-LMTO-ASA
method, and (b) VCA and CPA, obtained with the KKR
method [84]. Despite the good agreement found, the values we
have determined are subjected to a known error of the VCA
with respect to the experimental results.

This discrepancy can be partially explained by three rea-
sons: (i) the significant influence of local environments (local

FIG. 8. Left scale: Computed Gilbert effective (αtot, red circles)
damping parameters as a function of the Co concentration (x) for
fcc CoxNi1−x binary alloy in the virtual-crystal approximation. The
values are compared with previous theoretical results using CPA at
0 K from Ref. [76] (gray full triangles), Ref. [86] (gold full circles),
and room-temperature experimental data [93] (green full triangles).
Right scale: The calculated density of states (DOS) at the Fermi level
as a function of x, represented by the black dashed line.

FIG. 9. Magnon lifetimes calculated using Eq. (13) for (a) bcc Fe
and (b) bcc Fe50Co50, using a reduced set of 16 NN shells (opaque
lines), and the full set of 136 NN shells (transparent lines).

disorder and/or short-range order) to αtot [78,97]; (ii) the
fact that the actual electronic lifetime (i.e., the mean time
between two consecutive scattering events) is subestimated
by the VCA average for randomness in the FeCo alloy,
which can have a non-negligible impact on the damping
parameter [22,119]; and (iii) the influence on damping of
noncollinear spin configurations in finite-temperature mea-
surements [53,120]. On top of that, it is noticeable that the
damping is dependent on the broadening of electron energy
states [22,119], δ, that is associated with numerous elec-
tron lifetime-limiting effects, e.g., electron-phonon coupling
and thermal vibrations, defect concentration, and electron-
electron interaction beyond DFT. Given the multifaceted
nature of this broadening, δ is sometimes used as an empirical
quantity to bring theory into agreement with experiments. In
this work, the imaginary part of the energy is not an explicit
parameter, which is related to the number of recursion levels
LL. The convergence test on damping has been performed to
ensure the LL value is sufficient (not shown).

In the spirit of demonstrating the effectiveness of the
simple VCA to qualitatively (and also, to some extent,
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quantitatively) describe the properties of Gilbert damping (see
Fig. 7) in suitable magnetic alloys, we also show in Fig. 8
the results obtained for CoxNi1−x systems. The CoNi alloys
are known to form in the fcc structure for a Ni concentration
range of 10–100 %. Therefore, here we modeled CoxNi1−x by
a big fcc cluster containing ∼530 000 atoms in real-space with
the equilibrium lattice parameter of a = 3.46 Å. The number
of recursion levels considered is LL = 41. A good agreement
with experimental results and previous theoretical calculations
can be noticed. In particular, the qualitative comparison with
theory from Refs. [76,86] indicates the equivalence between
the torque correlation and the spin correlation models for
calculating the damping parameter, which was also investi-
gated by Sakuma [121]. The on-site contribution for each Co
concentration, αii, is omitted from Fig. 8 due to an absolute
value two to four times higher than αtot, but it follows the
same decreasing trend. Again, the overall effective damping
values are well correlated with the LDOS, and they reflect
the variation of the quantity 1

mt
with Co concentration [see

Eq. (15)].

APPENDIX D: EFFECT OF FURTHER NEIGHBORS
IN THE MAGNON LIFETIMES

When larger cutoff radii (Rcut) of αi j parameters are in-
cluded in ASD, Eq. (A3) takes longer times to achieve a

self-consistent convergence. In practical terms, to reach a
sizable computational time for the calculation of a given sys-
tem, Rcut needs to be chosen in order to preserve the main
features of the magnon properties as if Rcut → ∞. A good
quantity to rely on is the magnon lifetime τq, as it consists of
both magnon frequency and q-resolved damping [Eq. (13)]. In
Sec. III C, we have shown the equivalence between Eq. (13)
and the inverse of the FWHM on the energy axis of S(q, ω)
for the ferromagnets investigated here. Thus, the comparison
of two τq spectra for different Rcut can be done directly and in
an easier way using Eq. (13).

An example is shown in Fig. 9 for bcc Fe and bcc Fe50Co50.
Here we choose the first 16 NN (Rcut ∼ 3.32a) and compare
the results with the fully calculated set of 136 NN (Rcut =
10a). It is noticeable that the reduced set of neighbors can
capture most of the features of the τq spectrum for a full NN
set. However, long-range influences of small magnitudes, such
as extra oscillations around the point q = H in Fe, can occur.
In particular, these extra oscillations arise mainly due to the
presence of Kohn anomalies in the magnon spectrum of Fe,
already reported in previous works [51,85]. In turn, for the
case of Fe50Co50, the long-range αi j reduces αtot, and causes
the remagnetization times for nonlocal and effective dampings
to be very similar (see Fig. 2). For the other ferromagnets
considered in the present research, comparisons of the reduced
Rcut with analogous quality were reached.
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