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Abstract

Low-frequency fluctuations in the interplanetary medium represent a turbulent environment where universal
scaling behavior, generated by an energy cascade, has been investigated. On the contrary, in some regions, for
example, the magnetosheath, universality of statistics of fluctuations is lost. However, at kinetic scales where
energy must be dissipated, the energy conversion seems to be realized through a mechanism similar to the free
solar wind. Here we propose a Langevin model for magnetic fluctuations at kinetic scales, showing that the
resulting fluctuation–dissipation relation is capable of describing the gross features of the spectral observations at
kinetic scales in the magnetosheath. The fluctuation–dissipation relation regulates the energy conversion by
imposing a relationship between fluctuations and dissipation, which at high frequencies are active at the same time
in the same range of scales and represent two ingredients of the same physical process.

Unified Astronomy Thesaurus concepts: Interplanetary medium (825); Heliosphere (711); Space plasmas (1544);
Interplanetary turbulence (830)

1. Introduction

Magnetic fluctuations in the solar wind are described by
classical magnetohydrodynamic (MHD) turbulence with a
Kolmogorov-like energy spectrum E( f )∼ f−5/3 within the
inertial range, namely, for frequencies below the ion scale
f� fi; 1 Hz (Bruno & Carbone 2016). As far as small scales
are concerned, i.e., over the frequencies higher that the ion
frequency, the situation is rather different (Leamon et al. 1998).
At these scales the statistics of solar wind fluctuations depend
on the sample at hand, namely, magnetic fluctuations lose the
characteristic of large-scale universality (Alexandrova et al.
2008; Kiyani et al. 2009; Chen et al. 2014; Sorriso-Valvo et al.
2017; Carbone et al. 2018). In particular, at small kinetic scales
fluctuations have been described by a further power law with a
steeper power spectrum ( ) ~ a-E f f i, the slope being strongly
dependent on the analyzed sample. A statistical analysis of
spectral slopes shows that roughly αi ä [2.0; 3.1], with a peak
at about αi; 8/3 (Alexandrova et al. 2009; Sahraoui et al.
2009; Goldstein et al. 2015). Using data from Cluster
spacecraft a further breakpoint in the magnetic energy power
spectrum has been observed in some samples, at frequencies of
the order of the electron gyrofrequency fe, roughly corresp-
onding to few tens of Hz. Interestingly enough, the whole
power spectrum, for f> fi, has been interpreted either as an
ad hoc function made by a combination of a power law and an
exponential decay (Alexandrova et al. 2012), namely,

( ) ( )~ --E f f f fexp d
8 3 , or by a combination of two power

laws (Sahraoui et al. 2009). Both interpretations have been
claimed compatible with electron Landau damping. The slopes
of the secondary power law ( ) ~ a-E f f e, for f> fe, have been

found to lie in the range αe ä [3.5; 5.5] with a peak at about
αe; 4.
The presence of these fluctuations beyond fi, with a well-

defined structure of the energy spectra, has been attributed to
dispersive phenomena generated by velocity–space effects and
electron dynamics, perhaps due to a further turbulent energy
cascade driven by wave–wave coupling, as for example a quasi
two-dimensional cascade of kinetic Alfén waves (Leamon et al.
1998; Bale et al. 2005; Sahraoui et al. 2009, 2010; Salem et al.
2012; Chen et al. 2013; Kiyani et al. 2013; Podesta 2013;
Roberts et al. 2013), magnetosonic-whistler coupling (Gary &
Smith 2009; Narita et al. 2011, 2016), kinetic slow modes (Yao
et al. 2011; Howes et al. 2012) and ion Bernestein modes
(Perschke et al. 2013). According to this point of view, the
subionic range of scales is followed by a dissipative region
starting near fe, compatible with electron Landau damping.
However, searching for single-wave modes through a
frequency–wavenumber diagram does not show clear results
(Narita et al. 2011), due to the presence of large scattering,
sideband modes, sporadic wave trains as envelope solitons, and
zero-frequency modes. The situation is made rather compli-
cated also by the failure of the Taylor hypothesis, implying that
measurements in the time domain cannot be simply translated
into the wavevector domain (Narita 2018).
At variance with free solar wind, magnetic fluctuations

within the Earth’s magnetosheath, at large scale, seem to be
characterized by the absence of a well-defined Kolmogorov’s
spectrum, mainly near the subsolar point (Huang et al. 2017;
Rakhmanova et al. 2021). Rather, magnetic fluctuations show
in general a less steep slope (Huang et al. 2017); the spectral
energy show a spectral slope, which lies within αi ä [0.3; 2.2],
with a peak at about αi; 1.2, strongly depending on the
region. Interestingly enough, at variance with large scales, at
small kinetic scales fluctuations in the magnetosheath were
found to be weakly dependent on the location. Magnetic
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fluctuations seem to have spectral shape similar to what is
observed in the free solar wind (Huang et al. 2014; Hadid et al.
2015) as we described before. This is quite interesting, meaning
that even if in the magnetosheath the magnetic energy is
transferred to small scales perhaps with a mechanism different
from a classical “turbulent cascade,” the energy conversion at
small scales shares some kinds of universal features with the
free solar wind, thus showing similar spectral properties with
universal-like scaling distribution (Huang et al. 2017). Even for
the magnetosheath, fluctuations at frequencies higher than the
electron scale f > fe, have been interpreted as a further power
law, as in solar wind, with a distribution of slopes in the range
αe ä [4; 7.2] with a peak of about αe; 5.2, rather steeper and
broader than the solar wind counterpart (Huang et al. 2014).

As a rather general note, a power law is characterized
uniquely by the scaling index; that is, the physics of the
problem determines only the scaling index, not the amplitudes.
A variable scaling index perhaps means that we cannot describe
the observations with a true power law (Rakhmanova et al.
2021). From a physical point of view, at small scales, say, at
about the ion or electron gyroradii or inertial lengths, the linear
mode waves become kinetic, exhibiting both and at the same
time, a dispersive and dissipative character due to various kinds
of wave–particle interactions such as coherent scattering
processes or incoherent processes (like pitch-angle scattering).
The collisionless damping mechanisms include cyclotron
damping, Landau damping, and the pressure-strain term
(Matthaeus et al. 2020), but also energization of particles at
current sheets (Chasapis et al. 2015), perhaps spontaneously
generated by a large-scale intermittent turbulent cascade and
stochastic heating. What is generally agreed is that the
nonlinear energy cascade, which is surely active at the largest
scales, transfers energy beyond the ion cyclotron frequency.
The free energy mainly excites electric fluctuations (Bale et al.
2005; Perri et al. 2021), while the energy content in the
magnetic fluctuations is lower, and fluctuations must be
damped by plasma kinetic effects, thus providing a mechanism
for heating in the collisionless plasma. However, note that the
presence of collisionless dissipation represents an input for
fluctuations, because the wave–particle mechanism involved in
the dissipation generates particle beams (Sorriso-Valvo et al.
2019), which, in turn, are able to excite further fluctuations.

The complexity of describing fluctuations at small scales in
space environments, and the absence of universality, registered
even using recent spacecraft (Carbone et al. 2021), have given
rise in recent years to a number of attempts that address the
problem of the origin of fluctuations at kinetic scales also from
a viewpoint different from a secondary turbulent cascade
(Alberti et al. 2022; Benella et al. 2022; Carbone et al. 2022).
In the present paper we would like to approach the problem of
energy conversion at small scales in the magnetosheath. We
use a different framework, recently introduced to describe
fluctuations at kinetic scales in the free solar wind (Carbone
et al. 2022), which, even if compatible, is rather different from
a nonlinear energy cascade framework. The model is based on
a Langevin process to describe fluctuations; the present paper
is, in some way, a continuation of the previous one (Carbone
et al. 2022). From a physical point of view the situation is not
exactly the same. In the free solar wind large scales are
universal and described by a turbulent cascade. As we said
before, in the magnetosheath this is not true; large scales are

not universal, but rather they are described by a power
spectrum with a strong variability in the slopes. This means that
large-scale fluctuations in the magnetosheath cannot be
described by a classical turbulent cascade. Here we would like
to test to what extent a Langevin-like model is able to describe
small scales in both free solar wind and magnetosheath, thus
representing a class of universality.

2. A Langevin Model for Magnetic Fluctuations

Looking at the complex plasma activity at small scales, well
documented in literature and far from being fixed in a unique
framework, we are dealing with a medium where random
fluctuations and dissipation compete in generating magnetic
fluctuations. In a region where collisionless dissipation and
plasma heating could occur and the presence of characteristic
frequencies breaks the scale-free behavior, the role of
dispersion and dissipation is still poorly understood, and the
origin of fluctuations is far from being clearly established. This
is rather different from classical turbulence methodology,
where the nonlinear cascade is active within a scale-free region,
which is well separated from the smallest scales where
dissipation is confined.
Let us consider a simple framework where magnetic

fluctuations b(t) at small scales can be roughly described by
a Langevin stochastic differential equation

( ) [ ( ) )] [ ( ) ] ( ) ( )= G + Yb b e b ed t t t dt t t dW t, , 1b b

(where eb is the direction of the magnetic fluctuations); that is,
we assume that the dynamics of fluctuations is due to two
different contributions. A first contribution, described by the
stochastic process dW(t), which mimics all the complex wave
dynamics within the plasma. Here for mathematical simplicity
Ψ[b(t), t]∼ F0 is assumed constant, proportional to the rms of
fluctuations = á ñF b0

2 . We can interpret the random forcing
as dW(t)eb= ξ(t)dt, which is the natural physically acceptable
choice for an interpretation which assumes ξ(t) as a real noise,
possibly different from a white noise, with finite correlation
times (Gardiner 2009; Stawarz et al. 2022). Moreover, we
assume that ξ(t) is uncorrelated with the initial values of
magnetic fluctuations b(0), say, 〈 ξ(t) · b(0)〉= 0. The second
contribution is due to the collisionless dissipative processes,
which we parameterize with a linear damping term, propor-
tional to a constant damping rate γ, say, Γ[b(t), t]eb;− γb(t).
Note that, in our approach, there is no scale separation

between dissipation and generation of fluctuations, as in a
turbulent environment. In a turbulent medium, according to the
Kolmogorov picture, dissipation is confined to small scales
(large wavevectors), because the dissipation in fluid (or even in
MHD) equations is due to a viscous term that is proportional to
the inverse of the Reynolds number, multiplied by the second-
order derivative in space of the velocity (or magnetic) field.
Since the Reynolds number is in general very high, dissipation
is effective only at very small scales, where the derivative term
is large enough to compensate the inverse of the Reynolds
number. In the collisionless solar wind, when describing the
turbulent cascade, which is responsible for the generation of
fluctuations at large scales, we must always assume that
dissipation is confined to very small scales, but we know that,
in the solar wind, it is due to kinetic effects rather than a
viscous term. However, beyond the ion scale, it is hard to
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assume that dissipation is further separated from the mech-
anism that is responsible for the birth of fluctuations as, for
example, is evident from the pressure-strain term in numerical
simulations (Matthaeus et al. 2020).

Under the above approximation, the Langevin equation can
be solved by Fourier transforms. This gives an obvious relation
between the correlation of the Fourier modes of the forcing ξω
and the power spectrum of magnetic energy modes bω, in such
a way that, in a stationary situation

( ) ( )( ) ( )w w w g= + -E F G 20
2 2 2 1

where ( ) ·w = á ñw wb bE  (brackets means time averaging
and å stands for complex conjugate) and ·x xá ñ =w w¢

( ) ( )p w d w w+ ¢G2 . It is worth to remark that “stationary” here
means a physical situation where a dynamical system covers all
the available phase space. As a simple example let us suppose
that magnetic fluctuations are generated by the action of
completely uncorrelated stochastic wave trains, so that

· ( )x x pd w wá ñ = + ¢w w¢ 2 . In this case the magnetic energy
spectrum is given by a Lorentzian function ( )w E

( )w g+F0
2 2 2 , which does not describe the broad variety of

spectral shapes of magnetic energy density spectrum as
observed in the high-frequency solar wind plasma.

Since purely stochastic fluctuations do not describe the high-
frequency range; as a realistic example (Carbone et al. 2022) let
us consider the case where, as the energy of fluctuations
cascading from large scales reaches the ion breakpoint, a
variety of waves takes part in the complex process of energy
conversion (Narita et al. 2011), so that we expect that wave–
wave couplings, wave–particles interactions, and dispersive
effects can play a role. In this situation we can expect that ξ(t)
can be considered, as a rough approximation, as a colored noise
rather than a white noise. This means that the two-point
correlations of the stochastic forcing term are different from
zero even for relatively large separation times, so that, as usual
(Gardiner 2009), we can expect that the two-point correlations
decays exponentially in time, so that

( ) · ( ) [ ( )] ( )x x lá ¢ ñ = - ¢ -t t t texp . 3

By using the inverse Fourier spectrum we can easily obtain
G(ω)= 1/(ω2+ λ2). However, since a classical dispersion
relation is absent (Narita et al. 2011), all kinetic modes are
present, so that, to be more realistic, we must assume that the
decay of correlations does not happen by a single decay rate.
Let us consider a situation where there exists a continuous
distribution of relaxation rates λ described by a probability of
occurrence P(λ), and the power spectrum of the external
forcing can be calculated from the superposition of all λʼs
according to their probability of occurrence. We expect that the
decorrelation rates depend on a characteristic value, say, λ0,
depending, for example, on the wave modes involved in the
decorrelation process, and decay for values far from λ0.
Among the possible functional shape, we choose a convenient
integrable form, namely, for simplicity a power law

( ) ( )l l l lm-dP d0 , where μ> 1. This is physically accep-
table, even if arbitrary, our choice being due to the relative
simplicity of the calculations. In fact, in this case we get

( ) ( ) ( )( )ò òw
l

w l
w l~

+
=

+
m m

m
- + -

-
G

dP y

y
dy

1
. 4

2 2
1

0 2

Inserting this relation in Equation (2), we obtain an expression
for the power spectrum at frequencies f, which can be used to
describe the data

( ) ( ) ( ) ( )( )m g= +m- + -E f Ag f f 51 2 2 1

where A is a constant and g(μ) is the integral in Equation (4),
namely, a smooth function of μ. Equation (5), already used either
as an ad hoc fitting function Sahraoui et al. (2009), or in the
framework of a Langevin approach (Carbone et al. 2022),
successfully reproduces the overall shape of the free solar wind
spectra with different pairs (μ, γ). The observed spectrum in
Equation (5) can then be interpreted as the result of a whole class
of flicker noises ξ(t), compatible with the presence of random
fluctuations generated by sporadic wave train interactions, with
the two-point correlations decaying according to a generic
exponential function with variable rate. Note that (5) is compatible
with a double power law, because the ion and electron breakpoints
are well separated (Sahraoui et al. 2009; Carbone et al. 2021). Of
course, Equation (5) is compatible also with the expression
introduced ad hoc in Alexandrova et al. (2012), provided that the
scaling exponent is fixed (1+ μ)= 8/3 and the free parameters
are related by ( ) ( )g- = +f f fexp d

2 2 for each observed
frequency. The parameter 1+ μ then represents the scaling
exponent of the energy spectra as observed beyond the ion break
in solar wind data.
The statistical properties of fluctuations can be related to the

global properties of dissipation even without considering a
turbulent cascade. To make this feature clearer, let us consider
a modified version of the Langevin equation

( ) ( ) ( )a x x= - +db t b b dt F dt, 6j j j j j0

where α is a stochastic function describing the microscopic
properties of dissipation. It is easy to show that Equation (6)
has an exact constant of motion ( )c m= åt b 2j j

2
0 (μ0 is the

vacuum permittivity), providing

( ) ( )a x
m

x
=

å

å
b

F b

b
,

2
; 7j j

j j j

j j

0
2

0
2⎜ ⎟

⎛
⎝

⎞
⎠

that is, the system in Equation (6) is time invariant,
independently of initial conditions, and we can conjecture that
statistical properties of Equations (1) and (6) are equivalent
(Gallavotti & Cohen 1995; Gallavotti 2014); that is, γ; 〈α〉
describes the average properties of dissipation. The equivalence
between the dissipative system and the conservative one allows
us to evidence the physical origin of γ. In fact, from the
Langevin Equation (1), we get an equation for the average
energy of magnetic fluctuations ò(t)= 〈b2〉/2μ0= 〈χ(t)〉, which
can be solved formally, thus obtaining (Carbone et al. 2022)

( )

( ) ( ) ( )( )

ò

ò

m

x x

=

´ ¢ á ¢ ñ

g g

g

-

¢-

t
F

e ds e

dt e t s

2

. 8

t t s

s t s

0
2

0

2
0

2

0

 ⎜ ⎟
⎛
⎝

⎞
⎠

Since the statistical equivalence between the Langevin
Equation (1) and the modified time-invariant model in
Equation (6) can be reasonably conjectured (Gallavotti &
Cohen 1995; Gallavotti 2014; Carbone et al. 2022), a finite
stationary solution can be found for Equation (8), providing
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λ< 3γ. Then in the long time evolution, the statistics
of the out-of-equilibrium process can be considered as an
equilibrium-like process, and ò(t) tends to a function ρ(Ω,
F, Γ)= ∫ΩF(v)Γ(dv), where Ω is the phase space covered by the
dynamics, F(v) is any function of the observable v, and Γ is the
Sinai–Ruelle–Bowen (SRB) probability measure (Bowen 1970;
Sinai 1977; Ruelle 1980; Gallavotti & Cohen 1995). After
straightforward calculation, using Equation (3), we obtain

( )

( )

( )

ò

r
m

g
l

W G

´
-

m

z

z m

- +

-

F
B

y

y
dy

, ,
2

1
9

0
2

0 0

1

min

max

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where z l g zmin max  is the range of the possible relaxation
rates for the two-point correlations, the maximum possible
extension being z  0min and z  1max . Equation (9) represents
a kind of fluctuation–dissipation relation (FDR; Gardiner 2009;
Kanekar et al. 2015; Carbone et al. 2022). Note that here we
consider a statistical equilibrium situation just to evidence some
rough consequences of FDR. A statistical equilibrium invol-
ving a maximal entropy is not strictly required, because a kind
of FDR, based on the response theory (Ruelle 1978), can be
found also in a stationary chaotic system with a given statistical
distribution of orbits in the phase space, thus obtaining
information on the fine structure of the attractor in the finite
phase space (Gallavotti & Lucarini 2014; Lucarini 2014;
Biferale et al. 2018).

The observable F(v) is arbitrary, so that, if we are, for
example, interested in the squared electron plasma velocity
fluctuations, we are free to use F(v)= v2, thus roughly
identifying ρ(A, F, Ω) with a stationary nonequilibrium
“electron temperature” kBT by using the kinetic velocity
distribution function f (v) in the SRB measure Γ(dv)∼ f (v)dv.
From Equation (9), providing λ< γ, the phenomenological
damping rate turns out to be proportional to some power of the
electron plasma-β parameter, where the thermal energy is
defined through the second-order electron velocities

( )
( )

òb
g
l

=
-

m

z

z m- + -y

y
dy

1
. 10e

0

1

min

max
⎜ ⎟
⎛
⎝

⎞
⎠

The importance of the plasma-β parameter to fix properties of
the high-frequency region of fluctuations, and in particular the
ionic break, has been already underlined (Leamon et al. 1999;
Chen et al. 2014; Parashar et al. 2018) both from observations
and numerical simulations. Our results evidence that the
electron plasma-β parameter can regulate the equilibrium
condition between the excitation of fluctuations and their
dissipation through the FDR in the whole high-frequency
region.

3. Data Analysis

In this paper we use Magnetospheric Multiscale (MMS;
Burch et al. 2016) observations from the terrestrial magne-
tosheath. In particular, we use high-resolution magnetic field
measurements sampled with frequency 8192 Hz by the
Search-coil Magnetometer instrument (Lindqvist et al. 2016)
on MMS1. We have selected few trajectories from the

magnetosheath database compiled by Stawarz et al. (2022).
For the purpose of this study, the selection is based on intervals
representing different plasma conditions in terms of electron
plasma beta, varying from low (∼0.1) to high (∼39) (see
Table 1). To characterize the spectral properties of the magnetic
field fluctuations, we calculate the power spectral density
(PSD) of the absolute value of the magnetic field for each
interval using the Welch algorithm with Hanning window and
75% overlap between the data segments. Note that the Taylor
hypothesis allowing the conversion of time to spatial scales has
been validated for the intervals under consideration (Stawarz
et al. 2022).
Equation (5) has been used to fit the PSDs, according to the

constraint in Equation (10). In other words, once we get the
best-fit pair of parameters (γ, μ) for each sample, from
Equation (10) we obtain a set of values of λ0, which, in general,
depends on both zmin and zmax. Without loosing generality we
keep z  1max fixed, and use zmin as variable so that

( )l l z=0 0 min . In this way we are able to identify a range of
frequencies that characterize the possible decorrelation times
for interacting waves that can generate fluctuations in the high-
frequency region.
The spectral properties observed in the magnetosheath at

high frequencies are nicely reproduced by Equation (5). We
used a standard minimization procedure based on a maximum
likelihood criterion, thus obtaining the best-fit values for μ and
γ for the seven different samples characterized by different
values of βe. Actually the spectra are very smooth and the
functional shape of Equation (5) fits very well the data for a
wide range of values of λ0. In Figure 1 we report the frequency
spectra of the seven samples we used, along with the best-fit
curve of Equation (5) obtained with the parameters listed in
Table 1. In the same table we report the minimum and
maximum values of λ0, corresponding to ( )l l z=  0min 0 min
and ( )l l z=  1max 0 min , respectively, and the normalized
range ( )l l gD = -max min .
As a comment, actually, due to the smoothness of the

observed spectra, a simple fit of Equation (5) on the data
produces estimates, mainly of the free parameter γ, which are
affected by errors that are too large. In particular, results are
sensitive to the evaluation of the integral in Equation (5) and
each sample is compatible with a relatively large range of
possible values of γ. To minimize this bias, we use the FDR
Equation (10) in Equation (5), rather than verifying its validity
a posteriori (Carbone et al. 2022). This allows us to find
reasonable values of the parameters. The goodness of fit, and
the statistical reliability of parameters, require a careful analysis
of the integral in Equation (9), with different zmin, and the
determination of one of the parameters.
The minimum value lmin, which in our model represents the

scale where nonlinear effects, say, wave–wave interactions are
effective, results to be of the order of few fractions of Hz, thus
roughly representing some frequency related to the ion
breakpoint observed on the data, and is independent on β.
Moreover, γ< 102 Hz, while l g  10min

2, a ratio which is
independent on β. On the contrary, the maximum value lmax
roughly increases with β, the normalized range of decorrelation
rates Δ, increases with β as well. Said differently, in a low-β
sample the range of possible values of the two-point correlation
for the decay rates λ, is narrow, and is confined to
few Hz around the ion breakpoint. On the contrary, when
the plasma-β of the sample is high, the range of the

4

The Astrophysical Journal, 957:98 (7pp), 2023 November 10 Chiappetta et al.



two-point correlations for random interacting fluctuations is
wide, sometimes ranging from the ion to the electron break-
point. When βe> 1, the values of γ we found are greater than
both the frequencies related to the electron gyroradius rf e

and
the electron skin depth lf e

. On the contrary, for βe< 1 we find
g< <l rf f

e e
. Specific experimental relationships can be found

between the free parameters and βe, namely, l b~ emax
1 2 and

g b~ e
1 7, so that their ratio decreases as ( )g l b~ -

emax
5 14.

Then lmax increases faster than γ; thus, for high-β samples, the
range of possible decorrelation rates increases, even if high-β
samples require decorrelation rates closer to γ. As a reference
in Figure 2 we report the dependence of γ and lmax on βe. The
scaling exponent μ does not show a clear dependence on β;
rather we found that in general the equilibrium is reached in
such a way that high values of γ correspond to steeper spectra
in the ionic region, namely, to high values of μ.

It is worth reporting that the estimate of the relation γ versus
βe reported here is rather inconsistent with the results of
Carbone et al. (2022), which in fact report a scaling relation
g b~ -

e
3 2 for the free solar wind. This can be due to several

factors, which should pertain to the different nature of
fluctuations between free solar wind and magnetosheath. These
multiscale processes can involve multiple conversions between
electromagnetic, kinetic, and thermal energies downstream of
the bow shock (Vörös et al. 2021). As a technical detail, as said
before, here we use the FDR to reduce the dispersion of the
possible values of the fitting parameters, different from what
has been done in Carbone et al. (2022). Of course, it is always
possible, using magnetosheath data, to find values of γ that
behave as b-

e
3 2 as in the free solar wind, but the large

dispersion of values of γ makes the scaling laws unreliable
here. Only using the FDR Equation (10) the dispersion of
parameters can be reduced, thus making statistically reliable the
estimate and the scaling laws.

4. Summary

To conclude, we showed that a Langevin equation roughly
describes the energy conversion at kinetic scales, namely, at
the end of the inertial range, generally characterized by a
turbulent energy cascade. Beyond the ion break, namely,
roughly at frequencies f> fi, the scale-free region ends
because some characteristic frequencies are born. In this
region, dissipative effects cannot be neglected and a lot of
nonlinear phenomena, for example, wave–wave couplings

and wave–particle interactions, are responsible for the birth
of magnetic fluctuations. In this region, the FDR obtained
from the Langevin equation, relates the magnetic fluctua-
tions, here globally described by a function of the plasma-β
parameter, to the dissipative properties of the magnetosheath
at small scales, globally described by the parameter γ. The
FDR, perhaps more than a classical turbulent cascade,
governs this region of the spectrum (Kanekar et al. 2015),
thus regulating the energy conversion by imposing a
relationship between fluctuations and dissipation, two
mechanisms, which, unlike what happens in the inertial
range of classical turbulence, are active in the same range of
frequencies at the same time. In other words, according to
the FDR, fluctuations and dissipation represent two ingre-
dients of the same physical process, namely, the energy
conversion. The fact that fluctuations and dissipation must
balance locally each other is perhaps the main motivation for
the absence of universality of classical statistics of fluctua-
tions at kinetic scales. Rather, the universality is recovered at
the level of FDR, say, a well-defined relation with the
plasma-β parameter is required. Finally, the values of γ
cannot be misinterpreted as the scale where dissipation starts
to be active, according to a Richardson-like cascade. Instead,
γ represents a characteristic scale required to assure an
equilibrium condition between the generation of fluctuations
and the dissipation of the fluctuations themselves.
The approach based on a Langevin-like description of small-

scale fluctuations is rather different, even if compatible, with
the usual turbulent cascade. A turbulent energy cascade is a
nonequilibrium process, in the sense that it cannot be described
by a maximal entropy approach of usual statistical mechanics.
In the dynamical system theory, a chaotic system is far from
classical equilibrium. The statistical mechanics of nonequili-
brium processes, which does not necessarily require a maximal
entropy approach, is rather general and works for both usual
statistical systems and chaotic system, including some aspect of
turbulence (Gallavotti & Lucarini 2014; Gallavotti 2014;
Lucarini 2014; Biferale et al. 2018).
We would like to emphasize once more that our approach

does not bring into question the importance of the complex-
ity inherent to the space plasmas and cascade processes.
Rather, independently of the specific microphysical plasma
dynamics, our approach can account for the gross features of
the observations of spectral properties of high-frequency
fluctuations in the magnetosheath and, in general, in the

Table 1
Parameters of the Fit

Id Time βe lf e rf e
fmin fmax μ γ lmin lmax Δ

2016 09/30 17:50–18:01 0.08 13.16 46.25 1.88 81.25 1.60 39.26 0.17 4.63 0.11
2018 05/28 22:23–22:30 0.13 20.60 56.45 1.88 62.50 1.17 31.58 0.62 3.05 0.08
2015 11/30 00:21–00:26 1.50 45.90 37.30 1.88 62.50 1.70 56.91 0.48 21.54 0.37
2017 12/09 06:12–06:18 4.00 35.69 17.85 1.88 62.50 2.03 59.47 0.18 34.54 0.58
2016 12/11 15:20–15:32 7.69 27.76 10.05 1.88 62.50 2.03 82.86 0.32 59.71 0.72
2017 01/28 05:29–05:34 11.35 31.41 9.36 1.88 81.25 1.91 66.22 0.46 58.85 0.81
2018 05/23 14:35–14:41 39.31 50.10 8.00 1.88 62.50 1.91 77.52 1.40 77.52 0.98

Note. The date relative to each sample as identification number of the sample itself (id), time interval of each sample, the electron plasma-β parameter, the
characteristic frequencies lf e

and rf e
(in Hz), the minimum and maximum frequencies of the data used for the fit of the power spectrum (in Hz), the best-fit parameters

μ and γ (in Hz), the minimum and maximum values of λ0 (in Hz), the normalized interval ( )l l gD = -max min .
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interplanetary space (Carbone et al. 2022). Microphysical
processes related to specific wave–wave couplings and
wave–particle effects could be taken into account, for

example, by specifying the range of values of the decorrela-
tion rate λ. This is out the scope of the paper and will be
investigated and reported in a later paper.

Figure 1. E( f ) vs. f as obtained from data (dots) and from Equation (5) (red line) for the seven different samples. The positions of γ, lmin, lmax, and of the two
characteristic electron plasma frequencies of each sample are indicated on the plots. The values of the electron plasma-β and the scaling exponent μ obtained from the
fit are reported in each figure.
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