
J
H
E
P
1
2
(
2
0
2
3
)
0
5
6

Published for SISSA by Springer

Received: August 31, 2023
Accepted: November 17, 2023
Published: December 11, 2023

BubbleDet: a Python package to compute functional
determinants for bubble nucleation

Andreas Ekstedt,a,b,c Oliver Gouldd and Joonas Hirvonene

aDepartment of Physics and Astronomy, Uppsala University,
P.O. Box 256, SE-751 05 Uppsala, Sweden

bII. Institute of Theoretical Physics, Universität Hamburg,
D-22761, Hamburg, Germany

cDeutsches Elektronen-Synchrotron DESY,
Notkestr. 85, 22607 Hamburg, Germany

dSchool of Physics and Astronomy, University of Nottingham,
Nottingham NG7 2RD, United Kingdom

eHelsinki Institute of Physics, University of Helsinki,
FI-00014, Finland
E-mail: andreas.ekstedt@desy.de, oliver.gould@nottingham.ac.uk,
joonas.o.hirvonen@helsinki.fi

Abstract: We present a Python package BubbleDet for computing one-loop functional
determinants around spherically symmetric background fields. This gives the next-to-
leading order correction to both the vacuum decay rate, at zero temperature, and to the
bubble nucleation rate in first-order phase transitions at finite temperature. For predictions
of gravitational wave signals from cosmological phase transitions, this is expected to remove
one of the leading sources of theoretical uncertainty. BubbleDet is applicable to arbitrary
scalar potentials and in any dimension up to seven. It has methods for fluctuations of scalar
fields, including Goldstone bosons, and for gauge fields, but is limited to cases where the
determinant factorises into a product of separate determinants, one for each field degree
of freedom. To our knowledge, BubbleDet is the first package dedicated to calculating
functional determinants in spherically symmetric backgrounds.

Keywords: Nonperturbative Effects, Phase Transitions in the Early Universe, Solitons
Monopoles and Instantons, Thermal Field Theory

ArXiv ePrint: 2308.15652

Open Access, c⃝ The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP12(2023)056

mailto:andreas.ekstedt@desy.de
mailto:oliver.gould@nottingham.ac.uk
mailto:joonas.o.hirvonen@helsinki.fi
https://arxiv.org/abs/2308.15652
https://doi.org/10.1007/JHEP12(2023)056


J
H
E
P
1
2
(
2
0
2
3
)
0
5
6

Contents

1 Introduction 2

2 Quick start 3

3 Theoretical background 4
3.1 Overview of the problem 4
3.2 The Gelfand-Yaglom theorem 7
3.3 One-loop correction to the action 8

4 The BubbleDet code 11
4.1 Application of the Gelfand-Yaglom method 12
4.2 Extrapolating the sum over orbital quantum number 13
4.3 Finding the asymptotic behavior 15
4.4 Computing the negative eigenvalue 16
4.5 Requirements on the input bounce profile 17

5 Tests 17
5.1 Comparisons to literature 17
5.2 Thin-wall limit 19
5.3 Derivative expansion 21
5.4 Speed tests 22

6 Applications 22
6.1 Thermal bubble nucleation and dimensional reduction 22
6.2 Gauge symmetry breaking 24
6.3 Analogue false vacuum decay in d = 1 + 1 25
6.4 Effects of potential shape 26

7 Conclusions 27

A Potentials used in the paper 28
A.1 A ϕ4 potential 29
A.2 A ϕ6 potential 29
A.3 A logarithmic potential 29
A.4 A trigonometric potential 30

B Vector fields 30

C Algorithm details 31
C.1 Initial value problem 31
C.2 Gelfand-Yaglom method for massless bounces 32
C.3 Algorithm for fitting ϕ∞ 32

– i –



J
H
E
P
1
2
(
2
0
2
3
)
0
5
6

C.4 Algorithm for finding the negative eigenvalue 34

D Volume, Jacobians, and removing zero modes 35
D.1 Breaking translational invariance 35
D.2 Translations for massless Higgs potentials 36
D.3 Internal symmetries 38
D.4 Dilatations 38
D.5 Special conformal transformations 39

E Higher-order WKB approximations 40

Program summary

Program title: BubbleDet

Program obtainable from: https://pypi.org/project/BubbleDet/,
https://anaconda.org/conda-forge/bubbledet

Documentation link: https://bubbledet.readthedocs.io/

Developer’s repository link: https://bitbucket.org/og113/bubbledet/

Programming language: Python 3

Distribution format: source (tar.gz) and built (.whl) distributions

Licence: MIT

Operating system: compatible with any OS with Python installed. Tested on Linux
(Ubuntu 20 and 22), macOS Ventura 13.1 and Windows 10.

External routines: cosmoTransitions [1], FinDiff [2], NumPy [3], SciPy [4]

RAM: 8-10 MB for our examples.

Typical running time: 0.25 seconds on a laptop with a 3.2 GHz processor for a typical
bubble, growing to a few seconds for a bubble in the thin wall regime.

Nature of problem: the problem is to efficiently compute functional determinants for
tunnelling rates in quantum field theory. It is assumed that the background field has
spherically symmetry, as is relevant to vacuum decay or bubble nucleation.

Solution method: the functional determinant is decomposed into spherical harmonics. For
each value of the total angular momentum, we use the Gelfand-Yaglom theorem to
compute the reduced functional determinant in terms of an initial value problem.
Zero eigenvalues are treated using a result of Dunne and Min, which is equivalent to
the collective coordinate method. The sum over angular momenta is regularised in the
MS scheme, and convergence of the sum is accelerated using the WKB approximation.
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Restrictions: the code is currently limited to bosonic fields, and to cases where the func-
tional determinant factorises into a product of separate determinants, one for each
field degree of freedom.

1 Introduction

Functional determinants are ubiquitous in field theory, encoding the effects of quantum or
statistical fluctuations. Starting from the path integral, they arise whenever one makes a
semiclassical or saddlepoint approximation, and hence appear in a wide range of physical
phenomena. For example, functional determinants play a central role in vacuum decay [5–
7], thermal bubble nucleation [8–10], the study of solitons [11], and baryon number violation
through anomalies [12, 13].

The semiclassical or saddlepoint approximation to a path integral is the infinite-
dimensional generalisation of Laplace’s method. For a set of fields ϕi(x) with action S[ϕi],
this takes the form ∫

Dϕi e−S[ϕi] ≈ A e−B. (1.1)

The largest contribution to the result, B, is equal to the action evaluated at a saddlepoint.
The prefactor A comes from fluctuations around the saddle, which at leading order arise
quadratically in the action. Effectively the path integral becomes an infinite product of
Gaussian integrals that, in turn, results in an infinite product of eigenvalues — a functional
determinant [5, 8].

The computation of the saddlepoint action B has received much attention. For vac-
uum decay, many different algorithms have been proposed [14–19], and there are at least
five software packages dedicated to this computation [1, 20–23]. On the other hand, to our
knowledge there are no existing public codes capable of computing the functional determi-
nant.

The computation of A is the focus of this article. Typically, it has been assumed
that A is of negligible numerical importance in comparison with e−B, and hence one may
be content with an estimate for A based on dimensional analysis. This assumption is
often motivated by the exponential form of equation (1.1), and the familiar rapidity of
exponential growth.

Despite appearances, the functional determinant A generically takes an exponential
form in field theory. While there is undoubtedly some arbitrariness in the distinction
between exponential and prefactor, below we argue that field-theoretic functional determi-
nants naturally give exponentials.

• The prefactor is the sum of one-loop vacuum Feynman diagrams, including discon-
nected diagrams. This is equal to the exponential of the sum of connected vacuum
diagrams, A = econnected. The divergences of the connected diagrams cancel against
the one-loop counterterms in the action, leaving a finite remainder.

• The prefactor is the integral over the phase space of fluctuations around a saddlepoint,
and hence it is the exponential of their entropy. For a field theory, these fluctuations
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are an infinite number of harmonic oscillators. The entropy of a single oscillator is
Si = O(1), and the total entropy is extensive: A = e

∑
i
Si .

• Consider a simple example, such as a constant background field. In this case B =∫
x V0 and A = e−

∫
x
V1 , where V0 and V1 are the tree-level potential and one-loop

effective potential respectively.

As a consequence of this exponentiation, after scaling out dimensions, the typical magnitude
of logA relative to B is the same as for any other one-loop correction to the tree-level.1
Furthermore, for phase transitions the tree-level action is typically fine-tuned, thus making
the relative impact of A even greater. It is however important to stress that perturbation
theory may still work since higher loop corrections are suppressed by additional powers of
couplings, and it is but the tuned tree-level action at fault.

To date there have been several calculations of functional determinants in various
field-theoretic models. Analytic results have been attained in one spatial dimension [24],
in the thin-wall limit [25–30], and in a scaleless potential [6, 7]. Outside these simplify-
ing cases, computations have been carried out numerically [31–38]. Calculations of func-
tional determinants are universally involved, and consequently they have yet to achieve
widespread usage, either for phenomenological applications or for comparisons to new the-
oretical methods. Motivated by this, we introduce BubbleDet, a Python package that
automatically calculates bosonic functional determinants in spherically symmetric scalar
field backgrounds.

2 Quick start

The simplest way to install BubbleDet is to use a Python package manager, such as the
Package Installer for Python (PIP) or Conda. To install with PIP, run the following in a
Linux or Unix (including macOS) terminal or in a Windows command prompt2

$ pip install BubbleDet

Alternatively, to install with Conda, use

$ conda install -c conda -forge BubbleDet

Once installed, BubbleDet can be imported just as any other Python package.
To use BubbleDet to compute functional determinants, one must pass a precomputed

bounce solution. Since BubbleDet is written in Python, it is straightforward to obtain
and pass the bounce solution from CosmoTransitions [1]. This is however optional, and
BubbleDet can be used together with any bounce solver.

A number of examples are included with the package, the simplest of which,
first_example.py, demonstrates the computation of the functional determinant for the
vacuum decay of a pure scalar field with a quartic potential. Further examples demon-
strate how to use the package in a variety of settings, including for a symmetry-breaking

1We use log to refer to the natural logarithm throughout, following NumPy, SciPy etc.
2Use pip3 in place of pip on systems where pip refers to the Python 2 instance.
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Figure 1. Schematic example potential showing a (metastable) false vacuum at ϕF and a (stable)
true vacuum at ϕT.

vacuum transition in the Abelian Higgs model and for a high-temperature phase transi-
tion in a Yukawa model. All the examples can be viewed in the online documentation, at
https://bubbledet.readthedocs.io/, where one can also find comprehensive documen-
tation of all the package functions.

3 Theoretical background

3.1 Overview of the problem

A metastable or false vacuum state can decay through bubble nucleation. This is a semi-
classical process, dominated by a critical bubble or bounce, which leads to a local escape
from the false vacuum. In quantum field theory, the study of this process was initiated by
Coleman and Callan in the late 70s [5, 14], building on earlier work in classical statistical
field theory [8, 39].

More recently, the predicted metastability of the electroweak vacuum state has ne-
cessitated the development of quantitatively reliable predictions for the decay rate [6, 7].
This has been bolstered by the possibility of observing gravitational waves from a cosmo-
logical phase transition in the early universe [40], for which accurate predictions of the
bubble nucleation rate are required to determine the peak frequency and amplitude of the
signal [41, 42].

Consider a single real scalar field in d-dimensions with Euclidean action

S[ϕ] =
∫
ddx

[1
2∇µϕ∇µϕ+ V (ϕ)

]
, (3.1)

where we have kept all indices lowered to emphasise the Euclidean signature of the metric.
Let us assume that V (ϕ) has one (metastable) minimum at ϕ = ϕF and a deeper one at
ϕ = ϕT, such as in figure 1. The metastable, or false, vacuum will then decay to the stable,
or true, vacuum with a rate per unit volume given at zero temperature by [5, 7, 14, 43–45]

Γ =
(
S[ϕb]
2π

)d/2 ∣∣∣∣∣det′
(
−∇2 + V ′′(ϕb)

)
det (−∇2 + V ′′(ϕF))

∣∣∣∣∣
−1/2

e−(S[ϕb]−S[ϕF]). (3.2)
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Here det′ signifies that the translational zero modes are omitted from the determinant, and
ϕb denotes the bounce solution, also referred to as the critical bubble.

We assume that the bounce only depends on the radial coordinate r ≡ √
xµxµ and

satisfies [14]

δS[ϕ]
δϕ

∣∣∣∣
ϕb

= −∂2ϕb(r)−
(d− 1)
r

∂ϕb(r) + V ′(ϕb) = 0, (3.3)

subject to the boundary conditions,

lim
r→∞

ϕb(r) = ϕF, ∂ϕb|r=0 = 0. (3.4)

Here we have introduced the shorthand ∂ ≡ ∂
∂r . These boundary conditions are preserved

by the functions included in the functional determinant, as they can be considered additive
fluctuations about the background. The fluctuations are therefore regular at the origin and
go to zero at infinity.

Note that equation (3.2) only incorporates 1-loop corrections — via the determinant —
and higher loop corrections are omitted in this work.

Multi-field models. In more complicated models, the full functional determinant runs
over all the fields. In principle these fields can mix, either through the mass matrix, or
through derivative terms. However, in the present work we will assume that the functional
determinants can be diagonalised in field space. We also assume that there is only one
background field ϕ(r) that is coordinate dependent.

As a concrete example, consider first a scalar theory with a global U(1) symmetry and
with Euclidean Lagrangian

L = (∇µΦ)∗∇µΦ+ V (Φ), (3.5)
V (Φ) = m2Φ∗Φ+ λ(Φ∗Φ)2. (3.6)

If we now expand around a radially-symmetric background ϕ(r) that extremises the action,
Φ = 1√

2 (ϕ(r) +H(x) + iG(x)), we find

L =L (ϕ) + 1
2H

[
−∇2 + V ′′(ϕ)

]
︸ ︷︷ ︸

≡OH(ϕ)

H + 1
2G

[
−∇2 + ϕ−1V ′(ϕ)

]
︸ ︷︷ ︸

≡OG(ϕ)

G+ . . . (3.7)

where the dots denote terms higher order than quadratic in fluctuations. In this case, the
quadratic part of the Lagrangian, and consequently the functional determinant, factorises
into Higgs and Goldstone pieces.

The generalization of equation (3.2) to this model is then

Γ = JGVG

√
detOG(ϕF)
det′OG(ϕb)

JH

√∣∣∣∣ detOH(ϕF)
det′OH(ϕb)

∣∣∣∣e−(S[ϕb]−S[ϕF]), (3.8)

where VX and JX are volume and Jacobian factors arising due to zero modes. The former
is the volume of the space of zero modes, and the latter is the Jacobian for the transfor-
mation to collective coordinates [43, 46]. They are discussed further in section 3.3 and in
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appendix D. For the Higgs, we have that JH = (S[ϕb]/(2π))d/2. Note that we need not
take the modulus of the Goldstone determinant, as only the Higgs determinant contains a
negative mode.

Extending this model, consider next the inclusion of an n-component scalar field,
coupled as

∆L = 1
2∇µχ

a∇µχ
a + 1

2M
2χaχa + κχaχaΦ∗Φ, (3.9)

where the index a runs over 1, 2, . . . , n. Assuming the χ field does not take a background
expectation value, the Lagrangian expanded to quadratic order reads

∆L = 1
2χ

a
[
−∇2 +M2 + κϕ2

]
︸ ︷︷ ︸

≡Oχ(ϕ)

χa + . . . (3.10)

There are no zero modes for the χ field, as it does not break any symmetry. It also does not
mix with the Higgs or Goldstone fluctuations at quadratic order. So, the full nucleation
rate reads

Γ =
(
detOχ(ϕF)
detOχ(ϕb)

)n/2

JGVG

√
detOG(ϕF)
det′OG(ϕb)

JH

√∣∣∣∣ detOH(ϕF)
det′OH(ϕb)

∣∣∣∣e−(S[ϕb]−S[ϕF]). (3.11)

In all the examples above, the total one-loop contribution to the decay rate is a product
of independent functional determinants, each of which takes the form

JV
∣∣∣∣∣ det′(−∇2 +W (r))
det(−∇2 +W (∞))

∣∣∣∣∣
−n/2

, (3.12)

where n is the number of such field degrees of freedom, and J and V are the Jacobian and
volume factors for the zero modes. Since we are interested in the rate per unit volume, we
always remove the volume associated with space-time translations.

The W factor in equation (3.12) denotes a field-dependent mass squared, for example

W (r) =


V ′′(ϕb(r)), Higgs,
ϕb(r)−1V ′(ϕb(r)), Goldstone,
M2 + κϕb(r)2, χ field.

(3.13)

For the above models, a list of W functions determines the Lagrangian at quadratic order.
However, in models with off-diagonal terms at quadratic order, W should be promoted to
a matrix in field space.

The inclusion of vector fields, such as in the electroweak theory, inevitably leads to
off-diagonal terms in field space, through mixing with Goldstone fields [7, 38, 47, 48]. Ac-
counting for such mixing terms goes beyond the scope of this first version of BubbleDet.
However, one can approximate the full vector-field one-loop determinant by dropping the
off-diagonal terms. This can be expected to capture the correct order of magnitude of the
functional determinant. Vector fields are discussed further in appendix B. Nevertheless,
while we do not consider full multi-field determinants in this work, several such computa-
tions exist in the literature [6, 7, 38, 49–52].

– 6 –
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Finite temperature transitions. At high temperatures it is possible for fields to borrow
energy from the thermal bath and escape from a metastable state. In addition, if the
nucleating field evolves parametrically slower than the inverse temperature, we can describe
its dynamics classically in real time. As such, J.S. Langer’s framework of classical nucleation
theory is applicable [8, 39, 53, 54], and the rate factorises into dynamical and statistical
parts

ΓT = Adyn ×Astat. (3.14)

For thermal nucleation in d + 1 spacetime dimensions, the statistical factor Astat co-
incides with the vacuum decay rate in d dimensions given by equation (3.2), and thus can
be computed directly with BubbleDet. Albeit with one caveat: thermal corrections from
nonzero Matsubara modes should be included in the tree-level potential when computing
Astat [10, 53, 55].

The dynamical factor Adyn contains dissipative effects and, unlike Astat, it is not ex-
pected to exponentiate. In Langer’s framework, which assumes Langevin dynamics, the
dynamical factor is equal to the real-time growth rate of a critical bubble divided by 2π .
This can be expressed as [39, 56, 57]

Adyn = 1
2π

√|λ−|+
η2

4 − η

2

 , (3.15)

in terms of the negative eigenvalue of the functional determinant λ−, and the Langevin
damping coefficient η. The negative eigenmode is the lowest eigenvalue of the Higgs fluc-
tuation operator OH(ϕb), and corresponds to isotropic growth or shrinking of the bubble.
This identification receives corrections at higher orders [54]. The computation of λ− can
be carried out using BubbleDet, but that of η requires additional real-time input. Setting
η = 0 yields the approximation of ref. [9], though in this limit the saddlepoint approxima-
tion is expected to break down [56].

3.2 The Gelfand-Yaglom theorem

To find the rate in equation (3.2) we need to evaluate the functional determinant
det

(
−∇2 +W (r)

)
. For a constant scalar field ϕ one finds the usual effective poten-

tial [58, 59], however, closed analytical expressions are in general not available for a spatially
varying field.

Instead numerical techniques are required. As an initial step it is useful to exploit the
spherical symmetry and to expand all eigenfunctions in spherical harmonics:

det
(
−∇2 +W (r)

)
det (−∇2 +W (∞)) = Π∞

l=0

[
det

(
−∇2

l +W (r)
)

det
(
−∇2

l +W (∞)
)]deg(d;l)

, (3.16)

where

deg(d; l) = (d+ 2l − 2)Γ(d+ l − 2)
Γ(d− 1)Γ(l + 1) (3.17)

– 7 –
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is the degeneracy factor for the orbital quantum number l. Dependence on the magnetic
orbital quantum number (normally denoted m) is trivial; it is completely accounted for by
the degeneracy factor. The spherical Laplacian is

∇2
l = ∂2 + d− 1

r
∂ − l(l + d− 2)

r2 . (3.18)

To compute the determinant for given l we use the Gelfand-Yaglom theorem, which in
our case states that [60–63]

det
(
−∇2

l +W (r)
)

det
(
−∇2

l +W (∞)
) = ψlb(∞)

ψlF(∞)
, (3.19)

where the ψlb,F (r) satisfy the differential equations[
−∇2

l +W (r)
]
ψlb(r) = 0,

[
−∇2

l +W (∞)
]
ψlF (r) = 0, (3.20)

with the boundary condition ψlb,F (r) ∼ rl as r → 0. Note that these equations for ψlb,F are
initial value problems, whereas the corresponding eigenfunctions satisfy boundary value
problems. Since W (∞) is a constant, the differential equation for ψlF (r) can be solved
analytically.

3.3 One-loop correction to the action

As discussed in section 3.2, the problem of calculating the rate in equation (3.2) is reduced
to solving the differential equations[

−∇2
l +W (r)

]
ψlb(r) = 0, (3.21)

for each l. Given the bounce, ϕb(r), these equations can be solved numerically. There are
however a few complications.

First, the determinant vanishes if there are zero modes, so these have to be removed.
Second, in practice we can only solve equation (3.20) for a finite number of l’s. And third,
the product — or equivalently a sum in the exponent — in equation (3.16) is generically
ultraviolet divergent. Let us deal with these problems in turn.

Zero modes. If we have a pure scalar theory, all zero modes occur either in the l = 0 or
in the l = 1 determinant. The procedure to remove zero modes is equivalent for the two
cases so we focus on the latter, and refer to appendix D.3 for the l = 0 case. For a single
scalar, equation (3.21) with l = 1 gives[

−∂2 − d− 1
r

∂ + (d− 1)
r2 + V ′′(ϕb)

]
ψ1
b (r) = 0, (3.22)

which has the solution ψ1
b (r) ∝ ∂ϕb(r). Note that the determinant indeed vanishes since

limr→∞ ∂ϕb(r) = 0.
Formally one can remove these zero modes — which arise because the bounce breaks

the translation symmetry — by using collective coordinates [43, 46]. This means that we

– 8 –



J
H
E
P
1
2
(
2
0
2
3
)
0
5
6

re-express eigenfunctions that generate the symmetry as a coordinate shift for all other
eigenfunctions. Then, since everything is transitionally invariant, the integration over all
possible translations gives the d-dimensional volume V; we also have to include a Jacobian
factor, J , since we changed variables. Our job now is to find the value of the determinant
once zero modes have been removed.

To do this we follow [31, 34, 36, 64] and deform the equation to[
−∂2 − d− 1

r
∂ + (d− 1)

r2 + V ′′(ϕb) + k2
]
ψ1,k
b (r) = 0, (3.23)

which effectively shifts all eigenvalues by k2. The determinant without zero modes is then
reproduced by the following limit

det′
(
−∇2

1 + V ′′(ϕb)
)

det
(
−∇2

1 + V ′′(ϕF)
) = lim

k→0

ψ1,k
b (∞)
k2

1
ψ1

F(∞) . (3.24)

After taking the k → 0 limit one finds [36](
S[ϕb]
2π

)d/2

︸ ︷︷ ︸
=J

(
det′

(
−∇2

1 + V ′′(ϕb)
)

det
(
−∇2

1 + V ′′(ϕF)
) )−d/2

=
[
(2π)d/2−1ϕ∞

∣∣∣∂2ϕb(0)
∣∣∣]d/2

. (3.25)

Here ϕ∞ is defined from the asymptotic behaviour of ϕb(r) as r → ∞ via

ϕb(r) ∼ ϕF + ϕ∞ K(d/2− 1,mFr)
(
mF
r

)d/2−1
. (3.26)

In addition, from equation (3.3) we find that ∂2ϕb(0) = 1
d
dV
dϕ (ϕb(0)).

For potentials in which the nucleating, or Higgs, field is massless in the metastable
phase, W (∞) = 0, the calculation in [36, 64] needs to be modified. In this case the
asymptotic behaviour of the bounce follows from the mF → 0+ limit of equation (3.26),

ϕb(r) ∼ ϕF + ϕ∞
Γ (d/2− 1) 2d/2−2

rd−2 , (3.27)

here assuming d > 2. 3 While the derivation differs from the massive case, the final result
for the determinant agrees with equation (3.25). It is worked out in appendix D.2.

Analytic solution for large l. For asymptotically large l, the computation of the deter-
minant simplifies. Physically we can think of l as the classical orbital momentum l ∼ p⃗× r⃗;
this means that the source at the origin — the critical bubble background — becomes less
significant when l ≳ mR, where R is the bubble radius and m is the particle mass. So
for large l we can use a WKB approximation to solve equation (3.20) analytically [35]. To
do this we use R.E. Langer’s method [65] and define Ψ(x) = rd/2−1ψ(r) together with a
change of variables to x = log r. Equation (3.20) is then equivalent to

∂2
xΨl

b,F (x) = A2
b,F (x)Ψl

b,F , A2
b,F (x) = e2xW (ex) + l

2
, l ≡ l + d− 2

2 . (3.28)

3In d = 2 the behavior of the massless asymptotic solution is more complicated. We do not consider this
case.
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For large l we can solve this equation in powers of l−1. We leave the details to appendix E
and merely quote the leading order solution [35]

log ψ
l
b(∞)

ψlF (∞)
= 1

2l

∫
drr∆W (r) +O

(
l−3
)
, (3.29)

where we have defined

∆W (r) ≡W (r)−W (∞). (3.30)

In practice we use the Gelfand-Yaglom theorem to solve equation (3.20) numerically
for l up to some lmax. We then use the WKB approximation to solve equation (3.20)
analytically for all remaining l’s.

Divergent sums and renormalization. From equation (3.29) we see that for large l

log
[
det′

(
−∇2

l +W (r)
)

det
(
−∇2

l +W (r)
) ]deg(d;l)

≈ deg(d; l)
[ 1
2l

∫
drr∆W (r) +O

(
l−3
)]

The degeneracy factor scales as ld−2, so in general there is a divergent sum for all d ≥ 2.
Take for example d = 4. In this case we also need O

(
l−3) terms:

log ψ
l
b(∞)

ψlF (∞)
≈ 1
2l

∫
drr∆W (r)− 1

8l3
∫

drr3
[
W (r)2 −W (∞)2

]
.

Because the degeneracy factor is deg(4; l) = (l+1)2, both terms diverge once we sum over
l. To handle this we use dimensional regularization and set d = 4− 2ϵ. The only sum with
a pole is of the form

∞∑
l=2

deg(d; l)l−3 = 1
2ϵ +O(ϵ). (3.31)

In the MS-scheme we should multiply this expression by
(

exp(γ)µ2

4π

)ϵ
and add counter-terms

— these can directly be read off from the (constant-field)4 Coleman-Weinberg potential [58]:

Veff(ϕ) = V (ϕ) + Vct(ϕ) + V1(ϕ), V1(ϕ) = − C

4(4π)2ϵ
W (ϕ)2 + . . . , (3.32)

which fixes Vct(ϕ). Here C = 1 for Higgs and Goldstone determinants and C = d − 1 for
vector determinants. After integrating over the volume we find

Sct[ϕ] =
C|ϵ=0
32ϵ

∫
drr3−2ϵ π−ϵ

Γ(2− ϵ)W (ϕ)2. (3.33)

Note that this contribution enters the rate as e−Sct[ϕ].
4For d > 4 we must also include counter-terms that depend on spatial derivatives of W . These can be

found from sub-leading terms in the derivative expansion, see for example [66].
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Putting everything together and using

Πl

[
ψlb(∞)
ψlF (∞)

]− deg(d;l)/2

= exp
[
−1
2
∑
l

deg(d; l) log ψ
l
b(∞)

ψlF (∞)

]
, (3.34)

gives

− C

16

∫
drrr3

[
W (ϕb(r))2 −W (ϕF )2

] [
log

(
µr

2

)
− a− 1

2 + γ

]
, (3.35)

where (C, a) = (1, 0) for scalars, and (C, a) = (d− 1, 1/(d− 1)) for vectors.
Similar terms appear in all even-numbered dimensions, albeit they multiply different

terms in the WKB approximation. To renormalize our theory in d dimensions we need all
terms up to l−d+1 in the WKB approximation.5

4 The BubbleDet code

The overall structure of the BubbleDet package is outlined in figure 2. The package defines
three Python classes:

• BubbleConfig describes the background field. To initialise an object of this class
requires a scalar potential V (ϕ), the false vacuum ϕF, a bubble profile ϕb(r), and the
dimension d.

• ParticleConfig describes a fluctuating particle. It is initialised by the function
W (ϕ), the spin of the particle s, the number of its internal flavour or colour degrees
of freedom n, and a flag denoting the type of zero modes present.

• BubbleDeterminant computes the functional determinant. It is initialised by one
BubbleConfig instance and a list of ParticleConfig instances.

For more details, see the documentation and examples.
Once an instance of the class BubbleDeterminant is initialised, the most important

class method is

findDeterminant() =
∑
i

[dof(d, si, ni)
2 log

∣∣∣∣∣det ′(−∇2 +Wi(r))
det(−∇2 +Wi(∞))

∣∣∣∣∣− logJiVi
]
, (4.1)

which computes a functional determinant in its totality, regularised in MS, and with zero
mode factors included where necessary. In this convention, the result is an additive correc-
tion to the action. Here the index i runs over the ParticleConfig list. For scalar fields
the factor dof(d, 0, ni) = ni, and for vector fields dof(d, 1, ni) = (d− 1)ni (see appendix B).
Note that while Jacobian factors are included in all cases where zero modes exist, we do not
include the (infinite) volume factor for the zero modes corresponding to translations. As a
consequence, exp(−findDeterminant()) has units of massd for the Higgs determinant.

5In some dimensions, for example in d = 6, deg(6; l) ∼ 1
12 l4 − 1

12 l2, there can be several poles. That is,
when the l4 and l2 terms combine with the l−5 and l−3 terms in the WKB expansion.
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BubbleDet

determinant.py

config.py

CosmoTransitions

tunneling1D.py

findDeterminant()BubbleDeterminant

Sub-modules
derivative_expansion.py

gelfand_yaglom.py
negative_eigenvalue.py

phi_infinity.py
renormalisation.py

wkb.py

BubbleConfigParticleConfig

First Example

findProfile() SingleFieldInstanton

Figure 2. Component diagram of the BubbleDet package, here shown when BubbleDet is used
together with CosmoTransitions. The full arrows show a strong connection between components
which is structurally essential, while the dashed arrows show a weaker connection, such as a partic-
ular instance of usage. This first example can be found at https://bubbledet.readthedocs.io/.

For classically conformal models the size of the bounce needs to be integrated over to
obtain the rate. In BubbleDet this integration does not change the mass-dimension of the
rate. See the discussion in appendix D.4.

For thermal transitions, one should pass the keyword thermal=True. In this case, the
dynamical prefactor term − logAdyn is added to the output, given in terms of the negative
eigenvalue and assuming zero damping coefficient.

The BubbleDeterminant class also contains a number of ancillary methods for com-
puting different specific parts of the prefactor, such as the negative eigenvalue. Figure 2
shows a component diagram of the structure of the package, and how it can be used in con-
junction with CosmoTransitions to compute the vacuum-decay rate for our introductory
example.

4.1 Application of the Gelfand-Yaglom method

From the Gelfand-Yaglom theorem, the determinant for a given orbital quantum number
l is given by the ratio ψlb(r)/ψlF (r) at r = ∞. While this ratio is finite, both ψlb(r) and
ψlF (r) grow exponentially at large r, which can lead to overflow for floating-point numbers.
To avoid this, one can work directly with the ratio,6

Tl(r) ≡
ψlb(r)
ψlF (r)

. (4.2)

This function solves the following initial value problem[
−∂2 − Ul(r)∂ +∆W (r)

]
Tl(r) = 0, (4.3)

6In fact, even Tl(r) can get exponentially large for the fluctuations of heavy fields, in which case one can
instead work with, Fl(r) ≡ log Tl(r). In the code Fl is directly calculated for all l ≥ 2, with the exception
of the massless case, which is dicusssed in appendix C.2.

– 12 –
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with Tl(0) = 1, ∂Tl(0) = 0, and where we have defined

Ul(r) ≡
d+ 2l − 1

r
+ 2mF

Il+ d
2
(mFr)

Il+ d
2−1(mFr)

, (4.4)

in terms of modified Bessel functions I. We integrate the first step of the initial value
problem, from 0 to δr, by using a Taylor expansion around the origin, and making use of
the initial conditions; see appendix C.1. We then proceed by using the fourth-order Runge-
Kutta method to evolve from δr to some rmax, the largest radius at which the bounce profile
is given.

Errors on Tl(∞) arise from two main sources: discretisation errors due to non-zero
radial steps δr > 0, and the error due to non-infinite rmax <∞. The former error scales as
(δr)4 as long as the bubble profile is known to this accuracy.7 The error due to the finite
maximum radius is smaller than any power of 1/rmax, for mF > 0, and for sufficiently large
rmax, and we estimate it from the value of the derivative at the final step, ∂Tl(rmax). The
total error on Tl(∞) is simply estimated as the larger of these two sources of error.

For the massless case mF = 0, the solution converges relatively slowly as r → ∞ so
additional methods are adopted to accelerate convergence; see appendix C.2.

4.2 Extrapolating the sum over orbital quantum number

After extracting the l = 0 and 1 modes, which need separate consideration, the logarithm
of the complete functional determinant involves a sum over l from 2 to ∞. The large l
divergences of this sum cancel against the one-loop counterterms of equation (3.33). For a
single scalar field, the renormalised sum is thus

1
2

[ ∞∑
l=2

deg(d; l) log Tl
]
+ Sct = finite. (4.5)

To avoid divergences in intermediate computations, and to speed up convergence, we add
and subtract a WKB approximation of Tl:

1
2

lmax∑
l=2

deg(d; l)
(
log Tl − log T (WKB)

l

)
︸ ︷︷ ︸

finite and converges faster

+ 1
2

∞∑
l=2

deg(d; l) log T (WKB)
l + Sct︸ ︷︷ ︸

finite and known

+ 1
2

∞∑
l=lmax+1

deg(d; l)
(
log Tl − log T (WKB)

l

)
︸ ︷︷ ︸

≈0

. (4.6)

The WKB factors log T (WKB)
l are individually finite. Including them in the summand

cancels the large l dependence of log Tl up to o(1/l), which ensures that the sum converges.
In practice, this sum is truncated at some large value lmax ≫ 1, with the residual scaling
as an inverse power of lmax, and the term labeled ≈ 0 in equation (4.6) is dropped.

7Bubble profiles computed with CosmoTransitions are (δr)4 accurate.

– 13 –



J
H
E
P
1
2
(
2
0
2
3
)
0
5
6

101 102

l

10−9

10−7

10−5
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|∆
lo

g
T
l|/
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g
T
l|

l−1

l−3

l−5

l−7

l−9

Figure 3. Convergence of the WKB approximation at large l. Shown is the relative difference
between the complete log Tl, calculated using the Gelfand-Yaglom theorem, and a number of WKB
approximations to it. Higher order WKB approximations are used to accelerate the convergence of
sums over l. The specific model is a real scalar with potential given by eq. (5.2), at α = 0.5 and in
d = 3. The data for this plot is produced by the example wkb.py.

To accelerate the convergence of this sum we utilise sequence acceleration, adopting
two different methods: the epsilon algorithm [67] (which implements an iterated Shanks
transformation [68]), and a fit extrapolation, based on fitting a polynomial in 1/l. For
the latter, the order of the polynomial is chosen to minimise χ2 per degree of freedom.
Typically the epsilon extrapolation performs better than the fit extrapolation when lmax
is relatively small, but performs worse for larger lmax as numerical errors build up. We
choose the final extrapolated result as that with smaller estimated error.

The terms log T (WKB)
l are computed within the WKB approximation, the expressions

for which are collected in appendix E. Higher order terms of the WKB expansion are
suppressed by higher powers of 1/l, so that one need only compute a finite number of WKB
terms to attain a given rate of convergence in 1/l. By carrying out this approach to higher
and higher orders, one can achieve much faster convergence of the sum, as demonstrated
in figure 3.

Note that in higher dimensions the sum over l becomes increasingly ultraviolet di-
vergent, so higher orders of the WKB expansion are needed to renormalise the sum and
to accelerate convergence. This is because the degeneracy factor grows faster in higher
dimensions, as deg(d; l) ∼ l̄d−2 where l = l+ d

2 − 1, while the expansion for log Tl takes the
same form in all dimensions,

log Tl =︸︷︷︸
l≫mFR

log T (1)
l

l
+ log T (3)

l

l
3 + log T (5)

l

l
5 + log T (7)

l

l
7 + . . . (4.7)

where R is the radius of the critical bubble. When subtracting terms with the WKB
approximation we therefore need to know (at least) the first ⌊d2⌋ terms to cancel all diver-
gences.
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An important numerical consideration is that one must compute each log Tl to higher
accuracy in higher dimensions, as the necessary cancellations are more delicate. For exam-
ple in d = 4 and choosing lmax ∼ 25, we need to know the numerically obtained log Tl to a
relative accuracy of lmax/l

3
max ∼ 10−3. For d = 6 we also need the next term, so we need

to know log Tl to lmax/l
5
max ∼ 10−6.

In BubbleDet we utilise the WKB approximation up to and including log T (9)
l ; see

appendix E. We do so for all dimensions, thereby ensuring a relatively rapidly converging
sum in lower dimensions. Conversely, to achieve a fixed accuracy requires larger lmax in
higher dimensions.

4.3 Finding the asymptotic behavior

Here, we will discuss the implemented numerical method for finding log ϕ∞, which is de-
fined by

ϕ(r) r→∞−→ ϕF + ϕ∞ K(d/2− 1,mFr)
(
mF
r

)d/2−1
. (4.8)

Once we have determined log ϕ∞, it is straightforward to deal with zero modes [36, 69].
See for example equation (3.25).

An estimate for log ϕ∞ can be found by fitting the numerical bounce to equation (4.8)
for some sufficiently large radius.

Still, this must be done carefully since a numerically obtained profile will not exactly
follow the asymptotic behaviour in equation (4.8). Large deviations may happen for ex-
ample when a shooting algorithm stops as the bounce tail crosses the metastable vacuum.
As the very tail end of a numerical bounce has little effect on the corresponding action, its
accuracy is often not a high priority.

The need for caution is illustrated in figure 4: the orange line is obtained by directly
estimating log ϕ∞ at different radii. The bubble is produced with CosmoTransitions in a
model in three dimensions with scalar potential,

V (ϕ) = m2
F
2 ϕ2 + λ

4!ϕ
4 log ϕ , m2

F = 1 , λ = 100 . (4.9)

Note how the estimate begins to diverge at large radial distances, r > 10. Also, there
are oscillations, visible on the right pane, which follow from the use of cubic splines in
CosmoTransitions. The peaks of the oscillations correspond to the best estimates as they
are the nodes of the splines.

To evade these problems at the tail-end, we have constructed an algorithm that is
robust even when the tails are inaccurate. In the following, we focus on the massive case,
mF > 0. An example result from the algorithm is plotted in blue in figure 4, along with
the direct estimates.

The algorithm takes two user-given parameters: tail, which determines how close to
the end of the profile to fit, and log_phi_inf_tol, which gives an estimate of the relative
uncertainty on the tail of the profile.

The main algorithm then finds log ϕ∞ by extrapolating from the chosen tail; see
figure 12 and the surrounding discussion. If there are no such suitable tail points, if for
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Figure 4. Estimates for log ϕ∞ by directly fitting the asymptotic tail behavior, Equation (4.8), to
points on the numerical critical bubble solution for the potential in Equation (4.9), and the result
from BubbleDet with uncertainties. The right panel zooms in on the region of the left pane in
which the estimate is nearly constant.

example the bounce profile is too short, the code resorts to a fail-safe algorithm, which
instead performs the fit at r = √

r1/2rmax, where ϕb(r1/2) = (ϕF + ϕT)/2 and rmax is
the largest radius. The error is then estimated by comparison to fits at radial distances
(r2

1/2rmax)1/3 and (r1/2r
2
max)1/3.

In case the parameter log_phi_inf_tol does not correctly reflect errors in the bubble
profile, the more sophisticated main method is run a second time but with log_phi_inf_tol
modified to give at most the error of the fail-safe method. Together with the first run of
the main method and the fail-safe method, this gives three estimates for log ϕ∞, of which
that with the least error is returned.

We refer to appendix C.3 for a more detailed description of the fitting algorithm, and
for a discussion of the massless case, mF = 0.

4.4 Computing the negative eigenvalue

For thermal nucleation, the decay rate factorises into a product of statistical and dynamical
parts, as is shown in equation (3.14). While the statistical part can be computed through
application of the Gelfand-Yaglom method, this is not so for the dynamical part. In
the latter, the negative eigenvalue of the Higgs operator OH(ϕb) appears in combination
with the real-time damping rate. For computation of the negative eigenvalue, BubbleDet
provides the function findNegativeEigenvalue().

The negative eigenvalue, λ− < 0, is defined by the following eigenvalue problem,(
−∂2 − d− 1

r
∂ + V ′′(ϕb)

)
f(r) = λ−f(r) , r ∈ (0,∞) , (4.10)

where ∂f(r) → 0 as r → 0+ and f → 0 as r → ∞. Note, that here we have used the
information that the negative eigenmode is spherically symmetric, l = 0.

The eigenvalue problem can be approximated as a discrete matrix equation,

Mijfj = λ−fi , i, j ∈ {1, . . . , N} . (4.11)
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Here, the matrix M is a discretization of the linear differential operator in eq. (4.10), such
that all of the rows (indices i) correspond to individual locations of r, and N is the number
of discrete points in the numerical critical bubble.

The code obtains a numerical estimate of the negative eigenvalue by passing M to
scipy.sparse.linalg.eigs. This estimate is then improved by an extrapolation: the
implemented derivatives, discussed below, are accurate to such an order that the errors in
λ− decrease as N−4. Obtaining the estimates with one half and one third of the points
allows for an extrapolation to N → ∞ and also an error estimation.

The boundary condition at infinite radius, r → ∞, cannot be implemented accurately
in the discretized version. To estimate the size of the corresponding error, in the code there
are two alternative boundary conditions implemented at the maximal numerical radius,
rmax:

∂f(rmax) = 0 and f(rmax) = 0 . (4.12)

In the limit rmax → ∞, these both reduce to the correct boundary condition for the
negative eigenmode. Deviations are exponentially small for a large enough maximal radius,
∝ exp(−2

√
m2

F − λ− rmax).
Values with errors are computed for each of the two boundary conditions, extrapolated

to N → ∞. The final result and error are given as the midpoint and extent of the combined
uncertainty range.

We refer to appendix C.4 for more details.

4.5 Requirements on the input bounce profile

Before computing the functional determinant, one must solve for the bounce. While
BubbleDet does not provide this functionality, there are a number of other packages which
are built for this purpose: CosmoTransitions in Python [1], AnyBubble and FindBounce
in Mathematica [20, 23], and BubbleProfiler and SimpleBounce in C++ [21, 22].

As a word of caution, for computation of the functional determinant, the bounce pro-
file has to be known rather accurately, and out to rather large r. Unlike the bounce
action, the functional determinant depends strongly on the large r asymptotics of the
bounce, and further fluctuations with high orbital quantum numbers probe the short
scale structure. With CosmoTransitions we have found that using tolerance parame-
ters xtol=1e-9 and phitol=1e-9 typically yields an accurate enough bounce profile for
computing the functional determinant reliably. Note that this is significantly more accurate
than CosmoTransitions’s default values.

5 Tests

5.1 Comparisons to literature

We have carried out extensive tests of the BubbleDet code against the literature, comparing
against all the explicit results we could find. We have generally found agreement within
quoted errors.
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d V (ϕ) ϕb S0 S1

3 -1
6λϕ

6
(

3
λ

)1/4√
R

r2+R2
π2

2

√
3
λ 3 logR+ log λ+ 4.41321

4 -1
4λϕ

4
√

8
λ

R
r2+R2

8π2

3λ 4 logR+ 5
2 log λ− 3 logµR− 0.991929

6 -1
3λϕ

3 24
λ

R2

(r2+R2)2
192π3

λ2 6 logR+ 7 log λ− 18
5 logµR− 16.1573

Table 1. Results for scale-invariant models with unbounded potentials (λ > 0) in d = 3, 4 and
6. Here S0 and S1 denote the tree-level and one-loop effective action respectively, i.e. S0 = B and
S1 = − logA in equation (1.1). The numerical factors in S1, correspond to various combinations of
Riemann zeta functions and Euler-Mascheroni constants. The full rate per unit volume is given by
Γ =

∫
d(logR)e−S[R].

A number of authors have numerically computed the one-loop vacuum decay rate for
a single real scalar field in a generic quartic tree-level potential [34, 38, 64],

V4(ϕ) =
1
2m

2ϕ2 − 1
2ηϕ

3 + 1
8λϕ

4. (5.1)

Here the subscript in V4 refers to the highest power of ϕ present in the potential. By using
the result in appendix A.1 the action can be brought to the form

S[ϕ] → βS[ϕ], V4(ϕ) →
1
2ϕ

2 − 1
2ϕ

3 + 1
8αϕ

4, (5.2)

where α = λm2η−2 and β = m6−dη−2. This dimensionless form is quite useful since the
determinant is — up to a −d

2 log β factor — only a function of α. Note that a term linear
in ϕ can be removed by a shift ϕ→ ϕ+ const.

Refs. [34, 64] have carried out the computation in this potential for d = 4. We find
agreement to better than 1% with the tabulated results of ref. [34] for the full of parameters
studied, α ∈ [0.01, 0.99]. With ref. [64], we find good agreement with their figures 5 and 6,
though we disagree on their figure 7.

We have also compared the result from BubbleDet to exact analytical results for clas-
sically scaleless potentials; for example the four-dimensional potential V (ϕ) = −1

4λϕ
4 [70,

71]. Previous results exist in four dimensions [6, 7, 30], and as an additional crosscheck we
have also derived analytical results for three and six dimensions; to our knowledge these
results don’t exist in the literature, but the derivation is identical to the four-dimensional
case and won’t be repeated here.8 A summary of the results can be found in table 1.

Figure 5 compares the results from BubbleDet to the exact results for scaleless poten-
tials given in table 1. There we have introduced S1 to denote the one-loop correction to
the effective action, i.e. minus the logarithm of the functional determinant prefactor. In
all cases we find agreement at better than 1%, excepting a very narrow range where S1
goes through zero in d = 4, and in most cases the agreement is better than 0.1%. For this
model, exact results are also available for the decomposition of the determinant into orbital

8The four-dimensional result can also be used to describe more general models, see [49].

– 18 –



J
H
E
P
1
2
(
2
0
2
3
)
0
5
6

2 4 6 8 10

R

10−6

10−4

10−2

∆
S

1
/S

1
µ = R−1

d = 3

d = 4

d = 6

(a)

2 4 6 8 10

R

10−7

10−6

10−5

10−4

10−3

∆
S

1
/S

1
(R

=
1)

µ = R−1

d = 3

d = 4

d = 6

(b)

Figure 5. The Higgs determinant, for given R, compared between BubbleDet and the analytical
results for the scaleless potentials given in table 1. The left-hand plot shows the relative error as
a function of R. Note that larger errors in d = 4 arise because S1(R) ≈ 0; this can be seen clearly
in the right-hand plot where the relative difference is instead normalized by S1(R = 1). All lines
use the renormalization-scale µ = R−1 and λ = 0.1. The analytical bounces, given in table 1, are
supplied to BubbleDet, which then calculates the one-loop action using default settings.

quantum numbers l, and for fixed l we find even better relative agreement, as shown in the
example file unbounded.py.

In d = 3, ref. [38] numerically computed the Higgs, Goldstone and vector field deter-
minants for the same potential, given by equation (5.1), as well as for

V6(ϕ) =
1
2m

2ϕ2 − 1
4 |λ|ϕ

4 + 1
32c6ϕ

6. (5.3)

which, after using the result in appendix A.2, becomes

S[ϕ] → βS[ϕ], V6(ϕ) =
1
2ϕ

2 − 1
4ϕ

4 + 1
32αϕ

6. (5.4)

with α = c6m
2|λ|−2 and β = m4−d|λ|−1.

For the V4 potential in d = 3 we find agreement with the fit functions of ref. [38] to
the 1% level, and for the V6 potential we find agreement to the 1% to 5% level, except for
where S1 goes through zero, near α ≈ 0.4. This agreement matches the expected accuracy
of the fits.

5.2 Thin-wall limit

In the thin-wall limit there are a number of analytic results for the one-loop vacuum decay
rate, in d = 2 [27, 28], d = 3 [26, 30] and d = 4 [25, 30], all of which use the potential
of equation (5.2) up to trivial scalings and shifts. We also used a method similar to that
in [30] to derive new analytical results for d = 5, 6 and 7.
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Figure 6. The approach to the thin-wall limit in d = 2, 3, . . . 7. Unfilled circles show the analytic
results valid in the limit α→ 1. Crosses show data computed using BubbleDet, and the lines show
cubic fits to this data. We also show the nearest equivalent for d = 1, the one-loop correction to
the energy eigenvalue splitting. The data for this plot can be generated using our example scripts
thinwall.py and kink.py.

With our potential conventions, and in the MS renormalisation scheme with the MS
scale equal to the mass, these results read

S1(α) =
1

(1− α)d−1 ×



−1 + π
6
√

3 , d = 2
10
27 + log 3

6 , d = 3
9
32 − π

16
√

3 , d = 4
− 296

3645 − 2 log 3
27 , d = 5

− 1376251
11197440 + 625π

20736
√

3 , d = 6
− 1

140 + 3 log 3
80 , d = 7

(5.5)

In figure 6 we show how our numerical results approach the analytic thin-wall results
in the approach to the thin-wall limit. Fitting a cubic function of α to the data yields
extrapolations for α → 1 which agree with the expected analytical values to better than
1% accuracy for dimensions d = 2, 3, . . . , 6.

For d = 7, the increased sensitivity to shorter distance fluctuations requires including
higher orbital quantum numbers (see section 4.2). This in turn prevents us from reaching
1−α ≲ 0.05 while keeping numerical errors under control, and hence significantly worsens
the accuracy of the α → 1 extrapolation in d = 7, which agrees to only about 10% with
the analytic result.

Note that the thin-wall limit is a particularly difficult regime numerically, as to resolve
the scale hierarchy mFR ≫ 1 requires very high orders in the sum over orbital quantum
number l, which leads to accumulation of numerical errors. As a consequence, we expect
BubbleDet to perform better, and to achieve higher accuracy away from the thin-wall limit,
where analytic results are lacking.
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Figure 7. Deviations from the derivative expansion for the determinant of the χ field; see equa-
tion (5.8). Here the value of m2

ϕ/m
2
χ is given in the true vacuum. Crosses connected by dashed

lines show the LO derivative expansion, while unfilled circles connected by full lines include the
NLO order corrections. For small m2

ϕ/m
2
χ, convergence appears to arrest at about 10−5, especially

in higher dimensions. This is because one must reach very large values of the angular quantum
numbers l, and in so doing numerical errors accumulate (here on default tolerance settings).

For d = 1, there is one Euclidean time dimension and zero spatial dimensions, and
hence we are treating tunnelling in quantum mechanics. At α = 1, the potential of equa-
tion (5.2) corresponds to the double-well potential, which admits kink or soliton solu-
tions [24]. These are quantum mechanical instantons. The functional determinant in a
kink background gives the one-loop correction to the splitting between the even and odd
energy eigenstates [69, 72]. Evaluating this analytically, one finds

S1 = 1
2 log π − 5

4 log 2. (5.6)

With default settings, BubbleDet reproduces this one-loop result to a relative accuracy
of 0.001%. This is shown in figure 6. Similar agreement is found for the sine-Gordon
theory, Vs-G(ϕ) = 1 − cos(ϕ), which also admits kink solutions in d = 1 and for which
S1 = 1

2 log π − 2 log 2.

5.3 Derivative expansion

For fluctuations of some scalar field χ, much heavier than the background Higgs field ϕ, a
derivative expansion of the functional determinant may be possible. This is an expansion
in powers of the ratio of masses squared, m2

ϕ/m
2
χ. Consider, for example,

Lχ = 1
2∇µχ∇µχ+ 1

2g
2ϕ2χ2, (5.7)
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so that m2
χ = g2ϕ2. For sufficiently large g2, the functional determinant for χ should be

well approximated by a derivative expansion. At leading order (LO) and next-to-leading
order (NLO), the result takes the form

S1 ≈
∫

ddx
[
V1(ϕ) +

1
2Z1(ϕ)∇µϕ∇µϕ

]
, (5.8)

where V1 and Z1 are the contribution to the effective potential and field normalisation for
ϕ due to fluctuations of the χ field. Expressions for Z1 in arbitrary dimensions can be
constructed from the results of ref. [66].

In figure 7 we plot the relative difference between the full functional determinant and
its LO and NLO approximations within the derivative expansion, for dimensions d > 2.
For d = 2 the derivative expansion in this model is infrared divergent (as r → ∞) at
NLO, hence we do not include it.9 For d = 3 the derivative expansion is infrared divergent
at next-to-next-to-leading order (NNLO), and in fact there exists a term between NLO
and NNLO which is invisible to the derivative expansion; see for example ref. [53]. This
explains why the slope of the NLO line in figure 7 is approximately 3/2 and not 2. In
general as the coupling g2 is increased, agreement with the derivative expansion improves,
reaching 0.001% at NLO in dimensions where the derivative expansion is under control.
This provides a nontrivial test of BubbleDet, which works as expected.

5.4 Speed tests

For speed comparisons we compare the time it takes to calculate the determinant relative
to the time it takes for CosmoTransitions to obtain the bounce solution. From figure 8
we see that, on average, it only takes twice as long to find the bubble determinant as the
bounce. Note that our use of a sequence acceleration, combined with using more terms in
the WKB approximation, is crucial.

6 Applications

As argued in the introduction, functional determinants in quantum field theory exponen-
tiate, and can thereby yield important corrections to nucleation or decay rates. Here we
illustrate this, applying BubbleDet to a range of scenarios.

6.1 Thermal bubble nucleation and dimensional reduction

For a simple example of a first-order phase transition, let us consider a Yukawa model
describing a real scalar Φ interacting with a Dirac fermion Ψ. The model has the following
Euclidean action (in d = 4)

SYukawa =
∫

d4x

[1
2 (∇µΦ)2 + sΦ+ 1

2m
2Φ2 + 1

3!gΦ
3 + 1

4!λΦ
4

+ Ψ̄
(
/∂ +mΨ

)
Ψ+ yΦΨ̄Ψ

]
. (6.1)

9Although not shown here, in d = 2 we find agreement with the LO derivative expansion as expected.
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Figure 8. Time required to calculate the Higgs determinant for the potential given in equation (5.2)
with d = 3. Computations were carried out on a laptop with a 3.2 GHz Apple M1 processor. Each
data point represents the average of 300 runs. The required time to calculate the bounce action
with CosmoTransitions is shown in orange, and the required time for the determinant is shown in
blue. The latter increases in the approach to the thin-wall limit due to the necessity of reaching
larger orbital quantum numbers, lmax ≫ mFR, where R is the bubble radius.

The notation is standard and follows ref. [53]. The thermal evolution of the long-wavelength
modes of the field Φ are described by a dimensionally-reduced effective field theory (in
d = 3), which is

SEFT =
∫

d3x

[1
2 (∇iϕ)2 + s3ϕ+ 1

2m
2
3ϕ

2 + 1
3!g3ϕ

3 + 1
4!λ3ϕ

4
]
. (6.2)

where to leading order ϕ is equal to the zero Matsubara mode of Φ divided by
√
T , and

the effective parameters are

s3 = 1√
T

[
s+ 1

24(g + 4ymΨ)
]
, g3 = g

√
T , (6.3)

m2
3 = m2 + 1

24(λ+ 4y2), λ3 = λT. (6.4)

By shifting ϕ→ ϕ+const and scaling, this model can be made to agree with the conventions
of our V4. However, here we work directly with the dimensionful parameters of the effective
field theory.

As given in equation (3.14), the thermal nucleation rate is the product of two terms.
The statistical part Astat is the vacuum decay rate for the 3-dimensional EFT. For the
dynamical part Adyn we neglect damping. The total decay rate is then

ΓT =
√
|λ−|
2π

(
SEFT[ϕb]

2π

)3/2 ∣∣∣∣∣det′
(
−∇2 + V ′′

EFT(ϕb)
)

det (−∇2 + V ′′
EFT(ϕF))

∣∣∣∣∣
−1/2

e−SEFT[ϕb]+SEFT[ϕF]. (6.5)
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Figure 9. Thermal prefactor corrections for a Yukawa model; see equation. (6.1). Here we show
the variation with temperature for one physical parameter point. The data for this plot can be
generated using our example script thermal.py.

The fluctuation determinant runs over the degrees of freedom of the EFT, i.e. the 3-
dimensional scalar field ϕ. The fermion contributes to the nucleation rate through the
temperature dependence of the effective parameters. Note that there is no factor of 1/T in
the exponent, as factors of T have been absorbed into the effective parameters and field.

In figure (9) we show the nucleation rate for an example thermal history of this model,
with parameters {s,m2, g, λ,mΨ, y} = {0,−1, 0.3, 0.1,−0.2, 0.3}. At this parameter point
the critical temperature is Tc ≈ 8.42|m|, and the one-loop correction to the jump in the
order parameter ∆⟨ϕ⟩c is about 8% [73]. However, the relative importance of loop correc-
tions grows as the system supercools. Figure (9) shows that the functional determinant can
yield sizeable corrections to the rate, and that these eventually become nonperturbative in
the approach to spinodal decomposition, at Tsp ≈ 8.19|m|.

6.2 Gauge symmetry breaking

Let us consider the Abelian Higgs theory in d = 4, with Lagrangian given by equation (B.1).
To simplify the analysis [48], we include a (ϕ∗ϕ)3 operator in the potential to generate a
tree-level barrier between symmetric and broken phases; see equation (5.3).

The full nucleation rate is then given by (see appendix B)

Γ ≈
(
detOAµ(ϕF)
detOAµ(ϕb)

)3/2

VGJG

√
detOG(ϕF)
det′OG(ϕb)

JH

√∣∣∣∣ detOH(ϕF)
det′OH(ϕb)

∣∣∣∣e−(S0[ϕb]−S0[ϕF]). (6.6)

We remind the reader that we have dropped off-diagonal gauge-Goldstone mixing.
Figure 10 shows the tree-level and one-loop corrections to the nucleation rate for the

parameter point {m2, λ, c6} = {1,−0.15, 0.01}, varying the gauge coupling.
For mass ratios below about mH/mW ≲ 2/3, or gauge couplings above g2 ≈ 1.3, the

functional determinant of the gauge field grows larger than the tree-level bounce action.
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Figure 10. The vacuum decay rate, for spontaneous symmetry breaking, in the Abelian Higgs
model. Here we have defined S

Aµ

1 as the contribution to the 1-loop effective action from the gauge
boson. As can be seen, this dominates over the scalar contributions for mH/mW ≲ 1. The data
for this plot is for fixed scalar parameters m2, λ and c6, and varying gauge coupling g2. It can be
generated using our example script symmetry_breaking.py.

For such large gauge couplings, the gauge determinant is exponentially enhanced by the
ratio of gauge to scalar masses, or equivalently by g2/λ ≫ 1. In this case the broken
perturbative expansion can be repaired by integrating out the gauge field before solving
the bounce equation [74].

6.3 Analogue false vacuum decay in d = 1 + 1

In studies of analogue false vacuum decay, a nucleating scalar field with an effective rela-
tivistic energy-momentum relation can arise as an angular degree of freedom in cold atom
setups.10 In this case a trigonometric potential arises [76–78]

V (ϕ) = m2v2
[
cos(ϕ/v)− 1 + λ2

2 sin2(ϕ/v)
]
. (6.7)

The authors of ref. [78] investigated the effects of renormalisation in classical stochastic
lattice simulations of vaccuum decay, studying parameter points λ = 2, v̄2 ∈ [2, 10], and
we presume m2 = 1. They suggested a definition for a lattice effective potential aiming to
capture “the renormalization effects present in the fluctuation determinant”, though the
latter was not directly computed. Using the lattice effective potential led to a roughly e30

increase of the nucleation rate relative to tree-level, which was almost independent of v̄
over the range studied.

For the parameter points studied in ref. [78], we have used BubbleDet to further
investigate their proposal. In support, we indeed find that the functional determinant
leads to an increase in the nucleation rate which varies little with v̄ over the range studied.

10For a recent experimental observation of false vacuum decay in an alternative setup, see ref. [75].
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However, we find the magnitude of the increase to be significantly smaller, being only a
factor of ∼ e7. This calculation can be found in our example script analogue.py. A full
comparison would require matching regularisation schemes. However, recent work has cast
doubt on the continuum limit of these classical stochastic lattice simulations [79, 80].

6.4 Effects of potential shape

To better understand the effects of potential shape on the functional determinant, it is
useful to work with the dimensionless potentials introduced above, which have been put
into a common form. The potentials are linear in α, and α → 0 corresponds to the thick-
wall limit, while α → 1 corresponds to the thin-wall limit. In addition, the determinants
only depend nontrivially on α, and not β.

In addition to the polynomial V4 and V6 potentials discussed above, we introduce the
following logarithmic potential

V (ϕ) = V0 +Bϕ2 + Cϕ4
(
log g

2ϕ2

v2 − 1
4

)
. (6.8)

This potential arises in classically scale-invariant models, and its thermal evolution typically
exhibits strongly supercooled phase transitions [81, 82]. Equivalently (see appendix A.3)
we can consider the dimensionless potential

Vlog(ϕ) = (1− α) + αϕ2 − ϕ4
[
(α− 2) log ϕ2 + 1

]
, (6.9)

where α ∈ (0, 1) and the factor in-front of the action is β = (2−α)(1−α)
C in d = 4. We also

rewrite the trigonometric potential from equation (6.7) in a dimensionless form by using
the result in appendix A.4:

Vcos(ϕ) = (1− α) [cos(ϕ)− 1] + 1
2 sin2(ϕ), (6.10)

where (1− α) = 1/λ2 and the prefactor is β = v2

m2 (1− α) in d = 4.
All the potentials we consider are collected in appendix A, together with their scaled

dimensionless forms. In figures 11a, 11b, 11c, and 11d we show the magnitude of the
functional determinants for each potential relative to the corresponding tree-level bounce
actions, focusing on d = 4. Note that we have scaled out β, as well as any group-theoretic
factors from symmetry breaking. We see that the behavior, and size, of the functional
determinants varies greatly depending on the potential. This is no surprise, as the bounce
solution, and the corresponding functional determinants, explore the global properties of
the potential, not just the minima.

Notably, for the V4 and Vcos potentials, the ratio S1/S0, for the Higgs determinant,
tends towards a constant in the thin-wall limit (α → 1), while it grows as (1 − α)−1 for
the V6 and Vlog potentials. This is because in the thin-wall limit the leading behavior
is determined by the (free-energy) pressure difference between the false and true vacua:
−1

2 log detOH ∼ ∆pRd +O(Rd−1). The quartic and cosine potentials are special because
V ′′(ϕ), and thus the pressure, coincide in the two phases at the critical temperature, due
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Figure 11. Size of Higgs, Goldstone, and vector determinants for various potentials. Figure 11a
corresponds to the potential in equation (5.2); figure 11b corresponds to the potential in equa-
tion (5.4); figure 11c corresponds to the potential in equation (6.9); and figure 11d corresponds
to the potential in equation (6.10). All figures use the dimensionless gauge-coupling g = 0.5. In
addition, the unit of all plots is in β−1; so increasing β from 1 to 2 scales all curves by a factor of
1
2 . Note that the scales are different for each plot.

to a symmetry between the two phases. So, similarly to the tree-level action, log detOH

behaves as Rd−1. For the other potentials, and particles, this is not the case. And in
general all determinants scale as Rd; the coefficient can even be found from the one-loop
effective potential.

7 Conclusions

BubbleDet enables computing functional determinants for a wide range of applications.
This is particularly important for the quantitative reliability of studies of cosmological
phase transitions. The common approximation A ≈ T 4 for the nucleation prefactor (see
equation (1.1)) is the origin of one of the largest sources of theoretical uncertainty in
current predictions of the gravitational wave signal, as revealed through residual renormal-
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isation scale dependence [41, 42]. BubbleDet marks a step in overcoming this theoretical
uncertainty, in preparation for planned gravitational wave observatories such as LISA [83].

The code has been thoroughly tested, and reproduces a large number of results found
in the literature. It is robust, and has been shown to yield sub-percent errors from the
thick to the thin-wall limits and for a wide range of potentials. There is rarely need to
tweak meta-parameters. All the results shown in the present paper were computed using
default method and tolerance options.11

BubbleDet can be installed just as any other Python library, and is available in the
PyPi and conda-forge repositories. It is easy to interface with CosmoTransitions, so that
existing scripts using this library can be straightforwardly upgraded to include functional
determinants. Computing a functional determinant typically takes less than about a second
on a standard laptop, fast enough to do so for parameter scans of models beyond the
Standard Model.

The most important extensions for BubbleDet are to allow for multiple background
fields, and for couplings between fluctuating field degrees of freedom, i.e. off-diagonal
quadratic terms in the action. These extensions are planned for a second version of
BubbleDet, and would allow one to tackle, for example, multi-scalar extensions of the
Higgs sector.
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A Potentials used in the paper

To compare the effects of different potential functions, we shift our fields and coordinates
such that every tree-level action is of the form

STree-level(α, β) = βS̃(α), (A.1)
11Note however that relatively accurate bounce profiles are typically required as input.
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where α ∈ (0, 1) and α → 0+ corresponds to the thick-wall limit; and α → 1− to the
thin-wall one. We further ensure that the scaled tree-level potentials are linear in α

In this form the Higgs determinant is independent of β, up to a −1
2 log β contribution

from each zero mode. The tree-level bounce action therefore dominates if β ≫ 1, and
perturbation theory works well.

A.1 A ϕ4 potential

Consider the potential

V4(ϕ) =
1
2m

2ϕ2 − 1
2ηϕ

3 + 1
8λϕ

4. (A.2)

We always have the freedom to re-scale coordinates and to shift our fields. Meaning that
we can eliminate three parameters in favour of two dimensionless ratios. For example, in
the literature it is common to use

ϕ→ m2

η
ϕ, x→ 1

m
x, (A.3)

which means that the action and potential become

S[ϕ] → βS[ϕ], V4(ϕ) →
1
2ϕ

2 − 1
2ϕ

3 + 1
8αϕ

4, (A.4)

where α = λm2η−2 and β = m6−dη−2.

A.2 A ϕ6 potential

Consider

V6(ϕ) =
1
2m

2ϕ2 − 1
4 |λ|ϕ

4 + 1
32c6ϕ

6. (A.5)

which, after scaling x→ m−1x, ϕ→ m|λ|−1/2ϕ, becomes

S[ϕ] → βS[ϕ], V6(ϕ) =
1
2ϕ

2 − 1
4ϕ

4 + 1
32αϕ

6. (A.6)

with α = c6m
2|λ|−2 and β = m4−d|λ|−1.

A.3 A logarithmic potential

Consider the potential

V (ϕ) = V0 +Bϕ2 + Cϕ4
(
log g

2ϕ2

v2 − 1
4

)
. (A.7)

We perform the following re-definitions

x→ v√
V0

√
(1− α)x, ϕ→ vϕ, v v → exp

(
α+ 2

16− 8α

)
gv. (A.8)
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After which we find the dimensionless potential

Vlog(ϕ) = (1− α) + αϕ2 − ϕ4
[
(α− 2) log ϕ2 + 1

]
, (A.9)

where

α =
[
W

(
−e

1
4Bg2

2Cv2

)
− 1/2

]−1

+ 2, (A.10)

β = (2− α)(1− α)
C

(
α

B

)(d−4)/2
. (A.11)

Here W is the Lambert W function and β is the overall factor multiplying the action.

A.4 A trigonometric potential

Take the potential

V (ϕ) = m2v2
[
cos(ϕ/v)− 1 + λ2

2 sin2(ϕ/v)
]
. (A.12)

To rewrite this potential in our preferred form we use

x→ m−1
√
(1− α)x, ϕ→ vϕ, (A.13)

to find

Vcos(ϕ) = (1− α) [cos(ϕ)− 1] + 1
2 sin2(ϕ), (A.14)

where (1− α) = 1/λ2 and the overall factor is β = v2m2−d(1− α) d
2−1.

B Vector fields

As a minimal example, consider the gauged version of the U(1) model of equation (3.5),
the Abelian Higgs model,

L = 1
4FµνFµν + (DµΦ)∗DµΦ+ V (Φ), (B.1)

where Fµν = ∇µAν − ∇νAµ and DµΦ = ∇µΦ − igAµΦ. We choose the class of Fermi
gauges, with gauge-fixing parameter ξ and ghost field c.12

If we again assume a radially-symmetric background ϕ(r), and expand in fluctuations
about this, we find

L =L (ϕ) + 1
2Aµ

[
(−∇2 + g2ϕ(r)2)δµν +

(
1− ξ−1

)
∇µ∇ν

]
Aν

+ 1
2H

[
−∇2 + V ′′(ϕ)

]
H + 1

2G
[
−∇2 + ϕ−1V ′(ϕ)

]
G+ c̄

[
−∇2

]
c (B.2)

+ g∇µϕ(r)AµG− gϕ(r)Aµ∇µG+ . . .

12The Nielsen identity [84] ensures that the full functional determinant is gauge-independent, yet in
practice this can be subtle; see refs. [47, 85–90] for discussions at both zero and at finite temperature.
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For this model, the quadratic part of the action is not diagonal in this field basis, as one
can see from the terms on the last line.

The first version of BubbleDet is not able to accommodate such off-diagonal terms.
However, counting physical degrees of freedom, one expects roughly that the result should
be expressible in terms of d − 1 massive vector degrees of freedom, one Goldstone degree
of freedom, and one scalar.13 This counting is apparent in the one-loop Landau-gauge
effective potential V1(ϕ), for which the off-diagonal derivative terms are zero,

e−
∫

x
V1(ϕ) = detOAµ(ϕ)−(d−1)/2 detOG(ϕ)−1/2 detOH(ϕ)−1/2, (B.3)

where we have defined

OAµ(ϕF) ≡ −∇2 + g2ϕ(r)2. (B.4)

From this, one expects

Γ ≈
(
detOAµ(ϕF)
detOAµ(ϕb)

)(d−1)/2

VGJG

√
detOG(ϕF)
det′OG(ϕb)

JH

√∣∣∣∣ detOH(ϕF)
det′OH(ϕb)

∣∣∣∣
× e−(S[ϕb]−S[ϕF]). (B.5)

For the one-loop contribution to the rate, the off-diagonal derivative terms are not small,
though we expect that neglecting them should nevertheless give a reasonable indication of
the order of magnitude.

For models with larger gauge groups, or more scalars, one can likewise neglect any
mixing. The final result is then always in a form similar to equation (B.5).

C Algorithm details

C.1 Initial value problem

For the initial value problem in the application of the Gelfand-Yaglom method, one must
be mindful to avoid 1/r singularities at the origin. We integrate the first step of the initial
value problem, from r = 0 to δr, using

∂2Tl(0) =
∆W (0)
(d+ 2l) , ∂3Tl(0) = 0, (C.1)

∂4Tl(0) =
3

(d+ 2l + 2)

[
−4W (∞)∆W (0)

(d+ 2l)2 + ∆W (0)2

(d+ 2l) +
V ′(ϕb(0))dWdϕ

∣∣
r=0

d

]
, (C.2)

so that

Tl(δr) = 1 + 1
2∂

2Tl(0)δr2 + 1
4!∂

4Tl(0)δr4, (C.3)

∂Tl(δr) = ∂2Tl(0)δr +
1
3!∂

4Tl(0)δr3. (C.4)

After the first step, there are no further coordinate singularities, and we update with the
fourth order Runga-Kutta algorithm.

13The ghost field drops out in Fermi gauges, as its functional determinant is independent of the back-
ground field.
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C.2 Gelfand-Yaglom method for massless bounces

Bounces that behave as ϕb ∼ r−(d−2) for large r require special treatment. In this case the
Gelfand-Yaglom solution converges slowly, and to get a decent approximation the grid must
be pushed to ever-larger r. To circumvent this in BubbleDet we instead choose a modest
rmax for which ϕb behaves as ϕb(rmax) ∼ (rmax)−(d−2). We then solve equation (3.20)
numerically from r = 0 to r = rmax, and use the solution at r = rmax to solve equation (3.20)
analytically from r = rmax to r = ∞. The asymptotic behaviour of ∆W , defined in
equation (3.30), depends on the form of the potential. To handle general cases we perform a
fit to ∆W ≈W∞r

−a∞ for large r, for which equation (3.20) can be solved analytically. This
procedure significantly improves convergence even with a small rmax. We similarly improve
the WKB approximation by performing various integrals analytically from r = rmax to
r = ∞.

C.3 Algorithm for fitting ϕ∞

The basic idea in the main method for the massive case is to find a quantity for which
the direct estimates of log ϕ∞ behave linearly. This way, one can use the linearity to
extrapolate to infinite radius. The algorithm uses the following quantity,

∆Vquad
Vquad

(ϕ) ≡

∣∣∣∣V (ϕ)− V (ϕF)−
m2

F
2 ϕ2

∣∣∣∣
m2

F
2 ϕ2

. (C.5)

Note that the possible numerical inaccuracies of the bounce solution at large radii are
packed very near zero in terms of ∆Vquad/Vquad. This follows from the approximately
logarithmic relation with the radius,

r ∼ − c

mF
log ∆Vquad

Vquad
, (C.6)

for some c = O(1) depending on the form of the potential. See figure 12 for an example.
The algorithm chooses four points (shown as gray squares in figure 12), which are then

used to extrapolate to
∆Vquad
Vquad

= 0 . (C.7)

This corresponds to taking the r → ∞ limit.
The four points are chosen according to the two user-given parameters, with default

values tail=0.007 and log_phi_inf_tol=0.001. These values were tested to be stable
across different models.

In an idealised case without any numerical inaccuracies, the four points are chosen
to have values tail, 2 tail, 3 tail and 4 tail, as illustrated in figure 12. However,
to account for numerical inaccuracies in the profile and potential, the algorithm performs
consistency tests, which may lead to choosing different points.

Starting from r = rmax and working inwards towards r = 0, the algorithm chooses the
subset of points that pass the following criteria:

– 32 –



J
H
E
P
1
2
(
2
0
2
3
)
0
5
6

0.00 0.01 0.02 0.03

|V − Vquad|/Vquad

2.358

2.360

2.362

2.364

2.366

lo
g
φ
∞

log φ∞ estimates

tail = 0.007

result

fit points

Figure 12. The linear behavior of the log ϕ∞ estimates. The result is obtained from a linear
extrapolation from the fit points, which are chosen according to the tail parameter. The failure
of estimates happens near zero. Error estimates are plotted but not visible.

• Both |ϕ − ϕF| and ∆Vquad/Vquad must be larger than the next point away from the
centre of the profile.

• The floating point errors due to the subtraction in equation (C.5) are very small in
comparison to tail.

If any of these conditions fail, the algorithm discards that and all points with larger r.
Then, it begins again from the next point, working inwards.

Once a point is deemed eligible, the algorithm chooses it as the first chosen point ϕ1 if
∆Vquad/Vquad > tail. The rest of the points are chosen if they are above the tail value
set by the previous chosen point ϕi:

∆Vquad
Vquad

(ϕi+1) > (i+ 1) taili ≡
i+ 1
i

∆Vquad
Vquad

(ϕi) . (C.8)

In addition, the second chosen point ϕ2 has to have a small enough estimated error due to
the proximity of the end of the profile. One can estimate this as∣∣∣log{1− exp

[
− 2mF(rmax − r)

]}∣∣∣ . (C.9)

This would be exact if the tail satisfied the linearised equation of motion exactly with the
boundary condition that ϕ(rmax) = ϕF. For the second chosen point, we ensure that this
is less than log_phi_inf_tol, as a relative error. Overall, this procedure improves the
stability of the extrapolation to numerical inaccuracies in the profile or potential.

The algorithm then extrapolates to infinite radius, performing both a quadratic and
a linear fit, and using equation (C.9) to normalise the χ2. The final error for the main
method is chosen to be the maximum of two estimates: the difference between linear and
quadratic fits, and the square root of the covariance in the linear fit.
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Note that when improving the accuracy of the numerical critical bubble while keeping
tail and log_phi_inf_tol fixed, the error for the resulting log ϕ∞ does not converge to
zero, but rather to a constant. To shrink the errors further requires shrinking the tail
and log_phi_inf_tol parameters, in addition to improving the bubble. However, these
errors in log ϕ∞ are typically overshadowed by other sources of errors in the computation
of the full determinant.

The algorithm for the massless case is quite different. The power-like behaviour of
the asymptotic field makes a direct fit in r more feasible than the massive case. However,
errors from the tail-end of a bubble profile only decrease as a power of (rmax − r) and not
exponentially. The algorithm performs a fit to

ϕ(r) r→∞−→ ϕF + ϕ∞2d/2−2Γ(d/2− 1)/rd−2 +∆ϕ. (C.10)

Here, the constant ∆ϕ is the other solution to the linearised equation of motion around
the metastable phase. It does not adhere to the boundary condition and hence picks up
deviations from the correct asymptotic behavior.

We estimate the error based on two sources: the square root of the covariance in the
fit, ∆covϕ∞, and also the error ∆constϕ∞ from the constant ∆ϕ ̸= 0 being nonzero. The
total error estimate for log ϕ∞ is then

− log
(
1− ∆covϕ∞ +∆constϕ∞

ϕ∞

)
. (C.11)

This can become infinite or complex, for example when the tail crosses the initial phase at
rmax. In these cases, the fit is discarded, and the result of the fail-safe algorithm, described
in section 4, is used instead. More generally, the result with the smaller error is returned.

C.4 Algorithm for finding the negative eigenvalue

Here we discuss further details of the implemented discretization.
The first and second derivatives in the differential operator are discretized in M so that

their values would be exact if fi was a fourth-order polynomial around the evaluation point.
This leads to the discretization error for the negative eigenvalue decreasing as N−4, when
increasing the number of points, N . Hence, the derivative and the second derivative require
information from five points of j around the evaluation point, i. (Compare with five free
parameters in a fourth-order polynomial.) The points are chosen as j ∈ {i− 2, . . . , i+ 2}.
Thus, the ith row of the discretized matrix looks like

Mij = (0, . . . , 0,Mi i−2, . . . ,Mi i+2, 0 . . . , 0)i . (C.12)

The chosen implementation of the derivatives is not straightforwardly possible near the
boundaries i = 0 and i = N − 1, as the index j would go out of bounds. Near the center
of the bubble profile, the matrix M is modified as if the profile would continue beyond
i = 0 as

f−2 = f2 , f−1 = f1 , (C.13)
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which implements the boundary condition ∂f = 0 at the origin. At the end of the profile,
the modification of the matrix depends on the chosen boundary condition. It corresponds
to the continuation of the profile beyond fN−1 as either

fN = fN−1 , or fN = 0 , (C.14)

where the former corresponds to the zero derivative and the latter to the zero value.
Finally, we want to discuss one subtle point in the discretisation at r = 0: the second

term in the differential operator in equation (4.10) appears singular. This is however not
a problematic singularity. Due to the condition that ∂f(r) → 0 as r → 0+, one can show
that

lim
r→0+

1
r
∂f(r) = ∂2f(0) . (C.15)

Thus, for the first row of the matrix M , corresponding to r = 0, one can use the discretized
version of ∂2 instead of that of the apparently singular operator

∂2 + d− 1
r

∂ . (C.16)

D Volume, Jacobians, and removing zero modes

D.1 Breaking translational invariance

Zero modes arise if the bounce breaks a symmetry of the full theory. In particular, consider
small deviations about the bounce:

ϕ(x) = ϕb(r) + caξa(x), (D.1)

where ξa(x) are a complete set of eigenvectors that we normalize as
∫
ddxξaξb = 2πδab,

and the integration measure is Πadca.
Let us start with translational symmetries. Since the bounce isn’t invariant under

coordinate shifts xµ → xµ + aµ, we expect d zero modes; which we denote by ξµ(x). The
idea with collective coordinates is that we can equivalently express these zero modes as a
coordinate shift of the bounce:14

ϕb(x+ a) = ϕb(r) + aµ∇µϕb(r) + . . . (D.2)

As such we can identify ξµ(x) = N−1∇µϕb(r) and cµ = aµN from equation (D.1). To fix
the normalisation N we use

N−2
∫

ddx∇µϕb∇νϕb = 2πδµν , (D.3)

which implies that N 2 = S[ϕb]/(2π). The Jacobian for the transformation of the integra-
tion measure for all d modes is then J = N d = (S[ϕb]/(2π))d/2

14Above the one-loop order we have to enlarge this coordinate shift so that it encompasses all eigenfunc-
tions. This gives rise to a more complicated Jacobian.
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In effect all zero modes are absorbed by the bounce, and the integral over the zero
modes yields ∫

ddc = J
∫

dda = JV , (D.4)

where V is the spacetime volume.
Translation zero modes arise in the Higgs determinant at l = 1 in the sum over angular

quantum number — as ∇µϕb(r) transforms as a vector. The full result for integration over
modes at l = 1 is given in equation (3.25).

D.2 Translations for massless Higgs potentials

The derivation of equation (3.25), for translational zero modes assumes that the nucle-
ating scalar is massive in the false vacuum, m2

F = V ′′(ϕF) > 0. As discussed around
equation (3.23), this was done by deforming the l = 1 differential equation into:[

−∂2 − d− 1
r

∂ + (d− 1)
r2 + V ′′(ϕb) + k2

]
ψ1,k
b (r) = 0. (D.5)

This shifts all eigenvalues by k2, and as such we can remove the final zero mode by using

det′
(
−∇2

1 + V ′′(ϕb)
)

det
(
−∇2

1 + V ′′(ϕF)
) = lim

k2→0

ψ1,k
b (∞)
k2

1
ψ1

F(∞) . (D.6)

However, this procedure does not have a smooth mF → 0 limit. To see this, let us follow
ref. [64] and express ψ1,k

b (R) via

Rd
[
∂ψ1

bψ
1,k
b − ∂ψ1,k

b ψ1
b

]
r=R

= −k2
∫ R

0
drrdψ1

bψ
1,k
b , (D.7)

where ψ1
b(r) =

∂ϕb(r)
∂2ϕb(0) is the normalized zero mode. In the massive case, we can then solve

for ψ1,k
b (R) by using that ψ1,k

b (r) ∼ er
√
m2

F+k2 and ψ1
b(r) ∼ e−rmF at large r. This needs

modification for mF = 0, as the behaviour of the solutions changes.
To proceed it is useful to add k2 also for the false-vacuum solution and to directly work

with T1,k(r) =
ψ1,k

b (r)
ψ1,k

F (r)
. The equation for T1,k is

[
−∂2 − U1,k∂ + V ′′(ϕb)

]
T1,k = 0, ∂T1,k(0) = 0, T1,k(0) = 1, (D.8)

U1,k =
d+ 1
r

+ 2k2r

d+ 2 +O(k4r3), (D.9)

where U1,k is the consequent k2 deformation of equation (4.4). The solution at k2 = 0 is

T1 ≡ ∂ϕb(r)
r∂2ϕb(0)

, (D.10)

leading to T1(∞) = 0 as expected.
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Now, similarly to ref. [64] our strategy is to integrate equation (D.8) with a suitable
factor. To get something useful we choose∫ R

0
drrd+1T1

[
∂2T1,k + U1,k∂T1,k − V ′′(ϕb)T1,k

]
= 0. (D.11)

The rd+1 factor is crucial for the equation to solve: it is designed to cancel the d+1
r term in

U1,k, when integrating by parts. We can now move derivatives from T1,k to T1 to arrive at

Rd+1 [∂T1T1,k − T1∂T1,k]r=R +
∫ R

0
drrd+1T1

2k2r

d+ 2∂T1,k = 0. (D.12)

Taking R much larger than any intrinsic scale from ϕb, so that the V ′′(ϕb) term can be
dropped from equation (D.8), we find the large r asymptotics,

T1(r) ∼
−2d/2−1Γ

(
d
2

)
ϕ∞

∂2ϕb(0)
r−d, T1,k(r) ∼ a+ b

rd+2 exp
(
− k2r2

d+ 2

)
+ T1(r), (D.13)

for some constants a, b. Using this we can solve for T1,k(∞) to leading order in k2:

T1,k(∞) = −k2∂2ϕb(0)
2d/2Γ

(
d
2 + 1

)
ϕ∞

∫ ∞

0
drrd+1(T1)2, (D.14)

= −k2

2d/2Γ
(
d
2 + 1

)
ϕ∞∂2ϕb(0)

∫ ∞

0
drrd−1∂ϕb(r)2, (D.15)

= −k2

(2π)d/2ϕ∞∂2ϕb(0)
S[ϕb]. (D.16)

All in all we find(
S[ϕb]
2π

)d/2(det′
(
−∇2

1 + V ′′(ϕb)
)

det
(
−∇2

1 + V ′′(ϕF)
) )−d/2

=
[
(2π)d/2−1ϕ∞

∣∣∣∂2ϕb(0)
∣∣∣]d/2

, (D.17)

the same expression as in the massive case. As an example, take d = 4 and V (ϕ) = −1
4λϕ

4;
the Fubini-Lipatov instanton is then [70, 71]

ϕb(r) =
√

8
λ

R

R2 + r2 , (D.18)

where R > 0 is an arbitrary parameter. With this “bounce” we identify

ϕ∞ =
√

8
λ
R,

∣∣∣∂2ϕb(0)
∣∣∣ = √

32
λ
R−3, (D.19)

and thus (
S[ϕb]
2π

)2(det′
(
−∇2

1 + V ′′(ϕb)
)

det
(
−∇2

1 + V ′′(ϕF)
) )−2

=
( 32π
λR2

)2
, (D.20)

which is in agreement with [6, 7].
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D.3 Internal symmetries

We next consider Goldstone bosons. In this case our theory is invariant under the action
of some internal symmetry group G; we write the linearised action of this group on our
scalars as

ϕi → ϕi + εaT
a
ijϕ

j , (D.21)

where a runs over the group generators, 1, . . . , dim(G), and i, j run over the indices of the
representation in which ϕ transforms. The bounce will generically only be invariant under
a subset of these generators T ∈ H ⊂ G, while the other, broken ones, satisfy

ϵaT
a
ijϕ

j
b(r) ̸= 0, (D.22)

where we have introduced barred indices a to run over the broken generators T a ∈ G/H.
In general then we expect dim(G/H) zero modes. To remove these zero-modes we again
express the linear shift in terms of a basis of functions

ϕi(x) = ϕib(r) + caξia(x), (D.23)

The broken generators rotate one solution, ϕib, to another solution. So we can identify
ξia(x) = N−1

G T aijϕ
j
b(r) and ca = NGε

a. The normalization factor for the Goldstones is

N 2
G = 1

2π

∫
ddxϕibϕ

j
bδij , (D.24)

and the corresponding Jacobian is JG = N nG
G where nG = dim(G/H) is the number of

Goldstone bosons. By absorbing these zero modes as an arbitrary rotation of ϕib we are
left with an integration over the broken subgroup:∫

Πadca = JG

∫
dΠaϵa = JGVG, (D.25)

where VG = vol(G/H) is the volume of the broken subgroup. So for example, a U(1) group
that is broken completely gives VG = 2π. Note that VG depends on the group manifold,
and not just the algebra, so it is sensitive to the global structure of the gauge group, such
as division by a discrete group; see for example refs. [91, 92].

These Goldstone zero modes arise at l = 0 in the sum over angular quantum number.
To compute the full l = 0 result, we can follow the method of ref. [64], just as for translation
zero modes; see equation (3.25). The result is

VGJG

(
det′

(
−∇2

0 + V ′(ϕb)/ϕb
)

det
(
−∇2

0 + V ′(ϕF)/ϕF
))−nG/2

= VG
[
(2π)d/2−1ϕ∞ϕb(0)

]nG/2
. (D.26)

D.4 Dilatations

In models with classical scale invariance there is a zero mode arising at l = 0 from the
breaking of scale transformations or dilatations, ϕ(x) → s

d−2
2 ϕ(xs), s > 0. For an in-

finitesimal transformation we take s = 1 + ε with |ε| ≪ 1. In this case the zero mode is
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ξs(r) = d−2
2 ϕb(r)+r∂ϕb(r), and the Jacobian factor for the transformation to the collective

coordinate is

Js =
(∫

ddxξ2
s

2π

)1/2

. (D.27)

Formally Js is infinite — the zero mode is not normalisable — but the full determinant
will be finite once we remove the zero mode [7].

Like the integration over translations, the integration over scale factors Vs =
∫∞

0 ds
is divergent in a standard saddle-point evaluation of the path integral. As a consequence,
we omit the factor of Vs in BubbleDet. However, unlike translation invariance, scale
invariance often does not survive quantisation, being broken by loop corrections. One may
therefore obtain a finite result by integrating over the scale factor after having computed
the functional determinant for the other modes [7]. As the instanton itself breaks scale
invariance, practically this requires computing the functional determinant for each value
of the scale factor and integrating the result.

Proceeding as before, we deduce,

Js

∣∣∣∣∣det′
(
−∇2

0 + V ′′(ϕb)
)

det
(
−∇2

0 + V ′′(ϕF)
) ∣∣∣∣∣

−1/2

=
[
d− 2
2 (2π)d/2−1ϕ∞ξs(0)

]1/2
. (D.28)

The result in equation (D.28) is finite, and for the V (ϕ) = −1
4λϕ

4 potential in d = 4
we find

Js

∣∣∣∣∣det′
(
−∇2

0 + V ′′(ϕb)
)

det
(
−∇2

0 + V ′′(ϕF)
) ∣∣∣∣∣

−1/2

=
(16π
λ

)1/2
, (D.29)

in agreement with [7].
Finally, we note that in the literature the dilatation collective coordinate is sometimes

chosen differently. For the V (ϕ) = −1
4λϕ

4 potential in d = 4, it is often chosen as the scale
R in the Fubini-Lipatov instanton,

ϕb(r) =
√

8
λ

R

R2 + r2 . (D.30)

With R as the collective coordinate, the dilatation integration measure is
∫
dR, while with

our choice of collective coordinate, s, it is
∫
ds =

∫
dR/R. The total integrated results

must agree, so the integrand with s as the collective coordinate is R times the integrand
with R as the collective coordinate.

D.5 Special conformal transformations

In addition to dilatations, we can also have zero modes associated with special conformal
transformations:

ϕ→ ϕ+ (d− 2)b · xϕ− x2b · ∂ϕ+ 2x · bx · ∂ϕ. (D.31)
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These zero modes appear in the l = 1 determinant — as they are vectors — and after
projecting we find

ψsc = (d− 2)rϕb(r) + r2∂ϕb = r4−d∂
[
rd−2ϕb(r)

]
. (D.32)

For d = 4 we can see from the analytic “bounce” that ψsc ∝ ∂ϕb; so no new zero modes
appear. This also holds for conformal bounces in d = 3 and d = 6.

E Higher-order WKB approximations

When finding the determinant with the Gelfand-Yaglom method, we have to solve the
following equation

∂2ψ + d− 1
r

∂ψ − l(l + d− 2)
r2 ψ −W (r)ψ = 0, (E.1)

for ψ, with the boundary condition ψ ∼ rl for small r. We use R.E. Langer’s approach [65]
and define ψ = r1−d/2Ψ(x) together with a change of variables to r = ex. Equation (3.20)
is then equivalent to

∂2
xΨl

b,F (x) = A2(x)Ψl
b,F , A2(x) = e2xW (ex) + l

2
, l ≡ l + d− 2

2 . (E.2)

We can now solve this equation with a WKB approximation. To do this, we use that
d
dxA(x) ∼ l

−1. Then, denoting our expansion parameter by ε ∼ l
−1 ≪ 1, we can write our

equation and solution as

ε2Ψ′′(x) = A2(x)Ψ(x), Ψ(x) = exp
[
ε−1S0 + S1 + εS2 + ε2S3 + . . .

]
(E.3)

in terms of the undetermined functions Sn(x). The first two orders give

(S0)′ = ±A(x), S1 = −1
2 log |A|. (E.4)

When calculating the integral we have to evaluate

log Ψb(∞)
ΨF(∞) = ε−1∆S0(∞) + ∆S1(∞) + . . . (E.5)

It turns out that every WKB correction of the form S2n+1 vanishes once we subtract the
false-vacuum solution. So we only need the even-numbered corrections. To reach l−9 we
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need all terms up to S6. We find

S0 = ±
∫
dxA(x), (E.6)

S2 =
∫
dx

2A(x)A′′(x)− 3A′(x)2

8A(x)3 , (E.7)

S4 = −
∫
dx

1
128A(x)7

[
−8A(x)3A(4)(x) + 52A(x)2A′′(x)2 + 297A′(x)4

+80A(x)2A(3)(x)A′(x)− 396A(x)A′(x)2A′′(x)
]

(E.8)

S6 =
∫
dx

1
1024A(x)11

{
−50139A′(x)6 − 22704A(x)2A(3)(x)A′(x)3

+100278A(x)A′(x)4A′′(x)

+12A(x)2A′(x)2
(
290A(x)A(4)(x)− 3679A′′(x)2

)
+8A(x)3

(
301A′′(x)3 +A(x)

(
2A(x)A(6)(x)− 49A(3)(x)2

))
−640A(x)3A(x)A(4)(x)A′′(x)

+16A(x)3A′(x)
(
694A(3)(x)A′′(x)− 21A(x)A(5)(x)

)}
(E.9)

Each of these terms can now be expanded in powers of l−1, the result is given in the code.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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