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A B S T R A C T   

In this study, we developed a negative binomial regression model for one-week ahead spatio-temporal pre-
dictions of the number of COVID-19 hospitalizations in Uppsala County, Sweden. Our model utilized weekly 
aggregated data on testing, vaccination, and calls to the national healthcare hotline. Variable importance 
analysis revealed that calls to the national healthcare hotline were the most important contributor to prediction 
performance when predicting COVID-19 hospitalizations. Our results support the importance of early testing, 
systematic registration of test results, and the value of healthcare hotline data in predicting hospitalizations. The 
proposed models may be applied to studies modeling hospitalizations of other viral respiratory infections in 
space and time assuming count data are overdispersed. Our suggested variable importance analysis enables the 
calculation of the effects on the predictive performance of each covariate. This can inform decisions about which 
types of data should be prioritized, thereby facilitating the allocation of healthcare resources.   

1. Background 

The COVID-19 pandemic had a major impact on our daily lives in 
recent years. To mitigate the spread of infection, Public Health Agencies 
across the globe implemented control measures, such as border re-
strictions and recommendations for social distancing. These measures 
shared one common goal: to slow down the spread of infection while 
alleviating the pressure on overloaded healthcare systems and pre-
venting deaths attributed to COVID-19. A key indicator of pressure on 
the healthcare system is the number of hospital beds occupied by pa-
tients with severe COVID-19. Predicting hospital occupancy trends in 
both space and time is crucial for resource allocation and planning 
temporary capacity increases (e.g. field hospitals). 

Numerous attempts have been made to predict short-term and long- 
term COVID-19-associated hospitalizations. A common approach is the 
use of a compartmental model, such as SEIR models, where the total 
population is divided into different so-called ‘compartments’ (e.g. 
exposed, infected, hospitalized, recovered) (Gerlee et al., 2021). These 
models predict the probabilities of movement between compartments 
and the number of hospitalizations under certain assumptions such as 
infectivity, incubation period, and virulence. Several variations of this 

model exist, including the addition of a compartment to account for 
isolated infected populations (Reno et al., 2020), and the use of poly-
nomial regression to correct for model errors (Gatto et al., 2021). Time 
series models have also been used to predict hospitalizations based on 
previous trends and temporal autocorrelation (Chelo et al., 2021; Per-
one, 2021). Wesner et al. (2021) built a Bayesian non-linear regression 
model with priors based on hospitalization data from another area that 
had already completed a disease curve. Other research teams have 
incorporated external regressors in the models, such as wastewater 
samples (Galani et al., 2022), Google search term activity, and health 
chatbot scores (Turk et al., 2021). A separate line of work has focused on 
predictions at patient-level, e.g. forecasting the need for hospitalization, 
intensive care, and respiratory support, as well as mortality rates based 
on patient-level characteristics such as age, gender, comorbidities, and 
socioeconomic status (Patricio et al., 2021; Simpson et al., 2020; Wol-
lenstein-Betech et al., 2020). By summing the predicted needs of indi-
vidual patients, the needs at hospital-level can be extrapolated. 

Most previous works have focused on predicting the total number of 
hospitalizations within a single hospital or a delimited region, which is 
highly relevant for local planning and resource allocation. In addition to 
the total number of hospitalizations in a region, it would also be 
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beneficial to predict the spatial variability of hospitalizations within a 
larger region served by multiple hospitals. These predictions would be of 
importance for scheduling healthcare staff, supplies, hospital bed ca-
pacity, and patient transfers to other hospitals. They can also assist 
public health authorities in adjusting their infection control strategies. A 
high number of hospitalizations in a certain subregion (e.g. municipal-
ity) compared to other subregions may be a sign of lacking early-stage 
measures such as testing or vaccination. Fine-scale spatio-temporal 
predictions can provide further insights into potential differences due to 
socioeconomic disparities between different municipalities and the need 
for local interventions, e.g. by enhancing communication on social 
distancing and vaccination, and increasing local testing capacity. 

The main objective of this study is to develop methods to predict 
COVID-19-related hospitalizations in space and time within the borders 
of Uppsala County, Sweden. Predictions were made a week ahead in 
time for each of the county’s eight municipalities. We use a set of 
covariates as external regressors and evaluate their individual effects on 
predictive performance. Besides providing a prediction model with a 
high spatio-temporal resolution, we aim to guide future researchers, 
healthcare agencies, and policymakers in selecting the most effective 
variables in the event of a pandemic. 

2. Methods 

2.1. Data 

In this study, we focus on Uppsala County, Sweden which has a 
population of nearly 390,000 inhabitants (SCB, 2020) spread across 
eight different municipalities: Enköping, Håbo, Heby, Knivsta, Tierp, 
Uppsala, Älvkarleby, and Östhammar. Only Enköping and Uppsala 
contain a hospital with inpatient care; patients from other municipalities 
are referred to one of these two hospitals. Patients were considered as 
COVID-19 patients based on their PCR test results, although the primary 
reason for hospitalization may not have been related to their infection. 
We used data from week 26, 2020 to week 41, 2021, collected as part of 
the CRUSH Covid project (van Zoest et al., 2022). We considered the 
following variables as potential external regressors (covariates) in the 
model to predict hospitalizations at the municipality level in week t: 
number of hospitalizations in the previous week (week t − 1), positivity 
rate in PCR tests in week t − 1, number of COVID-19 tests in week t − 1, 
number of COVID-related calls to emergency line 112 in week t − 1, 
number of COVID-related calls to healthcare advice hotline 1177 in 
week t − 1, the proportion of the population aged 50+ years with at least 
two vaccinations against COVID-19 taken at least two weeks ago in week 
t − 1, and municipality (categorical). COVID-19 related calls to the na-
tional healthcare hotline 1177 were available from week 48, 2020 and 
we used vaccination data from week 12, 2021 onwards. A time lag of 
two weeks after the second dose was applied to vaccination data to allow 
for immunity development. Table 1 provides an overview of the cova-
riates used in this study. 

2.2. Prediction model 

Our variable of interest is the number of COVID-19 related hospi-
talizations per week, counted as the number of bed-days occupied by 
individuals residing in the municipality. We make use of a negative 
binomial regression model to account for overdispersion in the counts. 
Thus, we consider the number of hospitalizations ys,t in municipality s in 
week t to arise from a negative binomial (NB) distribution with mean λs,t 

and variance λs,t + λ2
s,t/θt , where θt is the dispersion parameter (Hilbe, 

2014): 

ys,t ∼ NB

(

λs,t, λs,t +
λ2

s,t

θt

)

. (1) 

Here, λs,t equals the population Ps in area s multiplied by the 

hospitalized proportion of the population ps,t in area s in week t: 

λs,t = Ps ∗ ps,t (2)  

which can be rewritten as: 

log
(
λs,t
)
= log(Ps) + log

(
ps,t
)

(3) 

The population Ps is the offset of the model and considered to be 
static during the period under study. We consider a multiple linear 
regression model to predict log(ps,t) for area s in week t: 

log
(
ps,t
)
= β0,t− 1 +

∑K

k=1
βk,t− 1xk,s,t− 1 + βy,t− 1ys,t− 1 (4)  

where β0,t− 1 is the intercept in week t − 1, xk,s,t− 1 are the values for 
covariates k ∈ {1…K} in week t − 1 in municipality s, which are 
multiplied by their respective coefficients βk,t− 1, ys,t− 1 are the lagged 
hospitalizations from the week t − 1 with coefficient βy,t− 1. The set of 
covariates includes the variables from Table 1 as well as interaction 
effects between municipality and one-week lagged number of hospital-
izations, and interaction effects between municipality and number of 
COVID-19 RT-PCR tests. A one-week lag is selected based on visual in-
spection of the partial autocorrelation function plots for hospitaliza-
tions. Combining Eqs. (3) and (4), we can thus predict log(λs,t) as: 

̂log
(
λs,t
)
= log(Ps) + β̂0,t− 1 +

∑K

k=1
β̂k,t− 1xk,s,t− 1 + β̂y,t− 1ys,t− 1 (5) 

Table 1 
Overview of covariate data used.  

Variable Description Data type 

Municipality The name of the municipality 
corresponding to 
municipality s. 

Fixed spatial- 
dependent 
categorical 

Test positivity (week t − 1) The percentage of all COVID- 
19 RT-PCR tests that were 
positive in municipality s 
during week t − 1. 

Spatial and time- 
dependent 
continuous 
numerical 

Number of COVID-19 RT- 
PCR tests (week t − 1) 

The total number of COVID- 
19 RT-PCR tests in week t − 1 
among inhabitants of 
municipality s. 

Spatial and time- 
dependent 
continuous 
numerical 

Number of hospitalizations 
(week t − 1) 

The total number of 
hospitalizations, defined as 
number of hospital bed-days 
during week t − 1, occupied 
by patients who tested 
positive for COVID-19 and 
who were living in 
municipality s. 

Spatial and time- 
dependent 
continuous 
numerical 

COVID-19-related calls to 
1177 (week t − 1) 

Number of calls to the 1177 
Healthcare Advice Line from 
people reporting COVID-19- 
related symptoms in 
municipality s and week t − 1.

Spatial and time- 
dependent 
continuous 
numerical 

Number of calls assessed as 
suspected COVID-19 by the 
ambulance personnel 
(week t − 1) 

Number of ambulance calls to 
the 112 emergency line in 
municipality s and week t −
1 that were assessed as 
’suspected COVID-19′ by the 
ambulance personnel. 

Spatial and time- 
dependent 
continuous 
numerical 

Vaccinated proportion of 
population aged 50+ (dose 
2 at least 2 weeks ago) 

Proportion of individuals 
aged 50+ residing within the 
administrative borders of 
municipality s who have 
completed their first full 
vaccination series consisting 
of two doses of an EMA- 
approved vaccine against 
COVID-19 at least two weeks 
before week t. 

Spatial and time- 
dependent 
continuous 
numerical  
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where ̂β0,t− 1, ̂βk,t− 1 and ̂βy,t− 1 are the coefficients estimated using Eq. (4). 
The coefficients are estimated using Maximum Likelihood using the 
MASS package (version 7.3–60) in R (version 4.3.1) (Ripley et al., 2022). 
Our interest is in the odds ratios (OR) for the different covariates, 
defined as ORk,t− 1 = exp(β̂k,t− 1), and their variability over time. 

2.3. Performance evaluation 

To evaluate the model’s out-of-sample performance over time, we 
used the Root Mean Squared Error (RMSE) computed iteratively for each 
week t over all areas s defined as RMSEt: 

RMSEt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Ns

s=1

(
ŷs,t − ys,t

)2

Ns

√

(6)  

where ŷs,t is the predicted number of hospitalizations and ys,t is the 
observed number of hospitalizations in municipality s during week t, 
and Ns is the total number of municipalities. We employ a moving 
window approach, with new data incorporated weekly allowing us to 
use all previous data for model training. The RMSEt is updated accord-
ingly, computed using data from all areas s, using validation data from 
week t. The RMSE is calculated over out-of-sample predictions, thus only 
using data from week 1 to t − 1 to predict the number of hospitalizations 
in week t. Lower values of RMSEt indicate better performance. 

To evaluate the importance of individual covariates in the model, we 
removed individual covariates from the model one at a time, and eval-
uated the impact on the prediction performance using the RMSE values. 

3. Results 

Table 2 shows summary statistics characterizing the eight munici-
palities in Uppsala County. Table 3 shows the mean and standard de-
viation of the variables included in the model, for the entire study 
period, for each of the eight municipalities. Fig. 1 shows the time series 
for the estimated coefficients β̂k,t for the different covariates k in the 
model, except for the categorical variable municipality and its interac-
tion effect with number of tests, for which the figures are included in the 
Supplementary Materials (Figs. S1 and S2). Fig. S3 in the Supplementary 
Materials shows the time series of the beta coefficients for the interac-
tion effects between municipality and one-week lagged hospitalizations, 
i.e. the covariate covering spatio-temporal variability. The 95 % confi-
dence intervals for the estimates are shown in gray, and a dashed line 
indicates zero (null hypothesis). Overlap between the gray area and the 
dashed line for certain weeks t indicates that the covariate had no sig-
nificant (α = 0.05) association with the prediction of the log hospital-
ized proportion of the population. When the confidence intervals for the 
estimates do not overlap with the dashed line, the covariate has a sig-
nificant effect on the predictions, which can either be positive or 
negative. Notably, we observe that test positivity clearly and signifi-
cantly contributed to the prediction of hospitalizations during the first 
25 weeks of 2021. A strong decrease in the beta coefficient is visible in 
week 12, 2021, the moment in which vaccination data enters the model. 

The number of tests performed seems to have a slight positive associa-
tion with hospitalizations, which increases with time. In addition, the 
lagged hospitalizations have a positive association, indicating temporal 
autocorrelation. This positive association only becomes significant after 
week 25, when test positivity is no longer a significant covariate. 
Meanwhile, the vaccinated proportion of the population aged 50+ starts 
to negatively affect hospitalizations after week 25, 2021, with a very 
narrow confidence interval. This corresponds with approximately 39 % 
(range 32–48 % depending on the municipality) of the population aged 
50+ being fully vaccinated, i.e. having received a second dose at least 2 
weeks ago – the approximate time needed for the body to build up im-
munity to the virus following a second dose (Feikin et al., 2022). Con-
trary to expectations, calls to the national healthcare hotline 1177 seem 
to have no significant effect; but this is likely caused by high collinearity 
with number of tests. However, as the prediction performance strongly 
decreases after removing one of the two correlated variables, we decided 
to keep both variables in the prediction model. The number of calls to 
emergency line 112 related to COVID-19 symptoms is only significantly 
different from zero between week 15 and week 25 (α = 0.05), likely 
because the variability is captured by other variables in the model. 
Fig. S3 in the Supplementary Materials shows the spatio-temporal 
variability covered by the interaction effect between municipality and 
one-week lagged hospitalizations. In most cases, it is significantly 
different from zero (baseline Enköping municipality), indicating sig-
nificant spatio-temporal variability. 

Fig. 2 shows the predicted versus the observed number of hospital-
izations over time for each of the eight municipalities. In general, the 
predictions appear to follow the same pattern as the actual hospitali-
zations. Fig. 3 shows the difference between the predicted and actual 
number of hospital beds occupied by COVID-19 patients from all mu-
nicipalities in the County, converted from weekly total to daily average. 
Values above zero indicate overprediction, values below zero indicate 
underprediction. 

Table 4 shows the average RMSE value for the full model, as well as 
the average RMSE when removing one variable at a time, an indication 
of variable importance. 

Fig. 4 shows the RMSE values over time. Here, we can also evaluate 
variable importance over time. Higher RMSE indicates lower perfor-
mance. Thus, it can clearly be observed that removing a variable like the 
number of COVID-19 related calls to healthcare hotline 1177 has a 
major impact on prediction performance, especially in the peak of the 
pandemic. The interaction effects also have the biggest impact during 
the peak of the pandemic. 

Fig. 5 shows the spatial variability in the observed and predicted 
number of hospitalizations per 1000 inhabitants during the peak of the 
third wave of the COVID-19 pandemic (week 17, 2021). The model 
effectively captures a large part of the spatial variability in the data. 
However, for Östhammar municipality, located on the northeast side of 
the region, the predictions overestimate the observed values. As can be 
derived from Fig. 2, there seems to be a systematic bias for a longer 
period of time, in which the predictions for Östhammar overestimate the 
observed values. 

Table 2 
Summary statistics characterizing the eight municipalities in Uppsala County.  

Municipality Population Proportion 
female 

Mean 
age 

Proportion 
aged 50+

Population density 
(pop./km2) 

Proportion foreign 
background 

Proportion higher 
educated 

Driving distance to closest 
hospital (driving time) 

Håbo 22,213 0.49 40.0 0.36 155.7 0.22 0.30 30.8 km (26 min.) 
Älvkarleby 9,614 0.49 43.7 0.44 43.5 0.19 0.24 92.8 km (65 min.) 
Knivsta 19,515 0.49 36.8 0.29 70.2 0.19 0.45 22.3 km (21 min.) 
Heby 14,247 0.49 43.8 0.44 12.3 0.16 0.22 51.6 km (50 min.) 
Tierp 21,426 0.49 43.3 0.42 14.0 0.17 0.23 83 km (67 min.) 
Uppsala 235,573 0.51 38.9 0.32 108.9 0.29 0.53 22 km (27 min.) 
Enköping 47,053 0.49 41.3 0.38 40.3 0.22 0.30 10.9 km (12 min.) 
Östhammar 22,347 0.49 45.5 0.47 15.2 0.12 0.24 70 km (61 min.)  
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4. Discussion 

In this paper we propose a spatio-temporal, regression-based model 
for predicting the number of hospitalizations in Uppsala County during 
the second and third wave of the COVID-19 pandemic in Sweden. The set 
of covariates used in the model reflected the spatial, temporal and 
spatio-temporal variations in hospitalizations in the different munici-
palities within the region. 

Our study, which focused on the COVID-19 hospitalizations in a 
county in Sweden, found calls to healthcare hotline 1177 for symptoms 
related to COVID-19 to be the most important predictor for hospitali-
zations. Healthcare hotline data was also found a useful predictor in 
another study, using a different methodology in a different region in 
Sweden (Spreco et al., 2022). Positivity rates, share of PCR tests that 
were positive, were also an important predictor in our study. Since 
positivity rate data is only available once community testing is available, 

Table 3 
Mean (std. dev.) of the variables included in the model, averaged over the weeks in the study period, except for vaccinated individuals2.  

Municipality Hospitalizations  
# bed days/week1 

Positivity rate RT-PCR tests1 

# 
Calls to 1121 

# 
Calls to 11,771 

# 
Vaccinated individuals 50+2 

Håbo 0.92 (0.99) 0.08 (0.06) 18.13 (11.63) 0.3 (0.22) 0.23 (0.15) 0.35 
Älvkarleby 1.43 (1.66) 0.08 (0.07) 16.40 (10.02) 0.46 (0.31) 0.22 (0.20) 0.48 
Knivsta 0.54 (0.53) 0.07 (0.06) 18.40 (10.93) 0.28 (0.14) 0.19 (0.13) 0.41 
Heby 0.83 (0.88) 0.05 (0.05) 17.12 (11.39) 0.42 (0.21) 0.21 (0.15) 0.48 
Tierp 1.21 (1.23) 0.07 (0.05) 18.67 (11.15) 0.47 (0.3) 0.22 (0.13) 0.32 
Uppsala 1.03 (0.9) 0.07 (0.05) 19.65 (10.69) 0.32 (0.11) 0.26 (0.12) 0.39 
Enköping 1.11 (1.2) 0.07 (0.06) 19.46 (10.26) 0.43 (0.2) 0.28 (0.11) 0.36 
Östhammar 1.33 (1.56) 0.06 (0.05) 17.49 (9.38) 0.43 (0.19) 0.12 (0.10) 0.43  

1 Per 1000 inhabitants. 
2 Proportion of the population aged 50+, which had received a second vaccination at least 2 weeks ago, in week 25, 2021, when the vaccination variable in the 

model had a significant impact on decreasing hospitalizations. 

Fig. 1. Time series of the β-coefficients of the model for all covariates except municipality. The gray area shows the confidence interval of the estimates. The dashed 
line indicates the zero-effect line. 
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Fig. 2. Time series of predicted (dashed line) vs. observed (filled line) number of hospitalizations per 1000 inhabitants. The gray area indicates the prediction 
interval (95%) estimated using bootstrapping with 5000 samples. 

Fig. 3. Difference between the predicted and actual daily average number of hospital beds occupied by COVID-19 patients in Uppsala County. Values above zero 
indicate overprediction, values below zero indicate underprediction. 
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these results highlight the critical need for testing during a pandemic. 
This includes the development of tests as soon as possible after a 
pandemic outbreak, good availability of tests for all inhabitants, and 
proper registration of test results. The high collinearity between posi-
tivity rates and calls to healthcare hotline 1177 might suggest that, if 
tests are not yet available, data from a healthcare hotline can provide 
valuable information for predicting hospitalizations. However, the po-
tential confounding effect of calls related to positive self-tests, coupled 
with the unavailability of hotline data prior to the introduction of 
testing, prevents us from isolating the individual predictive contribution 
of the healthcare hotline. 

We noticed that municipalities in the rural areas, e.g. Östhammar 
and Älvkarleby, which are located on the borders of Uppsala County and 
far away from the hospitals in Uppsala and Enköping, have a higher 
number of hospitalizations per capita than the municipalities closer to a 
hospital (Table 2). These results suggest that people in municipalities 
further away from the hospital, may be admitted at an earlier stage of 
disease progression (i.e. with first doubts) due to the distance to the 
hospital being too great in case of a life-threatening emergency. 
Furthermore, demography could also play a role, as the mean age of 
inhabitants in Östhammar and Älvkarleby is higher than the mean age of 
inhabitants in Uppsala or Enköping (Table 2). The interaction effect 
between municipality and one-week lagged hospitalizations was not 
significantly different from zero in Uppsala municipality compared to 
baseline Enköping, which both have a hospital. The interaction effects of 
the other municipalities compared to baseline Enköping are all signifi-
cantly positive throughout the entire time series (Fig. S3, Supplementary 

Materials). 
We also observed significant differences in the interaction effects 

between municipality and number of tests (Fig. S2, Supplementary 
Materials). Although most of the municipalities are not significantly 
different from baseline Enköping, there is a significant difference be-
tween Uppsala municipality and the others. A potential reason may be 
the difference in baseline testing rates, which is highest in Uppsala 
(Table 3). The unique population characteristics of Uppsala, as detailed 
in Table 2, also distinguish it from other municipalities. Furthermore, 
Uppsala municipality is characterized by a large number of students and 
academic personnel. Differences in population characteristics could 
potentially influence both the willingness to undergo testing and the 
accessibility of tests (Kennedy et al., 2023). 

We note several limitations of this study, which may provide insights 
for future efforts to predict the spread of viral respiratory infections. One 
challenge we faced during the ongoing data collection was a reporting 
delay of the vaccination data for certain municipalities, which may have 
caused a large variability in the increase of vaccinated individuals in 
certain weeks. Although these issues were resolved retrospectively, they 
may cause issues for near real-time predictions. 

While the model accounted for a large part of the spatio-temporal 
variability in hospitalizations, more data is needed to account for all 
variability. Other variables, like environmental temperature, UV light, 
seasonality, and temporal variability in travel restrictions and social 
distancing may influence infection spread (Liu et al., 2021; Merow and 
Urban, 2020; Nichols et al., 2021), but this variability should already be 
accounted for in the test positivity variable, which shows the effect of 
these factors before it is reflected in number of hospitalizations. It would 
have been interesting to include a variable for viral interference between 
respiratory viruses and its temporal variability (Piret and Boivin, 2022) 
which could potentially affect hospitalizations independently from test 
positivity. However, we did not have access to this data. When modeling 
larger amount of municipalities or a larger amount of smaller spatial 
units, it would also be useful to consider adding spatio-temporal random 
effects in the model to account for any remaining spatio-temporal cor-
relation in the residuals (van Zoest et al., 2022). 

Our model formulation, and the interpretation of the model co-
efficients, is under the assumption that the variables are uncorrelated. 
However, this assumption is likely violated for some variables within the 
model. As mentioned in the Results section, we observed multi-
collinearity issues between the ‘number of COVID-19 RT-PCR tests’ and 

Table 4 
Model performance comparison. Higher RMSE indicates poorer performance, 
thus higher variable importance for the variable removed.  

Excluded variable Mean RMSE 

No variables excluded (full model) 16.84 
Test positivity (t-1) 22.67 
Number of COVID-19 RT-PCR tests (t-1) 20.82 
Hospitalizations (t-1) 17.53 
Vaccinations 50+ (t-1) 19.91 
Number of COVID-19-related calls to 112 (t-1) 20.48 
Number of COVID-19-related calls to 1177 (t-1) 36.75 
Municipality * nr of tests interaction (t-1) 21.88 
Municipality * hospitalizations interaction (t-1) 23.09  

Fig. 4. RMSE time series of the weekly prediction performance of the full model (no variables excluded) vs. the model with one variable excluded.  
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‘calls to 1177 health care advice hotline’ variables. This multi-
collinearity is not surprising, as both indicate the number of people 
concerned about symptoms in an early stage of a potential infection. 
However, removing one of the variables would have a large negative 
impact on prediction performance, and we therefore decided to keep 
both variables in the model despite multicollinearity. 

The inclusion of the municipality variable reduces the transferability 
of the trained to other locations, i.e. the model always needs to be 
retrained to estimate coefficients for “unseen” municipalities. However, 
excluding this variable strongly reduced the model’s predictive power. 
Besides that, there were big differences in baseline hospitalizations per 
municipality. Despite the lack of transferability of the trained model, 
this study suggests which variables are important to collect for training a 
model on a location of interest. 

The methods used in this paper could be explored for predicting 
hospitalizations for seasonal respiratory viruses, such as influenza and 
Respiratory Syncytial Virus (RSV). Several predictors in our model, such 
as hospitalizations and ambulance calls, are routinely collected by 
public health authorities and their usefulness could be explored for these 
purposes. 

5. Conclusion 

In this paper, we propose a regression-based spatio-temporal pre-
diction model specifically designed for one-week-ahead prediction of 
COVID-19 hospitalizations. While our modelled is tailored to COVID-19, 
its underlying principles and methods are applicable to other respiratory 
diseases. This is due to the fact that hospitalizations for such diseases can 
often be modelled using a negative binomial distribution to account for 
overdispersion in count data. The model’s flexibility allows for the in-
clusion of various spatial, temporal and spatio-temporal covariates, and 
spatio-temporal interaction effects. The relevance of these covariates 
may, of course, vary depending on the specific viral respiratory diseases 
and geographical region under study. However, the approach remains 
the same: integrating these covariates into a negative binomial regres-
sion model. A unique aspect of our work is the evaluation of the tem-
poral variability in the importance of different variables. This is crucial 

as the significance of certain variables can change over time, especially 
during a pandemic. In the early stages of a pandemic, before tests and 
vaccines become widely available, it is vital to leverage data from 
alternative sources, such as healthcare hotlines and emergency call data. 
These sources can provide valuable insights for predicting the spread of 
the virus. In this manuscript, we provide a comprehensive toolbox for 
prediction modeling, variable importance analysis, and performance 
evaluation, thereby enhancing the existing body of literature on this 
topic. 

Ethical declaration 

All parts of the study were conducted in accordance with the 
Declaration of Helsinki by the World Medical Association, as revised in 
2013. The study was approved by the Ethical Review Board in Sweden 
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