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Abstract We present an application of quantile generalized additive models (QGAMs) to study spatially
compounding climate extremes, namely extremes that occur (near‐) simultaneously in geographically remote
regions. We take as an example wintertime cold spells in North America and co‐occurring wet or windy
extremes inWestern Europe, which we collectively term Pan‐Atlantic compound extremes. QGAMS are largely
novel in climate science applications and present a number of key advantages over conventional statistical
models of weather extremes. Specifically, they remove the need for a direct identification and parametrization
of the extremes themselves, since they model all quantiles of the distributions of interest. They thus make use of
all information available, and not only of a small number of extreme values. Moreover, they do not require any a
priori knowledge of the functional relationship between the predictors and the dependent variable. Here, we use
QGAMs to both characterize the co‐occurrence statistics and investigate the role of possible dynamical drivers
of the Pan‐Atlantic compound extremes. We find that cold spells in North America are a useful predictor of
subsequent wet or windy extremes in Western Europe, and that QGAMs can predict those extremes more
accurately than conventional peak‐over‐threshold models.

Plain Language Summary In this paper we propose a new data‐driven method to study climate
extremes occurring simultaneously in multiple, possibly remote, locations. Such extremes can pose a greater
threat to human societies than single, isolated extremes, as their effects may exacerbate each other and lead to
correlated losses. The method we suggest requires fewer assumptions than conventional extreme value
statistical techniques, and can help us to identify previously unknown relationships between the extremes
themselves and their possible drivers. We exemplify its use by studying the co‐occurrence of periods of
unusually cold weather in North America and subsequent uncommonly strong wind and abundant precipitation
in Western Europe. We find that the new method has better predictive power for the European extremes than
conventional statistical approaches. Furthermore, we confirm the results of previous studies suggesting an
association between the wintertime extremes in North America and Western Europe.

1. Introduction
The statistical properties of climate extremes have been extensively studied using parametric approaches to
extreme value theory (EVT; e.g., Coles, 2001; Davison & Smith, 1990; Elvidge & Angling, 2018; Fisher &
Tippett, 1928; French et al., 2019; Gumbel, 1941; Mares et al., 2009), and since its inception, parametric EVT
regression has been successfully used to investigate extreme event drivers (Coles, 2001; do Nascimento
et al., 2021; Gumbel, 1958; Mares et al., 2009; Pickands, 1975). Parametric EVT aims to identify and characterize
extreme observations by identifying their underlying distribution which, in turn, provides valuable information on
the expected frequency and intensity of the extremes. Two fundamental approaches lie at the core of classic
parametric EVT: the block maxima approach (BM) (Fisher & Tippett, 1928; Gumbel, 1958) and the peak over
threshold (POT) approach (Davison & Smith, 1990; Pickands, 1975; Smith, 1984).

The BM approach defines k time periods (blocks) of equal length and extracts the n largest independent obser-
vations from each block (block maxima). According to the Fisher–Tippett–Gnedenko theorem (Fisher & Tip-
pett, 1928), properly normalized block maxima converge to a distribution belonging to the generalized extreme
value family of distributions (GEV). A challenge of the BM approach lies in finding a suitable size for the blocks
(Ferreira & Haan, 2015). Small blocks may lead to the identification of some spurious extremes, whereas large
blocks may ignore some extremes and slow down the convergence to the GEV family of distributions.
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Furthermore, given that the Fisher–Tippett–Gnedenko theorem is an asymptotic theorem, there is no guarantee
that the appropriately normalized blockmaxima belong to the GEV family of distributions when the sample size is
limited. If this is the case, then the estimation of the extremes may be biased, and the extrapolation to values
outside of the observed range unreliable (Coles, 2001).

The POT approach addresses these challenges by selecting a high threshold u, and defining as extremes obser-
vations above that threshold (the maxima, μ). The excesses follow approximately a generalized Pareto distri-
bution (GPD), in accordance with Pickands' theorem (Pickands, 1975). The challenge in this case is to define an
appropriate threshold: sufficiently high to isolate extremes yet sufficiently low to ensure an appropriate sample
size. Technical details of the BM and POT approaches are provided in Text S1 of the Supporting Information S1.

While being a widely used and versatile tool, implementing parametric EVT for studying climate extremes
presents some challenges. The first is finding a suitable empirical definition for the extremes, as discussed above
and also highlighted by Passow and Donner (2019). Second, using parametric EVT in a regression context to
study extreme event drivers requires some a priori knowledge or assumption of the functional relationship be-
tween the drivers and the parameters describing the distribution of the extremes. Defining this relationship a priori
is often challenging and may result in simplistic or unrealistic assumptions about the relationship between the two
(Chavez‐Demoulin & Davison, 2005). Third, parametric EVT does not make optimal use of all the statistical
information available, as it ignores all that is not an extreme. This is particularly relevant when the sample size is
limited, as EVT theory relies on asymptotic results. Furthermore, the lack of a sufficient number of observations
may lead to large uncertainty in the estimation of the parameters of the extreme value distributions (see also the
discussion in Passow & Donner, 2019).

The literature offers extensions to the classic parametric EVT theory (Lucarini et al., 2016) as well as a number of
non‐parametric alternatives (Fasiolo et al., 2021a; Koenker &Hallock, 2001; Yee, 2015). The main appeal of non‐
parametric techniques, such as quantile‐based methods, is that they do not require an empirical definition of the
extremes in the same way as parametric EVT does. Furthermore, they make use of all statistical information
available, rather than just the extreme data. This is particularly relevant when the interest lies in extreme events
with a relatively short return period (e.g., windstorms recurring every 6 months or 1 year at a given location), for
which the convergence of the GPD parameters may first be observed at quantiles larger than the one of interest.

Here, we apply quantile generalized additive models (QGAMs, Fasiolo et al., 2021a; Koenker, 2011) to the study
of spatially compounding climate extremes and their drivers, namely extremes that occur (near‐)simultaneously in
geographically remote regions. The synchronized—or compound—occurrence of remote extremes is often
associated with greater impacts than those of the corresponding individual extremes, for example, exposing in-
surance companies and other actors with international exposure, supply chains or customer bases to correlated
losses (Mills, 2005) and imperiling global food security (Kornhuber et al., 2020). QGAMs are a non‐parametric
approach which is largely novel in the context of climate science. They are a recent extension to generalized
additive models, bearing the promise of addressing the aforementioned three key limitations of parametric EVT.
We benchmark QGAMs against other parametric and non‐parametric approaches.

To illustrate the methodology, we consider the repeated co‐occurrence of wintertime cold spells in Eastern North
America and wet or windy extremes in Western Europe, which we collectively term Pan‐Atlantic compound
extremes. The repeated occurrence of these extremes in recent winters (e.g., Coumou & Rahmstorf, 2012; Dodet
et al., 2019; Lee et al., 2015; Trenary et al., 2015; Wild et al., 2015) has led to hypothesize a connection between
the two sets of extremes (De Luca et al., 2020; Leeding et al., 2023; Messori & Faranda, 2023; Messori
et al., 2016). Nonetheless, a systematic statistical characterization of such connection has largely been limited to
simple co‐occurrence statistics. The aim here is to provide a proof‐of‐concept for the use of QGAMs in the study
of compound climate extremes. We therefore seek to evaluate the performance of QGAMs relative to alternative
statistical models by applying them to a previously studied set of spatially compounding climate extremes, as
opposed to investigating novel extreme occurrences and related large‐scale atmospheric drivers. We further
highlight that we do not aim to use the regression models we present as self‐standing forecasting tools. In other
words, we do not aim to forecast extreme event occurrences using only information from several days before the
extremes—as one would do in a conventional forecasting exercise. Rather, we see these models as useful tools to
robustly quantify the statistical connections between geographically remote extremes and investigate the roles of
different potential dynamical drivers.
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The remainder of this paper is structured as follows: Section 2 provides a short introduction to parametric EVT
regression, and introduces quantile‐based non‐parametric approaches as an alternative, including QGAMs.
Section 3 defines the scope of this paper, and discusses practical concerns related to variable selection and model
formulation. Section 4 compares the methods presented in previous sections, by studying the Pan‐Atlantic
compound extremes and their possible dynamical drivers, considering specifically the North Atlantic jet
stream and the North Atlantic Oscillation (NAO). Section 5 concludes the paper by providing a short summary of
the findings and discussing the strengths and limitations of QGAM applications to study climate extremes.

2. Extreme Value Statistical Models
This section presents the theory behind the key parametric and non‐parametric approaches to EVT regression
discussed in this paper.

2.1. Parametric EVT Regression

The relationship between the extremes and their likely precursors can be described parametrically through a
generalized linear model, where the expected value of a BM or POT extreme at a time t, E(Mt) is a function of
previous values of itself, Mt− k and other factors likely to affect its strength, Xt− k. Then:

E(Mt|Mt − k, Xt − k) = Mt − kϕ + Xt − kβ. (1)

Since the extremes are selected through the BM or the POT approach, parametric EVT regression largely shares
the same strengths and limitations of these approaches.

2.2. Non‐Parametric EVT Regression

Non‐parametric models are a broad class of methods which do not rely on a predetermined functional relationship
between the outcome and the predictor, but estimate it empirically (Härdle, 1990). Quantile‐based models are a
subset of non‐parametric models which are particularly suitable to the analysis of extremes, as they can be used to
estimate values in the tails of the distribution. A quantile Q(τ) is defined as the inverse of the cumulative dis-
tribution function, uniquely identifying the value of the cumulative distribution function corresponding to
probability τ.

2.2.1. Quantile Regression

The linear relationship between a conditional quantile of an output and a predictor can be estimated non‐
parametrically through quantile regression (Koenker & Bassett, 1978; Koenker & Hallock, 2001). Quantile
regression aims to estimate the conditional quantile of the dependent variable QY|X(τ) as a function of the re-
gressors X, so that:

QY|X(τ) = Xβτ (2)

It solves the following minimization problem:

minE{ρτ(Y − Xβ)}, (3)

where ρτ = (τ − 1)zI(z < 0) + τzI(z ≥ 0) is the so‐called “pinball loss,” punishing predictions which are further
away from the quantile of interest. Here, z is the residual and τ the quantile of interest.

By estimating the effect of the regressors on an ensemble of extreme quantiles, it is possible to draw some
conclusions on how the regressors affect the intensity of the extremes. This is done without relying on the large
sample asymptotics employed by parametric EVT, thus without the need of reducing sample size.

The main limitation of quantile regression is that it is a linear model, ignoring all possible non‐linear effects of the
regressors on the quantile of interest.
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2.2.2. Quantile Generalized Additive Models

Generalized additive models (GAMs, Hastie & Tibshirani, 1986; Wood, 2017) are a broad family of non‐
parametric models describing the dependent variable as an additive function of unknown smooths of the re-
gressors. A smooth function is a function which is derivable up to a certain order at each point throughout its
domain. GAMs can be described as follows:

g(E(Y)) = β0 + f1 (X1) + f2 (X2) +⋯ + fi (Xi), (4)

where E(Y) is the expected value of the outcome, g() is the link function, describing the relationship between the
linear predictor and the expected value of the outcome, β0 is an intercept, and f1(X1) + f2(X2) + ⋯ + fi(Xi) are
smooth functions of the predictors.

GAMs do not require determining the functional relationship between the outcome and the predictors a priori.
This is instead determined empirically, through a data‐driven process testing a large number of possible com-
binations. First, a set of bases is chosen for the predictors, so that the original covariates X1, X2…Xi are embedded
into a larger feature space X* including higher order terms of the original covariates. Then, the best model is
chosen out of the expanded feature space by minimizing a loss function of choice, L(X*), while penalizing for
excessive complexity. In the absence of a link function, a natural choice of loss function is the quadratic loss, so
the best model is chosen according to the following minimization:

minE{(Y − X∗β)2 + λJ}, (5)

where (Y − X∗β)2 is the sum of squared residuals, λ is a smoothing parameter and J is a penalty term. A common
penalty term is J=∫f″(x)2dx, with other forms of penalty also being possible (James et al., 2022). J is larger when
the function becomes wigglier, punishing excessive functional complexity. Choosing larger values of the
smoothing parameter λ pushes the model toward a simpler functional form, so that λ→∞makes GAM equivalent
to linear regression. The value of λ is usually determined empirically, through generalized cross‐validation or
restricted maximum likelihood. For technical details, the reader is referred to Wood (2017).

Classic GAMs as expressed in Equation 4 model the expected value of the outcome and not of the maxima,
making them unsuitable for extreme value analysis. One approach could be to model the expected value of a series
of independent and identically distributed maxima (M1,M2, …,MN), by selecting the maxima through a BM or a
POT approach; however, this reintroduces into the model the limitations related to those approaches. An alter-
native approach is to model a conditional quantile of the outcome as a function of the predictors, as in quantile
regression: this approach goes under the name of quantile generalized additive model (QGAM).

QGAMs are a recent extension of GAMs and quantile regression, which model a chosen conditional quantile of
interest as a sum of unknown smooth functions of the regressors (Fasiolo et al., 2021a). This builds on earlier
theoretical work from Koenker (2011). QGAMs can be expressed as follows:

QY|X(τ) = f1τ (X1) + f2τ (X2) +⋯ + fiτ (Xi), (6)

where QY|X(τ) is a conditional quantile of choice of the dependent variable. They aim to minimize a loss function
similar to the one described by Equation 3,

minE {ρ∗
τ (Y − X∗β)}, (7)

where ρ∗
τ is defined as:

ρ∗
τ = (τ − 1)

z
σ
I(z < 0) + λlog(1 + e

z
λσ) (8)

ρ∗
τ is the extended log‐f loss, which, similarly to the pinball loss, punishes predictions which are further away from
the quantile of interest. σ > 0 is a scale parameter and λ > 0 is a penalty term, meant to prevent excessive
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functional complexity. As λ approaches 0, ρ∗
τ becomes equivalent to ρτ, the pinball loss used in quantile regression

(Fasiolo et al., 2021a).

Similarly to quantile regression, QGAMs do not make any assumptions on the distribution of the extremes, and
only require defining a set of quantiles of interest to study the effect of the regressors on the output. Furthermore,
similarly to GAMs, they model the relationship between the output and the regressors empirically, without
requiring any previous knowledge of the functional relationship between the two.

A possible limitation of GAMs and QGAMs is that they are additive in nature, and even though interactions
between terms may be modeled, every interaction has a large effect on the computational burden of the model,
thus limiting de facto the number of regressors which may be added to the model.

3. Benchmarking EVT Models: Pan‐Atlantic Extremes as a Case Study
This section introduces Pan‐Atlantic Extremes as a case study for benchmarking different EVT models, and
discusses how the performance of these models may be compared in practice.

3.1. Model Setup

In order to compare the performance of the EVT models presented so far, we apply them to full‐complexity
climate data. We specifically consider the association between cold spells in North America and wet or windy
extremes in Western Europe. Following previous literature looking at these extremes (De Luca et al., 2020;
Leeding et al., 2023; Messori & Faranda, 2023; Messori et al., 2016; Riboldi et al., 2023), we consider surface
extremes occurring one to a few times per year (e.g., 1%–5% extreme quantiles), rather than extreme events with
multiannual return times.

Atmospheric data are taken from the ERA 5 global reanalysis (Hersbach et al., 2020) with a daily time resolution
and a 0.5° horizontal resolution. We consider the period November 1959–January 2022, and the months of
November, December, January, and February (NDJF). The daily NAO values are taken from the NOAA online
archive (NOAA/National Weather Service, 2022). Cold spells in North America are defined as days with 2m
temperature (t2m) anomalies relative to the daily climatology, area‐averaged over 30°–45°N, 100°–70°W, below
the 5th quantile of the distribution. The daily climatology is obtained by applying a 7 days running mean and then
averaging over each calendar day over the full time period. The domain of the North American cold spells follows
Messori et al. (2016) and is illustrated in Figure 1, together with the t2m anomalies associated with cold spells. To
decluster the cold spells, we require that at least 5 days elapse between them. Whenever several days within a 5‐
day period meet the criteria for being classified as a cold spell, only the first day is selected.

For Western Europe, we focus on daily mean 10m wind speed and daily precipitation over Iberia and Western
France: regions that Messori et al. (2016) and Messori and Faranda (2023) highlighted as experiencing large
anomalies following the North American cold spells. We test the statistical model predictions on the 95th and 99th
quantiles of the local distributions of these two variables. These correspond to return periods of approximately six
times and once per winter season, respectively.

Based on previous work, we consider the characteristics of the Polar—or eddy‐driven—jet stream over the North
Atlantic region as a possible predictor of the European extremes (Leeding et al., 2023; Messori et al., 2016). Jet
stream speed is defined as the largest zonally averaged zonal wind anomaly from a seven‐day smoothed
climatology at 250 hPa over a North Atlantic domain spanning 30°–75°N, 70°–5°W. The location of the jet is
given by the latitude displaying the largest zonal mean zonal wind anomaly as defined above. The choice of time
lag of temperature in North America and zonal wind over the North Atlantic to be included in the models has been
aided by cross‐validation. The lag is relative to the prediction date for European extremes. Only one lag for each
variable is included in the models in order to avoid multicollinearity issues, as both t2m in North America and the
above jet indices display a high degree of autocorrelation.

We provide the statistical models with three levels of information for predicting t2m and daily mean 10m wind
speed in Western Europe:

‐ Basic models, making predictions as a function of time, latitude, longitude, and a training‐set based seasonal
climatology, only.
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‐ Cold spell models, where t2m in North America from 2 days prior to the prediction date is added to the
regressors.
‐ Cold spell and jet stream models, where the NAO and strength and location of the Polar jet from one day prior
are also added to the regressors. The NAO values are included here as a way to control for possible confounders
affecting North American surface temperatures and surface weather in Western Europe, which might otherwise
lead to biased estimates of the association between the two.

For each information level, we build three models: a QGAM, a linear quantile regression (QREG) and a POT
model. Therefore, a total of nine models is estimated for each target variable in Western Europe. The models'
performance on the test data is compared as outlined in Section 3.2. Technical details including the exact
formulation of each model and the treatment of spatial effects can be found in Text S2 of the Supporting
Information S1.

3.2. Criteria for Model Comparison

For this case study, a useful statistical model should be able to verify whether any relation between surface
temperature in North America and surface extremes inWestern Europe is present, and, if this is the case, make use
of this and additional information on the state of the North Atlantic atmospheric circulation to improve the pre-
diction of said extremes. In particular, we identify three key characteristics of a useful EVT model in this context:

1. It should provide a spatially resolved prediction of extremes in Western Europe, which is more accurate than
competing models, given that similar information is provided.

2. It should provide a consistent estimate of the spatially resolved return levels of the extremes in Western
Europe, where consistency is defined as the property of an estimator whose probability of being arbitrarily
close to the true value tends to one for increasing sample size.

3. It should improve its performance whenever relevant information is added to the model.

The following steps are implemented to assess the performance of the models:

‐ For objective 1, we compute and compare the pseudo R2 quantile regression goodness of fit introduced by
Koenker and Machado (1999). This is defined as:

Figure 1. Domain of North American cold spells and mean t2m anomaly during cold spells. Darker shades are associated with
larger negative t2m anomalies.
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R2pseudo = 1 −
Lcomplete

Lbaseline
, (9)

where Lcomplete is the pinball loss of the model of interest, and Lbaseline is the pinball loss of an appropriate
baseline model, for example, a model using the unconditional quantileQY (τ) of output anomalies at a given grid
point as a fixed prediction for all observations at that same grid point. Here we choose to use the simple pinball
loss (Equation 3) rather than a loss including a penalty term, such as the log‐f loss (Equation 7), as we aim to
compare the models based on the accuracy of their prediction, without accounting for their functional
complexity.
‐ For objective 2, we define P̂O as the proportion of overpredictions in the test sample. An unbiased EVT model
should overpredict the value of the output a percentage of times corresponding to the probability τ of the target
conditional quantile QY|X(τ), so that P̂O = τ. An estimate of the bias of the model is then given by the absolute
difference between the percentage of overpredictions P̂O and τ, so that

Figure 2. (a–c): Kernel density estimate of daily mean 10m wind speed (a) and daily precipitation anomalies (b) in Western Europe: climatological distribution and
distribution of events 2 days before, the same day, one day after, and 2 days after a cold spell in North America. Yellow and red are used to mark the area in the upper
tails of the distribution, namely between the 95th and 99th quantile (yellow), and the 99th quantile and above (red). (d–h): Mean (c and d), 95th quantile (e and f) and
99th quantile of (g and h) of daily mean 10m wind speed (left) and daily precipitation anomalies (right) in Western Europe 15 days before and after a cold spell in North
America. The solid black lines are the overall mean/quantile, while the dashed lines mark approximate 95% significance levels, computed by means of a Monte Carlo
permutation test with 20,000 replications.
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B̂ias = |P̂O − τ| (10)

‐ For objective 3, we first use the models to make spatially resolved predictions of extreme wind or precipitation
events in Western Europe based on the latitude and the longitude of each location. Then, we add some in-
formation on the upstream large‐scale atmospheric circulation and compare the results. A model fulfilling
objective 3 is expected to progressively improve its performance, given that more information is provided and
that this information has been identified as relevant to the extremes in previous studies (Leeding et al., 2023;
Messori et al., 2016).

Holdout cross‐validation is performed by splitting the data set into three parts: a training set, a validation set and a
test set, containing approximately 50%, 25%, and 25% of the available observations, respectively. The random
split uses seasonal data blocks to minimize information leakage between the different sets. All metrics of model
performance are computed based on the test set.

4. Results: A QGAM Approach to the Study of Pan‐Atlantic Compound Extremes
This section applies the models presented in Sections 2 and 3 to study Pan‐Atlantic compound extremes and their
drivers. It aims to support previous analyses of the connection between cold spells in North America and wet or
windy extremes in Europe through robust statistical estimation, and verify whether QGAMs outperform alter-
native statistical models.

A first overview of the relation between cold spells in North America and wet or windy extremes in Western
Europe can be obtained by means of a composite analysis (Figure 2). There is a rightward shift in the mean and
extreme quantiles of 10m wind speed and total precipitation anomalies in conjunction with cold spells in North
America (Figures 2a and 2b), signaling a heightened frequency of large positive anomalies in those variables and
pointing to the possibility of near‐simultaneous extremes in the two regions. Figures 2c–2h corroborate this
hypothesis, by showing how the mean, the 95th and the 99th quantiles of daily mean 10m wind speed and daily
precipitation inWestern Europe are significantly higher than usual in the aftermath of North American cold spells.

Figure 3. Partial effect of t2m anomalies in North America at lag − 2 days on the 95th and 99th quantiles of daily mean 10m wind speed (red) and daily precipitation
(blue) in Western Europe generated through QGAMs (standardized variables). The effect is measured in terms of standard deviations of the dependent variable, when
holding all other variables in the model fixed. (a–d): Cold spell model, holds latitude, longitude and time‐variable fixed. (e–h): Cold spell and jet stream model, holds all
of the above, NAO, and strength and location of the jet stream fixed. The p‐values indicate the overall significance of the smooth term in the respective model.
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We next test whether QGAMs and the other models introduced in Section 2 can leverage this association to make
statistical predictions of extreme events in Europe (95th and 99th quantiles of daily mean 10m wind speed and
daily precipitation at locations in Iberia and Western France). We present the results for the three QGAMmodels
described in Section 3 (basic, cold spell and cold spell and jet stream), and compare their performance to the
quantile regression and POT models.

QGAMs can identify the relation between t2m in North America and weather extremes in Western Europe.
Figure 3 shows the partial effect (effect on the output when holding the other predictors fixed) of t2m in North
America on near‐surface weather in Western Europe, when holding all other variables included in the model
constant. Lower temperatures in North America are significantly associated with higher values of the extreme
quantiles and therefore more extreme weather events in Western Europe. This effect is at its strongest for tem-
perature anomalies of two standard deviations below the mean, that is, cold spells. In the model also including jet
stream and NAO information (Figures 3e–3h), the effect of North American temperatures is weaker due to the fact
that part of the effect is likely mediated by the jet and/or NAO.

Figure 4 shows the bias associated with the prediction of extreme quantiles of daily mean 10m wind speed in
Western Europe through QGAMs. Ideally, the bias of our models should be held under 1 − τ for most grid points,
namely 0.05 for the models predicting the 95th quantile and 0.01 for the models predicting the 99th quantile of the
output. Indeed, a model with bias greater than 1 − τ has a larger bias than a model providing a systematic
underprediction. At the same time, zero bias is not an aim itself due to the variance‐bias trade‐off, and thus some
bias is to be expected. Figure 4 suggests that QGAMs mostly have a bias lower than 1 − τ when predicting daily
mean 10m wind speed for most grid points.

Figure 4. Estimated bias of QGAMs in terms of absolute distance between the percentage of overpredictions (P̂O) and the theoretical quantile (τ). Green shades
represent moderate bias (bias ≤ 1 − τ) whereas red shades represent elevated bias (bias > 1 − τ). Estimation of 95th quantile of daily mean 10m wind. Basic model (a),
model with information on t2m in North America at lag − 2 days (b), model with same information as above plus jet stream and NAO information at lag − 1 day (c). (d–
f): As (a–c), but for the 99th quantile of daily mean 10m wind speed.
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Similar conclusions can be drawn for daily precipitation extremes (Figure 5). The bias of the models at most grid
points is acceptable, as it is well under the 1 − τ threshold.

Figures 6 and 7 show the performance of QGAMs in terms of pseudo R2. The pseudo R2 can take any values
between one and minus one, where one represents a perfect model and minus one the worst possible model.
Here, a pseudo R2 over zero indicates that the model is better than the seasonal climatology of the quantile of
interest at the given grid point, whereas values under zero indicate that it performs worse than the seasonal
climatology. On the base of its definition (Equation 9), the pseudo R2 may also be interpreted as a ratio between
the loss of the model of interest and the baseline model. For instance, in Figure 6, a pseudo R2 of 0.25 for a
given grid point would indicate that at that grid point the pinball loss of the QGAM is three‐quarters as large as
the pinball loss of the baseline model using the seasonal climatology of the quantile of interest as a fixed
prediction.

All QGAMs predicting extreme quantiles of daily mean 10m wind speed appear to gradually improve their
performance as they are provided with more information on the upstream large‐scale atmospheric state. Sizable
gains can be observed already when adding information on t2m to the models, so that cold spell models (Fig-
ures 6b and 6e) are better than the seasonal climatology alone at most grid points. However, the largest gains occur
at the last step, after the information on the state of the North Atlantic and the Polar jet is added. Figures 6c and 6f
show that cold spell and jet stream models are better than the seasonal climatology alone at all grid points apart
from on the Pyrenees and some mountainous areas in South‐Eastern Spain, where the difference between the two
models is in any case small.

The overall trend is similar for models predicting extreme quantiles of daily precipitation. All the models in
Figure 7 show gradual improvements as more information is added, with the largest improvement occurring as
above at the last step. This suggests that information on the state of the North Atlantic atmospheric circulation is
key to the predictability of surface extremes in Western Europe following North American cold spells. The basic
model is approximately equivalent to the seasonal climatology of the quantile, whereas the cold spell and jet

Figure 5. As Figure 4 but for daily precipitation.
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streammodels systematically outperform the seasonal quantile (and the base model) for both 10mwind speed and
precipitation. Even in the case of precipitation, QGAMs perform poorly in some mountainous areas, suggesting
that they may have difficulties in accounting for the effect of local orographic features. This issue is discussed in
greater depth in Section 5.

Figures 8 and 9 compare the performance of QGAMs to conventional POT models. The same set of variables is
used for the two models, and a new Pseudo R2 is computed using the POT models as baseline. A negative pseudo
R2 at a given grid point is to be interpreted as POT models performing better for that grid point, whereas a positive
pseudo R2 suggests that the QGAMs perform better.

QGAMs become gradually better than POT models at most grid points as more information is added to the
models, both when predicting daily mean 10m wind speed (Figure 8) and daily precipitation (Figure 9). This
suggests that QGAMs are better than POT models at modeling the non‐linear effects of upstream atmospheric
factors on the surface extremes as a whole. However, some regional differences can be observed. In the case
of wind, QGAMs are clearly superior for Western and Central Iberia, whereas the difference is smaller in
Eastern Iberia and Western France. POT models outperform QGAMs in the Pyreenes, and for the models
estimating the 99th quantile, in North‐Western France. In the case of precipitation, QGAMs outperform POT
models almost everywhere, with the exception of Western Iberia and some mountainous areas in Eastern
Iberia for the models estimating the 99th quantile. The fact that the QGAMs struggle in mountainous areas is
consistent with what was found for the comparison with the seasonal climatology of the quantile (Figures 6
and 7).

Figures 10 and 11 display a comparison between QGAMs and QREG models. The comparison is performed
similarly to the previous case, where in this case the QREG models are used as baseline for the Pseudo R2

computation.

Figure 6. Estimation of 95th quantile of daily mean 10m wind, pseudo R2 of QGAMs compared to baseline (seasonal climatology). Basic model (a), model with
information on t2m in North America at lag − 2 days (b), model with same information as above plus jet stream and NAO information at lag − 1 day (c). (d–f): As (a–c),
but for the 99th quantile of daily mean 10m wind speed. Red shades indicate that the QGAM performs worse than the seasonal climatology of the quantile of interest,
green shades that it performs better than the seasonal climatology.
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Figure 7. As Figure 6 but for daily precipitation.

Figure 8. As Figure 6, but using the linear POT model as baseline for the computation of the pseudo R2.
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Figure 9. As Figure 7, but using the linear POT model as baseline for the computation of the pseudo R2.

Figure 10. As Figure 6, but using the quantile regression model as baseline for the computation of the pseudo R2.
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The difference between the twomodels is overall smaller in this case, with QREGmodels generally performing as
well as QGAMs for simpler models and QGAMs improving their performance relative to QREG models as more
information is added (Figures 10 and 11). In the models predicting daily mean 10m wind speed, QGAMs appear
to struggle in mountainous areas in Eastern Iberia, which is consistent with previous results. In the models
predicting total daily precipitation, QGAMs perform similarly to QREG models in mountainous areas, and are
slightly outperformed in some dry areas in Southern Iberia. In the jet stream models, QGAMs outperform QREG
models in North‐Western France and perform similarly to QREG models in inland Iberia. (Figures 10c, 10f, 11c,
and 11f). This result appears to be consistent across output variable and quantile of choice.

An overview of the overall performance of the cold spell and jet stream models in terms of Pseudo R2 is given in
Table 1. As suggested by previous figures, QGAMs perform overall better than conventional alternatives (cor-
responding to positive Pseudo R2 values in Table 1) when both t2m and atmospheric circulation information is

Figure 11. As Figure 7, but using the quantile regression as baseline for the computation of the pseudo R2.

Table 1
Overall Pseudo R2 of Cold Spell and Jet Stream Models

Variable Baseline model 95th quantile 99th quantile

Daily mean 10m wind speed Quantile of seasonal climatology 0.062 0.074

Daily mean 10m wind speed POT 0.018 0.014

Daily mean 10m wind speed QREG 0.005 0.003

Daily precipitation Quantile of seasonal climatology 0.073 0.067

Daily precipitation POT 0.077 0.036

Daily precipitation QREG 0.006 0.009

Note. QGAMs are used to estimate the 95th and 99th quantiles of daily mean 10m wind speed and daily precipitation and
compared to different baseline models.
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provided. The difference between QGAMs and POT models is larger than the one between QGAMs and QREG
models.

In Supporting Information S1 (Figures S1–S8), we repeat the same analysis performed in this section while
adding the previous lag of the variable of interest to the models. This is done to show how the comparison between
models changes when we correct for the autocorrelation in the extremes. This autocorrelation is ignored here since
the models do not make use of any information on the outcome variable of interest in Europe, except for the
training set‐based seasonal climatology. The trends observed in the main analysis largely hold even in Supporting
Information S1, with the key difference being that QGAMs improve further in comparison to other models.

5. Discussion and Conclusions
This paper has introduced QGAMs (Fasiolo et al., 2021a) as an alternative to conventional parametric methods for
the analysis of spatially compounding climate extremes. Through a case study on pan‐Atlantic cold spells in
North America and wet or windy extremes in Europe, it has been shown that non‐parametric quantile‐based
methods generally forecast near‐surface weather extremes with a short return period more accurately than
through a conventional POT approach (Table 1 and Table S1 in Supporting Information S1). The difference
between QGAMs and QREGmodels is relatively small, with QGAMs generally being superior when introducing
information on the state of Polar jet and the North Atlantic atmosphere into the models (Figures 10 and 11,
Table 1, and Table S1 in Supporting Information S1). This suggests that QGAMs may be recommended over
other techniques when a larger number of drivers is explored. The advantage of QGAMs over alternative tech-
niques widens when information on the autocorrelation of the extremes is added to the models (Figures S7 and S8
in Supporting Information S1).

Despite the overall superiority of QGAMs, some interesting regional differences could be observed, with QGAMs
performing at their best in inland Iberia and Western France, and at their worst in the Pyrenees and in other
mountainous regions (Figures 6 and 7). The poor performance of QGAMs in those regions is probably to be
ascribed to the lack of orographic information in the models and the relatively coarse spatial resolution, which
make it hard for QGAMs to reconstruct realistic spatial patterns. The fact that other models seems to suffer less
from this may be due to the fact that simpler linear models give greater relative importance to the seasonal
climatology compared to spatial features.

Non‐parametric quantile methods have additional applications for the analysis of near‐surface extremes, which
we have touched upon in this paper. First, they may be used to assess the impact of a particular driver on a given
quantile of a downstream atmospheric variable of interest. This is particularly useful for spatially compounding
extremes, namely extremes that occur (near‐)simultaneously in geographically remote regions. In this study, we
used QGAMs to show that lower area‐averaged 2m temperatures in North America are significantly associated
with higher values of the extreme quantiles of daily mean 10m wind speed and daily precipitation in Western
Europe (Figures 2 and 3). Second, non‐parametric quantile‐based methods may be used to provide ranges of
uncertainty to deterministic numerical forecasts. In particular, Figures 4 and 5 show that QGAMs overpredict the
value of the variable of interest a percentage of times close to τ, thus displaying a good empirical coverage of the
upper boundary of uncertainty when used for estimation of the range of uncertainty of the forecast.

This paper focused on a specific case study of previously studied spatially compounding extremes. We considered
a limited range of conventional models for comparison to QGAMs, and only tested a small number of possible
large‐scale dynamical drivers of the extremes. Our work should be viewed as a proof‐of‐concept to show the
potential of QGAMs compared to conventional parametric models for the study and understanding of spatially
compounding extremes, rather than an attempt to build a statistical forecast model or to investigate novel extreme
occurrences and the related large‐scale atmospheric drivers. We also note that, even though QGAMs perform
better than linear POTmodels in forecasting near‐surface extremes with short return periods, it does not mean that
they are equally effective for extremes with longer return periods. More research may be needed to verify the
robustness of QGAMs when analyzing extremes of this nature.

The statistical analysis in this paper should also be contextualized relative to previous research on Pan‐Atlantic
compound extremes (De Luca et al., 2020; Leeding et al., 2023; Messori & Faranda, 2023; Messori et al., 2016).
Our results strengthen the hypothesis of a connection between wintertime North American cold spells and wet or
windy extremes in Western Europe, by showing that introducing information on surface temperature in North
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America has a clear effect in the model and significantly improves the prediction of extreme quantiles of 10m
wind and precipitation in Iberia andWestern France (Figures 3, 6, and 7). The fact that the effect of temperature in
North America is weakened but still significant when adding information on the Polar jet and the state of the North
Atlantic atmosphere to the models (Figure 3), points to the presence of teleconnections which cannot be fully
explained by a simple causal flow in which cold spells influence the behavior of the Polar jet, which in turn affects
surface weather in Europe. This might suggest the presence of more complex or multiple pathways through which
Pan‐Atlantic compound extremes may be engendered.
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