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In the description of resonant inelastic x-ray scattering (RIXS) from inversion-symmetric molecules the small
core-level splitting is typically neglected. However, the spacing � between gerade and ungerade core levels
in homonuclear diatomic molecules can be comparable with the lifetime broadening of the intermediate core-
excited state �. We show that when � ∼ � the scattering becomes nonlocal in the sense that x-ray absorption
at one atomic site is followed by emission at the other one. This is manifested in an unusual dependence of the
RIXS cross section on the sum of the momenta of incoming and outgoing x-ray photons k + k′, contrary to the
normal k − k′ dependence in the conventional local RIXS theory. The nonlocality of the scattering influences
strongly the scattering angle and excitation energy dependence of the intensity ratio between parity forbidden
and allowed RIXS channels. Numerical simulations for N2 show that this effect can readily be measured at
present-day x-ray radiation facilities.
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I. INTRODUCTION

In 1801, Young [1] demonstrated the wave behavior of
light by the observation of interference fringes in what became
known as Young’s double-slit experiment (YDSE). Similar in-
terference fringes were later observed for electrons [2], atoms,
and molecules [3]. Effects akin to YDSE were also manifested
in two-center interference in photoionization [4], resonant
Auger scattering [5], resonant inelastic x-ray scattering
(RIXS) [6–11], and infinite-slit interference in RIXS of crys-
tals [10,12]. One of the important fingerprints of the YDSE
interference is that it opens parity-forbidden RIXS channels
[6,10,13]. Another important feature of YDSE, YDSE inter-
ference fringe, was observed in resonant Auger scattering [5],
hard x-ray RIXS from fixed-in-space molecules [7], and in
soft x-ray RIXS from randomly oriented molecules [13].

So far, the YDSE effect in RIXS of diatomic homonuclear
molecules has been studied under the assumption that the
spacing between the gerade (1σg) and ungerade (1σu) core
levels � is much smaller than the lifetime broadening � of
the intermediate core-excited state [10]. The small value of
� is due to the small overlap of the core orbitals localized
at different atomic centers. One of the important features of
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RIXS for small � is that the scattering cross section shows
a conventional scattering dependence on the change of the
photon momentum [6,10]

q = k − k′, q ≈ 2k sin
χ

2
, (1)

where χ = ∠(k, k′) is the scattering angle between the mo-
menta of incident (k) and scattered (k′) photons. This is
because the total RIXS amplitude in this limit is a coherent
sum of one-center scattering amplitudes [Fig. 1(b)] [6,10].
However, while the assumption �/2� � 1 is valid in the hard
x-ray region, e.g., for the Cl2 molecule [14], it is not always
justified for molecules with light elements. This is due to the
fact that the increase of � is accompanied by the decrease of
� on the way from heavy Cl to lighter elements, making the
ratio �/2� ∼ 1 for nitrogen [15–17].

The main goal of our paper is to investigate RIXS from
homonuclear diatomic molecules for arbitrary ratio �/2�

[Fig. 1(a)]. We will show that the finite spacing � between
the core levels of opposite parity results in an additional term
in the RIXS cross section, describing a process which has so
far not been considered: absorption at one atom followed by
emission from the other atom of a diatomics [see Fig. 1(c)].
In contrast to the scattering theory considered so far [6,10],
which implies the momentum transfer q according to Eq. (1),
the two-center process shows an unusual dependence on the
sum of the momenta of the incoming and scattered photons

q+ = k + k′, q+ ≈ 2k cos
χ

2
, (2)

showing qualitatively different scattering angle χ dependence,
as compared to Eq. (1). We demonstrate below that, con-
trary to conventional scattering theory (� = 0), the relative
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(a) (b)

(c)

FIG. 1. (a) Scheme of RIXS transitions. (b) One-center local
scattering channels, corresponding to the first term on the right-hand
side of Eq. (5) (absorption and emission at the same atomic site).
(c) Two-center nonlocal scattering channels, corresponding to the
second term of Eq. (5) (absorption at one atomic site followed by
emission from the other).

intensity of parity-forbidden RIXS band is strongly depen-
dent on the detuning � of the incoming photon energy from
resonance. Moreover, we will show that this unusual depen-
dence of RIXS cross section on the sum of momenta q+ is
an inherent quantum effect caused by the nonlocality of the
scattering. Indeed, q+ = k + k′ describes momentum transfer
to the internal degrees of freedom under nonlocal two-center
scattering [Fig. 1(c)], in contrast to the local one-center scat-
tering [Fig. 1(b)] with the momentum transfer q = k − k′.

II. THEORETICAL MODEL

Homonuclear diatomic molecules have a center of symme-
try at their midpoint and the electronic states of the molecule
are symmetric (gerade, g) or antisymmetric (ungerade, u) with
respect to inversion. We consider the RIXS process where
the excitation of a core electron to an unoccupied molecular
orbital (MO) 1σu,g → ψν is followed by a transition from an
occupied MO to the core hole ψ j → 1σu,g [Fig. 1(a)]. The
key feature of this process is that the scattering of an x-ray
photon with frequency ω, momentum k, and polarization vec-
tor e proceeds via two interfering intermediate delocalized
core-excited states |c〉 = |1σ−1

u ψ1
ν 〉 and |1σ−1

g ψ1
ν 〉 of opposite

parity with the energy spacing �∣∣1σ−1
u ψ1

ν

〉
↗

(ω, k) + |0〉
↘ ∣∣1σ−1

g ψ1
ν

〉
↘

(ω′, k′) + ∣∣ψ−1
j ψ1

ν

〉
.

↗
(3)

The symmetry of the core orbitals 1σi = [1s(r1) +
pi1s(r2)]/

√
2 and the valence orbitals ψν (r) = cν{2pm(r1) −

pν2pm(r2)} + · · · is characterized by the parity pi = 1 and −1
for gerade and ungerade MOs, respectively, where m = x, y
and m = z for π and σ MOs, respectively. The atomic
orbitals 1s(rn) and 2pm(rn) depend on the electron radius
vector rn = r − Rn relative to the coordinate Rn of the atom

n = 1, 2. The small size of the core orbitals 1s(rn) allows
us to neglect two-center integrals in the matrix elements of
the absorption and emission transitions of RIXS amplitude
[6,10]. In this case, simple calculations (see Appendix A)
result in the following expression for partial amplitude of
scattering through the gerade or ungerade core excited state
(c = g, u):

F (c) = 1

Zc
〈1σi|e−ık′ ·r(e′ · r)|ψ j〉〈ψν |eık·r(e · r)|1σi〉

= (e′ · d j )(e · dν )

Zc

{
eı(k−k′ )·R1 + P f eı(k−k′ )·R2

−Pc
(
P f eı(k·R1−k′ ·R2 ) + eı(k·R2−k′ ·R1 ))}, (4)

depending on the parities of the core-excited Pc = pi pν and
final P f = p j pν states. Here Zg = � − �/2 + ı� and Zu =
� + �/2 + ı�, � = ω − (ωg0 + ωu0)/2 is the frequency de-
tuning of the incoming photon ω relative to the center between
1σg → ψν and 1σu → ψν absorption resonances, dν and d j

are the one-center parts of the transition dipole moments of
the absorption [1s(r1) → ψν) and emission (ψ j → 1s(r1)]
transitions, respectively [see Eq. (A5) of Appendix A].

The partial RIXS amplitude F (c) consists of two qualita-
tively different contributions. The first two terms of Eq. (4)
describe the one-center scattering studied earlier [6,8,10,14],
where the absorption is followed by the emission from the
same atom [Fig. 1(b)]. The last, two-center term describes
the alternative process when absorption at one atomic site is
followed by emission from the other atom [Fig. 1(b)]. This
process is possible since the gerade and ungerade core-hole
states are delocalized. Scattering through the intermediate
gerade and ungerade core-excited states ends up in the same
final state (3), resulting in the sum of these two coherent paths
Ff = F (g) + F (u) in the total RIXS amplitude

Ff = 2
(e′ · d j )(e · dν )(� + ı�)

ZgZu

×
{

(eıq·R/2 + P f e−ıq·R/2)

+ ı
τc�

2
(P f eıq+·R/2 + e−ıq+·R/2)

}
eıq·RCG . (5)

Here we take into account that R1 = R/2 and R2 = −R/2
in the center of the gravity frame, where R = R1 − R2 is
the interatomic radius vector. The factor exp(ıq · RCG) is re-
sponsible for the transfer of the momentum q to the center
of gravity [18] with the radius vector RCG. The dependence
of the two-center term on the complex scattering duration
τc = 1/(� − ı�) [19] reflects the dynamical origin of this
contribution.

Let us single out three important differences between the
conventional one-center and the additional two-center terms
in Eq. (5). First, the two-center terms, being proportional to
�, vanish when |τc|� � 1. Based on the assumption that
� = 0, earlier studies have thus not considered this two-center
contribution [6,8,10].

Second, this additional contribution reveals a dynamical
aspect of the two-center RIXS. The dependence on τc re-
flects the entanglement of the close-lying gerade and ungerade
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intermediate core-excited states caused by the incoming x-ray
photon, which creates a wave packet

ψ (t ) ∝ (eık·R1 + e−ık·R2 )|u〉e−ı�t/2

+(eık·R1 − e−ık·R2 )|g〉eı�t/2, (6)

that describes the beating between gerade and ungerade states
in the time domain, controlled by the scattering duration
[10,19] τ = |τc| = 1/

√
�2 + �2. The scattering duration can

be varied by changing the detuning � in the experiment,
and we will show that this allows for control of the relative
contributions of the one-center and two-center RIXS channels
to the scattering cross section.

Third, the nonlocal two-center channel shows a qual-
itatively different dependence on the photon momenta as
compared to the local one-center channel. Instead of the con-
ventional dependence on the momentum transfer q = k −
k′, the two-center term depends on the sum of the photon
momenta q+ = k + k′. There are two important aspects of
this result. The first aspect is that the YDSE interference has
qualitatively different phase factors in one-center and two-
center scattering

eı(k−k′ )·R1 = eıq·R/2, eı(k·R1−k′ ·R2 ) = eıq+·R/2. (7)

As one can see from Eqs. (4) and (5), the formal origin of
q+ = k + k′ in the two-center scattering channels is the oppo-
site signs of R1 = R/2 and R2 = −R/2. The second, physical
aspect relates to the momentum transfer to the molecule in the
course of scattering. The recoil momentum obtained by the
molecule is shared between the momentum transfer to the cen-
ter of gravity (q) [18] and to the internal degrees of freedom
(q/2 and q+/2) followed by vibrational excitations, quanti-
fied by generalized Franck-Condon amplitudes [20] with the
corresponding phase factors shown in Eq. (7). The physical
picture of the two qualitatively different mechanisms of the
momentum transfer to the vibrational degrees of freedom is
illustrated in Fig. 2.

III. RESULTS AND DISCUSSION

Modern x-ray coincidence techniques allow for measure-
ments of fixed-in-space molecules [5,10,22], and scattering
centers with fixed orientation are also accessible in the solid
state [7]. Therefore, we first analyze fixed-in-space molecules
before addressing conventional gas-phase measurements on
randomly oriented species [10].

A. RIXS spectra of fixed-in-space molecules

Let us consider first the RIXS cross sections for a fixed-in-
space molecule (σ f (ω′, ω) = |Ff |2�[ω′ − ω + ω f 0, � f )]

σ f (ω′, ω) = ζν∗ j (e′ · d̂ j )
2(e · d̂ν )2

×
{

1 + P f cos(q · R) + �2

4(�2 + �2)

× [1 + P f cos(q+ · R)]

− ��

�2 + �2
[cos(k · R) + P f cos(k′ · R)]

}
. (8)

(a)

(b)

FIG. 2. Momentum exchange between x-ray photons and inter-
nal degrees of freedom (vibration). (a) In the case of one-center
scattering the atom gets the momentum q = k − k′ (k and −k′ are
the momentum received in the course of absorption and emission,
respectively). The vibrational excitation is maximal when k ↑↓ k′

(q = 2k). (b) In contrast, the total momentum transfer to the relative
motion of the atoms is q+ = k + k′ in the case of the two-center scat-
tering since the absorbing atom 2 gets the momentum k, whereas the
emitting atom 1 gets the momentum −k′. The vibrational excitation
is maximal when k ↑↑ k′ (q+ = 2k). The hollow arrow shows the
recoil momentum.

Here ζν∗ j = 8d2
j d2

ν (�2 + �2)�(ω′ − ω + ω f 0, � f )/|ZgZu|2,
the Lorentzian �(�,� f ) describes the Raman dispersion, � f

is the lifetime broadening of the final state, ω f 0 is the resonant
frequency of transition from the ground state to the final one,
and d̂ = d/d . The cross section comprises three terms: The
first term [1 + P f cos(q · R)] describes the local one-center
scattering [6,8,10] while the second one (∝ �2) represents
the nonlocal two-center RIXS. The interference between local
and nonlocal scattering channels is given by the last term,
which vanishes when � = 0.

As a showcase for nonlocal scattering we analyze the RIXS
spectra of the N2 molecule. We focus our attention on tran-
sitions where a core electron is promoted to the π Rydberg
state, 1s → 3dπg, followed by transitions where an electron
from the occupied 1πu or 3σg MOs fills the core hole. Thus,
we analyze the following symmetry-forbidden and symmetry-
allowed RIXS channels

π∗π : 1s → 3dπg, 1πu → 1s,

forbidden, P f = −1,

π∗σ : 1s → 3dπg, 3σg → 1s,

allowed P f = 1. (9)

As it is shown in Appendix [see Eq. (B1)] the cross sec-
tions for these RIXS channels read

σπ∗π = ζπ∗π
[(

e · d̂πx

)2 + (
e · d̂πy

)2]
× [(

e′ · d̂πx

)2 + (
e′ · d̂πy

)2]
σ−,

σπ∗σ = ζπ∗σ
[(

e · d̂πx

)2 + (
e · d̂πy

)2]
(e′ · R̂)2σ+. (10)

Here the subscripts in σ− and σ+ indicate that the parities
of the final states for the π∗π and π∗σ RIXS channels are
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FIG. 3. Three possible orientations of the molecular axis R
(shown by dashed black arrow): (a) R ‖ k, (b) R ‖ q, and (c) R ‖ q+.
We consider orthogonal orientation of the polarization vectors e and
e′ (red circles) relative to the (k, k′) plane.

P f = −1 and +1, respectively. To emphasize the qualitatively
different dependence of the local (σ L

± ) and nonlocal (σ NL
± )

scatterings on the scattering angle χ and the detuning � we
separate the cross section into two parts

σ± = σ L
± + σ NL

± ,

σ L
± = 1 ± cos(q · R),

σ NL
± = �2

4(�2 + �2)
[1 ± cos(q+ · R)]

− ��

�2 + �2
[cos(k · R) ± cos(k′ · R)]. (11)

This equation emphasizes the difference between the local and
nonlocal terms. The first depends on the conventional momen-
tum transfer q = k − k′ (1) while the nonlocal contribution
shows the unusual dependence on k and k′ and the sum of
these momenta q+ = k + k′, which gives an opposite depen-
dence on the scattering angle χ (2). This unusual dependence
on χ is the fingerprint of nonlocal scattering. Note that the
parity-forbidden RIXS channel (σ− �= 0) is opened here solely
due to the YDSE interference.

The YDSE interference manifested by the cos functions
depends strongly on the mutual orientation of momenta q, q+,
k, and k′ with respect to the molecular axis R. To illustrate this
let consider three general cases illustrated in Fig. 3

A : R ‖ k, (12)

σ L
± = 1 ± cos

(
2kR sin2 χ

2

)
,

σ NL
± = �2

4(�2 + �2)

[
1 ± cos

(
2kR cos2 χ

2

)]

− ��

�2 + �2
[cos(kR) ± cos(kR cos χ )].

B : R ‖ q, (13)

σ L
± = 1 ± cos

(
2kR sin

χ

2

)
,

σ NL
± = �2

4(�2 + �2)
(1 ± 1)

− ��

�2 + �2

[
cos

(
kR sin

χ

2

)
± cos

(
kR sin

χ

2

)]
,

σ NL
− = 0,

σ NL
+ = �2

2(�2 + �2)
− 2��

�2 + �2
cos

(
kR sin

χ

2

)
,

C : R ‖ q+, (14)

σ L
− = 0, σ L

+ = 2,

σ NL
± = �2

4(�2 + �2)

[
1 ± cos

(
2kR cos

χ

2

)]

− ��

�2 + �2

[
cos

(
kR sin

χ

2

)
± cos

(
kR cos

χ

2

)]
.

Cases B and C provide a nice opportunity to independently
investigate local and nonlocal RIXS since σ NL

− = 0 when
R ‖ q (B) while σ L

− = 0 when R ‖ q+ in case C.
Let us now discuss the role of the polarization of incoming

e and scattered e′ x-ray photons (10) considering the case
A when R ‖ k [Fig. 3(a)]. We fix the polarization vectors
orthogonal to the molecular axis: e, e′ ⊥ R. This geometry
allows to quench completely the symmetry-allowed (σπ∗σ =
0) RIXS channel, as (e′ · R̂) = 0 (Fig. 3), and thus to see only
the symmetry-forbidden RIXS transition σπ∗π = ζπ∗πσ− �= 0.
The scattering angle dependence of σ− together with σ L

− and
σ NL

− is shown in Fig. 4 for three values of the detuning �.
An important fingerprint of nonlocal RIXS is that, in

contrast to local RIXS (σ L
− ), the cross section of the parity-

forbidden RIXS channel is not equal to zero (σ NL
− �= 0)

for forward scattering (χ = 0). The reason for this is the
dependence of σ NL

− on q+ = k + k′, k, and k′ contrary
to the local term σ L

− which depends on the conventional
momentum transfer q = k − k′. Since σ NL

− is the sum of
the pure nonlocal scattering and interference of local and
nonlocal scattering channels (12), the relative contribution
of these two channels deserves a special comment. The
local-nonlocal interference term is proportional to the de-
tuning �, which results in the pure nonlocal contribution
σ NL

− ∝ 1 − cos[2kR cos2(χ/2)] when � = 0, having opposite
angular dependence as compared to the local term σ L

− ∝ 1 −
cos[2kR sin2(χ/2)]. One can see nicely this opposite trend in
the middle panel � = 0 of Fig. 4. The interference between
the local and nonlocal scattering channels, described by the
second term (∝ �) for σ NL

− in Eq. (12), displays mixed χ

dependence. Its absolute value takes the extreme at χ = π/2
(dotted-dashed lines in Fig. 4).

B. RIXS spectra of randomly oriented molecules

The random orientation of molecules in a typical RIXS
experiment modifies the YDSE pattern for a fixed-in-space
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FIG. 4. RIXS for fixed-in-space molecule, case R ‖ k [Fig. 3(a)].
The total RIXS cross section of the parity-forbidden RIXS channel
σ− = σ L

− + σ NL
− (thick red line) is shown along with separated local

σ L
− and nonlocal σ NL

− contributions computed using (12). Contrary
to the local scattering the nonlocal RIXS displays almost opposite
dependence on the scattering angle χ and it does not vanish for the
forward scattering, χ = 0. Dotted-dashed lines show the second term
(∝ �) in the expression for σ NL

− (12), describing interference of the
local and nonlocal scattering channels.

molecule. To take into account this effect, the cross section (8)
should be averaged over molecular orientations

〈σ f (ω′, ω)〉 =
∫

σ (ω′, ω)
dR̂
4π

= ζν∗ jσν∗ j,

σν∗ j = σ dir
ν∗ j + P f σ

int
ν∗ j (q)

+ �2

4(�2 + �2)

(
σ dir

ν∗ j + P f σ
int
ν∗ j (q

+)
)

− ��

�2 + �2

(
σ int

ν∗ j (k) + P f σ
int
ν∗ j (k

′)
)
, (15)

where R̂ = R/R is the unit vector along R. We specify the
final state | f 〉 = |ψ−1

j ψ1
ν 〉 by the indexes of the unoccupied

(ν∗) and occupied ( j) MOs. The scattering anisotropy depends
on the so-called “direct” (σ dir

ν∗ j) and YDSE interference (σ int
ν∗ j)

terms

σ dir
ν∗ j = 〈(e′ · d̂ j )2(e · d̂ν )2〉,

σ int
ν∗ j (q) = 〈(e′ · d̂ j )2(e · d̂ν )2 cos(q · R)〉. (16)

(a) (b)

FIG. 5. (a) “Vertical” and (b) “horizontal” geometries of possible
experiment.

The expressions for σ int
ν∗ j (q

+), σ int
ν∗ j (k), and σ int

ν∗ j (k
′) are

obtained from σ int
ν∗ j (q) by the replacements q → q+, k, k′.

The overline in Eq. (16) indicates the averaging over rota-
tions of e′ around k′. The reason for this averaging is that
the majority of the x-ray spectrometers in soft x-ray region
collect scattered photons without polarization sensitivity. The
cumbersome details of the calculations of σ dir

f and σ int
f (q) are

given in Appendices B and C.
Equation (8) shows an important feature of the RIXS

process: The local one-center scattering into ungerade
final states (Pu = −1) is forbidden [6,8,10,14] when qR ≈
2kR sin(χ/2) � 1. While this is the case in the very soft
x-ray region where 2kR � 1, this approximation is not fully
justified at, e.g., the K edges of N2 and O2, where 2kR ≈
0.44 and 2kR ≈ 0.65, respectively. In the forward direction
(χ = 0) ungerade final states are forbidden in local one-center
scattering also in the hard x-ray range. Nonlocal two-center
scattering, on the other hand, emphasises scattering to the
forbidden ungerade final states in the forward direction due
to the dependence on q+R ≈ 2kR cos(χ/2) [Eq. (8)].

The nonlocal scattering effect can be observed in the
intensity ratio of the symmetry forbidden ( f = u) and
symmetry-allowed ( f = g) RIXS bands σforb/σallow. To inves-
tigate the dependence on the detuning, the small splitting �

should not be hidden by the vibrational structure of the core-
excited state. This requirement is fulfilled for core excitation
into the Rydberg states 3sσg, 3pπu, 3dπg of the N2 molecule,
showing no vibrational excitation [21,22]. This excitation is
followed by the decay transitions from the outermost occupied
MOs [23] (2σu)2(1πu)4(3σg)2.

To highlight the nonlocal scattering we compare the
intensities of the symmetry-forbidden and the symmetry-
allowed RIXS channels, 1s → 3dπg; 1πu → 1s and 1s →
3dπg; 3σg → 1s, respectively (9),

σforb

σallow
= d2

1πu

d2
3σg

σπ∗π

σπ∗σ
. (17)

According to experimental nonresonant x-ray emission spec-
tra of the N2 molecule [23] the ratio of transition dipole
moments is equal to d1πu/d3σg ≈ 0.79. The derivation of the
expressions for σπ∗π ≡ σ3dπ∗

g 1πu and σπ∗σ ≡ σ3dπ∗
g 3σg can be
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FIG. 6. Dependence of the ratio of the parity forbidden and al-
lowed transitions σπ∗π/σπ∗σ (17) on the scattering angle χ . The
two-center contribution displays different angular dependence for
different detuning �. In contrast, one-center local scattering (� = 0,
dashed lines) shows the angular profile independent on �. Following
constants for the N2 are used in the simulations: � = 0.1 eV [15],
2� = 0.115 eV [16,17], ω = 408.34 eV [22], and R = 2.06 a.u.

found in Appendices B and C. Simulations are performed
(see Fig. 5) for both “vertical” [e ⊥ (k, k′); θ = π/2] and
“horizontal” [e ⊂ (k, k′); θ = π/2 − χ ] polarization, where
θ = ∠(e, k′) is the angle between the polarization vector e of
the incident radiation and the momentum k′ of the scattered
photon.

Numerical simulations of the RIXS cross sections (Figs. 6
and 7) performed using the general Eq. (15) [see also
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FIG. 7. Detuning � dependence of the ratio σπ∗π/σπ∗σ (17) for
selected scattering angles (see labels). The two-center nonlocal scat-
tering (solid lines) provides strong dependence on the detuning �,
in contrast to the one-center local scattering (� = 0) shown by the
dashed lines. Thin red and thick blue lines correspond to the verti-
cal e ⊥ (k, k′) and horizontal e ⊂ (k, k′) polarizations, respectively.
Horizontal polarization dependences for χ = 50 and χ = 1750 are
not shown here as they are almost the same as for the vertical
polarization case.

Eqs. (B4), (C3) to (C5), and (C8) show strong angular and
detuning dependence of the ratio (17) between the cross sec-
tions for parity-forbidden and -allowed transitions. Close to
the backward scattering direction the ratio (17) reaches a
sufficient value of more than 10%, which is detectable at the
present-day x-ray facilities. Considered here, the N2 system
is especially suited for the experiment as the forbidden and
allowed transitions are well separated in RIXS spectra
[16,23]. The nonlocal and local contributions show quali-
tatively different angular dependence (Fig. 6). The parity
selectivity is restored in the forward scattering (χ → 0) when
only one-center local scattering is considered (� = 0). In con-
trast (see Fig. 6), the intensity of the parity-forbidden channel
is not zero when χ → 0 in the case of nonlocal two-center
scattering (� �= 0). Moreover, the nonlocality of RIXS results
in a strong detuning dependence (Fig. 7, solid lines) of the
cross-section ratio (17), which is totally absent in the case of
one-center local RIXS (see dashed lines).

IV. CONCLUSION

In conclusion, we demonstrated that the finite splitting of
the core levels in symmetric molecules results in an additional
dynamical mechanism in RIXS, where x-ray absorption at one
atomic site is followed by x-ray emission from the other atom.
This nonlocal scattering leads to an unusual dependence of the
RIXS cross section on the sum of the momenta of incoming
and outgoing x-ray photons k + k′ in contrast to the con-
ventional scattering dependence on the momentum transfer
k − k′. The simulation of the relative intensity of the symme-
try forbidden RIXS channel (allowed due to Young’s double
slit interference) in the N2 molecule shows strong sensitivity
to the detuning, in contrast to the conventional theory of
RIXS and an unusual dependence on the scattering angle. For
example, the cross section of the parity-forbidden channel is
not equal to zero for the forward scattering (χ = 0) contrary to
the local scattering. The predictions imply that this “nonlocal”
RIXS mechanism can be investigated using modern sources
of intense x-ray radiation and state-of-the-art instruments.
Moreover, the nonlocal character of the scattering can be
studied using time-resolved measurement allowing to observe
the temporal beating of the probe signal ∝ cos �t exp(−2�t ).
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APPENDIX A: DERIVATION OF EQ. (4)
FOR FIXED-IN-SPACE MOLECULES

The partial RIXS amplitude for the homonuclear diatomic
molecule is given by the Kramers-Heisenberg formula for the
process shown in Eq. (3) reads

F (c) = 1

Zc
〈1σi|e−ık′ ·r(e′ · r)|ψ j〉〈ψν |eık·r(e · r)|1σi〉,

c = g, u. (A1)

Taking into account the wave functions of the core-shell 1σi,
unoccupied ψν , and occupied ψ j molecular orbitals (MO)

1σi ∝ 1s(r1) + pi1s(r2), rn = r − Rn,

ψν (r) = cν{2pm(r1) − pν2pm(r2)} + · · · ,

ψ j (r) = c j{2pm(r1) − p j2pm(r2)} + · · · , (A2)

where pi, pν , p j = ±1 are the parities of corresponding MOs,
1s(rn) and 2pm(rn) are the atomic orbitals of the nth atom with
the radius vectors Rn. It is worthwhile to note that, for atoms
with Z < 30, the one-center transition matrix element can be
approximated as

〈2pm(rn)|eık·rr|1s(rn)〉
= eık·Rn〈2pm(rn)|eık·rn r|1s(rn)〉
≈ eık·Rn〈2pm(rn)|rn|1s(rn)〉. (A3)

The small size of the 1s core orbital allows to neglect the
two center integrals in the transition matrix elements between
MOs and to write the partial scattering amplitude (A1) as

F (c) = (e′ · d j )(e · dν )

Zc
(e−ık′ ·R1 − pi p je

−ık′ ·R2 )

× (eık·R1 − pi pνeık·R2 ). (A4)

Here

d j = c j〈1s(r)|r|2pm(r)〉,
dν = cν〈2pm(r)|r|1s(r)〉. (A5)

This results in Eq. (4).

APPENDIX B: ORIENTATIONAL AVERAGING
OF THE RIXS CROSS SECTION

Let us orient the molecular axis R along z axis of molecular
frame. In this case, the transition dipole moment dσ of the
emission 3σg → 1s transition is oriented along R. The π shell
consists of πx and πy MOs with the corresponding transition
dipole moments of absorption and emission transitions dπx

and dπy oriented orthogonal to R. Thus we need to compute
the cross section for the following channels (9):

σπ∗π = 〈[(
e · d̂πx

)2 + (
e · d̂πy

)2]
× [(

e′ · d̂πx

)2 + (
e′ · d̂πy

)2]
σ f (R̂)

〉
,

σπ∗σ = 〈[(
e · d̂πx

)2 + (
e · d̂πy

)2]
(e′ · R̂)2σ f (R̂)

〉
, (B1)

where we introduce the auxiliary function

σ f (R̂) = 1 + P f cos(q · R)

+ �2

4(�2 + �2)
[1 + P f cos(q+ · R)]

− ��

�2 + �2
[cos(k · R) + P f cos(k′ · R)].

(B2)

Taking into account the identity(
e · d̂πx

)2 + (
e · d̂πy

)2 + (e · R̂)2 = 1, (B3)

we obtain the following expressions for the RIXS cross-
sections in terms of the unit vector R̂ = R/R:

σπ∗π = σ dir
π∗π + P f σ

int
π∗π (q)

+ �2

4(�2 + �2)

[
σ dir

π∗π + P f σ
int
π∗π (q+)

]
− ��

�2 + �2

[
σ int

π∗π (k) + P f σ
int
π∗π (k′)

]
,

σπ∗σ = σ dir
π∗σ + P f σ

dir
π∗σ (q)

+ �2

4(�2 + �2)

[
σ dir

π∗σ + P f σ
int
π∗σ (q+)

]
− ��

�2 + �2

[
σ int

π∗σ (k) + P f σ
int
π∗σ (k′)

]
. (B4)

Here

σ dir
π∗π = 〈[1 − (e · R̂)2 − (e′ · R̂)2

+ (e · R̂)2(e′ · R̂)2]〉,
σ int

π∗π (q) = 〈[1 − (e · R̂)2 − (e′ · R̂)2

+ (e · R̂)2(e′ · R̂)2]eıq·R〉,
σ dir

π∗σ = 〈[(e′ · R̂)2 − (e · R̂)2(e′ · R̂)2]〉,
σ int

π∗σ (q) = 〈[(e′ · R̂)2 − (e · R̂)2(e′ · R̂)2]eıq·R〉.
The equations for σ int

α∗β (q+), σ int
α∗β (k), and σ int

α∗β (k′) are defined
by the same equations as for σ int

α∗β (q) after replacement q =
k − k′ → q+ = k + k′, k, and k′, respectively. Taking into
account that [24]

〈R̂iR̂ j〉 = δi j

3
, 〈R̂iR̂ jR̂kR̂l〉 = 1

15
(δi jδkl + δikδ jl + δilδ jk ),

we obtain the following equation for the direct terms:

σ dir
π∗π = 2

15 [3 + (e · e′)2],

σ dir
π∗σ = 2

15 [2 − (e · e′)2]. (B5)

To perform the orientation averaging of the interference terms
we apply the following expressions:

〈eıQ·R̂〉 = j0(Q), Q = qR,

〈(e · R̂)2eıQ·R̂〉 = eie jAi j, 〈(e′ · R̂)2eıq·R〉 = e′
ie

′
jAi j,

Ai j = 〈R̂iR̂ je
ıQ·R̂〉

= − ∂2

∂Qi∂Qj
〈eıQ·R̂〉 = − ∂2

∂Qi∂Qj
j0(Q),

052820-7
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〈(e · R̂)2(e′ · R̂)2eıQ·R̂〉 = eie je
′
ke′

lBi jkl ,

Bi jkl = 〈R̂iR̂ jR̂kR̂l e
ıQ·R̂〉 = ∂4

∂Qi∂Qj∂Qj∂Ql
〈eıQ·R̂〉

= ∂4

∂Qi∂Qj∂Qk∂Ql
j0(Q).

Using that dQ/dQi = Qi/Q, the properties of the spherical
Bessel functions, and that

(e · k) = (e′ · k′) = 0,

(e · q) = −(e · q+) = −(e · k′),

(e′ · q) = (e′ · q+) = (e′ · k),

(e · q̂)2 = (e · q̂+)2 = k2

q2
(e · k̂′)2,

(e′ · q̂)2 = (e′ · q̂+)2 = k2

q2
(e′ · k̂)2,

(e · q̂)(e′ · q̂) = −k2

q2
(e · k̂′)(e′ · k̂),

(e · q̂)2(e′ · q̂)2 = k4

q4
(e · k̂′)2(e′ · k̂)2,

(e · q̂+)(e′ · q̂+) = k2

q2
(e · k̂′)(e′ · k̂),

(e · q̂)2(e′ · q̂)2 = k4

q4
(e · k̂′)2(e′ · k̂)2,

we obtain the following expressions for the terms which con-
tribute to YDSE interference terms (B5).

For Q = qR, q = 2k sin(χ/2)

〈eıQ·R̂〉 = j0(Q), 〈(e · R̂)2eıQ·R̂〉 = j1(Q)

Q
− (e · k̂′)2 k2

q2
j2(Q), 〈(e′ · R̂)2eıQ·R̂〉

= j1(Q)

Q
− (e′ · k̂)2 k2

q2
j2(Q),

〈(e · R̂)2(e′ · R̂)2eıQ·R̂〉 = [1 + 2(e · e′)2]
j2(Q)

Q2
− [(e · k̂′)2 + (e′ · k̂)2 − 4(e · e′)(e · k̂′)(e′ · k̂)]

k2

q2

j3(Q)

Q

+ (e · k̂′)2(e′ · k̂)2 k4

q4
j4(Q), (B6)

for Q+ = q+R, q+ = 2k cos(χ/2)

〈eıQ+·R̂〉 = j0(Q+), 〈(e · R̂)2eıQ+·R̂〉 = j1(Q+)

Q+ − (e · k̂′)2

(
k

q+

)2

j2(Q+),

〈(e′ · R̂)2eıQ+·R̂〉 = j1(Q+)

Q+ − (e′ · k̂)2

(
k

q+

)2

j2(Q+),

〈(e · R̂)2(e′ · R̂)2eıQ+·R̂〉 = [1 + 2(e · e′)2]
j2(Q+)

(Q+)2
− [(e · k̂′)2 + (e′ · k̂)2 + 4(e · e′)(e · k̂′)(e′ · k̂)]

(
k

q+

)2 j3(Q+)

Q+

+ (e · k̂′)2(e′ · k̂)2

(
k

q+

)4

j4(Q+), (B7)

for K = kR

〈eıK·R̂〉 = j0(K ), 〈(e · R̂)2eıK·R̂〉 = j1(K )

K
, 〈(e′ · R̂)2eıK·R̂〉 = j1(K )

K
− (e′ · k̂)2 j2(K ),

〈(e · R̂)2(e′ · R̂)2eıK·R̂〉 = [1 + 2(e · e′)2]
j2(K )

K2
− (e′ · k̂)2 j3(K )

K
(B8)

and for K′ = k′R, k′ ≈ k

〈eıK′ ·R̂〉 = j0(K ), 〈(e · R̂)2eıK′ ·R̂〉 = j1(K )

K
− (e · k̂′)2 j2(K ), 〈(e′ · R̂)2eıK′ ·R̂〉 = j1(K )

K
,

〈(e · R̂)2(e′ · R̂)2eıK′ ·R̂〉 = [1 + 2(e · e′)2]
j2(K )

K2
− (e · k̂′)2 j3(K )

K
. (B9)
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APPENDIX C: RIXS WITHOUT POLARIZATION SELECTIVITY OF THE SCATTERED PHOTONS

Majority of spectrometers in soft x-ray region collects final photons with all polarizations e′. Due to this we should average
the RIXS cross section over all rotations of e′ around k′ using equation [6,8,10]

e′
ie

′
j = 1

2 (δi j − k̂′
ik̂

′
j ). (C1)

This equation results in the following expressions:

(e · e′)2 = 1
2 sin2 θ, (e · k̂′) = cos θ,

(e′ · k̂)2 = 1
2 sin2 χ,

(e · e′)(e · k̂′)(e′ · k̂) = − 1
2 cos2 θ cos χ, (C2)

where

θ = ∠(e, k′), χ = ∠(k, k′).

Taking into account Eq. (C2) the direct terms (B5) read

σ dir
π∗π = 1

15 (7 − cos2 θ ), σ dir
π∗σ = 1

15 (3 + cos2 θ ). (C3)

Taking into account Eqs. (B6), (B7), (B8), and (B9) and (C2) we get final expressions for the interference terms (B5) for the
π∗π RIXS channel

σ int
π∗π (Q) = j0(Q) −

[
2

j1(Q)

Q
−

(
cos2 θ + 1

2
sin2 χ

)
k2

q2
j2(Q)

]
+ σ int

σ ∗σ (Q),

σ int
π∗π (Q+) = j0(Q+) −

[
2

j1(Q+)

Q+ −
(

cos2 θ + 1

2
sin2 χ

)(
k

q+

)2

j2(Q+)

]
+ σ int

σ ∗σ (Q+),

σ int
π∗π (K) = j0(K ) −

[
2

j1(K )

K
−

(
1

2
sin2 χ

)
j2(K )

]
+ σ int

σ ∗σ (K),

σ int
π∗π (K′) = j0(K ) −

[
2

j1(K )

K
− (cos2 θ ) j2(K )

]
+ σ int

σ ∗σ (K′), (C4)

and for the π∗σ scattering channel

σ int
π∗σ (Q) = j1(Q)

Q
− 1

2
sin2 χ

k2

q2
j2(Q) − σ int

σ ∗σ (Q),

σ int
π∗σ (Q+) = j1(Q+)

Q+ − 1

2
sin2 χ

(
k

q+

)2

j2(Q+) − σ int
σ ∗σ (Q+),

σ int
π∗σ (K) = j1(K )

K
− 1

2
sin2 χ j2(K ) − σ int

σ ∗σ (K),

σ int
π∗σ (K′) = j1(K )

K
− σ int

σ ∗σ (K′). (C5)

Here

σ int
σ ∗σ (Q) = [1 + sin2 θ ]

j2(Q)

Q2
−

(
cos2 θ + 1

2
sin2 χ + 2 cos2 θ cos χ

)
k2

q2

j3(Q)

Q
+ 1

2
cos2 θ sin2 χ

k4

q4
j4(Q),

σ int
σ ∗σ (Q+) = [1 + sin2 θ ]

j2(Q+)

(Q+)2
−

(
cos2 θ + 1

2
sin2 χ − 2 cos2 θ cos χ

)(
k

q+

)2 j3(Q+)

Q+ + 1

2
cos2 θ sin2 χ

(
k

q+

)4

j4(Q+),

σ int
σ ∗σ (K) = [1 + sin2 θ ]

j2(K )

K2
− 1

2
sin2 χ

j3(K )

K
, σ int

σ ∗σ (K′) = [1 + sin2 θ ]
j2(K )

K2
− cos2 θ

j3(K )

K
. (C6)

We define and compute the ratio σπ∗π/σπ∗σ (B4) for two geometries of the experiment (Fig. 5)

vertical : θ = π

2
,

horizontal : θ = π

2
− χ, (C7)
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assuming that the π∗π RIXS channel is parity forbidden while the π∗σ channel is allowed:

π∗π : P f = −1; π∗σ : P f = 1. (C8)
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