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ABSTRACT: We present an efficient method to compute
diffusion coefficients of multiparticle systems with strong
interactions directly from the geometry and topology of the
potential energy field of the migrating particles. The approach is
tested on Li-ion diffusion in crystalline inorganic solids, predicting
Li-ion diffusion coefficients within 1 order of magnitude of
molecular dynamics simulations at the same level of theory while
being several orders of magnitude faster. The speed and
transferability of our workflow make it well-suited for extensive
and efficient screening studies of crystalline solid-state ion
conductor candidates and promise to serve as a platform for
diffusion prediction even up to the density functional level of
theory.

■ INTRODUCTION
Mass transport is a fundamental component in a wide range of
chemical and physical phenomena, e.g., chemical reactions in
condensed phases, the absorption of molecules in porous
materials, and ion conduction in electrolytes. To understand
these phenomena, theoretical insight into the underlying
microscopic mechanisms is required. This can often be achieved
by interpreting the results of computational modeling at an
atomic level. In particular, computational studies allow for
exploring the vast chemical and structural space to an extent not
achievable by other means to both deduce structure−property
relationships and screen for promising materials for a given
target application. For screening studies, it is useful to have a
low-cost computational method that can reliably discard
materials that are not of interest, leaving a small number of
promising materials to which more costly computational or
experimental efforts can be dedicated.
Transport properties, such as diffusion, are usually computa-

tionally modeled using molecular dynamics (MD). This well-
established method suffers from a high computational cost for
diffusion that is determined by sequences of separate discrete
“rare event” moves of the diffusive particles. To be able to study
large numbers of materials with this type of diffusion, for both
qualitative understanding as well as for finding promising
materials, more efficient and sufficiently accurate strategies for
the computational prediction of diffusivity are needed.
Material classes that require an efficient methodology to

compute diffusion coefficients include crystalline solid-state
materials that are relevant to energy applications. Several of their
diffusion properties rely on interstitial and vacancy-mediated
diffusion, e.g., gas diffusion in nanoporous materials and ion

diffusion in solid-state electrolytes (SSEs) for Li-ion and Na-ion
batteries. In the crystalline solid-state, where the energy
landscape can be considered mostly fixed due to the rigid
arrangement of atoms, computational simulations of diffusion
can exploit the dependence of the diffusion of a particle on the
potential energy surface (PES) that the particle experiences as it
moves. This idea was utilized in previous work by some of the
authors in the development of the Tunnel and Transition State
(TuTraSt) algorithm,1 in which a general topological and
geometrical analysis of the PES felt by a migrating particle is
performed. The method was tested on CH4 diffusion in zeolites
and was shown to accurately predict diffusion coefficients in 96%
of the tested structures at a fraction of the computational cost of
MD.1 Using this topology- and geometry-based approach to
simulate ion diffusion in SSEs requires the introduction of an
additional routine to the workflow used in the methane study to
account for loading effects of interacting particles.

Li-ion batteries are widely used as energy storage solutions.
However, their importance for energy-transition applications
such as in electric vehicles demands further improvements,2 in
particular addressing the safety issue arising from the
flammability of the liquid organic electrolytes that are currently
used in batteries. SSEs have the potential to be safer, as well as

Received: September 13, 2023
Revised: November 30, 2023
Accepted: November 30, 2023
Published: December 19, 2023

Articlepubs.acs.org/JCTC

© 2023 The Authors. Published by
American Chemical Society

18
https://doi.org/10.1021/acs.jctc.3c01005
J. Chem. Theory Comput. 2024, 20, 18−29

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
PP

SA
L

A
 U

N
IV

 o
n 

Ja
nu

ar
y 

24
, 2

02
4 

at
 0

6:
15

:2
3 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hannes+Gustafsson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Melania+Kozdra"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Berend+Smit"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Senja+Barthel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amber+Mace"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.3c01005&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01005?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01005?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01005?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01005?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01005?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/20/1?ref=pdf
https://pubs.acs.org/toc/jctcce/20/1?ref=pdf
https://pubs.acs.org/toc/jctcce/20/1?ref=pdf
https://pubs.acs.org/toc/jctcce/20/1?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


more time stable compared to liquid electrolytes. Any plausible
new electrolyte material needs to show a high ion conductivity,
allowing Li ions to diffuse with low resistance from cathode to
anode and back upon charging and discharging. The typically
slow ion diffusion in the solid state is a prohibitive factor when
considering new candidates for SSEs, whichmust achieve similar
specific ion conductivity values as liquid electrolytes that
currently reach >0.01 S/cm at room temperature.
Only a few highly conductive crystalline materials have been

revealed to date, and the mechanisms promoting high ion
conductivity in these so-called superionic conductors are not yet
fully understood. Candidates have been found in a diverse range
of structural families, including LISICONs (Li superionic
conductors), NASICONs (Na superionic conductors), perov-
skites, antiperovskites, garnets, argyrodites, and sulfides.2−6

One promising strategy to optimize the conductivity of
experimentally identified candidates is through compositional
tuning.7,8 In addition, from a fundamental point of view,
systematically studying structural derivatives and introduced
variations in existing structures at a large scale would further help
to uncover the mechanisms, general principles, and structure−
property relationships for Li-ion conductivity in inorganic solids.
At the same time, the set of potential structures applicable to
SSEs is huge, and although an exhaustive and systematic study of
existing and hypothetical materials would greatly aid the
discovery of more highly conductive candidates, scientific and
practical challenges in tackling such a task remain.
Recent efforts to screen materials for ion conductive

crystalline inorganic materials through computational modeling
have been made using different approaches.9−13 However,
hitherto, the methods used typically fall short either in required
accuracy, speed, or in the possibility to automate, e.g., due to
limitations in applicability or transferability between structural
families.
An approach based on topological and geometric analysis of

the PES, such as the TuTraSt algorithm, has the advantage that it
is unlimited to structural characteristics of the material,
including the type of the migrating ions, e.g., any cation (Li+,
Na+, Mg2+, etc.). This allows screening of a wide range of
structures across many material families (perovskites, garnets,
etc.). Moreover, the accuracy and speed of the approach depend
mainly on the level of accuracy the potential energy is computed
at, which can be done using, e.g., force fields, density functional-
based tight-binding, or density functional theory (DFT).
TuTraSt’s direct estimation of diffusion coefficients from

PESs circumvents computationally expensive MD simulations
for slow diffusing particles. Also, it allows for a quick rejection of
nondiffusive structures, which often form the majority in a
screening study. We consider a material to be nondiffusive if its
diffusion coefficients are below a lower limit. Here, this can be
chosen as the lowest coefficients that can be obtained by a
computational method or as the minimal diffusivity needed for a
given application. The characteristics of Li-ion diffusion in
crystalline inorganic SSEs make it a very suitable application of
the TuTraSt approach. However, in contrast to the previously
studied case of gas diffusion in zeolites, where the interactions
between the migrating gas molecules are weak and mainly
consist of local collisional and channel-blocking interactions, the
Coulombic ion−ion interactions are not negligible. These
introduce potentially strong loading effects that significantly
affect the diffusion. It is therefore vital to include these
interactions to adequately model the transport of ions, in
contrast to the case of weakly interacting gas molecules, where

the single-particle energy provides an accurate description of the
free energy landscape even at higher loading.

In this work, we develop Ionic TuTraSt, an adaptation of the
TuTraSt algorithm,1 in which ion−ion interactions are taken
into account as a correction to the single-particle energy. A
Metropolis Monte Carlo scheme is applied to incorporate the
loading effects due to the strong electrostatic interactions
between the migrating ions. This leverages the advantages of the
TuTraSt approach and extends the applicability to systems with
strongly interacting migrating species such as diffusing ions in
inorganic solids.

As a case study, we apply the introduced Ionic TuTraSt
procedure to a database of Li-containing crystalline inorganic
SSE candidates and validate the resulting diffusion coefficients
against MD. As expected, the proposed correction significantly
improves the result compared to TuTraSt with only the single-
particle grid. We find that Ionic TuTraSt not only rapidly
identifies the nondiffusive structures correctly but also predicts
diffusion coefficients in agreement with MD within 1 order of
magnitude in >98% of the cases.

These results show that the Ionic TuTraSt is a general, fast,
and accurate procedure for predicting diffusive and nondiffusive
crystalline inorganic ion conductors and offers a framework that
opens up for predicting ion diffusion even at the density
functional level of theory. Thus, our method can contribute to
enabling more extensive screening studies of ion conduction in
crystalline solids and efforts to identify conductive candidates for
inorganic SSE materials in Li-ion or Na-ion batteries.

■ THEORY AND METHODOLOGY
Ion Transport in Inorganic SSEs. Li-ion transport within

inorganic SSEs occurs through interstitial lattice diffusion
mechanisms, where the ion migrates through jumps between
vacant interstitial sites. The hopping type motion between
lattice vacancies arises from the well-defined structure of the
solid and the relatively high energy barriers separating the
vacancies, which are typical for ion diffusion in solids and are the
main culprit for the often slow transport. Consequently, the high
barriers lead to a separation of the time-scales associated with
the dynamics within the interstitial Li sites and the transitions
between them. These transitions between Li sites are related to
the macroscopic transport. In other words, site-to-site
transitions become so-called “rare-event” processes relative to
the within-site dynamics.14 To simplify, the diffusion rate
depends on the availability of vacant sites and the height of the
energy barriers between the sites.

Many studies have focused on structural tuning strategies
aimed to affect these two parameters to improve and optimize
the conductivity of specific structures. Such strategies include
optimizing the ion/vacancy ratio through aliovalent substitution
or introducing structural defects or by altering the topology of
the conduction channels through the framework to decrease the
energetic and structural bottlenecks and optimize the minimal
energy pathway.7,8 In many cases, this has shown to be a fruitful
strategy where compositional tuning can improve the
conductivity up to 6 orders of magnitude within a structural
family.6 Despite having identified these mechanisms, it is not
straightforward to predict the optimal material or how to apply
strategies effectively as the effects of tuning vary widely between
structures and evenmore between structural families. Systematic
and extensive studies across a wide range of structural
compositions are needed as the trial-and-error design approach
of today has not been sufficient to understand the universal
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trends and mechanisms driving the conductivity in the diverse
chemical and topological space of ion-conducting materials.
State of the Art: Modeling Ion Diffusion in Crystalline

Inorganic Electrolytes. To study ion migration computation-
ally, the state-of-the-art approach is to performMD simulations,
which is based on the stepwise solving of Newton’s equations of
motion.15 This is an elegant and explicit way to model the
dynamics, but to compute the diffusion for a specific system,
sufficiently long simulations are required.
To be accurate, MD simulations necessarily must resolve the

shorter time-scale dynamics of the ions within the interstitial
sites. At the same time, the simulations must be long enough to
capture the longer time-scale and specifically to be able to reach
the diffusive regime corresponding to the site-to-site dynamics
responsible for the transport. This leads to poor statistics of the
intersite transitions and, hence, of the diffusion process and
increases the required computational time, especially for
materials with slow diffusion. Moreover, most of the simulation
time is spent sampling the ion dynamics within the interstitial
sites, which does not contribute to the transport.
For studying the diffusion of a limited number of structures

and using inexpensive preparameterized force fields, this
approach is reasonable. However, when looking at larger
numbers of structures, this computational cost will quickly
become impractical, particularly for systems with a slow
diffusion. In addition, it is often necessary to use more advanced
methods, such as DFT, to estimate the interatomic forces,
making atomic-scale MD simulations for Li-ion conductors
practically impossible. Simplifying DFT methods can mitigate
the time-scale limitations of MD while still taking advantage of
higher theory-level methods. However, even when using current
developments such as the Pinball-MD model11 and allowing
high computational costs, only the fastest diffusing materials can
be identified: A screening of ∼900 Li-containing structures from
crystal structure databases16,17 using 14 M CPU hours could
obtain converged diffusion coefficients for about ∼3% of the
structures.10 This low convergence is a direct consequence of the
low diffusion coefficients. An absolute lower bound for the
required CPU time is that a Li ion should diffuse through at least
one unit cell. The average unit cell length in the screening study
is 11 Å (in the range of 6−27 Å), and the simulation time for
each structure is 100−200 ps. Hence, for diffusion coefficients
smaller than 10−5 cm2/s, one needs significantly longer
trajectories.
For diffusion in solids, where the transport processes can be

considered rare events and process rates can be separated and
approximated, kinetic Monte Carlo (kMC) can be a powerful
tool to combine these separate processes and thus predict the
overall diffusion for systems where this is otherwise difficult or
impossible to probe with MD. The periodic nature of crystalline
inorganic SSEs deems lattice-based kMC simulations to be
particularly appropriate to study Li-ion diffusion and has, in the
past few years, become a quite popular approach to study ion
transport in SSEs. The state of the art is to rely on nudged elastic
band (NEB)18 calculations to compute the energy barriers for
the ion hopping between interstitial sites.15 However, NEB
calculations require prior knowledge of the positions of the sites,
as well as directions of the conduction channels, which often
entail tedious studies of specific structures that can be
transferred only within structural families, such as has been
done for antiperovskites12 and NASICONs.
Topology- and Geometry-Based Analysis. The TuTraSt

algorithm depends on a topology- and geometry-based analysis

of the potential energy landscape felt by the diffusing particle
within the host structure only. This circumvents the previously
discussed drawbacks inherent to MD and NEB. TuTraSt
partitions the PES into energy basins and the transition states
between them, from which it constructs an accurate lattice-
kMC-based diffusion model by applying transition-state theory.
The geometrical partitioning algorithm in TuTraSt is rigorous in
finding all types of channels and transition-state surfaces by
employing a sequential procedure where basins are grown
carefully in a stepwise fashion by traversing the energy isolevels
in increasing order. The transition states can be identified as the
merging points of the basins and additionally yield information
about the direction, dimensions, connectivity, and barrier
heights of the channels. By integrating the regions identified as
basins and transition states, the rate constants for the transitions
are obtained through the Bennett−Chandler approach.19

Compared to NEB, the benefits of this approach are that
geometry and topology are not required to be known
beforehand, which makes it easily applicable to, in principle,
any structure and greatly facilitates automation. Moreover, only
the PES is required and no calculations of forces are needed. The
free energy surface provided as input to the geometrical analysis
routine is not limited to a specific model or method but can be
obtained at any desired level of theory. This thus provides a
scheme where the diffusion, in principle, can be predicted at the
DFT level in systems that would not be feasible with ab initio
MD due to time-scale limitations.

In cases where diffusivity is low and hence the activation
barrier for diffusion is high, diffusion channels arise only at a
higher energy. This information is captured in the energy
landscape. If the energy value at which channels are formed is
not thermally reachable, a topological and geometrical analysis
of the energy landscape can immediately exclude nondiffusive
materials. This is a significant benefit over MD, where the
question of whether the diffusive regime has been reached needs
to be evaluated based on the trajectory and cannot be
determined prior to a simulation. Potentially long simulations
thus need to be conducted even for poorly diffusive candidates.

The method has been validated for experimental accuracy for
noncharged particles diffusing at low loadings in porous
materials. However, while predicting the diffusion in such
systems can be done from a single-particle grid, simulating ionic
transport in SSEs requires significant development of TuTraSt
to include the effects of multiparticle interactions. This is
described in the following sections.
Ion−Ion Interaction Correction. The single-particle

approximation of the PES can appropriately describe charge-
neutral methane molecules diffusing within a nanoporous
material. However, when studying SSEs, a single-particle grid
is not sufficient since the strong ion−ion electrostatics at high
concentrations of positively charged ions must be taken into
account. Conceptually, from the perspective of the migrating
ions, the potential energy is partitioned into two components:
The first component is a single-particle component, ESP(r),
which is the potential energy of a single ion at position r within
the framework structure. In this calculation, the framework
structure is taken as the material, with all migrating ions
removed. In other words, the single-particle component arises
from the interactions between one migrating particle and all
immobile atoms. The second component of the potential energy
is an interaction component, Eion−ion, which is due to
interactions between migrating ions. This is taken as the
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pairwise interactions between the migrating particles, consisting
of their electrostatic and van der Waals interactions.
Note that since we treat the framework as fixed, the

contribution of interactions between framework atoms is a
constant shift of the PES, which does not affect the barriers
associated with moving on the surface. Hence, it does not affect
the migration dynamics in this model and thus can be neglected.
With these assumptions, we obtain the multiparticle potential
energy

= +
= = = +

r r r r rU E E( ,. . . , ) ( ) ( , )N
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To sample U, we introduce a Metropolis Monte Carlo
(MMC)-based approach that explicitly computes the ion−ion
interactions and displacements in the canonical ensemble
(NVT). The MMC routine is schematically presented in Figure
1 and is carried out according to the following steps:

1. Simulation setup: The number of ions corresponding to
the stoichiometric content of the respective structure is
loaded into the simulation cell, which is an empty
supercell of a structure of size big enough to respect the
minimal image convention (framework atoms are not
modeled explicitly). The single-particle PES, ESP, is also
read as an input.

2. Sampling of the multiparticle PES: At each MMC step,
the ions are randomly displaced and the potential energy
for the configuration is calculated. The total configura-
tional potential energy U(r1, ..., rN) is computed as the
sum of the single-particle energies (ESP) and the pairwise
interactions between the ions (Eion−ion), according to (eq
1). The interaction ESP(r) felt between an ion and the
framework at a given point r is included by reading the
position-dependent value from the precomputed grid ESP.
The interactions Eion−ion are computed explicitly in each

Figure 1. Schematic outline of theMMCprocedure, carried out to compute the multiparticle PES. The input to theMMC scheme is the single-particle
PES grid (top left) and the simulation cell containing only the stoichiometric number of ions (N) of the structure (bottom left). The configurational
energy sampled at eachMMC step is a sum of the tabulated single-particle energies (ESP) of all ions and the sum of all ion−ion pair interactions. During
theMMC simulations, only the ion−ion interaction energies are thus computed explicitly. These calculations are performed with a constant number of
particles, volume, and temperature.

Figure 2. Schematic outline showing the subsequent steps in the Ionic-TuTraSt workflow. The workflow consists of four modeling routines (bottom
row) that generate a single-particle PES and a loading-corrected multiparticle PES, and decompose the latter to obtain a lattice model on which a kMC
simulation is performed. The input and output data formats are shown in the top row. The initial input data are the SSE structure, and the final outputs
are the ion diffusion coefficients Da,b,c in the directions of the cell vectors a, b, and c.
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step, using Ewald summation for the electrostatic
interactions.

Once the energy has been computed, the displacement is
accepted or rejected according to the MMC acceptance criteria
following the Boltzmann distribution law. The canonical
ensemble is withheld by keeping the number of ions (N),
simulation cell coordinates and volume (V), and target
temperature (T) constant throughout the simulation. The
resulting trajectories are stored

= =
= =

P
N

N N N
1

i j k
i j k

m

N

n

N

i i j j k k, ,
, ,

counts ions steps 1 1
, , ,m n m n m n

ions steps

, , ,
(2)

and then converted to the multiparticle potential energy grid
through (eq 3).

=E k T Plni j k i j k, , B , , (3)

here Ei,j,k and Pi,j,k are the multiparticle potential energy and
probability density, respectively, of ions at the grid point with
coordinates r = (i, j, k), Ni,j,k is the number of counts an ion has
occupied at the position ri,j,k in the trajectory,Nions is the number
of ions in the simulation, Nsteps is the total number of frames in
the trajectory, and Ncounts = Nions × Nsteps. The m-th ion of the n-
th frame has coordinates (im,n, jm,n, km,n), and δ denotes the
Kronecker delta.

3. Generation of the multiparticle PES grid. The trajectory
output from the previous step is converted to a new
potential energy landscape by first calculating the
normalized ion probability density according to (eq 2)

We implemented this MMC setup in the RASPA20 computa-
tional framework, where we adapted RASPA’s MakeGrid-
module to import external grid data.
Ionic TuTraSt Workflow. Applying TuTraSt to the

corrected PES allows the computation of diffusion coefficients.
We refer to the entire computational workflow as Ionic TuTraSt.
The incorporation of the MMC procedure provides Ionic
TuTraSt with a strategy to take into account interactions
between the mobile ions with the aim of enabling more accurate
diffusion prediction at higher mobile particle concentrations.
Its steps are described below and are schematically shown in

Figure 2.
1. Constructing the single-particle PESwith grid sampling. A

description of the crystalline structure is provided as input
to the workflow, which serves as the basis to determine the
framework structure, the stoichiometric number of
mobile ions, and the supercell. The single-particle PES
of the migrating species, ESP, is sampled by placing a single
migrating ion inside the empty framework and evaluating
the energy of the resulting configuration for each grid
point of a regular grid of the unit cell.

2. Constructing the multiparticle PES with MMC: The
single-particle PES grid and the stoichiometric number of
migrating ions are provided as input to perform an MMC
simulation that samples configurations of a stoichiometric
number of interacting mobile ions in the single-particle
energy landscape. The MMC procedure is described in
detail in the previous section. The mobile ion probability
distribution and, in turn, the effective multiparticle PES,
EMP, of the migrating species at stoichiometric concen-
tration is calculated from the MMC trajectories.

3. Constructing the lattice model with TuTraSt analysis:
The TuTraSt algorithm is applied to the multiparticle

PES, which, through geometrical and topological analysis,
finds basins, transition states, and their connectivity in the
multiparticle PES. This information is used to construct a
lattice model with lattice site coordinates, possible
transitions between lattice sites, and corresponding
transition rates.

4. Computing diffusion coefficients with kMC: The lattice
model is used as input for performing kMC simulations.
The diffusion coefficients of the migrating ions are
computed from the resulting kMC trajectories.

■ CASE STUDY: LITHIUM-ION DIFFUSION IN
CRYSTALLINE INORGANIC ELECTROLYTES

To test the performance of Ionic TuTraSt, the algorithm is
applied to two sets of Li-containing inorganic crystalline
materials and validated against equivalent MD simulations.
The aim is to compare the methods as a means to simulate the
time evolution of the systems for the purpose of computing
diffusion coefficients. To allow for a valid comparison of the
computational methods in this manner, it is crucial that the
interactionmodels are identical in bothmethods. The first, more
extensive validation set consists of 83 structures, using identical
classical force field parameters for all calculations. While the
force field parameter applied here, the universal force field21

(UFF), is not known for its experimental accuracy in the
prediction of diffusion coefficients, it is parametrized for all
elements. This is sufficient as the focus at this stage is not on the
experimental accuracy.

Performing this comparison assumes that the relative
performance of the methods can be transferred between
different interaction models. Therefore, to test this, the second
validation set consists of 9 highly diffusive structures for which
Kahle et al.10 computed diffusion coefficients with the Pinball-
MD11 methodology, a DFT-based approach. The detailed
procedure for these case studies is described below.
Validation Set 1: Force Field Grids. Structure Selection.

From the Materials Cloud database,22 we limit the selection to
structures containing three or four elements, including Li. Partial
charges are computed for the first 100 structures by imposing the
even electron criterion to avoid more time-consuming spin-
polarized DFT calculations. The final validation set consists of
83 structures.
Force Field Parameters. To obtain comparable results,

interactions are described within the same model throughout,
i.e., in all MD simulations, sampling of single-particle grids, and
MMC simulations: We use a classical force field comprised of
Lennard−Jones (LJ) potentials with parameters from the
UFF21, together with Coulomb potentials computed through
the standard Ewald summation approach with REPEAT23

partial charges. Details of the single-point DFT calculations for
determining the REPEAT charges can be found in the
Supporting Information. The Lorentz−Berthelot mixing rules
are used to account for heteroatomic LJ interactions. A 12.5 Å
cutoff is used for all LJ interactions. The supercells used in the
Ewald summation are constructed based on the same cutoff to
fulfill the minimum image convention. The same supercells are
used in the MD simulations and the single-particle grid
sampling. We use the LAMMPS Interface program24 to assign
the force field parameters and to build supercells. All diffusion
coefficients are computed in the direction of the cell vectors.
MD Computational Details. For the 83 structures in

validation set 1, we run classical MD simulations using the
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LAMMPS package.25 All simulations are performed within a
rigid framework, i.e., atoms other than Li are kept fixed and
periodic boundary conditions are applied in every dimension.
The MD simulations are run with a 1 fs time step to obtain 250
ns trajectories in the NVT ensemble. The temperature is
controlled by a Nose−Hoover thermostat at 1000 K.
The resulting Li trajectories with coordinates printed every 1

ps are used to calculate the mean-square displacement (MSD)
computed along the unit cell vectors. The MD diffusion
coefficients (DMD) are obtained from the slopes of the ensemble-
averagedMSDs: The slope of theMSD curves is calculated from
the region between the points at which the root-mean-square
displacement (RMSD) surpasses one and two lengths of the
respective cell vector (a, b, c). The criterion that the RMSD
should go beyond the respective cell parameter is considered a
lower bound and necessary condition for reliably observing
diffusion in the simulation, andDMD is set to 0 in cases where this
is not met. Effectively, we interpret this as a sign that Li does not
diffuse within the time-scale of the MD simulation. Additionally,
we verify that the slope of theMSD as a function of t on the log−
log scale equals 1 to ensure that the diffusive regime indeed has
been reached.
We propose that the lower limit of the diffusion coefficient

corresponds to a distance traveled of at least one unit cell. In that
very optimistic assumption, the minimal diffusion coefficient
that can be computed, from the given 250 ns trajectory of Li ions
in crystals that have unit cells between 3.3 and 14.7Å, is in the
range of 1.6 × 10−8−3.2 × 10−7 cm2/s.
Single-Particle PES Grid Sampling. For each of the 83

structures, the three-dimensional single-particle potential energy
grids (ESP) are computed on regular rectilinear coordinate grids
in fractional coordinates, with voxel size 0.2 × 0.2 × 0.2 Å3. The
energy of each grid point is computed as the energy of the
configuration that is obtained by placing a single Li atom at the
position of the center of the corresponding voxel in the empty
framework. The single-particle potential energy sampling is
implemented in Python and utilizes the Atomistic Simulation
Environment (ASE) Python package.26

Before starting the MMC simulation, we precompute the
single-particle grids in the cube format. The unit cube grid
coordinates are thenmapped to a cubic simulation cell in the cell
vector basis. In this format, the grids are then read by a modified
version of the RASPAMakeGrid-module and converted into the
RASPA grid format that can be used by RASPA for the MMC
simulation.
Multiparticle PES Grid Sampling. MMC simulations in the

NVT ensemble are performed as described in the previous
section. In every simulation, the MMCmoves are performed on
the stoichiometric number of Li ions within a supercell box,
corresponding to an empty supercell of the given structure, with
a size determined to fulfill the minimum image convention. The
energy is calculated as the sum of the contributions from the Li
particles due to the single-particle grid ESP, which is read from
the input, and the interactions between the Li particles, which
are calculated in the simulation.
Periodic boundary conditions are imposed in each direction.

The simulations consist of an equilibration phase of 100,000
MMC cycles, followed by 1,000,000 production MMC cycles.
Here, the term “cycle” is used as in RASPA: a cycle consists of n
trial moves, either accepted or rejected, where n = max(20,
number of particles moved in the simulation). The temperature
in the MMC runs is set to 1000 K. From the MMC trajectories,
the Li probability density distribution is calculated using eq 2,

from which the corrected multiparticle energy grid EMP is
obtained using eq 3.
TuTraSt Analysis to Obtain PES-Based Diffusion Coef-

ficients. The TuTraSt algorithm is applied to both the ESP and
EMP grids, producing the single-particle diffusion coefficientsDSP
and the multiparticle diffusion coefficients DMP, respectively. An
energy step of Estep = 1.0 kJ/mol and an energy cutoff of Ecutoff =
100.0 kJ/mol are used in the TuTraSt analyses.1 Practically, this
cutoff energy means that diffusion processes associated with
barriers over 100.0 kJ/mol are not considered, as they will have a
negligible impact on the diffusion at the temperatures
considered here. If no diffusion channels are found below this
energy, then the diffusion coefficient is set to 0. The energy step
dictates the resolution of levels in the TuTraSt analysis and is
related to the minimum barriers that can be resolved.1 For every
energy grid, five kMC simulations of 250,000 steps each are run
for temperatures 300, 500, 700, and 1000 K. The diffusion
coefficients in the direction of the cell vectors and their standard
deviations are computed as the average over the simulations at
the corresponding temperature. This results in 249 so-called
directional diffusion coefficients.
Validation of Temperature Dependence. For the structures

that are predicted to have fast Li diffusion (DMP > 10−6 cm2/s) at
300 K in TuTraSt analysis, we run additional MD simulations at
300, 500, and 700 K, using the same settings as in the previous
MD simulation except for setting the Nose−Hoover thermostat
to the corresponding temperatures. From the diffusion
coefficients at different temperatures, we plot Arrhenius plots
based on the TuTraSt and MD results, respectively, to compare
their temperature dependence.
Validation Set 2: Pinball Grids. From the recent work by

Kahle et al., we identify nine of the fastest diffusing structures
having sufficiently converged trajectories to provide a solid base
for validation. For these nine structures, the Pinball-MD
trajectories and 0.2 × 0.2 × 0.2 Å3 single-particle PES grids
computed with the Pinball potential are both provided by the
authors.

The single-particle Pinball PES grids are used as input for
computing multiparticle diffusion coefficients using an Ionic
TuTraSt procedure identical to what is carried out for validation
set 1 at T = 1000 K. However, given that the MMC loading
correction module is carried out using classical force fields that
require assigning partial charges, whereas the Pinball calcu-
lations are based on DFT potential energies, the partial charges
and interaction parameters for the Li−Li pair potentials used in
the MMC loading correction must be fitted against the DFT-
based calculation to ensure consistency. As the short-range
electrostatic repulsion between the Li ions is expected to be
dominant over the dispersion energies, UFF LJ parameters are
simply applied while a range of partial charges are tested; q =
0.25e, 0.5e, 0.75e, and 1e as well as a set of charges determined by
the REPEAT method computed with the same procedure as for
the structures in validation set 1. Of these charge sets, q = 0.5e
shows the best agreement with the Pinball-MD data, as
presented in Figure S2.

■ RESULTS AND DISCUSSION
The Ionic TuTraSt workflow provides a significant correction
compared with single-particle TuTraSt for both validation sets.
For the respective sets, the prediction accuracy is brought up to
98 and 100% of the diffusion coefficients when adding the
multiparticle MMC scheme to the workflow. Although the
MMC scheme adds significant computational cost to the Ionic
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TuTraSt procedure, the computational load is, on average, ∼25
times faster than that for MD when using identical force field
functions.
Validation Set 1: Force Field Grids. We compare the

diffusion coefficients computed with TuTraSt analysis using the
single (DSP) and loaded corrected multiparticle (DMP) grids,
respectively, with those computed with the full-resolution MD
(DMD).
The MD simulation at 1000 K identifies 15 out of the 83

structures (20%) to be diffusive with diffusion coefficients
ranging from 10−4 to 10−7 cm2/s where the lower range
corresponds approximately to the time-scale limit of the MD
simulations. Most of these structures show diffusion in all three
directions (12 structures), three structures show diffusion in two
directions, and none of the structures in the validation set show
one-directional diffusion according toMD. This results in a total
of 42 directional diffusion coefficients, where the remaining 207
structural directions measured showed to be nondiffusive or not
able to reach the diffusive regime within the time-scale of the
MD simulation.
When comparing diffusion coefficients predicted by TuTraSt

(single-particle as well as Ionic TuTraSt) to the ones obtained
byMD, the prediction is considered to be correct if the TuTraSt
value is within 1 order of magnitude of the corresponding MD
value. In particular, a structure is considered nondiffusive by
TuTraSt analysis if it predicts a diffusion coefficient of <10−6

cm2/s, since this is 1 order of magnitude above the lower limit of
<10−7 cm2/s for computing diffusion coefficients from the MD
simulations for most structures studied. If a structure is
considered as nondiffusive, its diffusion coefficient is set to zero.
In correspondence with the MD data, the majority of the

structures are nondiffusive by TuTraSt analysis, and these are
correctly predicted for 93 and 98% of the single-particle TuTraSt
diffusion coefficients DSP and multiparticle diffusion coefficients
DMP, respectively.
To validate the accuracy of themethod prediction for diffusive

structures, Figure 3 shows the comparison of the TuTraSt- and

MD-obtained nonzero diffusion coefficients. Of the 42 direc-
tional diffusion coefficients computed by the MD, only 17
(40%) are correctly predicted by the single-particle model
compared to 41 (98%) when adding the loading correction. Of
the incorrectly predicted directional diffusion coefficients, 20 of
the DSP are false positives (i.e., incorrectly predicts that the ion
can diffuse) and 20 are false negatives. In contrast, only six of the

DMP values are false positives and none are false negatives. Of
these, one showed diffusion with MD, although 1.5 orders of
magnitude lower than Ionic TuTraSt, thus being outside the
accuracy limit, while the others showed no diffusion with MD.
To gain a deeper understanding of why TuTraSt shows high
diffusivity in two structures whereMDpredicts none, we analyze
their individual diffusion mechanisms. The two cases show very
different reasons for the overprediction. The first case
(Li4GeO4) is caused by the fundamental differences in the
sampling of the multiparticle PES by MD and MMC. When
comparing these computed PESs, it is apparent that MMC
samples are low-energy basins that are not accessible to MD due
to a high energy barrier (∼70 kJ/mol). The presence of ions in
these additional basins lowers energy barriers, resulting in the
formation of diffusion channels at the edges of the cell (see
Figure S3). The second case (Li3YBi2) shows, in contrast, very
similar multiparticle PESs from both MD and MMC. Instead,
the low diffusion predicted by MD can be rationalized by a
correlated motion of ions through a limited number of
admissible configurations as illustrated in Figure S4.

Although the existence of false positives decreases the overall
efficiency of a potential screening study, it should be noted that
these are less detrimental to the validations of the methodology
compared to false negatives as they will not exclude potentially
highly conductive materials.

Combining the results for diffusive and nondiffusive
predictions, introducing the multiparticle correction shows a
significant improvement in the correlation of TuTraST values
with MD results as shown in the bar diagrams in Figure 4. The
agreement increases from 82 to 98%with the correction, and the
Spearman correlation coefficient increases from 0.42 to 0.87.

As is clear from the presented data, the improvements
provided by the loading corrections introduced by the Ionic
TuTraSt procedure are significant. It is instructive to further
study the structures with the largest improvements individually.
For a deeper understanding of the effect induced by the ion−ion
interactions, we compare qualitative differences between the
single-particle PES, the multiparticle PES, and the MD PES, as
presented graphically in Figure 5 for four different structures and
three different potential energy isovalues each. Each of these
cases shows how the loading corrects the PES to agree with the
MD PES qualitatively. In structures Li2CuSb, Li8Mg4Si4, and
Li8TeN2, it is apparent that the energy barriers decrease for the
Li diffusion when the ion−ion interaction is taken into account.
Here, the structures go from nondiffusive in the single-particle
PES case, which is shown by the unconnected isosurfaces at all
energy isovalues, to highly diffusive in the multiparticle PES
case, shown by the isosurfaces extending over the entire lengths
of the unit cell. This is the most common effect observed.
However, a few cases of the opposite are also observed, such as
for structure Li4Cu4As4. Here, the energy barriers are instead
increased upon loading, and the percolation channels seen in the
single-particle PES are blocked off in the multiparticle case in
accordance with the MD results.

To validate the temperature dependence and to further
validate the Ionic TuTraSt methodology’s ability to predict
structures with high ion diffusivity at room temperature,
Arrhenius plots are presented in Figure 6. From the Ionic
TuTraSt approach, seven structures were predicted to be highly
diffusive at 300 K (i.e., DMP > 10−6 cm2/s). Of these, the MD
simulations show similar Arrhenius slopes and confirmed the
high diffusivity all the way down to 300 K in six cases. In four of
the cases (Li4Ag4O4, Li2CuSb, Li2InIr, and Li8Mg4Si4), the

Figure 3. Validation set 1: Diffusion coefficients in the directions of the
cell vectors are computed with the single-particle original TuTraSt
algorithm (left) and multiparticle Ionic TuTraSt algorithm (right) on
the y-axis relative to the corresponding diffusion coefficients computed
with MD on the x-axis on a log−log scale. The dashed lines guide the
limits for deviation of 1 and 2 orders of magnitude, respectively.
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agreement with MD Arrhenius profiles is significantly improved
with the implemented Ionic TuTraSt loading correction where
the single-particle TuTraSt predicts several orders of magnitude
lower or no diffusion. In two cases (Li2PdO2 and Sr8Li4H8N4),
the loading correction shows little effect on the diffusion
coefficients. Thus, both the single- and multiple-particle
TuTraSt calculations agree with the MD Arrhenius behavior.
In the final case (LiNiN), the Arrhenius behavior, however,

deviates significantly. Although the agreement at 1000 K
between all methods is excellent, the MD shows a more negative
slope, reaching a DMD value of < 10−6 cm2/s already at 700 K.
When further analyzing the PES constructed from the full
simulation cell from the 1000 and 700 K MD trajectories,
respectively, a long-range ordering creating discontinuities in the
diffusion channels is identified at 700 K (see Figure S6), which is
not present at 1000 K. These interesting results indicate that
there exist long-range energy barriers related to the structural
ordering of the Li that extend beyond the length of the unit cell,
which cannot be overcome at lower temperatures.
Validation Set 2: Pinball Grids. For the nine structures (27

directional diffusion coefficients) in validation set 2, Ionic
TuTraSt also shows excellent performance. As shown in Figure
7, all of theDMP values are predicted within 1 order of magnitude

of the diffusion coefficients computed with the DFT-based
Pinball-MD method, DPBMD.

10

The single-particle TuTraSt prediction produces four false
negative diffusion coefficients, in two directions, in two different
structures. In all of these cases, the Ionic TuTraSt loading
correction adjusts the results to the accepted accuracy. Of these
two structures, Li8Cs4I12 deserves special attention as it
exemplifies, in a concrete manner, how the loading can have a
very substantial effect. The comparison of PES isosurfaces for
this structure presented in Figure 8 makes clearly visible how the
loading correction provides a remarkable improvement of the
overall agreement with the MD PES, in turn, improving the
accuracy of the predicted diffusion coefficients significantly. In
the single-particle PES, four basins are observed in the unit cell,
and the energy barriers between them are high, ∼ 80 kJ/mol.
However, the stoichiometry of this structure is eight Li per unit
cell. When loading the Li, the first four Li are situated in the deep
basins and can effectively be considered immobile parts of the
framework lattice. The remaining four Li then experience a
secondary PES arising at∼10 kJ/mol relative to the immobile Li.
This secondary PES forms diffusion channels with much lower
energy barriers ∼25 kJ/mol, enabling high diffusivity.
Computational Efficiency. To focus the discussion of

computational efficiency on the method rather than software

Figure 4. Bar diagrams showing the distributions of correctly (nondiffusive or diffusive) and incorrectly (false positives or false negatives) predicted
diffusion coefficients at 1000 K by the single-particle TuTraSt method and multiparticle TuTraSt method, respectively.

Figure 5. Potential energy isosurfaces from single-particle grids, multiparticle grids, and MD simulations for structures Li2CuSb (yellow), Li8Mg4Si4
(magenta), Li8TeN2 (blue), and Li4Cu4As4 (green). In the single-particle analysis, the first three structures are false negatives and the fourth structure is
a false positive. The multiparticle grids correct the single-particle grids as seen by their good resemblance to MD PESs.
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choices, parallelization and HPC, implementation, and
efficiency, we carry out an order analysis of the Ewald
summation, as this constitutes the majority of the computational
workload for both theMD andMC simulations as well as for the
grid calculations. The standard Ewald summation, as imple-

mented in LAMMPS, has an N( )part
3/2 dependency on the

number of interacting particles Npart in the simulated system.27

For the MD simulations, the number of interacting particles
consists of all atoms in the system, both Li (NLi) and lattice
framework atoms (NFW), thusNpart =NLi +NFW. For the loading
correction MC simulation, Npart = NLi since only Li particles
interact. For the grid sampling, a single Li samples the
framework lattice, thus Npart = NFW + 1. Furthermore, the
computational cost scales linearly with the number of simulation
steps, which, for the MD simulations, correspond to the number
of time stepsNstep

MD, for the MC simulations, to the product of the
number cycles Ncycle

MC with the number of Li particles NLi, and for
the single-particle grid construction, to the number of grid
points Ngrid. This results in scaling orders of SMD, SMC, and Sgrid
for the MD, MC, and grid sampling calculations, respectively.

= +S N N N N N N( , , ) ( )MD Li FW step
MD

Li FW
3/2

step
MD

=S N N N N N( , ) ( )MC Li cycle
MMC

Li
3/2

cycle
MMC

Li

= +S N N N N( , ) ( 1)grid FW grid FW
3/2

grid

The scaling order of the full Ionic TuTraSt workflow is thus
given by

= +S N N N N S S( , , , )IonicTuTraSt Li FW cycle
MMC

grid MMC grid

The efficiency between theMD and Ionic TuTraSt routines of
validation set 1 is compared in Figure 9 that shows the respective
scaling factors per structure. Note that in the study of validation
set 1, identical pair potential functions are used for both
methods, therefore allowing for their direct comparison.

The computational speed-up ratio of the Ionic TuTraSt
routine compared to MD for validation set 1 ranges up to 2.5
orders of magnitude with an average speed-up ratio of 25. The
overall speed-up of Ionic TuTraSt compared to MD simulation
is enabled by the MMC routine only computing the Li−Li
interactions explicitly at each step while taking Li−framework
interactions from the single-particle grid. In addition, the
topological analysis on the unit cell permits an averaging of the
sampling over all unit cells of the supercell in the simulation,

Figure 6. Arrhenius plots showing the temperature dependence of
diffusion coefficients computed with the three different methods
compared in this study for structures that Ionic TuTraSt predicts to be
good ion conductors at room temperature. Da, Db, and Dc denote
diffusion coefficients along the respective cell vector directions. Values
are plotted as unfilled circles, crosses, and filled circles, respectively.

Figure 7. Validation set 2: Directional diffusion coefficients computed
with the single-particle original TuTraSt algorithm (left) and
multiparticle Ionic TuTraSt algorithm (right) on the y-axis relative to
the corresponding diffusion coefficients computed with MD on the x-
axis on a log−log scale. The dashed lines guide the limits for deviation of
1 and 2 orders of magnitude, respectively.

Figure 8. Comparison of PES isosurfaces for Li8Cs4I12. The
multiparticle PES shows the formation of a secondary diffusion channel
in agreement with the PBMD PES, which is not present in the single-
particle PES.
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which allows for a lower number of overall MMC simulation
steps compared to MD.
Figure S7 shows that the Ionic TuTraSt speed-up has a strong

inverse dependence on the Li ratio in the structure, where one of
the structures with the highest Li ratio [NLi/(NLi +NFW) = 0.66]
instead shows a decreased efficiency by half compared to MD.
From the comparison of the force-field-based calculations

carried out on validation set 1, the speed-up can be considered
significant. The expected speed-up for DFT-based potential
energy calculations compared to DFT MD has the potential to
be even much larger. As shown in the case study using validation
set 2, the Pinball-MD results are reproduced to good accuracy by
the Ionic TuTraSt routine, although Ionic TuTraSt decouples
the generation of the single-particle PES from the computation
of the Li−Li interaction energies, which is done with cheaper
classical force field interactions. Compared to classical MD
simulations, Ionic TuTraSt saves computational costs mainly in
generating the single-particle PES. In contrast, it is the
computation of the Li−Li interaction energies that is responsible
for the difference in the computational cost of Ionic TuTraSt
compared to that of DFT-based methods, with DFT-based
interactions being orders of magnitude more computationally
demanding for each single energy calculation. Thus, for the
efficiency analysis comparing DFT-based MD with DFT-based
Ionic TuTraSt, it is sufficient to compare only the scaling of the
grid sampling calculation. If the structures of validation set 1
were simulated using a DFT method, the speed-up from Ionic
TuTraSt would be as high as 3−5 orders of magnitude.
It is also worth noting that in the case where diffusion

coefficients at several different temperatures are to be predicted,

Ionic-TuTraSt only requires the computation of one PES grid,
which is valid at all temperatures, since the PES grid is
temperature-independent, while for MD, each temperature
requires a separate simulation.
Conclusions andOutlook.With Ionic TuTraSt, we present

a method to predict the diffusion of strongly interacting particles
within a rigid molecular framework. This approach is based on
constructing and analyzing the geometry and topology of the
PES felt by the migrating particles. The multiparticle PES is
constructed from an MMC routine that samples the particle
configurations based on a potential energy that is estimated as
the sum of a precalculated particle-framework component and a
component describing the classical interaction of the mobile
particles. This provides a multiparticle correction to the
previously developed TuTraSt algorithm, which is an automated
workflow to compute diffusion coefficients using a kMC
simulation based on the geometric and topological identification
of positions and the heights and depths of transition states and
energy basins, respectively.

Being based on the analysis of the potential energy only brings
benefits in terms of efficiency and automatization compared to
state-of-the-art methods, i.e., MD and NEB, to model rare-event
diffusion processes. The analysis allows for average sampling
probabilities over repeated units in the multiparticle MMC
routine, which improves the efficiency compared to MD that
depends on trajectories extending over longer length scales.
Furthermore, using kMC produces particle trajectories at a very
low computational cost even for very slow diffusers that require
long time-scales to reach the diffusive regime. Slow diffusion is a
limiting factor for brute-force MD simulations. An additional
benefit of our analysis of the geometry and topology of potential
energies lies in its independence from prior knowledge of
diffusion pathways, which is required to apply, e.g., NEB
methods, thermodynamic integration, or metadynamics. This
independence allows for automatization.

In a case study of Li diffusion in crystalline inorganic SSE
candidates, we validated our method against classical MD and
DFT-based Pinball MD.We found that the diffusion coefficients
were predicted to a high accuracy: 98% is predicted within 1
order of magnitude from MD. Our efficiency analysis based on
the number of pair-potential calculations required shows that
the Ionic TuTraSt approach provides a speed-up of up to 3
orders of magnitude compared toMDwhen using classical force
fields and up to 5 orders of magnitude when using higher-level
energy calculation methods.

The Ionic TuTraSt approach allows for diffusion calculations
on all levels of theory depending on the method used to generate
the single-particle potential energy. This makes it a promising
framework to predict diffusion coefficients at the DFT level at a
low computational cost. The MMC routine that produces the
potential that accounts for interactions between migrating
particles is computed using classical interactions. It thus adds a
negligible computational cost to the workflow when using
single-particle potentials obtained from higher levels of theory
calculations, e.g., DFT. In this case, the limiting factor of the
workflow is the cost of producing the single-particle grid. In a
parallel study, we are therefore developing strategies to reduce
the number of grid points for which energy values need to be
calculated when constructing the single-particle grid. To this
end, the symmetry of crystalline materials can be exploited.
Additionally, strategies can also be employed that exclude
energetically or sterically inaccessible volumes or utilize
interpolation functions. Combined, these strategies enable the

Figure 9. Comparing the computational efficiency: The Ionic TuTraSt
procedure shows a computational efficiency speed-up ranging up to
more than 2 orders of magnitude, compared toMD, when identical pair
potential functions are used in the methods compared (third panel).
When the single-particle grid calculation costs dominate over theMMC
routine, this speed-up reaches 3 to 5 orders of magnitude (fourth
panel).
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construction of full PES grids from only a few hundred single-
point energy calculations. This will further increase the Ionic
TuTraSt speed-up significantly and make high-throughput
screening of ion diffusion of potential SSE materials at the
density functional level of theory truly feasible.
The Ionic TuTraSt methodology provides a framework to

predict the diffusion of interacting particles not only for SSEs but
also for any system where rare-event processes can describe the
diffusion of mobile particles within a rigid structural framework.
This includes membrane materials for gas separation and water
purification. To further extend the applicability of the method-
ology, future developments are considered, such as (1) strategies
to include effects of lattice vibrations (phonons) for systems
where phonon effects have a significant impact on the diffusion,
(2) strategies to treat systems where the framework lattice
cannot be considered spatially defined, (i.e., soft materials such
as polymer electrolytes), and (3) strategies to treat mixtures of
different types of mobile particles that interact with each other.
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Adorf, C. S.; Andersen, C. W.; Schütt, O.; Pignedoli, C. A.; Passerone,
D.; VandeVondele, J.; Schulthess, T. C.; Smit, B.; Pizzi, G.; Marzari, N.
Materials Cloud, a platform for open computational science. Sci. Data
2020, 7, 299.
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