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1 Introduction

In the last two decades, a large number of charmonium-like vector states ψ have been
discovered [1] in the hidden or open charm final states. The ψ(4260) was first observed by
the BaBar Collaboration in the process of e+e− → γISRπ

+π−J/ψ [2], where ISR denotes
initial state radiation. The ψ(4360) and ψ(4660) were found by the Belle and BaBar
Collaborations in the π+π−ψ(2S) final states [3, 4]. Later, a precise study on the process
e+e− → π+π−J/ψ by the BESIII Collaboration revealed two structures with masses of
4222.0± 3.1± 1.4MeV/c2 and 4320.0± 10.4± 7.0MeV/c2 in the ψ(4260) region [5]. The
former one, renamed as Y (4230) [1], was further confirmed by the BESIII Collaboration
in the decay channels e+e− → ωχc0 [6], e+e− → π+π−hc [7], e+e− → π+D0D∗− [8],
e+e− → ηJ/ψ [9], e+e− → π+π+ψ(3686) [10], and e+e− → π+D∗0D∗− [11]. Since some
properties of these states cannot be explained by the conventional charmonium model, they
are usually regarded as candidates for the exotic states, such as hybrids, tetraquarks, and
molecules [12–14].

On the other side, although several processes with light hadron final states, such as
e+e− → pp̄π0 [15], e+e− → pp̄η(ω) [16], e+e− → pn̄K0

SK
− [17], e+e− →K0

SK
±π∓π0(η) [18],

e+e− → ωπ+π− [19], have been studied, no significant charmonium-like states were found
in these until now. A further broad search for the potential exotic structures in more light
hadron final states is highly desirable.

In this analysis, the cross sections of the process e+e− → pK−Λ̄ + c.c. are measured by
analyzing 21.7 fb−1 of e+e− collision data taken at center-of-mass energies (

√
s) ranging

from 4.009 GeV to 4.951 GeV. The vector charmonium(-like) states, ψ(4160), ψ(4230),
ψ(4360), ψ(4415), and ψ(4660) are investigated by fitting the obtained energy-dependent
cross sections. Throughout the paper, the charged-conjugation mode is always implied,
unless explicitly stated.
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2 Detector and data sets

The BESIII detector is a magnetic spectrometer [20] located at the Beijing Electron Positron
Collider (BEPCII) [21]. The cylindrical core of the BESIII detector consists of a main
drift chamber filled with helium-based gas (MDC), a plastic scintillator time-of-flight
system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in
a superconducting solenoidal magnet providing a 1.0 T magnetic field. The flux-return yoke
is instrumented with resistive plate chambers arranged in 9 layers in the barrel and 8 layers
in the endcaps for muon identification. The acceptance of charged particles and photons is
93% of 4π solid angle. The charged-particle momentum resolution at 1.0 GeV/c is 0.5%,
and the specific energy loss resolution is 6% for the electrons from Bhabha scattering. The
EMC measures photon energies with a resolution of 2.5% (5%) at 1GeV in the barrel (end
cap) region. The time resolution of the TOF barrel part is 68 ps, while that of the end cap
part is 110 ps. The end cap TOF system was upgraded in 2015 with multi-gap resistive
plate chamber technology, providing a time resolution of 60 ps [22–24]. All of those are
enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field [25].

The data samples used in this analysis were collected by the BESIII detector at
37 energy points between 4.009 GeV and 4.951 GeV. The center-of-mass energies and
the corresponding integrated luminosities [26, 27] at various energy points are shown in
table 1. Simulated samples produced with the geant4-based [28] Monte-Carlo (MC)
software, which includes the geometric description of the BESIII detector and the detector
response, are used to determine the detection efficiencies and to estimate the background
levels. The simulation includes the beam energy spread and ISR in the e+e− annihilations
modeled with the generator kkmc [29]. The inclusive MC simulation samples generated
at

√
s = 4.178GeV with 40 times the luminosity of the data sample are used to analyze

the possible background contributions. They consist of open charm production processes,
ISR production of vector charmonium or charmonium-like states, and continuum processes
(e+e− → qq̄, q = u, d, s). The open charm production processes are generated using
conexc [30], and the ISR production is incorporated in kkmc [29]. The known decay
states are modeled with beseventgen [31, 32] using branching fractions taken from the
Particle Data Group (PDG) [1] and the remaining unknown decays from the charmonium
states are modeled with lundcharm [33, 34]. The final state radiation from charged final
state particles is incorporated with the photos [35] package. The signal MC samples of
e+e− → pK−Λ̄ are generated by using the amplitude model with parameters fixed to the
amplitude analysis results [36].

3 Event selection and background analysis

To select the candidates for e+e− → pK−Λ̄, the Λ is reconstructed with the charged decay
mode, and hence there are only four charged tracks pp̄π±K∓ in the final states. All charged
tracks are required to satisfy |dz| < 20 cm and | cos θ| < 0.93. Here, |dz| is the coordinate
of the charged particle production point along the beam axis and θ is the polar angle of the
charged track. For each event, four charged tracks with zero net charge are required. Since
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√
s (GeV) Lint (pb−1) Nsig ϵ (%) (1 + δ) 1

1−Π2 σB (pb)
4.009 482.0±4.7 754± 28 20.2 1.16 1.04 10.1± 0.4± 0.4
4.129 401.5±2.6 507± 24 20.1 1.19 1.05 7.9± 0.4± 0.3
4.157 408.7±2.6 463± 23 20.4 1.20 1.05 6.9± 0.3± 0.3
4.178 3189.0±31.9 4025± 67 20.3 1.20 1.05 7.7± 0.1± 0.3
4.189 526.7±2.2 658± 27 20.3 1.21 1.06 7.6± 0.3± 0.4
4.199 526.0±2.5 639± 26 20.4 1.21 1.06 7.3± 0.3± 0.3
4.209 517.1±1.8 618± 25 20.1 1.21 1.06 7.3± 0.3± 0.3
4.219 514.6±1.8 639± 27 19.4 1.22 1.06 7.8± 0.3± 0.3
4.226 1100.9±7.0 1247± 38 20.4 1.22 1.06 6.8± 0.2± 0.3
4.236 530.3±2.4 630± 26 19.8 1.22 1.06 7.3± 0.3± 0.3
4.244 538.1±2.7 570± 25 20.3 1.23 1.06 6.3± 0.3± 0.5
4.258 828.4±5.5 932± 32 20.5 1.23 1.05 6.6± 0.2± 0.7
4.267 531.1±3.1 589± 25 20.4 1.23 1.05 6.6± 0.3± 0.5
4.278 175.7±1.0 197± 15 20.1 1.24 1.05 6.7± 0.5± 0.6
4.288 502.4±3.3 496± 24 19.8 1.24 1.05 6.0± 0.3± 0.4
4.312 501.2±3.3 566± 23 19.8 1.25 1.05 6.8± 0.3± 0.4
4.337 505.0±3.4 520± 24 20.1 1.26 1.05 6.1± 0.3± 0.3
4.358 543.9±3.6 550± 25 21.0 1.26 1.05 5.7± 0.3± 0.3
4.377 522.7±3.5 529± 24 20.3 1.27 1.05 5.9± 0.3± 0.3
4.397 507.8±3.4 449± 23 20.3 1.27 1.05 5.1± 0.3± 0.2
4.416 1090.7±7.2 1030± 33 20.4 1.28 1.05 5.4± 0.2± 0.2
4.436 569.9±3.8 523± 24 20.2 1.29 1.05 5.3± 0.2± 0.3
4.467 111.1±0.8 90± 10 20.2 1.30 1.05 4.6± 0.5± 0.3
4.527 112.1±0.8 87± 9 19.8 1.32 1.05 4.4± 0.5± 0.2
4.600 586.9±4.0 416± 21 21.8 1.35 1.05 3.6± 0.2± 0.2
4.612 103.7±0.6 81± 9 21.1 1.36 1.05 4.0± 0.5± 0.3
4.628 521.5±2.8 357± 20 20.7 1.38 1.05 3.6± 0.2± 0.2
4.641 551.7±3.0 375± 20 20.7 1.37 1.05 3.6± 0.2± 0.2
4.661 529.4±2.8 351± 20 20.7 1.38 1.05 3.5± 0.2± 0.2
4.682 1667.4±8.9 1012± 34 20.6 1.39 1.05 3.2± 0.1± 0.2
4.699 535.5±2.9 362± 20 20.2 1.39 1.05 3.6± 0.2± 0.2
4.740 163.9±0.9 115± 11 20.9 1.40 1.05 3.5± 0.3± 0.3
4.750 366.6±2.0 248± 17 20.8 1.41 1.05 3.4± 0.2± 0.2
4.781 511.5±2.7 288± 19 20.5 1.42 1.06 2.9± 0.2± 0.2
4.843 525.1±2.8 235± 17 20.0 1.47 1.06 2.3± 0.2± 0.2
4.918 207.8±1.1 127± 11 19.1 1.55 1.06 3.1± 0.3± 0.2
4.951 159.3±0.9 63± 9 18.5 1.59 1.06 2.0± 0.3± 0.2

Table 1. The Born cross sections of the e+e− → pK−Λ̄ + c.c. process at various energy points.
Here Lint is the integrated luminosity, Nsig is the number of signal events from the fit to the Mpπ−

distribution, ϵ is the detection efficiency, (1 + δ) is the radiative correction factor including vacuum
polarization effect, 1

1−Π2 is the vacuum polarization factor, and σB is the Born cross section. The
first uncertainties are statistical and the second are systematic.

– 3 –



J
H
E
P
1
2
(
2
0
2
3
)
0
2
7

the background from particle mis-identification is negligible and the particle identification
detectors are not optimized in the momentum region above 1 GeV, we don’t apply any
particle identification.

To reconstruct the candidates for Λ, all possible opposite charged track pairs will be
assigned as pπ−. The pπ− trajectories are constrained to originate from a common vertex
by applying a vertex fit, and the χ2 of the vertex fit is required to be less than 100. The Λ
candidate is constrained in a secondary vertex fit to originate from the interaction point.
The decay length of the Λ candidate must be greater than twice the vertex resolution. The
invariant mass of the pπ− combination is required to be within 1.10 < Mpπ− < 1.13 GeV/c2

to suppress wrong assignments. Exactly one Λ candidate per event is required to satisfy
the selection criteria. The other two charged tracks are assigned according to their charges
as proton and kaon not from Λ decays. To ensure that the two charged tracks originate
from the interaction point, they are imposed with additional requirements of |dz| < 10 cm
and |dr| < 1 cm. Here, |dr| is the distance between the charged track production point and
the beam axis in the plane perpendicular to the beam axis.

To further suppress background and improve track momentum resolution, a four-
momentum constraint (4C) kinematic fit is imposed on the initial e+e− beam energy under
the hypothesis of e+e− → pK−Λ̄. The χ2 of the kinematic fit is required to be less than
100. To reduce the number of background events caused by spurious kaons originating from
Bhabha scattering events interacting with the materials in the detector, the events with
| cos θK | > 0.83 are vetoed, where θK is the polar angle of the charged kaon.

After applying all of the above selection criteria, studies of the inclusive MC sample
indicate that the total background fraction is only 1.8%. The background contributions
are categorized into the peaking background, such as e+e− → π+ΛΣ̄−, and non-peaking
background, such as e+e− → ρ0pp̄. Given that the peaking background fraction is lower
than 1.0%, it is neglected in the further analysis and will be considered as one source of
systematic uncertainties.

4 Cross section measurement

To obtain the e+e− → pK−Λ̄ signal yield, an un-binned maximum likelihood fit is performed
to the invariant mass spectrum of Mpπ− . The signal is described with the MC-determined
shape convolved with a Gaussian function to consider the difference between data and MC
simulation. The background shape is parametrized as a linear function. As an example,
figure 1 shows the fit result of the accepted candidates in data at

√
s = 4.178GeV, and all

the signal yields (Nsig) at 37 energy points are listed in table 1.
The reconstruction efficiencies are determined with the signal MC samples generated

based on the amplitude analysis results in ref. [36]. For the energy points without amplitude
fit due to limited statistics, their signal MC samples are generated based on the result of
nearby energy point. Figure 2 shows the distributions of polar angles and momenta of final
state particles, as well as the invariant mass spectra of all two-particle combinations of
signal candidates in data and MC simulation at

√
s = 4.178GeV.
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Figure 1. Fit result to the pπ− invariant mass distribution of e+e− → pK−Λ̄ + c.c.. The points
with errors are data at

√
s = 4.178GeV, the blue curve is the fit result, and the red dashed curve is

the background contribution.

pcos
­1.0 ­0.5 0.0 0.5 1.0

E
v
en

ts
 /

 (
0
.0

5
)

0

50

100

150

­
Kcos

­1.0 ­0.5 0.0 0.5 1.0

E
v
en

ts
 /

 (
0
.0

5
)

0

50

100

150

Λ
cos

­1.0 ­0.5 0.0 0.5 1.0

E
v
en

ts
 /

 (
0
.0

5
)

0

50

100

150

)c (GeV/pP
0.5 1.0 1.5

)
c

E
v
en

ts
 /

 (
5
0
 M

eV
/

0

100

200

300

)c (GeV/­
KP

0.5 1.0 1.5

)
c

E
v
en

ts
 /

 (
5
0
 M

eV
/

0

200

400

600

Data
Signal MC
Background

)c (GeV/
Λ

P
0.5 1.0 1.5

)
c

E
v
en

ts
 /

 (
5
0
 M

eV
/

0

100

200

)2
c (GeV/­

pKM
1.5 2.0 2.5 3.0

)
2

c
E

v
en

ts
 /

 (
3
4
 M

eV
/

0

50

100

150

200

)2
c (GeV/

Λp
M

2.0 2.5 3.0 3.5

)
2

c
E

v
en

ts
 /

 (
3
4
M

eV
/

0

100

200

300

)2
c (GeV/

Λ
­

K
M
2.0 2.5 3.0

)
2

c
E

v
en

ts
 /

 (
3
4
 M

eV
/

0

100

200

Figure 2. Distributions of cos θ, the momenta of daughter particles, and the invariant masses
of all two-particle combinations at

√
s = 4.178GeV. The points with error bars are data, the

blue solid curves are signal MC events, and the yellow hatched histogram is the normalized
simulated background.
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The Born cross section at a given center-of-mass energy is calculated as

σB = Nsig

Lint × B × ϵ(1 + δ) 1
|1−Π|2

, (4.1)

where Nsig is the fitted signal yield, Lint is the integrated luminosity, B is the branching
fraction of the Λ charged decay [1], ϵ is the detection efficiency, (1+ δ) is the ISR correction
factor, and 1

|1−Π|2 is the vacuum polarization factor [30].
To obtain the ISR correction factor, an iterative procedure is performed. First, a series

of signal MC samples are generated for all energy points with a constant cross section. The
cross sections are calculated based on the reconstruction efficiencies and correction factors
obtained from the signal MC simulation. The line shape P4(1−e−∆M/p0) is used to describe
the measured cross sections, where P4 is a forth-order polynomial with free parameters, p0
is a free parameter, and ∆M =

√
s− 2.645GeV since no signal event is observed with the

data sample at
√
s = 2.645GeV, which is close to the mass threshold of pK−Λ̄. Then, the

method introduced in ref. [37] is used to get the ISR correction factors and efficiencies, and
a new series of cross sections is obtained. This procedure is repeated until the difference
of (1 + δ)ϵ between two subsequent iterations is less than 0.1%. The vacuum polarization
factor 1

|1−Π|2 is obtained from conexc [30]. Table 1 summarizes the Born cross sections
together with the relevant values used to determine them. The energy-dependent dressed
cross sections of e+e− → pK−Λ̄, defined as σD = σB × 1

|1−Π|2 , are shown in figure 3.

5 Systematic uncertainty

The systematic uncertainties on the cross section measurement include several sources, as
summarized in table 2. They are estimated as described below.

The integrated luminosity is measured using Bhabha scattering events, with an uncer-
tainty less than 1.0% [26, 27]. The uncertainty related to the tracking efficiency of kaons is
estimated to be 1.0% using a control sample of e+e− → K+K−π+π− and that of protons
not from Λ is estimated to be 2.0% using a control sample of e+e− → pπ−p̄π+. The total
systematic uncertainty from tracking is assigned as a linear sum of kaon and non-Λ proton
contributions. The systematic uncertainty due to the Λ reconstruction efficiency including
tracking efficiencies of the pπ− pair, decay length requirement, mass window, vertex fit, and
second vertex fit, is assigned as 2.0% using the control sample of J/ψ(ψ(3686)) → ΛΛ̄ [38].
The systematic uncertainty related to the Ntrk = 4 requirement, i.e. the number of charged
tracks must be four, is estimated to be 0.5% with a control sample of J/ψ → pK−Λ̄
following ref. [39].

The systematic uncertainty of the MC modeling is estimated with a new signal MC
sample, in which all fitted complex coupling constants, quoted resonance parameters are
smeared with their uncertainties. The difference between the detection efficiencies obtained
with the new signal MC sample and the nominal one is taken as this uncertainty. The
systematic uncertainty from the fit to the Mpπ− spectrum is taken into account in two
aspects. The uncertainty associated with the fit range is estimated by varying the fit range
by 1 MeV. The uncertainty from the background shape is estimated by using a second-order
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√
s (GeV) Lum Trk Λ Rec Ntrk MC Fit KMfit cos θ 1 + δ pBKG BF Total

4.009 1.0 3.0 2.0 0.5 0.7 0.8 0.3 0.7 0.5 1.0 0.8 4.2
4.129 1.0 3.0 2.0 0.5 1.0 0.4 0.3 0.3 0.5 1.0 0.8 4.2
4.157 1.0 3.0 2.0 0.5 0.9 0.4 0.5 0.5 0.5 1.0 0.8 4.2
4.178 1.0 3.0 2.0 0.5 1.6 0.4 0.3 0.4 0.5 1.0 0.8 4.4
4.189 1.0 3.0 2.0 0.5 1.3 2.0 0.4 0.2 0.5 1.0 0.8 4.7
4.199 1.0 3.0 2.0 0.5 0.7 0.3 0.4 0.3 0.5 1.0 0.8 4.1
4.209 1.0 3.0 2.0 0.5 0.3 0.6 0.3 0.4 0.5 1.0 0.8 4.1
4.219 1.0 3.0 2.0 0.5 1.2 1.5 0.4 0.3 0.5 1.0 0.8 4.5
4.226 1.0 3.0 2.0 0.5 1.7 1.8 0.2 0.5 0.5 1.0 0.8 4.7
4.236 1.0 3.0 2.0 0.5 0.3 1.0 0.4 0.4 0.5 1.0 0.8 4.2
4.244 1.0 3.0 2.0 0.5 5.7 1.5 0.5 0.1 0.5 1.0 0.8 7.2
4.258 1.0 3.0 2.0 0.5 9.6 0.7 0.3 0.4 0.5 1.0 0.8 10.5
4.267 1.0 3.0 2.0 0.5 7.1 0.6 0.4 0.7 0.5 1.0 0.8 8.2
4.278 1.0 3.0 2.0 0.5 6.8 2.6 0.2 0.4 0.5 1.0 0.8 8.3
4.288 1.0 3.0 2.0 0.5 5.5 1.2 0.3 0.7 0.5 1.0 0.8 7.0
4.312 1.0 3.0 2.0 0.5 5.1 0.2 0.3 0.5 0.5 1.0 0.8 6.5
4.337 1.0 3.0 2.0 0.5 3.4 0.7 0.3 0.1 0.5 1.0 0.8 5.4
4.358 1.0 3.0 2.0 0.5 1.1 3.0 0.4 0.5 0.5 1.0 0.8 5.2
4.377 1.0 3.0 2.0 0.5 2.3 0.4 0.3 0.2 0.5 1.0 0.8 4.6
4.397 1.0 3.0 2.0 0.5 2.4 0.3 0.3 1.0 0.5 1.0 0.8 4.8
4.416 1.0 3.0 2.0 0.5 0.2 0.6 0.3 0.2 0.5 1.0 0.8 4.1
4.436 1.0 3.0 2.0 0.5 2.9 1.2 0.3 0.7 0.5 1.0 0.8 5.1
4.467 1.0 3.0 2.0 0.5 0.9 4.0 0.4 0.8 0.5 1.0 0.8 5.8
4.527 1.0 3.0 2.0 0.5 1.1 1.1 0.4 0.9 0.5 1.0 0.8 4.4
4.600 1.0 3.0 2.0 0.5 3.1 0.3 0.3 0.8 0.6 1.0 0.8 5.2
4.612 1.0 3.0 2.0 0.5 4.6 1.2 0.3 1.1 0.8 1.0 0.8 6.4
4.628 1.0 3.0 2.0 0.5 2.4 0.6 0.6 0.6 1.4 1.0 0.8 5.0
4.641 1.0 3.0 2.0 0.5 1.3 0.4 0.4 0.3 0.8 1.0 0.8 4.3
4.661 1.0 3.0 2.0 0.5 3.9 1.0 0.3 0.4 0.8 1.0 0.8 5.8
4.682 1.0 3.0 2.0 0.5 5.1 1.0 0.4 0.5 1.0 1.0 0.8 6.6
4.699 1.0 3.0 2.0 0.5 3.1 1.1 0.4 0.3 0.7 1.0 0.8 5.2
4.740 1.0 3.0 2.0 0.5 6.2 1.2 0.7 0.9 1.0 1.0 0.8 7.6
4.750 1.0 3.0 2.0 0.5 4.2 1.5 0.3 0.5 1.1 1.0 0.8 6.1
4.781 1.0 3.0 2.0 0.5 3.6 2.2 0.4 0.1 1.5 1.0 0.8 6.0
4.843 1.0 3.0 2.0 0.5 5.2 1.3 0.4 3.8 1.3 1.0 0.8 7.8
4.918 1.0 3.0 2.0 0.5 6.3 0.0 0.4 1.6 1.9 1.0 0.8 7.9
4.951 1.0 3.0 2.0 0.5 4.4 3.5 0.4 0.8 3.3 1.0 0.8 7.7

Table 2. The relative systematic uncertainties (in %) on the cross section measurement, which
include luminosity (Lum), tracking efficiency (Trk), Λ reconstruction efficiency (Λ Rec), MC
modeling (MC), fit to Mpπ− (Fit), 4C kinematic fit (KMfit), | cos θK | < 0.83 (cos θ), correction
factor (1 + δ), Λ peaking background (pBKG), and B(Λ → pπ−) branching fraction (BF).
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Figure 3. The energy-dependent dressed cross sections of the process e+e− → pK−Λ̄ + c.c.. The
points with error bars are the measured values including both statistical and systematic uncertainties.
The red solid curve is the fit result only with the continuum contribution a/sn. Due to the correlated
systematic uncertainties, most of the χ values are positive by minimizing eq. (6.1).

polynomial function. For each of these two aspects, the maximum difference between the
signal yields obtained with nominal and alternative background shapes is taken as the
corresponding systematic uncertainty. Adding these two items in quadrature, we obtain the
relevant systematic uncertainty.

The systematic uncertainty related to the 4C kinematic fit is estimated by comparing
the detection efficiencies with and without the helix parameter correction [40], taking the
difference as the corresponding systematic uncertainty. The systematic uncertainty of the
| cos θK | < 0.83 requirement is estimated by varying the cut range by 0.01. The maximum
difference between the cross sections obtained with nominal and alternative cut ranges is
taken to be the corresponding systematic uncertainty. The systematic uncertainty related
to the correction factor is considered in two aspects. The uncertainty due to the theoretical
uncertainty of the vacuum polarization factor is assigned to be 0.5% [30]. The uncertainty
due to the line shape used in the iteration is estimated by varying all free parameters of the
line shape within their statistical uncertainties. The distribution of σB obtained with the
alternative parameter sets is fitted with a Gaussian function (µ1, σ1). The uncertainty is
assigned to be (|µ1 − µ0|+ σ1)/µ0 × 100%, where µ0 is the nominal value. Adding these
two items in quadrature gives the systematic uncertainty in the correction factor. The
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systematic uncertainty due to the Λ peaking background is assigned as 1.0% since the
fraction of this background from the inclusive MC sample is found to be less than 1.0%.
The systematic uncertainty of the quoted branching fraction of Λ → pπ− is 0.8%.

6 Fit to the cross sections of e+e− → pK−Λ̄ + c.c.

In order to search for possible charmless decays of charmonium(-like) states ψ → pK−Λ̄+c.c.,
we try two kinds of least chi-square fits to the dressed cross sections. The χ2 is constructed
as

χ2 = (∆σ⃗)TV −1∆σ⃗, (6.1)

where ∆σ⃗i = σi−σfit
i (θ⃗) and V is the covariance matrix. The σi and σfit

i are the measured and
fitted values for the cross section at the i-th energy point, respectively. The covariance matrix
is constructed as Vii = Vsta,i+Vsys,i for diagonal elements and Vij =

√
Vcorr−sys,i × Vcorr−sys,j

for off-diagonal elements (i ̸= j). Here, Vcorr−sys includes the systematic uncertainties of
integrated luminosity, tracking, Λ reconstruction, and B(Λ → pπ−).

In the first fit, the cross sections are assumed to result only from continuum production
and to follow a relation of a/sn. The fit result is shown in figure 3, with the goodness-of-fit
of χ2/ndf = 39.05/35, where both statistical and systematic uncertainties are included
and ndf denotes the number of degrees of freedom. In the second fit, the cross section
is modeled as a coherent sum of continuum production and resonant amplitudes, e.g.,
σ(
√
s) = |a/sn +BW (

√
s)eiϕ|2, where

BW
(√
s
)
= M√

s

√
12πΓeeΓtotB(R → pK−Λ̄ + c.c.)

s−M2 + iMΓtot

√
PS (

√
s)

PS(M) (6.2)

is used to describe charmonium-(like) states. Here, M , Γtot, and Γee are the mass, full width,
and e+e− partial width of the resonance R, respectively. B(R → pK−Λ̄ + c.c.) denotes
the branching fraction of the decay R → pK−Λ̄ + c.c., ϕ is the relative phase between
the continuum and resonance, and P S(

√
s)

P S(M) is the three-body phase space factor. In the
second case, the values of M and Γtot are fixed to the PDG values [1]. As shown in figure 4,
several well established charmonium-(like) states, ψ(4160), ψ(4230), ψ(4360), ψ(4415), and
ψ(4660), are checked and no evidence for any ψ(Y ) → pK−Λ̄ + c.c. decay is found. To set
the upper limits of ΓeeB(R → pK−Λ̄ + c.c.), the likelihood distributions are constructed
as L(ΓeeB) = e−0.5χ2 . The upper limits at the 90% confidence level (C.L.) is obtained by
integrating L(ΓeeB) from zero to 90% of the total curve. The uncertainty associated with
the quoted resonance parameters of R is studied by sampling its parameters according to
its uncertainty, repeating the estimation of upper limits, and taking the width of resulting
distribution as this uncertainty. The upper limit is assigned as the nominal value plus the
uncertainty due to quoted resonance parameters, as summarized in table 3

7 Summary

In summary, with the 21.7 fb−1 of e+e− collision data taken at
√
s ranging from 4.009 GeV

to 4.951 GeV, the energy-dependent cross sections of e+e− → pK−Λ̄ are measured for the
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Resonance MR (MeV/c2) ΓR (MeV) ΓeeB(R → pK−Λ̄ + c.c.) (eV)
ψ(4160) 4191± 5 70± 10 < 3.0× 10−3

ψ(4230) 4223± 3 48± 8 < 1.3× 10−3

ψ(4360) 4374± 4 118± 12 < 4.7× 10−3

ψ(4415) 4421± 4 62± 20 < 3.4× 10−3

ψ(4660) 4630± 6 72± 14 < 2.8× 10−3

Table 3. Fixed masses (MR) and widths (ΓR) together with the upper limits on the product of the
e+e− partial width and branching fraction of R → pK−Λ̄ + c.c., ΓeeB(R → pK−Λ̄ + c.c.) at the
90% C.L. for different charmonium(-like) state.
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Figure 4. Fits to the energy-dependent dressed cross sections of e+e− → pK−Λ̄ + c.c. under the
hypotheses of continuum production plus (a) ψ(4160), (b) ψ(4230), (c) ψ(4360), (d) ψ(4415), and
(e) ψ(4660). The points with error bars are the measured values including both statistical and
systematic uncertainties. The blue solid curve is the total fit result and the red dash curve is the
continuum contribution a/sn.
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first time. We fit the obtained cross sections under different hypotheses of charmonium(-like)
states plus continuum production. No evidence for any decay of charmonium(-like) states is
found and the upper limits of ΓeeB(R → pK−Λ̄ + c.c.) at the 90% C.L. are given.
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